
Closures in
Java

Gregor Bethlen

Introduction

Proposals

Summary Closures in Java

Gregor Bethlen

Universität Karlsruhe

27.05.2010

Slide 1 of 22



Closures in
Java

Gregor Bethlen

Introduction

Proposals

Summary

Outline

1 Introduction

Motivation

Examples

Conclusions

2 Proposals

BGGA

CICE

FCM

3 Summary

Slide 2 of 22



Closures in
Java

Gregor Bethlen

Introduction
Motivation
Examples
Conclusions

Proposals

Summary

Motivation

treat functions/methods as values for variables and
parameters of methods
ease the passing of callback-functions
treat some situations more elegantly (for example one object
acting as an observer twice)
ease for example the creation of threads
obsolete several (API-)interfaces which only exist due to the
present absence of closures in Java
parametrise algorithms with functions
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Syntax

our examples use a syntax like the one proposed in First-class
methods: Java-style closures
we have function-types like #(double(int, int)) for
functions taking two integers and return a double
we have (anonymous) inner methods like
#(int a, int b) {

return (double)(a + b) / 2;
}
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We can assign and invoke

#(double(int, int)) avg =
#(int a, int b) {

return (double)(a + b) / 2;
};

double result = avg.invoke(3, 10);

with the result 6.5.
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An example without a local variable in the definition-context.

public #(int(int)) getAddTwo() {
#(int(int)) addTwo = #(int a) { return a + 2; };
return addTwo;

}

public void f() {
#(int(int)) closure = getAddTwo();
int result = closure.invoke(33); //result is 35

}
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An example with a local variable in the definition-context.

public #(int(int)) getAddX(int x) {
int summand = x;
#(int(int)) addX = #(int a) { return a + summand; };
return addX;

}

public void f() {
#(int(int)) closure = getAddX(4);
int result = closure.invoke(33); //result is 37

}

Slide 7 of 22



Closures in
Java

Gregor Bethlen

Introduction
Motivation
Examples
Conclusions

Proposals

Summary

Examples

An example with a local variable in the definition-context which
value is changed after the closure-definition.

public #(int(int)) getAddX(int x) {
int summand = x;
#(int(int)) addX = #(int a) { return a + summand; };
summand = 17;
return addX;

}

public void f() {
#(int(int)) closure = getAddX(4);
int result = closure.invoke(33); //result is 50

}
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Impacts for local variables

We conclude that local variables of a definition-context, which are
used in a closure, can not be put on the stack; they must go on
the heap.

The same holds for references/pointers to objects.
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Impacts for verification

It is not possible to treat a local variable var used in method
meth of object obj as a synthetic private attribute obj.meth_var,
as one may think.

Let there be a closure defined in meth using var. If obj.meth gets
called twice, each created closure-instance will use its own version
of var.
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All proposals

it is possible to convert function-types to interface types with
single abstract methods (sometimes called SAM-types)
this way closures can be passed for example to the
constructor of Thread,
new Thread(#(void) { aClient->startWork() }).
this is useful for all kind of callback-functions, which in Java
are modelled by SAM-types; even the design pattern
»Observer« uses this detour.
the conversion exists due to compatiblity with the current
emulation of closures by SAM-types
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The BGGA-Proposal by Gilad Bracha, Neal Gafter, James
Gosling and Peter von der Ahé uses an implicit return, like in

{ int x, int y => x := x + 2; y := y + 2; x + y }

The return value of a closure is the value of the last expression.
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The proposal does not only introduce method-calls in the
functionality we have seen so far. Furthermore there are
user-defined control-structures, like

withProtocol(aProtocol) {
System.out.println("A");
System.out.println("B");

}
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User-defined control-structures

A possible implementation for withProtocol and an invocation of
withProtocol with the techniques we have seen so far.

public static withProtocol(Protocol protocol,
{=> void} body) {

protocol.inform();
body.invoke();
protocol.inform();

}

...
withProtocol(aProtocol, {=> System.out.println("A");

System.out.println("B");
});

...
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User-defined control-structures

A possible implementation for withProtocol (unchanged) and an
invocation of withProtocol with the proposed improved syntax.

public static withProtocol(Protocol protocol,
{=> void} body) {

protocol.inform();
body.invoke();
protocol.inform();

}

...
withProtocol(aProtocol) {

System.out.println("A");
System.out.println("B");

}
...
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User-defined control-structures
Behavior of return and this

We have to be aware of the target of return (improved and
regular syntax). This holds for this, too.

...
withProtocol(aProtocol) {

System.out.println("A");
if (strangeError) return;
System.out.println("B");

}
...
...

withProtocol(aProtocol, {=> System.out.println("A");
if (strangeError) return;
System.out.println("B");

});
...

We can even jump out of scope.Slide 16 of 22
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User-defined control-structures
Behavior of continue and break

We have to be aware of the target of break (improved syntax).

...
while (!done) {

withProtocol(aProtocol) {
System.out.println("A");
if (strangeError) break;
System.out.println("B");

}
...

}
...
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User-defined loops

An example for a user-defined loop.

public static for myLoop(int times, {=> void} body) {
int i = 0;
while (i < times) {

i++; body.invoke();
}

}

...
for myLoop(5, {=> System.out.println("A");});

...

...
for myLoop(5) {

System.out.println("A");
}

...
Slide 18 of 22
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User-defined loops
Behavior of continue and break

This time continue refers to the next iteration of the user-defined
control-structure (improved syntax).

...
while (!done) {

for myLoop(5) {
System.out.println("A");
continue;
System.out.println("B");

}
...
}

...
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CICE

The second proposal is »Concise Instance Creation Expressions:
Closures without Complexity« by Bob Lee, Doug Lea and Josh
Bloch.

This proposal does not define closures – it just introduces a more
compact syntax for the creation of anonymous classes by omitting
a few keywords and identifiers.

There are no function-types nor is there any ability to assign
closures to a variable or return a closure back to a caller.
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FCM

The last proposal is »First-class methods: Java-style closures« by
Stephen Colebourne and Stefan Schulz.

This proposal allows usage of normal methods of classes and
objects and even constructors as closures. For example we can use

#(int (int, int)) cl1 = Math#min(int, int);
#(int (Object)) cl2 = aList#indexOf(Object);
#(int (List, Object)) cl3 = List#indexOf(Object);
#(Integer(int)) ctor = Integer#(int);
#(void ()) callback = this#callMe();

new Thread(this#callMe());
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local variables are not local any more, at least not in the
temporal sense
this may force verification to model an explicit heap
the BGGA-proposal also introduces user-defined
control-structures, requiring to capture the targets of return,
this, break and continue and thus adding additional
complexity
the CICE-proposal does not introduce closures
the FCM-proposal introduces everything one wants to have
regarding closures and nothing beyond
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