
Closures in
Java

Gregor Bethlen

Introduction

Proposals

Summary Closures in Java

Gregor Bethlen

Universität Karlsruhe

27.05.2010

Slide 1 of 22



Closures in
Java

Gregor Bethlen

Introduction

Proposals

Summary

Outline

1 Introduction

Motivation

Examples

Conclusions

2 Proposals

BGGA

CICE

FCM

3 Summary

Slide 2 of 22



Closures in
Java

Gregor Bethlen

Introduction
Motivation
Examples
Conclusions

Proposals

Summary

Motivation

treat functions/methods as values for variables and
parameters of methods
ease the passing of callback-functions
treat some situations more elegantly (for example one object
acting as an observer twice)
ease for example the creation of threads
obsolete several (API-)interfaces which only exist due to the
present absence of closures in Java
parametrise algorithms with functions

Slide 3 of 22



Closures in
Java

Gregor Bethlen

Introduction
Motivation
Examples
Conclusions

Proposals

Summary

Motivation

treat functions/methods as values for variables and
parameters of methods
ease the passing of callback-functions
treat some situations more elegantly (for example one object
acting as an observer twice)
ease for example the creation of threads
obsolete several (API-)interfaces which only exist due to the
present absence of closures in Java
parametrise algorithms with functions

Slide 3 of 22



Closures in
Java

Gregor Bethlen

Introduction
Motivation
Examples
Conclusions

Proposals

Summary

Motivation

treat functions/methods as values for variables and
parameters of methods
ease the passing of callback-functions
treat some situations more elegantly (for example one object
acting as an observer twice)
ease for example the creation of threads
obsolete several (API-)interfaces which only exist due to the
present absence of closures in Java
parametrise algorithms with functions

Slide 3 of 22



Closures in
Java

Gregor Bethlen

Introduction
Motivation
Examples
Conclusions

Proposals

Summary

Motivation

treat functions/methods as values for variables and
parameters of methods
ease the passing of callback-functions
treat some situations more elegantly (for example one object
acting as an observer twice)
ease for example the creation of threads
obsolete several (API-)interfaces which only exist due to the
present absence of closures in Java
parametrise algorithms with functions

Slide 3 of 22



Closures in
Java

Gregor Bethlen

Introduction
Motivation
Examples
Conclusions

Proposals

Summary

Motivation

treat functions/methods as values for variables and
parameters of methods
ease the passing of callback-functions
treat some situations more elegantly (for example one object
acting as an observer twice)
ease for example the creation of threads
obsolete several (API-)interfaces which only exist due to the
present absence of closures in Java
parametrise algorithms with functions

Slide 3 of 22



Closures in
Java

Gregor Bethlen

Introduction
Motivation
Examples
Conclusions

Proposals

Summary

Motivation

treat functions/methods as values for variables and
parameters of methods
ease the passing of callback-functions
treat some situations more elegantly (for example one object
acting as an observer twice)
ease for example the creation of threads
obsolete several (API-)interfaces which only exist due to the
present absence of closures in Java
parametrise algorithms with functions

Slide 3 of 22



Closures in
Java

Gregor Bethlen

Introduction
Motivation
Examples
Conclusions

Proposals

Summary

Syntax

our examples use a syntax like the one proposed in First-class
methods: Java-style closures
we have function-types like #(double(int, int)) for
functions taking two integers and return a double
we have (anonymous) inner methods like
#(int a, int b) {

return (double)(a + b) / 2;
}

Slide 4 of 22



Closures in
Java

Gregor Bethlen

Introduction
Motivation
Examples
Conclusions

Proposals

Summary

Syntax

our examples use a syntax like the one proposed in First-class
methods: Java-style closures
we have function-types like #(double(int, int)) for
functions taking two integers and return a double
we have (anonymous) inner methods like
#(int a, int b) {

return (double)(a + b) / 2;
}

Slide 4 of 22



Closures in
Java

Gregor Bethlen

Introduction
Motivation
Examples
Conclusions

Proposals

Summary

Syntax

our examples use a syntax like the one proposed in First-class
methods: Java-style closures
we have function-types like #(double(int, int)) for
functions taking two integers and return a double
we have (anonymous) inner methods like
#(int a, int b) {

return (double)(a + b) / 2;
}

Slide 4 of 22



Closures in
Java

Gregor Bethlen

Introduction
Motivation
Examples
Conclusions

Proposals

Summary

Examples

We can assign and invoke

#(double(int, int)) avg =
#(int a, int b) {

return (double)(a + b) / 2;
};

double result = avg.invoke(3, 10);

with the result 6.5.

