Institut für Theoretische Informatik, Algorithmik

Algorithmen für planare Graphen

Sommersemester 2024

Allgemeines

  • Dozent/in: Torsten Ueckerdt
  • Übungsleiterin: Laura Merker
  • Termine & Ort:
    • Dienstags, 14:00–15:30, Geb. 30.41 Chemie-Hörsaal Nr. 2 (HS2)
    • Donnerstags, 15:45–17:15, Geb. 30.41 Chemie-Hörsaal Nr. 2 (HS2)
    • Im Schnitt gibt es jede Woche eine Vorlesung und jede zweite Woche eine Übung. Konkrete Termine siehe unten.

Thema

Ein planarer Graph ist ein Graph, der in der Ebene gezeichnet werden kann, ohne dass die Kanten sich kreuzen. Planare Graphen haben viele schöne Eigenschaften, die benutzt werden können, um für zahlreiche Probleme besonders einfache, schnelle und schöne Algorithmen zu entwerfen. Oft können sogar Probleme, die auf allgemeinen Graphen (NP-)schwer sind, auf planaren Graphen sehr effizient gelöst werden. Einige dieser Probleme und Algorithmen zu ihrer Lösung werden in dieser Vorlesung vorgestellt.

Vorlesungs-/Übungstermine

Dienstags 14:00–15:30, donnerstags 15:45–17:15

Änderungen vorbehalten!

Dienstag Donnerstag
16.04. 1. Vorlesung 18.04. 2. Vorlesung
23.04. 3. Vorlesung 25.04.
30.04. 1. Übung 02.05. 4. Vorlesung
07.05. 5. Vorlesung 09.05.
14.05. 2. Übung 16.05. 6. Vorlesung
20.05. 22.05.
28.05. 7. Vorlesung 30.05.
04.06. 3. Übung 06.06. 8. Vorlesung
11.06. 9. Vorlesung 13.06. 10. Vorlesung
18.06. 4. Übung 20.06.
25.06. 27.06.
02.07. 11. Vorlesung 04.07. 12. Vorlesung
09.07. 5. Übung 11.07. 13. Vorlesung
16.07. 14. Vorlesung 18.07. 6. Übung
23.07. 7. Übung 25.07.

Übungen

Es werden regelmäßig Übungsblätter im Ilias veröffentlicht. Diese werden im Rahmen der Übungstermine besprochen.

Prüfungen

Es wird mündliche Prüfungen geben. Termine und weitere Infos wurden in der 8. Vorlesung bekannt gegeben. Bitte buchen Sie rechtzeitig einen Termin!

Alte Materialen

Aktuelle Materialen befinden sich im Ilias.

  • Das veraltete Skript zur Vorlesung im Sommersemester 2009
  • Skript zur Vorlesung Algorithmentechnik
  • Kurzskripte zur Wiederholung wichtiger Begriffe: Skriptsammlung
  • Ein Aufschrieb von Nils Froleyks zum Satz von Kuratowski. Dieser Aufschrieb ist ohne Gewähr auf Korrektheit.

Achtung: Es werden auch eine Reihe neuer Themen behandelt, die das Skript nicht abdeckt.

Literatur

Beweis für den Satz von Kuratowski
[Mak97] Yury Makarychev, A Short Proof of Kuratowski's Graph Planarity Criterion, 1997.
Literatur zu Listenfärbung
[Die10] Reinhard Diestel, Graph Theory, Springer, 2010.
[Mat12] Martin Matkovic, Bachelorarbeit über Listenfärben in Graphen, 2012.
Bücher zu planaren Graphen
[Aig84] Martin Aigner. Graphentheorie: Entwicklung aus dem 4-Farben-Problem. Teubner, 1984.
[BM76] John A. Bondy and Uppaluri R.S. Murty. Graph theory with applications. North-Holland, 1976.
[Jun94] Dieter Jungnickel. Graphen, Netzwerke und Algorithmen. BI-Wissenschaftsverlag, 1994.
[NC88] Takao Nishizeki and Norishige Chiba. Planar Graphs: Theory and Algorithms, volume 32 of Annals of Discrete Mathematics. North-Holland, 1988. ISBN 0-444-70212-1.
[TS92] K. Thulasiraman und M.N.S. Swamy. Graphs: Theory and Algorithms. Wiley, 1992.
Artikel zu ausgewählten Themen
[BM04] John M. Boyer and Wendy J. Myrvold, On the Cutting Edge: Simplified O(n) Planarity by Edge Addition. Theory Ser. B. 70 (1997), 2–44.
[RSST97] N. Robertson, D. P. Sanders, P. D. Seymour and R. Thomas, The four colour theorem, J. Combin. Theory Ser. B. 70 (1997), 2–44.
[T95] N. Robertson, D. P. Sanders, P. D. Seymour and R. Thomas, The four colour theorem, electronic resource
[T95b] N. Robertson, D. P. Sanders, P. D. Seymour and R. Thomas, The four colour theorem, unpublished manuscript and computer program
[Tor] Arne-Michael Törsel, Analyse und Implementation des Boyer-Myrvold Algorithmus zur Einbettung planarer Graphen. Diplomarbeit an der Fachhochschule Stralsaund, Fachbereich Wirtschaft, 2002?
[WW95] Dorothea Wagner, Karsten Weihe A linear-time algorithm for edge-disjoint paths in planar graphs. Combinatorica, Volume 15, Number 1/March, 1995
[I06] Alon Itai Linear time restricted union find. Manuscript 2006
[BK09] Glencora Borradaile and Philip Klein. An O(n log n) algorithm for maximum st-flow in a directed planar graph. J. ACM 56, 2, Article 9 (April 2009). (Erster O(n log n)-Algorithmus, auf dem der in der Vorlesung vorgestellt von Erickson [E10] aufbaut)
[E10] Jeff Erickson Maximum flows and parametric shortest paths in planar graphs. In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms, 794-804, 2010.
[ST81] Daniel D. Sleator and Robert Endre Tarjan. 1981. A data structure for dynamic trees. In Proceedings of the thirteenth annual ACM symposium on Theory of computing (STOC '81). Association for Computing Machinery, New York, NY, USA, 114–122. (Datenstruktur, die in [E10] verwendet wird)
Sonstige Bücher
[A99] Giorgio Ausiello et al. Complexity and Approximation. Springer Verlag, 1999.
[CLR01] T. H. Cormen, C. E. Leiserson, R. L. Rivest u.a. Introduction to Algorithms / Algorithmen -- eine Einführung. MIT Press, 1990-2001 / Oldenburg 2004.
[dBETT99] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis Graph Drawing : Algorithms for the Visualization of Graphs. Prentice Hall, 1999.
[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. WH Freeman & Co Ltd, 1979.
[OW90] Thomas Ottmann und Peter Widmayer. Algorithmen und Datenstrukturen. Spektrum, Akad. Verl., 1990-2002.
[S01] Uwe Schöning. Algorithmik. Spektrum Akademischer Verlag, 2001.