Towards a Calculus
For Concurrent Java

Viadimir Klebanov
Universitat Koblenz

June 7, 2004

K> Verifying Concurrent Java 0Oo0oo0ooom?0

The Godal

A correct and complete DL calculus for concurrent
Java.

This calculus would:

= Handle threads + native synchronization primitives

= dllow to verify arbifrary Java programs (but what
properties?)
= probably be feasible only for small systems

KR 000 O

...Is Not Impossible

Previous work:

= Gries and Owicki 1976:
Axiomatic proof technique for parallel programs

= KIV Augsburg:
Verifying concurrent systems with symbolic
execution

- Abrahd&m, de Boer, Steffen et al.:
An assertion-based proof system for mulfithreaded
Java

KR 000 O

The Issue With Concurrency

Program semantics may be dependent on scheduling.

Race Conditions:

[1 Two or more threads have access 1o the same
memory location

[0 At least one thread is writing to this locatfion

0 No mechanism in place to guarantee temporal
ordering

KR 000 O

The Issue With Concurrency (2)

For t threads of n statements each, there are

(tn)!

(n!)*

possible execution orderings.

2 threads with 5 statements — makes 252 interleavings
[proof space reduction is needed

KR 000 O

A Remedy

|dea: Verify two threads 77 and T separately, then
prove correct compaosition.

Proofs for T7; and T, can be composed if no statfement
of T interferes with statement of T, and vice versa.

Gives |T1| x |T:| addifional correctness conditfions.

KR 000 O

Non-Interference

When does statement S; not interfere with S,?

[preservation of pre-state

Let S, be executed in state char. by ¢
Let S, be executed in state char. by ¢
Non-interference condition:

YA — (S
[0 assertion insensitivity (post-state)
[0 syntactical disjointness

What if we do have interference?

KR 000 O

What else?

= Operational semantics of concurrency primitives
= From source code to JVM

KR 000 O

JVM Concurrency Pitfalls

Lots of them:

= Load and store not atomic for long and double
= Compiler statement reordering

= QOrder of updates to variables as seen by other
threads may not be consistent

= No guarantee that any synchronized method will
ever be executed

KR 000 O

Compositional Verification

= Develop robustness conditions for specifications of
larger software units

= Compositionality principles, “lifting”
= Possibly just for certain architectures: Server,
Producer/Consumer, Controller

KR 000 O

The Properties

= (Partial) correctness — the usual, refers to ferminal
states only

= p-Calculus (liveliness and safety properties)
= Regular/Schematic Sequence Charts

KR 000 O

Thank Youl

K> Verifying Concurrent Java 0Oo0oo0ooom?0

TOC

KgY

The Goal O

...Is Not Impossible [

The Issue With Concurrency [
The Issue With Concurrency (2) O
A Remedy [

Non-Interference [

What else? O

JVM Concurrency Pitfalls 0
Compositional Verification O
The Properties O

Thank You! O

Verifying Concurrent Java 0Oo0oo0ooom?0