Slide 5 of 22



Closures in
Java

Gregor Bethlen

Introduction
Motivation
Examples
Conclusions

Proposals

Summary

Examples

An example without a local variable in the definition-context.

public #(int(int)) getAddTwo() {
#(int(int)) addTwo = #(int a) { return a + 2; };
return addTwo;

}

public void f() {
#(int(int)) closure = getAddTwo();
int result = closure.invoke(33); //result is 35

}

Slide 6 of 22



Closures in
Java

Gregor Bethlen

Introduction
Motivation
Examples
Conclusions

Proposals

Summary

Examples

An example with a local variable in the definition-context.

public #(int(int)) getAddX(int x) {
int summand = x;
#(int(int)) addX = #(int a) { return a + summand; };
return addX;

}

public void f() {
#(int(int)) closure = getAddX(4);
int result = closure.invoke(33); //result is 37

}

Slide 7 of 22



Closures in
Java

Gregor Bethlen

Introduction
Motivation
Examples
Conclusions

Proposals

Summary

Examples

An example with a local variable in the definition-context which
value is changed after the closure-definition.

public #(int(int)) getAddX(int x) {
int summand = x;
#(int(int)) addX = #(int a) { return a + summand; };
summand = 17;
return addX;

}

public void f() {
#(int(int)) closure = getAddX(4);
int result = closure.invoke(33); //result is 50

}

Slide 8 of 22



Closures in
Java

Gregor Bethlen

Introduction
Motivation
Examples
Conclusions

Proposals

Summary

Impacts for local variables

We conclude that local variables of a definition-context, which are
used in a closure, can not be put on the stack; they must go on
the heap.

The same holds for references/pointers to objects.

Slide 9 of 22



Closures in
Java

Gregor Bethlen

Introduction
Motivation
Examples
Conclusions

Proposals

Summary

Impacts for verification

It is not possible to treat a local variable var used in method
meth of object obj as a synthetic private attribute obj.meth_var,
as one may think.

Let there be a closure defined in meth using var. If obj.meth gets
called twice, each created closure-instance will use its own version
of var.

Slide 10 of 22



Closures in
Java

Gregor Bethlen

Introduction
Motivation
Examples
Conclusions

Proposals

Summary

Impacts for verification

It is not possible to treat a local variable var used in method
meth of object obj as a synthetic private attribute obj.meth_var,
as one may think.

Let there be a closure defined in meth using var. If obj.meth gets
called twice, each created closure-instance will use its own version
of var.

Slide 10 of 22



Closures in
Java

Gregor Bethlen

Introduction

Proposals
BGGA
CICE
FCM

Summary

All proposals

it is possible to convert function-types to interface types with
single abstract methods (sometimes called SAM-types)
this way closures can be passed for example to the
constructor of Thread,
new Thread(#(void) { aClient->startWork() }).
this is useful for all kind of callback-functions, which in Java
are modelled by SAM-types; even the design pattern
»Observer« uses this detour.
the conversion exists due to compatiblity with the current
emulation of closures by SAM-types

Slide 11 of 22



Closures in
Java

Gregor Bethlen

Introduction

Proposals
BGGA
CICE
FCM

Summary

All proposals

it is possible to convert function-types to interface types with
single abstract methods (sometimes called SAM-types)
this way closures can be passed for example to the
constructor of Thread,
new Thread(#(void) { aClient->startWork() }).
this is useful for all kind of callback-functions, which in Java
are modelled by SAM-types; even the design pattern
»Observer« uses this detour.
the conversion exists due to compatiblity with the current
emulation of closures by SAM-types

