Gregor Bethlen

Universitdt Karlsruhe

27.05.2010

© Introduction
e Motivation
o Examples

o Conclusions

© Proposals
o BGGA
e CICE
o FCM

© Summary

treat functions/methods as values for variables and
parameters of methods

@ ease the passing of callback-functions

e treat some situations more elegantly (for example one object
acting as an observer twice)

o case for example the creation of threads

@ obsolete several (API-)interfaces which only exist due to the
present absence of closures in Java

e parametrise algorithms with functions

Motivation

Closures in
Java

Gregor Bethlen

Motivation o treat functions/methods as values for variables and
Examples
En— parameters of methods

@ ease the passing of callback-functions

Slide 3 of 22

Motivation

Closures in
Java

Gregor Bethlen

Motivation o treat functions/methods as values for variables and
Examples
En— parameters of methods

@ ease the passing of callback-functions

e treat some situations more elegantly (for example one object
acting as an observer twice)

Slide 3 of 22

Motivation

Closures in
Java

Gregor Bethlen

Motivation o treat functions/methods as values for variables and
Examples
En— parameters of methods

@ ease the passing of callback-functions

e treat some situations more elegantly (for example one object
acting as an observer twice)

@ ease for example the creation of threads

Slide 3 of 22

Motivation

Closures in
Java

Gregor Bethlen

Motivation o treat functions/methods as values for variables and
Examples
En— parameters of methods

@ ease the passing of callback-functions

e treat some situations more elegantly (for example one object
acting as an observer twice)

@ ease for example the creation of threads

@ obsolete several (API-)interfaces which only exist due to the
present absence of closures in Java

Slide 3 of 22

Motivation

Closures in
Java

Gregor Bethlen

Motivation o treat functions/methods as values for variables and
Examples
En— parameters of methods

@ ease the passing of callback-functions

e treat some situations more elegantly (for example one object
acting as an observer twice)

@ ease for example the creation of threads

@ obsolete several (API-)interfaces which only exist due to the
present absence of closures in Java

e parametrise algorithms with functions

Slide 3 of 22

@ our examples use a syntax like the one proposed in First-class
methods: Java-style closures

e we have function-types like #(double (int, int)) for
functions taking two integers and return a double

e we have (anonymous) inner methods like
#(int a, int b) {
return (double)(a + b) / 2;
}

Syntax

Closures in
Java

Gregor Bethlen

Motivation
Examples

B @ our examples use a syntax like the one proposed in First-class
methods: Java-style closures

e we have function-types like #(double(int, int)) for
functions taking two integers and return a double

Slide 4 of 22

Syntax

Closures in
Java

Gregor Bethlen

Motivation

Examples @ our examples use a syntax like the one proposed in First-class
Conclusions
methods: Java-style closures

e we have function-types like #(double(int, int)) for
functions taking two integers and return a double
e we have (anonymous) inner methods like
#(int a, int b) {
return (double)(a + b) / 2;
}

Slide 4 of 22

Examples

Closures in
Java

Gregor Bethlen

Motivation We can assign and invoke
Examples
Conclusions

#(double(int, int)) avg =
#(int a, int b) {
return (double)(a + b) / 2;
}s
double result = avg.invoke(3, 10);

with the result 6.5.

Slide 5 of 22

Closures in
Java

Gregor Bethlen

Motivation
Examples
Conclusions

Slide 6 of 22

Examples

An example without a local variable in the definition-context.

public #(int(int)) getAddTwo() {

#(int(int)) addTwo = #(int a) { return a + 2; };
return addTwo;

}

public void £() {
#(int(int)) closure = getAddTwo();
int result = closure.invoke(33); //result is 35

Examples

Closures in
Java

Gregor Bethlen

An example with a local variable in the definition-context.

Motivation
Examples

Conclusions publlc # (int (int)) getAddX (int X) {
int summand = x;

#(int(int)) addX = #(int a) { return a + summand; };
return addX;

}

public void £() {
#(int(int)) closure = getAddX(4);
int result = closure.invoke(33); //result is 37

3

Slide 7 of 22

Closures in
Java

Gregor Bethlen

Motivation
Examples
Conclusions

Slide 8 of 22

Examples

An example with a local variable in the definition-context which
value is changed after the closure-definition.

public #(int(int)) getAddX(int x) {
int summand = x;
#(int(int)) addX = #(int a) { return a + summand; };
summand = 17;
return addX;

3

public void £() {
#(int(int)) closure = getAddX(4);
int result = closure.invoke(33); //result is 50

3

Impacts for local variables

Closures in
Java

Gregor Bethlen

Motivation
Examples
Conclusions

We conclude that local variables of a definition-context, which are

used in a closure, can not be put on the stack; they must go on
the heap.

