
Three Rules Suffice for Good Label Placement
∗

Frank Wagner§ Alexander Wolff‡ Vikas Kapoor§

Tycho Strijk∗∗

Abstract

The general label-placement problem consists in labeling a set of fea-
tures (points, lines, regions) given a set of candidates (rectangles, circles,
ellipses, irregularly shaped labels) for each feature. The problem arises
when annotating classical cartographical maps, diagrams, or graph draw-
ings. The size of a labeling is the number of features that receive pairwise
nonintersecting candidates. Finding an optimal solution, i.e. a labeling of
maximum size, is NP-hard.

We present an approach to attack the problem in its full generality.
The key idea is to separate the geometric part from the combinatorial part
of the problem. The latter is captured by the conflict graph of the candi-
dates. We present a set of rules that simplify the conflict graph without
reducing the size of an optimal solution. Combining the application of
these rules with a simple heuristic yields near-optimal solutions.

We study competing algorithms and do a thorough empirical compar-
ison on point-labeling data. The new algorithm we suggest is fast, simple,
and effective.

1 Introduction

Label placement is a general problem in information visualization. In cartogra-
phy the problem is known as the map-labeling problem. Since the first attempts
of automating map production, an abundance of approaches has been applied to
this problem: expert systems [6], 0–1-integer programming [19], and simulated
annealing [2] to name only a few. Map labeling is usually divided into point,
line, and area labeling, but the problem can be formulated independently of the
features to be labeled. Two interesting subproblems have been studied. In both
cases, an instance consists of a set of features and a set of label candidates for
each feature.

∗This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under grants
Wa 1066/1-1, 3-1, and 3-2, by the Dutch Organisation for Scientific Research (N.W.O.), and
by the ESPRIT IV LTR Project No. 21957 (CGAL).

§Institut für Informatik, Fachbereich Mathematik und Informatik, Freie Universität Berlin,
Takustraße 9, D-14195 Berlin, Germany. Email {wagner|kapoor}@inf.fu-berlin.de

‡Institut für Mathematik und Informatik, Ernst-Moritz-Arndt-Universität Greifswald,
Jahnstraße 15a, D-17487 Greifswald, Germany. Email: awolff@mail.uni-greifswald.de

∗∗Dept. of Computer Science, Utrecht University, The Netherlands. Email: tycho@cs.uu.nl

1

The Label-Size Maximization Problem: Find the maximum factor σ such that
each feature gets a label stretched by this factor and no two labels overlap.
Compute the corresponding complete label placement.

The Label-Number Maximization Problem: Find a maximum subset of the fea-
tures, and for each of these features a label from its set of candidates, such
that no two labels overlap.

The decision versions of both problems are NP-hard in general [5, 4].
In recent years, especially the point labeling problem has achieved some

attention in the algorithms’ community. Formann and Wagner proposed an
approximation algorithm that maximizes the size of uniform axis-parallel square
labels. Their algorithm can be applied to technical maps where labels are often
numbers or abbreviations of fixed length. It is optimal in respect to both its
approximation factor of 1

2
and its running time of O(n log n) [4, 14]. Here n

refers to the number of points, each of which has four label candidates. For the
same problem, there is an algorithm that keeps the theoretical optimality of the
approximation algorithm, but performs close to optimal in practice [15].

For square labels of arbitrary orientation and for circular labels there are
approximation algorithms for maximising the label size, again under the restric-
tion that all labels are uniform, i.e. of equal size [3]. There is also a bicriteria
algorithm that mediates between the two problems mentioned above [3].

The complexity of the label-number maximization problem is quite different.
Agarwal et al. gave a divide-and-conquer algorithm for placing axis-parallel rect-
angular labels of arbitrary height and width [1]. The approximation ratio of that
algorithm is just 1/O(log n), but the authors also gave an algorithm based on
line stabbing that approximates the problem by a factor of 1

2
in O(n log n) time

if the label height (or width) is fixed. In addition, they presented a polynomial
time approximation scheme (PTAS) for the same setting.

If fixed-height rectangular labels are allowed to touch their points anywhere
on the rectangle boundary, there is still a PTAS and an O(n log n) algorithm
that guarantees to label at least half the number of points labeled in an optimal
solution [13].