Slide 11 of 22



Closures in
Java

Gregor Bethlen

Introduction

Proposals
BGGA
CICE
FCM

Summary

All proposals

it is possible to convert function-types to interface types with
single abstract methods (sometimes called SAM-types)
this way closures can be passed for example to the
constructor of Thread,
new Thread(#(void) { aClient->startWork() }).
this is useful for all kind of callback-functions, which in Java
are modelled by SAM-types; even the design pattern
»Observer« uses this detour.
the conversion exists due to compatiblity with the current
emulation of closures by SAM-types

Slide 11 of 22



Closures in
Java

Gregor Bethlen

Introduction

Proposals
BGGA
CICE
FCM

Summary

All proposals

it is possible to convert function-types to interface types with
single abstract methods (sometimes called SAM-types)
this way closures can be passed for example to the
constructor of Thread,
new Thread(#(void) { aClient->startWork() }).
this is useful for all kind of callback-functions, which in Java
are modelled by SAM-types; even the design pattern
»Observer« uses this detour.
the conversion exists due to compatiblity with the current
emulation of closures by SAM-types

Slide 11 of 22



Closures in
Java

Gregor Bethlen

Introduction

Proposals
BGGA
CICE
FCM

Summary

BGGA

The BGGA-Proposal by Gilad Bracha, Neal Gafter, James
Gosling and Peter von der Ahé uses an implicit return, like in

{ int x, int y => x := x + 2; y := y + 2; x + y }

The return value of a closure is the value of the last expression.

Slide 12 of 22



Closures in
Java

Gregor Bethlen

Introduction

Proposals
BGGA
CICE
FCM

Summary

BGGA

The proposal does not only introduce method-calls in the
functionality we have seen so far. Furthermore there are
user-defined control-structures, like

withProtocol(aProtocol) {
System.out.println("A");
System.out.println("B");

}

Slide 13 of 22



Closures in
Java

Gregor Bethlen

Introduction

Proposals
BGGA
CICE
FCM

Summary

User-defined control-structures

A possible implementation for withProtocol and an invocation of
withProtocol with the techniques we have seen so far.

public static withProtocol(Protocol protocol,
{=> void} body) {

protocol.inform();
body.invoke();
protocol.inform();

}

...
withProtocol(aProtocol, {=> System.out.println("A");

System.out.println("B");
});

...

Slide 14 of 22



Closures in
Java

Gregor Bethlen

Introduction

Proposals
BGGA
CICE
FCM

Summary

User-defined control-structures

A possible implementation for withProtocol (unchanged) and an
invocation of withProtocol with the proposed improved syntax.

public static withProtocol(Protocol protocol,
{=> void} body) {

protocol.inform();
body.invoke();
protocol.inform();

}

...
withProtocol(aProtocol) {

System.out.println("A");
System.out.println("B");

}
...

Slide 15 of 22



Closures in
Java

Gregor Bethlen

Introduction

Proposals
BGGA
CICE
FCM

Summary

User-defined control-structures
Behavior of return and this

We have to be aware of the target of return (improved and
regular syntax). This holds for this, too.

...
withProtocol(aProtocol) {

System.out.println("A");
if (strangeError) return;
System.out.println("B");

}
...
...

withProtocol(aProtocol, {=> System.out.println("A");
if (strangeError) return;
System.out.println("B");

});
...

We can even jump out of scope.Slide 16 of 22



Closures in
Java

Gregor Bethlen

Introduction

Proposals
BGGA
CICE
FCM

Summary

User-defined control-structures
Behavior of return and this

We have to be aware of the target of return (improved and
regular syntax). This holds for this, too.

...
withProtocol(aProtocol) {

System.out.println("A");
if (strangeError) return;
System.out.println("B");

}
...
...

withProtocol(aProtocol, {=> System.out.println("A");
if (strangeError) return;
System.out.println("B");

});
...

We can even jump out of scope.Slide 16 of 22



Closures in
Java

Gregor Bethlen

Introduction

Proposals
BGGA
CICE
FCM

Summary

User-defined control-structures
Behavior of continue and break

We have to be aware of the target of break (improved syntax).

...
while (!done) {

withProtocol(aProtocol) {
System.out.println("A");
if (strangeError) break;
System.out.println("B");

}
...

}
...

Slide 17 of 22



Closures in
Java

Gregor Bethlen

Introduction

Proposals
BGGA
CICE
FCM

Summary

User-defined loops

An example for a user-defined loop.

public static for myLoop(int times, {=> void} body) {
int i = 0;
while (i < times) {

i++; body.invoke();
}

}

...
for myLoop(5, {=> System.out.println("A");});

...

