
How to Prove Loops to be
Correct?

Thomas Baar / Mathias Krebs
EPFL, Lausanne, Switzerland

4th KeY-Workshop, June 8-10, 2005,
Lökeberg near Gothenburg, Sweden

Proving Loops in KeY

� Induction Rule generates
� BaseCase
� StepCase
� UseCase

� User has to provide
� induction formula
� induction variable/term

Demo

Simple example:

il >= 0 -> {i:=il}<while(i>0){i--;}>i=0

Basic Steps

� Find appropriate induction term/variable
� unwinding the loop body decreases ind-term by 1

� Find appropriate induction formula
� normally, this is the same as proof goal

� Prove the POs of induction rule
� base case and use case are normally trivial
� step case can by tricky

Methodology: How can we assist the user in finding
successful induction variables and formula?

Variants of DecrByOne
� Mismatch between BaseCase and Loop

Termination

� BaseCase comes for free (0>=5 -> …)
� StepCase has form

(il>= 5 -> {i:=il}…)
->
(succ(il)>=5) -> {i:=succ(il)…

il>=5 -> {i:=il}<while(i>5){i--;}>i=5

Interesting case: succ(il)=5

Variants of DecrByOne

� Fml is valid but not ‘inductive’

il >= 5 -> {i:=il}<while(i>0){i--;}>i=0

If the original proof goal is not ‘inductive’ it must be made stronger.

Decrease Induction not only by One

il>=0 -> {i:=il}<while(i>0) {i--;i--;}>(i=0¦i=-1)

Step Case:
(il >= 0 -> {i:=il}<{while(…)}>)

-> (succ(il)>=0 -> {i:=succ(il)}<{while(i>0){i--;i--;}} >

After unwinding:

(il >= 0 -> {i:=il}<{while(…) }>)
-> (succ(il)>=0 -> {i:=il-1}<{while(…) }>

Induction term decreased by more than one:
-> use strong induction

Example: Russian Multiplication
(geq(al, 0)

-> {a:=al}
{b:=bl}
{z:=0}
<{

while (a!=0) {
if (a/2*2!=a) {
z=z+b;

}
a=a/2;
b=b*2;

}
}> z = al * bl)

}

induction term is al

induction term is strictly
decreased, possibly by more
than one
-> strong induction

proof goal is not inductive
-> strengthening of ind-fml

Multiple Induction Terms

� Requires nested induction
� exponential number of POs (2 Ind-terms-> 9 POs)

{i:=il}{j:=jl}
<{

while (i>0|j>0) {
if (i>j) {
i--; }

else {
j--;

}
}

}> (i = 0 & j = 0))

Multiple Induction Terms
{i:=il} {j:=jl}

<{
while (i>0|j>0) {
if (j==0) {
i--; j=9;

}
else {
j--;

}
}

}> (i = 0 & j = 0))

� Sometimes, more than one loop-unwind must
be symbolically executed to make ind-terms
smaller

Further Problems

� Induction Var is increased instead decreased
� requires technical trick for induction formula

� Would be nice to have prestate-projection rule

� Accumulator variables can destroy update

POST1 ' ¦ POST2 '
< p > POST1¦ < p > POST2

POST' is POST with fresh prog-var

Is There a Better Way?

Yes! Just use another tool /

BLAST
Berkeley Lazy Abstraction Software Verification Tool

BLAST

� Verification tool for C programs
� Based on model checking
� Can only prove partial correctness (safety

properties)

Many great ideas that can be applied in KeY as well!

Find more information on BLAST: Dirk Beyer, Thomas A. Henzinger, Renjit Jhala,
and Rupak Majumdar: Checking Memory Safety with Blast. FASE 2005. LNCS 3442.

Ways to Express Safety

if(PRE)

if (not POST){
?unreachable

}

Prog

true

if(PRE)

?POST

Prog

truePRE

?POST

Prog

Every partial correctness property for a program (box modality)
can be easily reformulated in terms of reachability of a certain statement.