Kakoulis and Tollis suggested a more general approach to labeling [9]. They
compute the candidate conflict graph and its connected components. Then they
use a heuristic similar to the greedy algorithm for maximum independent set to
split these components into cliques. Finally they construct a bipartite “matching
graph” whose nodes are the cliques of the previous step and the features of the
instance. In this graph, a feature and a clique are joined by an edge if the clique
contains a candidate of the feature. A maximum-cardinality matching yields
the labeling. Depending on how the clique check and the matching algorithm is
implemented, their algorithm takes O(k

√
n) or even O(kn) time, where k refers

to the number of conflicts. The authors do not give any time bounds.
The algorithm for label-number maximization we present in this paper is

the first that combines all of the following characteristics that make it especially
suitable for fast internet applications. Our algorithm

2

• does not depend on the shape of labels,

• can be applied to point, line, or area labeling (even simultaneously) if a
finite set of label candidates has been precomputed for each feature,

• is easy to implement,

• runs fast, and

• returns good results in practice.

The input to our algorithm is the conflict graph of the label candidates.
The algorithm is divided into two phases similar to the first two phases of the
algorithm for label-size maximization described in [15]. In phase I, we apply a
set of rules to all features in order to label as many of them as possible and to
reduce the number of label candidates of the others. These rules do not destroy
a possible optimal placement. Then, in phase II, we heuristically reduce the
number of label candidates of each feature to at most one.

While we treat the label-placement problem essentially as a maximum inde-
pendent set problem, it can also be viewed as a constraint satisfaction problem
[16], a problem class discussed in the artificial intelligence community, or as a
problem of compatible representatives, which was independently introduced into
the discrete mathematics community by Knuth and Raghunathan [10]. For a
broader discussion of the links between constraint satisfaction and label place-
ment, see [17].

This paper is structured as follows. In Section 2 we give the details of our
two-phase algorithm. In Section 3 we describe the set-up and in Section 4 we
give the results of our experiments. We compare our algorithm on point-labeling
data to five other methods, namely simulated annealing, a greedy algorithm, two
variants of the matching heuristic of Kakoulis and Tollis, and a hybrid algorithm
that combines our rules with their clique matching.

Part of the examples, on which we do the comparison, are benchmarks that
were already used in [15]. We added examples for placing rectangular labels of
varying size, both randomly generated and from real world data. Our samples
come from a variety of sources; they include the location of some 19,400 ground-
water drill holes in Munich, 373 German railway stations, and 357 shops. The
latter are marked on a tourist map of Berlin that is labeled on-line by our
algorithm. The algorithm is also used by the city authorities of Munich to label
drill-hole maps. All synthetic and real world data is available via the Internet.1

Our tests differ from experiments performed by other researchers [7, 2, 13, 9]
in that we included synthetic instances which are very dense but still have a
complete labeling.

2 Algorithm

Our algorithm consists of two phases. In phase I we apply a set of rules to all
given features in order to label as many of them as possible and to reduce the

1http://www.math-inf.uni-greifswald.de/map-labeling/general

3

number of label candidates of the others. These rules do not reduce the size of
an optimal labeling, i.e. the maximum number of features that can be labeled
simultaneously. Then, in phase II, we heuristically reduce the number of label
candidates of each feature to at most one.

2.1 Phase I

In the first phase, we apply all of the following rules to each of the features.
Let pi be the i-th label candidate of feature p. For each of the rules we supply
a sketch of a typical situation in the context of point labeling. We use four
rectangular, axis-parallel label candidates per point, namely those where one of
the label’s corners is identical to the point. We shaded the candidates that are
chosen to label their point, and we used dashed edges to mark candidates that
are eliminated after a rule’s application.

ip

p

Figure 1: Rule L1.

p

q

q
pl

k

p

j

i

q

Figure 2: Rule L2.

p

i
p

Figure 3: Rule L3.

(L1) If p has a candidate pi without any conflicts, declare pi to be part of the
solution, and eliminate all other candidates of p, see Figure 1.