...
for myLoop(5) {

System.out.println("A");
}

...
Slide 18 of 22



Closures in
Java

Gregor Bethlen

Introduction

Proposals
BGGA
CICE
FCM

Summary

User-defined loops
Behavior of continue and break

This time continue refers to the next iteration of the user-defined
control-structure (improved syntax).

...
while (!done) {

for myLoop(5) {
System.out.println("A");
continue;
System.out.println("B");

}
...
}

...

Slide 19 of 22



Closures in
Java

Gregor Bethlen

Introduction

Proposals
BGGA
CICE
FCM

Summary

CICE

The second proposal is »Concise Instance Creation Expressions:
Closures without Complexity« by Bob Lee, Doug Lea and Josh
Bloch.

This proposal does not define closures – it just introduces a more
compact syntax for the creation of anonymous classes by omitting
a few keywords and identifiers.

There are no function-types nor is there any ability to assign
closures to a variable or return a closure back to a caller.

Slide 20 of 22



Closures in
Java

Gregor Bethlen

Introduction

Proposals
BGGA
CICE
FCM

Summary

FCM

The last proposal is »First-class methods: Java-style closures« by
Stephen Colebourne and Stefan Schulz.

This proposal allows usage of normal methods of classes and
objects and even constructors as closures. For example we can use

#(int (int, int)) cl1 = Math#min(int, int);
#(int (Object)) cl2 = aList#indexOf(Object);
#(int (List, Object)) cl3 = List#indexOf(Object);
#(Integer(int)) ctor = Integer#(int);
#(void ()) callback = this#callMe();

new Thread(this#callMe());

Slide 21 of 22



Closures in
Java

Gregor Bethlen

Introduction

Proposals

Summary

Summary

local variables are not local any more, at least not in the
temporal sense
this may force verification to model an explicit heap
the BGGA-proposal also introduces user-defined
control-structures, requiring to capture the targets of return,
this, break and continue and thus adding additional
complexity
the CICE-proposal does not introduce closures
the FCM-proposal introduces everything one wants to have
regarding closures and nothing beyond

Slide 22 of 22



Closures in
Java

Gregor Bethlen

Introduction

Proposals

Summary

Summary

local variables are not local any more, at least not in the
temporal sense
this may force verification to model an explicit heap
the BGGA-proposal also introduces user-defined
control-structures, requiring to capture the targets of return,
this, break and continue and thus adding additional
complexity
the CICE-proposal does not introduce closures
the FCM-proposal introduces everything one wants to have
regarding closures and nothing beyond

Slide 22 of 22



Closures in
Java

Gregor Bethlen

Introduction

Proposals

Summary

Summary

local variables are not local any more, at least not in the
temporal sense
this may force verification to model an explicit heap
the BGGA-proposal also introduces user-defined
control-structures, requiring to capture the targets of return,
this, break and continue and thus adding additional
complexity
the CICE-proposal does not introduce closures
the FCM-proposal introduces everything one wants to have
regarding closures and nothing beyond

Slide 22 of 22



Closures in
Java

Gregor Bethlen

Introduction

Proposals

Summary

Summary

local variables are not local any more, at least not in the
temporal sense
this may force verification to model an explicit heap
the BGGA-proposal also introduces user-defined
control-structures, requiring to capture the targets of return,
this, break and continue and thus adding additional
complexity
the CICE-proposal does not introduce closures
the FCM-proposal introduces everything one wants to have
regarding closures and nothing beyond

Slide 22 of 22



Closures in
Java

Gregor Bethlen

Introduction

Proposals

Summary

Summary

local variables are not local any more, at least not in the
temporal sense
this may force verification to model an explicit heap
the BGGA-proposal also introduces user-defined
control-structures, requiring to capture the targets of return,
this, break and continue and thus adding additional
complexity
the CICE-proposal does not introduce closures
the FCM-proposal introduces everything one wants to have
regarding closures and nothing beyond

Slide 22 of 22


	Introduction
	Motivation
	Examples
	Conclusions

	Proposals
	BGGA
	CICE
	FCM

	Summary

