Christoph Baumann, Holger Blasum, Thorsten Bormer

Saarland Univ., SYSGO AG, Univ. of Koblenz-Landau

19.05.2009

=] [E a
Verification of System Calls in PikeOS

Our Goal

The goal of our subproject is to . ..
@ verify a “real-world” microkernel (PikeOS)
@ using the VCC toolchain

~~ case study for large scale verification, VCC

o = = = DA
Verification of System Calls in PikeOS

PikeOS

@ microkernel for use in safety and security-critical systems
developed by SYSGO AG for multiple architectures

@ verification target: PowerPC architecture, the snapshot

under analysis is of compact size: 10% assembly
language, rest in C

o 5 Ha >
Verification of System Calls in PikeOS

PikeOS — System Architecture

-

System Software \
... .
generic microkernel) g
| &

PSP/ASP J

Hardware

Christoph Baumann, Holger Blasum, Thorsten Bormer Verification of System Calls in PikeOS

Verification of the PikeOS kernel

Verification Progress
@ Done: helper functions only visible inside the kernel,
sequential setting
@ Goal: specify externally visible behavior of the kernel,
concurrently executing

First target: system calls

Tasks
@ abstract model of kernel state; prove refinement relation

@ model and verify (inline) assembly instructions in VCC

@ specify and verify sequential execution of system call

@ adapt verification to concurrent setting

v

Christoph Baumann, Holger Blasum, Thorsten Bormer Verification of System Calls in PikeOS

Verification of the PikeOS kernel

Prove that VCC methodology fits to concurrency model in
PikeOS
@ prove that scheduling operation is not visible to current
thread (separation properties)

@ prove functional correctness of the scheduler

@ adapt specification to VCC technicalities

Christoph Baumann, Holger Blasum, Thorsten Bormer Verification of System Calls in PikeOS

Verification of Hardware-related Layers

@ model of PPC hardware as VCC ghost structure

@ introduce one VCC spec function for each assembly
instruction

@ replace assembly instructions by C spec. functions

= (inline) assembly can be verified as usual with VCC

=] =

Verification of System Calls in PikeOS

Requirement Specification: p4_fast_set_prio

From the kernel reference manual:

“This function sets the current thread's priority to newprio.
Invalid or too high priorities are limited to the caller’s task

MCP. Upon success, a call to this function returns the current
thread'’s priority before setting it to newprio.”

o = = = DA
Verification of System Calls in PikeOS

Implementation: p4 fast set _prio(-helper)

1 P4_prio_t p4_runner_changeprio

> (P4k_thrinfo_t *proc, P4_prio_t newprio)
s {

+ P4_prio_t oldprio; P4_cpureg_t oldstat;

6 oldstat = pdarch_disable_int();

7 oldprio = proc->userprio;

8 proc->userprio = newprio;

9 proc->schedprio = newprio;

10 kglobal .kinfo->currprio = newprio;

11 pdarch_restore_int (oldstat);

12

13 return oldprio;

14 } . - N _

Verification of System Calls in PikeOS

PikeOS Entities in our Verification Setup

Thread executing
p4syscal |l fast _set prio
|

A 4
(Implementation state)
X (kgl obal)

A 4) 4
(Global PowerPC (Local PowerPC

| ghost state(PPC_c)]| ghost state(gpr)

A 4 |
(Kernel ghost state I
\(abst ract Model)) :

J/

~N

Christoph Baumann, Holger Blasum, Thorsten Bormer Verification of System Calls in PikeOS

Abstract Kernel Model

1 spec(struct absModel_str {

2 bool interruptsEnabled;

3 invariant(interruptsEnabled ==

4 (PPC_c.msr.fld.EE == 1))

5

6 struct P4k_thrinfo_t *currentThread;

7 invariant (currentThread != NULL)

8

9 invariant (keeps(currentThread, &PPC_c))

10 } abstractModel;)

[m] [= =

Verification of System Calls in PikeOS

Specification: p4_runner_changeprio

1 P4_prio_t p4_runner_changeprio

> (P4k_thrinfo_t *proc, P4_prio_t newprio)

s requires(proc ==

4 abstractModel.currentThread)

5 ensures (proc->schedprio == newprio && ...)
6 returns (old(proc->userprio))

s maintains (wrapped(...))
9 writes(...)

[m] [= =

Verification of System Calls in PikeOS

Results — Sequential Setting

@ abstract model of PikeOS

@ proof of refinement relation between abstract model and
concrete state

@ proof of sequential behavior of first system calls in terms
of abstract model

(=] [= E A
Verification of System Calls in PikeOS

Concurrent Setting
setPrio(4)l_ SetPriO(4)| setPrio(1)

setPrio(1)
A

|

prio = 4 prio € {1, 4}

Christoph Baumann, Holger Blasum, Thorsten Bormer Verification of System Calls in PikeOS

Consequences for the Specification of setprio

after atomic block

In the concrete implementation, other threads may interfere

@ one of the threads wins, but we don't know which
information

= introduce history for system calls

o = = = DA
Verification of System Calls in PikeOS

@ only a rather weak invariant can be shown without further

Concurrent Specification of setprio

Idea: each invocation of a system call is recorded in a history

setPrio(4)] .
: 1 setPrio(1)
A hist={... [setprio[4] [setprio[1] ...}
= setPrio(1)
’ done={...[setprio[1]...}
o doneChist
] done,Cdone, , hist,Chist, ,

Christoph Baumann, Holger Blasum, Thorsten Bormer Verification of System Calls in PikeOS

Definition of thread data structure

1 typedef struct update {
2 int id;

3 int value;

+ } update, *pUpdate;

¢ typedef struct thread {

7 volatile int prio;

8

9 spec(volatile ptrset done;)
10 spec(volatile ptrset hist;)

u } thread, *pThread;

[m] [= =

Verification of System Calls in PikeOS

Invariants of thread

1 //hist contains only updates
> invariant (forall (obj_t o; set_in(o, hist)
3 ==> is(o, update) && set_in(o, owns(this))))

s //D is a subset of H
¢ invariant(set_subset (done,hist))

s //H only increases

o invariant(set_subset(old(hist), hist))
10

n //D only increases

1 invariant(set_subset(old(done), done))

[m] [= =

Verification of System Calls in PikeOS

Invariants of thread

We execute each update from hist, but only once:

1 invariant (unchanged(prio) ||
> exists(update *u; set_in((obj_t) u,

done)
3 && !set_in((obj_t) u, old(done))
4 && prio == u->value))
[m] [=

Verification of System Calls in PikeOS

Implementation of setprio for VCC

1 void setPrio(pThread t, int v)
2 {

3 atomic(...) {
4 t->prio =

5 }

v

7 atomic(...) {}

=] =

Verification of System Calls in PikeOS

Concurrent Specification of setprio

1 void setPrio(pThread t, int v
spec (update *up))

N

3 maintains (up->value == v)

4

5 requires(set_in((obj_t) up, t->hist)
6 && !set_in((obj_t) up, t->done))
7

8 ensures (exists(update *u;

9 set_in((obj_t) u, t->done)

10 && !set_in((obj_t) u, old(t->done))
11 && t->prio == u->value))

12

13 ensures(set_in((obj_t) up, t->done))

[m] [= =

Verification of System Calls in PikeOS

Conclusion

Results
@ verification of concurrent system call with histories

@ analysis of PikeOS concurrency model w.r.t VCC model

y

Further Work
@ solve remaining technicalities
@ extend verification to other system calls

@ prove concurrency model

Christoph Baumann, Holger Blasum, Thorsten Bormer Verification of System Calls in PikeOS