(L2) If p has a candidate pi that is only in conflict with some qk, and q has a
candidate qj (j 6= k) that is only overlapped by pl (l 6= i), then add pi

and qj to the solution and eliminate all other candidates of p and q, see
Figure 2.

(L3) If p has only one candidate pi left, and the candidates overlapping pi

form a clique, then declare pi to be part of the solution and eliminate all
candidates that overlap pi, see Figure 3.

We want to make sure that these rules are applied exhaustively. Therefore,
after eliminating a candidate pi, we check recursively whether the rules can
be applied in the neighborhood of pi, i.e. to p or to the features of the conflict
partners of pi. As stated above, our rules are conservative in the following sense.

Lemma 1 If there is an optimal solution of size t for the given instance before

applying any of rules L1 to L3, then there is still an optimal solution of size t
after applying one of these rules.

Proof. Assume to the contrary that the size of the optimal solution decreases
after we remove a candidate pm of the feature p. Then every optimal solution π

4

before the elimination must have assigned pm to p. Consider the circumstances
under which pm can be removed:

• There is a candidate pi 6= pm of p that does not intersect any other can-
didate (see rule L1). Then we could replace pm by pi in π.

• There is a candidate pi 6= pm of p and a feature q with a candidate qj ,
and pi and qj behave as stated in rule L2. Then we could replace pm and
π(q) by pi and qj since these do not intersect candidates of features other
than p and q.

• pm intersects a candidate qi who is the last candidate of the feature q, and
the candidates intersecting qi (including pm) form a clique (see rule L3).
Then π does not label q at all. Instead of labeling p with pm we could also
label q with qi since all candidates intersected by qi are also intersected
by pm.

In each case we would get a solution of the same size as π. Contradiction. r

2.2 Phase II

If we have not managed to eliminate all conflicts and to reduce the number of
candidates to at most one per feature in the first phase, then we must do so in
phase II. Since phase II is a heuristic, we are no longer able to guarantee op-
timality. The heuristic is conceptionally simple and makes the algorithm work
well in practice, see Section 3. The intuition is to start eliminating troublemak-
ers where we have the greatest choice. Spoken algorithmically, we go through
all features p that still have the maximum number of candidates . For each
p we delete the candidate with the maximum number of conflicts among the
candidates of p. This process is repeated until each feature has at most one
candidate left and no two candidates intersect. These candidates then form the
solution.

As in phase I, after eliminating a candidate, we check recursively whether our
rules can be applied in its neighborhood. For the pseudocode of the complete
algorithm, refer to Figure 4.

2.3 Analysis

In order to simplify the analysis of the running time, we assume that the number
of candidates per feature is constant and that we are given the candidate conflict
graph in the usual adjacency-list representation. Then it is easy to see that in
phase I, rules L1 and L2 can be checked in constant time for each feature. We
use a stack to make sure that our rules are applied exhaustively. After we have
applied a rule successfully and eliminated a candidate, we put all features in
its neighborhood on the stack and apply the rules to these features. Since a
feature is only put on the stack if one of its candidates was deleted or lost a
conflict partner, this part of phase I sums up to O(n + k) time, where n is the
number of candidates and k is the number of pairs of intersecting candidates

5

Rules(features F , candidates Cf for each f ∈ F , cand. conflict graph G)

// phase I
apply rules L1 to L3 exhaustively to all features

// phase II
while there are intersecting candidates do

f ← feature with maximum number of candidates in F
delete candidate c of f with maximum number of conflicts in Cf

apply rules L1 to L3 exhaustively, starting in the neighborhood of c
end

Figure 4: Pseudocode for our general label-placement algorithm.

in the instance, i.e. the number of edges in the candidate conflict graph. For
rule L3, we have to check whether a candidate is intersected by a clique. In
general, this takes time quadratic in the number of conflict partners. Falling
back on geometry, however, can help to cut this down. In the case of axis-
parallel rectangular labels for instance, a clique can be detected in linear time
by testing whether the intersection of all conflicting rectangles is not empty. A
simple charging argument then yields O(k2) time for checking rule L3.

We can check rule L3 even in constant time if we apply it only to candidates
with less than a constant number of conflicts. This makes sense since it is not
very likely that the neighborhood of a candidate with many conflicts is in fact
a clique. In this case, phase I can be done in O(n + k) time.