The same holds for references/pointers to objects.

Slide 9 of 22

Impacts for verification

Closures in
Java

Gregor Bethlen

Motivation
Examples
Conclusions

It is not possible to treat a local variable var used in method

meth of object obj as a synthetic private attribute obj.meth_var,
as one may think.

Slide 10 of 22

Impacts for verification

Closures in
Java

Gregor Bethlen

Motivation
Examples
Conclusions

It is not possible to treat a local variable var used in method

meth of object obj as a synthetic private attribute obj.meth_var,
as one may think.

Let there be a closure defined in meth using var. If obj.meth gets

called twice, each created closure-instance will use its own version
of var.

Slide 10 of 22

All proposals

Closures in
Java

Gregor Bethlen

o @ it is possible to convert function-types to interface types with
Er single abstract methods (sometimes called SAM-types)

CICE

FCM

Slide 11 of 22

All proposals

Closures in
Java

Gregor Bethlen

@ it is possible to convert function-types to interface types with

et single abstract methods (sometimes called SAM-types)
Fem o this way closures can be passed for example to the

constructor of Thread,
new Thread(#(void) { aClient->startWork() }).

Slide 11 of 22

All proposals

Closures in
Java

Gregor Bethlen

@ it is possible to convert function-types to interface types with

et single abstract methods (sometimes called SAM-types)
Fem o this way closures can be passed for example to the

constructor of Thread,
new Thread(#(void) { aClient->startWork() }).
o this is useful for all kind of callback-functions, which in Java

are modelled by SAM-types; even the design pattern
»Observer« uses this detour.

Slide 11 of 22

All proposals

Closures in
Java

Gregor Bethlen

@ it is possible to convert function-types to interface types with

et single abstract methods (sometimes called SAM-types)
Fem o this way closures can be passed for example to the

constructor of Thread,
new Thread(#(void) { aClient->startWork() }).

o this is useful for all kind of callback-functions, which in Java
are modelled by SAM-types; even the design pattern
»Observer« uses this detour.

@ the conversion exists due to compatiblity with the current
emulation of closures by SAM-types

Slide 11 of 22

BGGA

Closures in
Java

Gregor Bethlen

BGGA

cice The BGGA-Proposal by Gilad Bracha, Neal Gafter, James
o Gosling and Peter von der Ahé uses an implicit return, like in

{int x, int y =>x :=x+2; y :=y+2; x+y}

The return value of a closure is the value of the last expression.

Slide 12 of 22

BGGA

Closures in
Java

Gregor Bethlen

oo The proposal does not only introduce method-calls in the
cIce functionality we have seen so far. Furthermore there are
- user-defined control-structures, like

withProtocol(aProtocol) {
System.out.println("A");

System.out.println("B");
}

Slide 13 of 22

Closures in
Java

Gregor Bethlen

BGGA
CICE
FCM

Slide 14 of 22

User-defined control-structures

A possible implementation for withProtocol and an invocation of
withProtocol with the techniques we have seen so far.

public static withProtocol(Protocol protocol,
{=> void} body) {
protocol.inform();
body.invoke () ;
protocol.inform();

}

withProtocol(aProtocol, {=> System.out.println("A");

System.out.println("B");
b;

User-defined control-structures

Closures in
Java

A possible implementation for withProtocol (unchanged) and an

Gregor Bethlen inyocation of withProtocol with the proposed improved syntax.

BoeA public static withProtocol(Protocol protocol,
E|Cc'\;z {=> VOid} body) {
protocol.inform();
body . invoke () ;
protocol.inform();

}

withProtocol(aProtocol) {
System.out.println("A");
System.out.println("B");
}

Slide 15 of 22

Closures in
Java

Gregor Bethlen

BGGA
CICE
FCM

Slide 16 of 22

User-defined control-structures
Behavior of return and this

We have to be aware of the target

of return (improved and

regular syntax). This holds for this, too.

withProtocol(aProtocol) {
System.out.println("A");
if (strangeError) return;

System.out.println("B");
X

withProtocol(aProtocol, {=>

DR

System.out.println("A");
if (strangeError) return;
System.out.println("B");

Closures in
Java

Gregor Bethlen

BGGA
CICE
FCM

Slide 16 of 22

User-defined control-structures
Behavior of return and this

We have to be aware of the target of return (improved and
regular syntax). This holds for this, too.

withProtocol(aProtocol) {
System.out.println("A");
if (strangeError) return;

System.out.println("B");
X

withProtocol(aProtocol, {=> System.out.println("A");

if (strangeError) return;

System.out.println("B");
s

We can even jump out of scope.

