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Proving Loops in KeY

� Induction Rule generates 
� BaseCase
� StepCase
� UseCase

� User has to provide 
� induction formula
� induction variable/term



Demo

Simple example:

il >= 0 -> {i:=il}<while(i>0){i--;}>i=0



Basic Steps

� Find appropriate induction term/variable
� unwinding the loop body decreases ind-term by 1

� Find appropriate induction formula
� normally, this is the same as proof goal

� Prove the POs of induction rule
� base case and use case are normally trivial
� step case can by tricky 

Methodology: How can we assist the user in finding 
successful induction variables and formula?



Variants of DecrByOne
� Mismatch between BaseCase and Loop 

Termination

� BaseCase comes for free (0>=5 -> …)
� StepCase has form 

(il>= 5 -> {i:=il}…)
->
(succ(il)>=5) -> {i:=succ(il)…

il>=5 -> {i:=il}<while(i>5){i--;}>i=5

Interesting case: succ(il)=5



Variants of DecrByOne

� Fml is valid but not ‘inductive’

il >= 5 -> {i:=il}<while(i>0){i--;}>i=0

If the original proof goal is not ‘inductive’ it must be made stronger.



Decrease Induction not only by One

il>=0 -> {i:=il}<while(i>0) {i--;i--;}>(i=0¦i=-1)

Step Case:
(il >= 0 -> {i:=il}<{while(…)}>) 

-> (succ(il)>=0 -> {i:=succ(il)}<{while(i>0){i--;i--;}} >

After unwinding:

(il >= 0 -> {i:=il}<{while(…)  }> ) 
-> (succ(il)>=0 -> {i:=il-1}<{while(…)   }>

Induction term decreased by more than one:
-> use strong induction



Example: Russian Multiplication
(   geq(al, 0)

-> {a:=al}
{b:=bl}
{z:=0}
<{

while ( a!=0 ) {
if (a/2*2!=a) {
z=z+b;

}
a=a/2;
b=b*2;

}
}> z = al * bl)

}

induction term is al

induction term is strictly
decreased, possibly by more
than one
-> strong induction

proof goal is not inductive
-> strengthening of ind-fml



Multiple Induction Terms

� Requires nested induction
� exponential number of POs (2 Ind-terms-> 9 POs)

{i:=il}{j:=jl}
<{

while ( i>0|j>0 ) {
if (i>j) {
i--; }

else {
j--;

}
}

}> (i = 0 & j = 0))



Multiple Induction Terms
{i:=il} {j:=jl}

<{
while ( i>0|j>0 ) {
if (j==0) {
i--; j=9;

}
else {
j--;

}
}

}> (i = 0 & j = 0))

� Sometimes, more than one loop-unwind must 
be symbolically executed to make ind-terms 
smaller



Further Problems

� Induction Var is increased instead decreased
� requires technical trick for induction formula

� Would be nice to have prestate-projection rule

� Accumulator variables can destroy update 

POST1 ' ¦ POST2 '
< p > POST1¦ < p > POST2

POST' is POST with fresh prog-var



Is There a Better Way? 

Yes! Just use another tool /

BLAST
Berkeley Lazy Abstraction Software Verification Tool



BLAST

� Verification tool for C programs
� Based on model checking
� Can only prove partial correctness (safety 

properties) 

Many great ideas that can be applied in KeY as well!

Find more information on BLAST: Dirk Beyer, Thomas A. Henzinger, Renjit Jhala,
and Rupak Majumdar: Checking Memory Safety with Blast. FASE 2005. LNCS 3442.



Ways to Express Safety

if(PRE)

if (not POST){
?unreachable

}

Prog

true

if(PRE)

?POST

Prog

truePRE

?POST

Prog

Every partial correctness property for a program (box modality) 
can be easily reformulated in terms of reachability of a certain statement.



An Unsafe Example 
Control Flow Automaton (CFA)
- nodes = control points
- edges = decisions/statements

x!=3

x=x+1

1

2

*

3

4

5

x=x+1

y>0

x=3

!y>0

Program

x=x+1,

if (y > 0){

x=x+1;

if (x=3){

printf(“error”)

}

}



An Unsafe Example

x!=3

x=x+1
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CFA
ART

(Abstract 
Reachability Tree)

x=x+1
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x=x+1
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Trace-Formula

x1=x+1

y>0

x2=x1+1

x2=3

Is Trace-Formula satisfiable?
YES  -- genuine counterexample
NO    -- spurious counterexample



A Safe Example
Program
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x=x-1

x=y

x>0!x>0

x=x-1

x!=0 and
x!=-1

!(…)

CFA

x=x+1;
if (y>0){
x=y;
while (x > 0){

x=x-1;
x=x-1;

}
if (x!=0 and x!=-1){
printf(“error”);

}
}



Craig-Interpolation

Trace-Fml
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Craig-Interpolation
If trace fml is not satisfiable we
‘refine the abstraction’.
For each control point:
- split trace fml into before/after
- find cp-fml such that

- BEF implies CP
- CP and AFT implies false
- vocabulary is intersection 

1
x=x+1

y>02
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x=y

!x>0

x!=0 and
x!=-1

Trace-Fml

x1=x+1

y>0

x2=y

!x2 > 0

x2!=0 and x2!=-1

ART Craig

Craig formulas are attached
to corresponding trace node:
-they ‘overapproximate’ properties
of trace state
-nodes with ‘false’ are never 
reachable

true

y>0

x2>0

false



Refining the ART
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Closing the ART

� An ART is closed iff
� all possible alternatives are explored
� each leaf node is 

� exit node
� annotated with false
� there is another node with same label and weaker 

annotation



Summary SW-Model Checking

� Fully automatically
� Closed ART is formal proof for safety property
� Proof is found by analyzing (spurious) counterexamples
� Scalable approach (Craig-Interpolation)
� Concrete counterexample for incorrect props

� Open Problem: TERMINATION
� Room for combining BLAST/KEY
� Key-Proof: Look out for Ind-Term which is made

strictly smaller in loop body



KeY vs. BLAST

� KeY
� requires interaction

� user can give hints
� no support yet for easy 

bug detection
� total correctness

� BLAST
� push-button

� easily finds bugs
� does not prove 

termination
� does not support 

multiplication



Other Activities

� OCL workshop at MODELS’05
� conference in Montego Bay, Jamaica ☺
� focus on tool support for OCL

� Paper Thomas Baar: Non-deterministic 
Constructs in OCL – What does any() Mean, 
SDL’05, Grimstad, Norway.
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