In phase II we can afford simply to go through all features sequentially
and check for each feature f whether f has the current maximum number of
candidates. If so, we go through the candidates of f and determine the one with
the maximum number of conflicts. The amount of time needed to delete this
candidate and apply our rules has already been taken into account in phase I.
Thus phase II needs only linear extra time.

Putting things together, we get an O(n + k2) algorithm if rule L3 can be
checked in linear time, and an O(n + k) algorithm if we allow only constant
effort for checking rule L3. In our experiments, we have not bounded this effort,
yet this part of the algorithm showed a linear-time behavior.

For axis-parallel rectangular labels, the conflict graph can be determined in
O(k + n log n) time. Thus applied to point labeling, our algorithm can label
n points in O(k + n log n) total time, given a constant number of axis-parallel
rectangular label candidates per point and constant effort for checking rule L3.

2.4 Priorities

An important topic we have neglected so far are priorities. Both features and
their label candidates can be given priorities. Priorities for label candidates
usually express aesthetical preferences. For example, when labeling points, car-

6

tographers prefer the label position to the upper right of a point to all other
positions [8, 18].

Both kinds of priorities can be incorporated into our algorithm. When using
feature priorities, we only have to restrict rule L3. Rule L3 can only be applied
if feature p has the highest priority among the features whose candidates form
a clique in the candidate conflict graph.

When using candidate priorities, rules L1 and L3 must be restricted such
that only those candidates are eliminated whose priority does not exceed that
of pi. Restricting rule L2 depends on which function f of the priorities is to
be maximized. Usually f will simply be the sum of the priorities of all label
candidates in the solution. When applying rule L2, only those candidates of p
and q can be eliminated that do not allow a higher value of the restriction of f
to the points p and q compared with the candidate pair pi and qj .

Restricting our rules as above may reduce the number of features that are
labeled successfully in phase I and thus leave more work to the heuristic in
phase II. At least for the case of feature priorities, an indication that this is
not as much of a problem as one might suspect can be found in Chapter 3 of
[17]. There our algorithm is compared with two variants, EI+L3 and EI-1∗, one
with and one without rule L3. Only for very dense examples does the variant
without rule L3 perform significantly worse than its competitors.

2.5 A Hybrid Algorithm

Since the decisions our algorithm makes in phase II are only based on local
properties of the candidate conflict graph, these decisions can be made very
efficiently. Using more global information is time-costly, but might also improve
the quality of the results. Therefore we thought that it would be interesting
to combine our set of rules with the global aspect of the matching heuristic of
Kakoulis and Tollis [9]. The resulting hybrid algorithm proceeds as follows.

As before, we compute the candidate conflict graph. In phase I, we again
apply our set of rules exhaustively. In the new phase II, however, we use the
heuristic proposed by Kakoulis and Tollis to break up the connected components
of the conflict graph into cliques. Recall that in every connected component,
they determine the candidate with the highest degree, eliminate it, and repeat
this process recursively until each component is a clique. The choice of the
candidate that is to be eliminated has the following exception. If the candidate
belongs to a feature that has “very few” candidates left, then the candidate with
the second highest degree in the current connected component is eliminated.

Like in the old phase II, after each deletion, we apply our rules in the neigh-
borhood of the eliminated candidate in order to propagate the effect of our
heuristical decision.

As soon as all connected components are cliques, we use a maximum-cardi-
nality bipartite-matching algorithm to match as many cliques with features as
possible.

The new phase II can be implemented by an extended breadth-first search
(BFS). First, we compute all connected components of the conflict graph by

7

common BFS. At the same time, we store the candidate with the highest,
second-highest and the lowest degree for each component. To decide whether
a component C is a clique, we simply check whether the vertex with minimum
degree in C matches the number of vertices in C minus one. If this is not the
case, we delete the vertex v1 with the highest degree. There is one exception.
Let a vertex be important if it corresponds to a candidate that is the last can-
didate of a feature. If v1 is important and the vertex v2 with the second highest
degree in C is not important, then we delete v2 instead of v1.