User-defined control-structures
Behavior of continue and break

Closures in
Java

Gregor Bethlen

We have to be aware of the target of break (improved syntax).

BGGA .
CICE
FCM while (!done) {
withProtocol(aProtocol) {
System.out.println("A");
if (strangeError) break;

System.out.println("B");
}

Slide 17 of 22

User-defined loops

Closures in An example for a user-defined loop.

Java

regor Bethlen

e public static for myLoop(int times, {=> void} body) {
int 1 = 0;

BGCA while (i < times) {

oo i++; body.invoke();

}
}

for myLoop(5, {=> System.out.println("A");});

for myLoop(5) {
System.out.println("A");
3

Slide 18 of 22

User-defined loops
Behavior of continue and break

Closures in
Java

s B This time continue refers to the next iteration of the user-defined
control-structure (improved syntax).
BGGA
CICE
FCM R
while (!done) {
for myLoop(5) {
System.out.println("A");
continue;
System.out.println("B");
}

Slide 19 of 22

CICE

Closures in
Java

Gregor Bethlen

The second proposal is » Concise Instance Creation Expressions:
BGGA
cice Closures without Complexity« by Bob Lee, Doug Lea and Josh
FCM

Bloch.

This proposal does not define closures — it just introduces a more
compact syntax for the creation of anonymous classes by omitting
a few keywords and identifiers.

There are no function-types nor is there any ability to assign
closures to a variable or return a closure back to a caller.

Slide 20 of 22

FCM

Closures in
Java

Gregor Bethlen
) The last proposal is »First-class methods: Java-style closures« by

Stephen Colebourne and Stefan Schulz.

oo This proposal allows usage of normal methods of classes and

e objects and even constructors as closures. For example we can use

#(int (int, int)) clil = Math#min(int, int);
#(int (Object)) cl2 = alist#index0f (Object);
#(int (List, Object)) cl3 = List#index0f (Object);
#(Integer(int)) ctor = Integer#(int);

#(void ®)) callback = this#callMe();

new Thread(this#callMe());

Slide 21 of 22

local variables are not local any more, at least not in the
temporal sense

o this may force verification to model an explicit heap

o the BGGA-proposal also introduces user-defined
control-structures, requiring to capture the targets of return,
this, break and continue and thus adding additional
complexity

o the CICE-proposal does not introduce closures

o the FCM-proposal introduces everything one wants to have
regarding closures and nothing beyond

Summary

Closures in
Java

Gregor Bethlen

@ local variables are not local any more, at least not in the
temporal sense

Summary

o this may force verification to model an explicit heap

Slide 22 of 22

Closures in
Java

Gregor Bethlen

Summary

Slide 22 of 22

Summary

@ local variables are not local any more, at least not in the
temporal sense

o this may force verification to model an explicit heap
o the BGGA-proposal also introduces user-defined
control-structures, requiring to capture the targets of return,

this, break and continue and thus adding additional
complexity

Summary

Closures in
Java

Gregor Bethlen

@ local variables are not local any more, at least not in the
temporal sense

Summary

o this may force verification to model an explicit heap

o the BGGA-proposal also introduces user-defined
control-structures, requiring to capture the targets of return,
this, break and continue and thus adding additional
complexity

o the CICE-proposal does not introduce closures

Slide 22 of 22

Summary

Closures in
Java

Gregor Bethlen

@ local variables are not local any more, at least not in the
temporal sense

Summary

o this may force verification to model an explicit heap

o the BGGA-proposal also introduces user-defined
control-structures, requiring to capture the targets of return,
this, break and continue and thus adding additional
complexity

o the CICE-proposal does not introduce closures

o the FCM-proposal introduces everything one wants to have
regarding closures and nothing beyond

Slide 22 of 22

	Introduction
	Motivation
	Examples
	Conclusions

	Proposals
	BGGA
	CICE
	FCM

	Summary