An Unsafe Example
Control Flow Automaton (CFA)
- nodes = control points
- edges = decisions/statements

x!=3

x=x+1

1

2

*

3

4

5

x=x+1

y>0

x=3

!y>0

Program

x=x+1,

if (y > 0){

x=x+1;

if (x=3){

printf(“error”)

}

}

An Unsafe Example

x!=3

x=x+1

1

2

*

3

4

5

x=x+1

y>0

x=3

!y>0

CFA
ART

(Abstract
Reachability Tree)

x=x+1

1

2

3

4

5

x=x+1

y>0

x=3

Trace-Formula

x1=x+1

y>0

x2=x1+1

x2=3

Is Trace-Formula satisfiable?
YES -- genuine counterexample
NO -- spurious counterexample

A Safe Example
Program

1
x=x+1

y>0

!y>0

2

*

3

4

5
7

6

8

9

x=x-1

x=y

x>0!x>0

x=x-1

x!=0 and
x!=-1

!(…)

CFA

x=x+1;
if (y>0){
x=y;
while (x > 0){

x=x-1;
x=x-1;

}
if (x!=0 and x!=-1){
printf(“error”);

}
}

Craig-Interpolation

Trace-Fml

x1=x+1

y>0

x2=y

!x2 > 0

x2!=0 and x2!=-1

CFA

1
x=x+1

y>02

3

4

5

6

x=y

!x>0

x!=0 and
x!=-1

ART

1
x=x+1

y>0

!y>0

2

*

3

4

5
7

6

8

9

x=x-1

x=y

x>0!x>0

x=x-1

x!=0 and
x!=-1

!(…)

Craig-Interpolation
If trace fml is not satisfiable we
‘refine the abstraction’.
For each control point:
- split trace fml into before/after
- find cp-fml such that

- BEF implies CP
- CP and AFT implies false
- vocabulary is intersection

1
x=x+1

y>02

3

4

5

6

x=y

!x>0

x!=0 and
x!=-1

Trace-Fml

x1=x+1

y>0

x2=y

!x2 > 0

x2!=0 and x2!=-1

ART Craig

Craig formulas are attached
to corresponding trace node:
-they ‘overapproximate’ properties
of trace state
-nodes with ‘false’ are never
reachable

true

y>0

x2>0

false

Refining the ART

1
x=x+1

y>02

3

4

5

x=y

!x>0

ART

true

y>0

x>0

false

1
x=x+1

y>0

!y>0

2

*

3

4

5
7

6

8

9

x--

x=y
x>0!x>0

x--

x!=0 and
x!=-1

!(…)

Refined ART

CFA 1
x=x+1

y>02

3

4

5

x=y

!x>0 x>0

7

8

9

x--

x--

4’

5’

6’

!x>0
x!=0 and
x!=-1

x>-1

x>-2

7’x>0

Closing the ART

� An ART is closed iff
� all possible alternatives are explored
� each leaf node is

� exit node
� annotated with false
� there is another node with same label and weaker

annotation

Summary SW-Model Checking

� Fully automatically
� Closed ART is formal proof for safety property
� Proof is found by analyzing (spurious) counterexamples
� Scalable approach (Craig-Interpolation)
� Concrete counterexample for incorrect props

� Open Problem: TERMINATION
� Room for combining BLAST/KEY
� Key-Proof: Look out for Ind-Term which is made

strictly smaller in loop body

KeY vs. BLAST

� KeY
� requires interaction

� user can give hints
� no support yet for easy

bug detection
� total correctness

� BLAST
� push-button

� easily finds bugs
� does not prove

termination
� does not support

multiplication

Other Activities

� OCL workshop at MODELS’05
� conference in Montego Bay, Jamaica ☺
� focus on tool support for OCL

� Paper Thomas Baar: Non-deterministic
Constructs in OCL – What does any() Mean,
SDL’05, Grimstad, Norway.

	How to Prove Loops to be Correct?
	Proving Loops in KeY
	Demo
	Basic Steps
	Variants of DecrByOne
	Variants of DecrByOne
	Decrease Induction not only by One
	Example: Russian Multiplication
	Multiple Induction Terms
	Multiple Induction Terms
	Further Problems
	Is There a Better Way?
	BLAST
	Ways to Express Safety
	An Unsafe Example
	An Unsafe Example
	A Safe Example
	Craig-Interpolation
	Craig-Interpolation
	Refining the ART
	Closing the ART
	Summary SW-Model Checking
	KeY vs. BLAST
	Other Activities