Now let v be the vertex we deleted. We apply our rules in the neighborhood
of v and then apply the extended BFS recursively to all vertices that were
adjacent to v just before its deletion. In each level of the recursion at least one
vertex is deleted, and each edge is considered at most twice by BFS. Thus, if each
of the n features has a constant number of candidates, we have at most O(n)
recursion levels and each takes at most O(k) time. This results in O(nk) time for
the new phase II compared with O(n + k) for the previous version. Computing
a maximum-cardinality bipartite matching takes O(k

√
n) in practice.

3 Experiments

We compare our algorithm Rules with the following five other methods on
point-labeling data. We implemented all algorithms in C++.
Annealing is a simulated-annealing algorithm based on the experiments by
Christensen et al.. We follow their suggestions for the initial configuration,
the objective function, a method for generating configuration changes, and the
annealing schedule [2]. In order to save time, we allowed only 30 instead of the
proposed 50 temperature stages in the annealing schedule. This did not seem
to influence the quality of the results.
Greedy repeatedly picks the leftmost label (i.e. the label whose right edge
is leftmost), and discards all candidates that intersect the chosen label. This
simple algorithm has an approximation factor of 1/(H +1), where H is the ratio
of the greatest and the smallest label height [12]. Greedy can be implemented
to run in O(n log n) time. However, our O(n2)-implementation is simply based
on lists and uses brute force to find the next leftmost label candidate.
Matching refers to the “pure” matching heuristic of Kakoulis and Tollis [9].
Our implementation uses the recursive extended BFS of Section 2.5 and the
maximum-cardinality bipartite-matching algorithm supplied by LEDA [11]. It
runs in O(kn) time. We did not apply any of our rules and did not do any pre-
or post-processing. The post-processing sketched in [9] consists of moving labels
locally or allowing partial overlap of labels with features or other labels. This
would contradict our four-position labeling model and thus make a comparison
with the other algorithms impossible.
Matching+L1 is a variant of their algorithm, also proposed in [9]. Here rule
L1 is applied exhaustively before the heuristic that reduces all connected com-
ponents to cliques. This does not change the asymptotic runtime behavior.
Hybrid refers to the algorithm sketched in Section 2.5. It combines the heuristic

8

by Kakoulis and Tollis that reduces connected components to cliques with our
rules. Again, our implementation uses LEDA’s O(kn)-time matching algorithm.

We run the algorithm described above on the following example classes. In
Appendix B an instance of each class is depicted. The numbers in parentheses
refer to the number of points that have been labeled by Rules.
RandomRect. We choose n points uniformly distributed in a square of size
25n × 25n. To determine the label size for each point, we choose the length of
both edges independently under normal distribution, take its absolute value and
add 1 to avoid nonpositive values. Finally we multiply both label dimensions
by 10.
DenseRect. Here we try to place as many rectangles as possible on an area of
size α1

√
n×α1

√
n. The factor α1 is chosen such that the number of successfully

placed rectangles is approximately n, the number of points asked for. We do this
by randomly selecting the label size as above and then trying to place the label
up to 50 times. If we do not manage to place the label without intersection,
we select a new label size and repeat the procedure. If none of 20 different
sized labels could be placed, we assume that the area is well covered, and stop.
For each rectangle we placed successfully, we return its height and width and
a corner picked at random. It is clear that all points obtained this way can be
labeled by a rectangle of the given size without overlap.
RandomMap and DenseMap try to imitate a real map using the same point
placement methods as RandomRect and DenseRect, but more realistic label
sizes. We assume a distribution of 1:5:25 of cities, towns, and villages. After
randomly choosing one of these three classes according to the assumed distri-
bution, we set the label height to 12, 10 or 8 points accordingly. The length
of the label text then follows the distribution of the German railway station
names (see below). We assume a typewriter font and set the label length to
the number of characters times the font size times 2

3
. The multiplicative factor

reflects the average ratio of character width to height.
VariableDensity. This example class is used in the experimental paper by
Christensen et al. [2]. There the points are distributed uniformly on a rectangle
of size 792× 612. All labels are of equal size, namely 30× 7. We included this
benchmark for reasons of comparability.
HardGrid. In principle we use the same method as for Dense, that is, trying
to place as many labels as possible into a given area. In order to do so, we use
a grid of bα2

