
DRAFT
COPY

KeY-Cheat Sheet 1

This is a draft of a cheat paper for KeY. Take with
care.

Java Card DL Syntax

Formulas

The table below relates KeY syntax with the standard
textbook syntax. The greek letters ϕ, φ, ψ denote
Java DL formulas.

KeY Textbook Remarks
true, false tt, ff truth values
p(t1, . . . , tn) p(t1, . . . , tn) atomic formula
!φ ¬φ negation
φ & ψ φ ∧ ψ conjunction
φ | ψ φ ∨ ψ disjunction
φ −> ψ φ→ ψ implication
φ <−> ψ φ↔ ψ equivalence
\if (ϕ)
\then (φ)
\else (ψ)

— conditional for-
mula evaluates
to φ if ϕ holds to
ψ otherwise

\forall T x; φ ∀x :T. φ universal quan-
tification over
elements of type
T

\exists T x; φ ∃x :T. φ existential
quantification
over elements of
type T

{U}φ {U}φ update applica-
tion (see Sect.
Updates)

\<{p}\>φ 〈p〉φ diamond
modality (total
correctness)
with state-
ment list p and
formula φ

\[{p}\]φ [p]φ box modality
(partial cor-
rectness) with
statement list p
and formula φ

Reserved predicate symbols

Some predefined predicates:
Symbol Remarks
· .= · equality
·< ·, ·<= ·, ·> ·, ·>= · inequalities
inReachableState true in states reachable

by a Java program
arrayStoreValid(ar,el) true if the element

el can be stored in
the array referenced by
ar without causing an
ArrayStoreException

Terms

Terms are sorted and recursively defined as usual.

KeY Textbook Remarks
f(t1, . . . , tn) f(t1, . . . , tn) f function sym-

bol, t1, . . . , tn
terms of com-
patible sort

{U}t {U}t update applica-
tion (see Sect.
Updates)

\if (ϕ)
\then (t1)
\else (t2)

— conditional
term evaluates
to t1 if ϕ holds,
to t2 otherwise

(T)t — cast term t to
type T

Reserved function symbols

Arithmetics
Prefix In-/Postfix Remark
add(·,·) · + · addition on Z
sub(·,·) · - · substraction on Z
mul(·,·) · * · multiplication on Z
div(·,·) · / · division on Z
mod(·,·) · % · modulo on Z
jdiv(·,·) Java division (rounds

towards 0), but on Z
jmod(·,·) Java modulo, but on Z
divJint(·,·) Java division resp. int

bounds

DRAFT
COPY

KeY-Cheat Sheet 2

Attributes and Arrays
Prefix In-/Postfix Remark

o.a@(T) attribute access term
(access attribute a de-
clared in T of object o);
@(·) can be omitted if
no hiding

ar[idx] array access term eval-
uating to the element
stored at index idx in ar-
ray ar

Other Interpreted Function Symbols
Prefix Remark
null Javas null constant (only

element of type Null)
TRUE, FALSE constants of type boolean

with the obvious interpre-
tation

T::instance(o) boolean typed function
evaluating to TRUE if o is
an instance of type T

Updates

The general form of a single quantified update in KeY

\for T x;opt \if(ϕ)optloc := val︸ ︷︷ ︸
u

where ϕ is Java Card DL formula, loc a program
variable, attribute or array access expression and val
a term. The quantification and condition part are
optional.

Two updates u1, u2 of the above form can be com-
posed in parallel

u1||u2

Application of an update on a formula or term re-
sults again in a formula resp. term (see formula/term
definition).

Programs

An instance of the logic Java Card DL is always de-
fined wrt. a context program declaring all classes and
interfaces.

Programs used in Java Card DL formulas are ac-
tually lists of Java Card statements that are treated
exactly as if inside a static method of a class in the
default package.

Java Card DL extends Java Card only by two ad-
ditional statements:

The Method-Frame statement surrounds
a method body when it is inlined during a
method invocation. The method-frame cap-
tures information like the current scope (source)
and optionally, if not static, the receiver
(this) of the method call and, if not void,
the variable that is assigned the return value:
method-frame(result->program variable,

source=classname,
this=reference):{

statement list
}

The Method Body statement is a placeholder
for an actual method body implementation. For ex-
ample, dynamic dispatching a method results in an
if cascade and instead of immediately inlining the
different method bodies in each branch the method
body statement is used. Its syntax is:

resultV ar=receiver.m(arg1, . . . ,argn)@T

where T denotes the type of the concrete method
implementation.

DRAFT
COPY

KeY-Cheat Sheet 3

Contracts and Invariants

Contracts

A contract Cm := (pre, post,mod, term. marker) for
a method m consists of

• a Java Card DL formula pre expressing the con-
tracts precondition,

• a Java Card DL formula post expressing the con-
tracts postcondition,

• a set of locations mod that might be changed
and

• a termination marker term. marker indicating
if the contract asserts termination or not.

Contracts are usually specified in JML or OCL, but
can also be expressed in Java Card DL with a KeY
problem file description (short: dotkey file).

KeY

\contracts {
uniqueContractName {
\programVariables {

ResultType result;
ReceiverType receiver;
FirstArgType arg1;
...

}

pre ->
\<{

result = receiver.m(arg1,...,argN)@T
}\> post
\modifies { locations }
\displayname "user − friendly name"

}
}

KeY

If the contract should not guarantee termination,
use box modality instead of diamond modality.

The pre-state value of an attribute a declared
in type T can be accessed in postconditions via
T::a@pre(o) resp. ar[idx]@pre if the prestate value

of ar at index idx is accessed. Attention: @pre does
not cause evaluation of a, ar or idx in the pre-state.

If a method throws an exception, it is possible to
specify also the exceptional case in a contract:

KeY
\contracts {
uniqueContractName {
\programVariables { ... }
pre ->
\<{

#catchAll(java.lang.Throwable exc) {
result = receiver.m(arg1,...,argN)@T

}
}\> (

(exc = null -> postnormal) &
(exc != null -> postexceptional)

)
\modifies { locations }
\displayname "user − friendly name"

}
}

KeY

Invariants

An invariant can be expressed in a similar way like
contracts in KeY problem files.

KeY
\invariants(pkg.Class1 self) {

invariant1 {
self.attribute != null & ...

\displayname "My first invariant"
};

invariant2 {
self.attribute2 != null & ...

};
}

KeY

The invariant section must be declared after the
\contracts section, if one exists. There can be ar-
bitrary many invariant sections.