√
nc× dα2

√
ne square cells of edge lengths n. Again, α2 is a factor

chosen such that the number of successfully placed squares is approximately n.
In a random order, we try to place a square of edge length n into each of the
cells. This is done by randomly choosing a point within the cell and putting
the lower left corner of the square on it. If it overlaps any of the squares placed
before, we repeat at most 10 times before we turn to the next cell.
RegularGrid. We use a grid of b√nc × d√ne squares. For each cell, we
randomly choose a corner and place a point with a small constant offset near
the chosen corner. Then we know that we can label all points with square labels
of the size of a grid cell minus the offset.
MunichDrillholes. The municipal authorities of Munich provided us with

9

the coordinates of roughly 19,400 ground-water drill holes within a 10 × 10
kilometer square centered approximately on the city center. From these points,
we randomly pick a center point and then extract a given number of points
closest to the center point according to the L∞-norm. Thus we get a rectangular
section of the map. Its size depends on the number of points asked for. The
drill-hole labels are abbreviations of fixed length. By scaling the x-coordinates,
we make the labels into squares and subsequently apply an exact solver for
label-size maximization. This gives us an instance with a maximal number of
conflicts which can just be labeled completely.

In addition to these example classes, we tested the algorithms on the maps
depicted in Figures 12 and 13, see Appendix C.

4 Results

We used examples of 250, 500, . . ., 3000 points. For each of the example classes
and each of the example sizes, we generated 30 files. Then we labeled the points
in each file with axis-parallel rectangular labels. We used four label candidates
per point, namely those where one of the label’s corners is identical to the point.
We allowed labels to touch each other but not to obstruct other features.

4.1 Quality

The graphs in Appendix A (Figures 8 to 11) show the performance of the six
algorithms. The average example size is shown on the x-axis, the average per-
centage of labeled points is depicted on the y-axis. Note that we varied the scale
on the y-axis from graph to graph in order to show more details. To improve
legibility, we give two graphs for each example class; on the left the results of
Rules, Annealing, and Hybrid are depicted, while those of Greedy and the two
variants of Matching are shown in the graph on the right of each figure. The
results on a single example size, namely approximately 2500 points, are shown
in Figure 5. There, the worst and the best performance of the algorithms are
indicated by the lower and upper endpoints of the vertical bars.

Due to lack of space, we only present graphs of half of our example classes.
The results on the other classes can be found on our web site. Here we summarize
them briefly. On RandomMap, all algorithms performed about 12% worse than
on RandomRect. The results on DenseRect were nearly identical to those on
DenseMap. On RegularGrid and on MunichDrillholes, all algorithms labeled
between 99 and 100% of the input points.

The example classes are divided into two groups; those that have a complete
labeling and those that do not. For the former group, the percentage of labeled
points expresses directly the performance ratio of an algorithm. For examples of
the latter group, which consists of RandomRect, RandomMap and VariableDen-
sity, there is only a very weak upper bound for the size of an optimal solution,
namely the number of labels needed to fill the area of the bounding box of the
instance completely. Thus for VariableDensity at most 2539 points can possibly

10

���

���

���

���

�	�

�
�

���

��

��
���
��
��
�

�� �
���

� �����

���
� �
�
!

���
� ���
�

"$#�%'&)(�*+"-,/.10
�	2��	�435(67%
098

: ; <

= >

?
�	�
�	�
@ �
@ �
@ �
@ �
@ �
A �	�

� �

��
���
��
��
�

�� �
���

� �����

���
� �
�
!

���
� ���
�

BC,D%E8F,/"$,/.10
���
�	�43G0H8JI'(%K#MLON'I

:
;
<

=
>

?
@ �

@ �

@ �

@ �

@ �

A ���

� �

��
���
��
��
�

�� �
���

� �����

���
� �
�
!

���
� ���
�

PC#�QH&'RSQT6U&
�	2 A �V3G0H8JI'(%K#MLON'I

:

;
<

=
>
?

�O�
�
W
�	�
�O2
�
�
�G�
�
�
� @

� �

��
���
��
��
�

�� �
���

� �����

���
� �
�
!

���
� ���
�

XY#�Q96U#�Z)[7,/B\,D%'8T6]0_^
�	2��	�435(67%
098

:

;

<

= > ?

Figure 5: Average performance on examples of approx. 2500 points

be labeled. Experiments we performed with an exact solver on examples of up
to 200 points showed that on an average about 85% of the points in an instance
of RandomRect and usually less than 80% in the case of RandomMap can be
labeled. Other than VariableDensity, these classes are designed to keep their
properties with increasing point number. This is reflected by the fact that the
algorithms’ performance was nearly constant on these examples. We used the
same set of rules as in phase I of our algorithm to speed up the exact solver.

In terms of performance the algorithms can be divided into two groups. The
first group consists of simulated annealing, our rule-based algorithm, and the
new hybrid algorithm; the second group is represented by the greedy method
and the two variants of the matching heuristic. The first group outperforms the
second group clearly in all but one example class. On RegularGrid data, the
second group and Hybrid achieve 100%, followed very closely (99.2%) by Rules
and Annealing. For all example classes (except RegularGrid and MunichDrill-
holes, where all algorithms performed extremely well), there is a 5–10% gap
between the results of the two groups.

For all examples that have a complete labeling, Rules and Hybrid label
between 95 and 100% of the points. Experiments with the above-mentioned
exact solver on small examples hint that the same holds for RandomRect and
RandomMap examples. For some of the example classes, simulated annealing
outperforms our algorithms by 1–2%. However, in order to achieve similarly
good results, simulated annealing needs much longer (see below), in spite of the
fact that it uses the same fast O(n log n)-time algorithm for detecting rectangle
intersections (based on an interval tree). We were astonished to see that Hybrid

11

and Rules yield practically identical results in spite of their different approaches.
Only on HardGrid and RegularGrid data sets Hybrid was better than Rules —
by merely 1%. The similarity of their results suggests that it is the rules that
do most of the work.

In the second group, the greedy algorithm performed well given that it makes
its decisions only based on local information. Surprisingly, its results were prac-
tically always better that of the “pure” Kakoulis–Tollis heuristic that relies on
a global matching step. Adding rule L1 as a pre-processing step improved the
result of the matching heuristic by up to 3%. This variant performed better
than the greedy algorithm in most example classes, but was still clearly worse
than simulated annealing and our algorithms except on RegularGrid.

4.2 Time

In Figures 6 and 7 we present the running times of our implementations in CPU
seconds on a Sun UltraSparc. We used the SUN-Pro compiler with optimizer
flag -fast.

We show the two example classes where simulated annealing performed most
slowly and fastest. All other graphs resemble that of MunichDrillholes, except
HardGrid where the running times are distributed similarly to VariableDensity.

Rules Matching Matching+L1 Hybrid Annealing Greedy

�

�

� �

� �

� �

���

���

���

� �

� ����� � ����� � ����� ������� ������� �������
� � � �

�
�

�

�

�

�

�

�

	 	 	 	 	 	 	 	 	 	 	 	

� � � � � � � � � � � �� � � � � � � � � � � �
� � � � � � � � � � � �

 �

� �

� ���

� � �

� ���

��� �

� ���

��� �

� ���

� � ��� � ����� � � ��� � ����� ��� ��� � �����
� � � � �

�
�

�

�

�

�

�

� � � � � � � � � � � �
� � � � � � � � � � � �

Figure 6: MunichDrillholes: point number versus running time

�

�

� �

� �

� �

���

� ����� � ����� � ����� ������� ������� �������
� � �

�
�

�

�

� � �

�
�

� � � �
�

�

�

� � �

�
�

� � � �
�

�

�

� � �

�
�

! ! ! ! ! !
! ! ! ! ! !

" " " " " "
" " " " " "

#

$ #

% #

&�#

'�#

(#�#

($�#

(% #

(&�#

('�#

)�#�# (#�#�# ()�#�# $�#�#�# $�)�#�# *�#�#�#
+ +

+
+

+

+

+

+

+

+

+
+

, , ,
,

,
,

,
,

,

,

,

,

- - -
-

-
-

-
-

-

-

-

-

Figure 7: VariableDensity: point number versus running time

12

Given heaps and priority search trees, the greedy algorithm would run com-
parably fast to Rules. Our implementation of simulated annealing seems to be
slower by a factor of 2–3 than that of Christiansen et al. [2]. This difference in
running time may be due to the machines on which the times were measured.

On large examples, our algorithm was faster by a factor of 2–10 as compared
to the matching heuristic, and by a factor of 30–100 with respect to simulated
annealing. Applying rule L1 as a pre-processing step speeds up the matching
algorithm, slightly for VariableDensity but considerably for MunichDrillholes.

Conclusion

We have presented a simple and fast heuristic for a very general version of the
label-placement problem. Given a set of features and a set of label candidates
for each feature, our algorithm finds a large subset of the features, and for each
of these features a label from its set of candidates, such that no two labels
overlap. Due to this generality, we could not expect to achieve any approxima-
tion guarantee such as algorithms focusing on special label shapes. Still, our
technique works very well for point labeling, a classical problem of cartography.

The results are similar to those of simulated annealing, but obtained much
faster. Our algorithm Rules outperformed the matching heuristic of Kakoulis
and Tollis [9], not only in terms of time, but also very clearly in terms of quality.
Our new hybrid algorithm yields nearly identical results as Rules. Hybrid shows
that our simple set of rules also helps to improve the heuristic of Kakoulis and
Tollis. However, compared with Rules, it is questionable whether the additional
effort for applying BFS repeatedly and using an O(k

√
n) bipartite-matching

subroutine really pays.
For fast Internet applications, such as on-line mapping, our experiments

strongly suggest that Rules is the method of choice. For high-quality label
placement, however, further experiments are needed in order to investigate how
well our algorithm handles priorities, different feature and label shapes, and a
greater number of label candidates per feature.

Acknowledgments. We thank Christian Knauer for technical support, Lars
Knipping for implementing the example generators, Alexander Pikovsky for
his interesting experiments with simulated annealing, and Rudi Krämer, Frank
Schumacher, and Karsten Weihe for supplying us with real world data.

References

[1] Pankaj K. Agarwal, Marc van Kreveld, and Subhash Suri. Label placement by
maximum independent set in rectangles. In Proceedings of the 9th Canadian
Conference on Computational Geometry (CCCG’97), pages 233–238, 1997.

[2] Jon Christensen, Joe Marks, and Stuart Shieber. An empirical study of algorithms
for point-feature label placement. ACM Transactions on Graphics, 14(3):203–232,
1995.

13

[3] Srinivas Doddi, Madhav V. Marathe, Andy Mirzaian, Bernard M.E. Moret, and
Binhai Zhu. Map labeling and its generalizations. In Proceedings of the 8th
ACM-SIAM Symposium on Discrete Algorithms (SODA’97), pages 148–157, New
Orleans, LA, 4–7 January 1997.

[4] Michael Formann and Frank Wagner. A packing problem with applications to
lettering of maps. In Proc. 7th Annu. ACM Sympos. Comput. Geom. (SoCG’91),
pages 281–288, 1991.

[5] Robert J. Fowler, Michael S. Paterson, and Steven L. Tanimoto. Optimal pack-
ing and covering in the plane are NP-complete. Information Processing Letters,
12(3):133–137, 1981.

[6] Herbert Freeman. An expert system for the automatic placement of names on a
geographic map. Information Sciences, 45:367–378, 1988.

[7] Stephen A. Hirsch. An algorithm for automatic name placement around point
data. The American Cartographer, 9(1):5–17, 1982.

[8] Eduard Imhof. Positioning names on maps. The American Cartographer,
2(2):128–144, 1975.

[9] Konstantinos G. Kakoulis and Ionnis G. Tollis. A unified approach to label-
ing graphical features. In Proc. 14th Annu. ACM Sympos. Comput. Geom.
(SoCG’98), pages 347–356, June 1998.

[10] Donald E. Knuth and Arvind Raghunathan. The problem of compatible repre-
sentatives. SIAM J. Discr. Math., 5(3):422–427, 1992.

[11] Stefan Näher and Kurt Mehlhorn. LEDA: A library of efficient data types and
algorithms. In Proc. Internat. Colloq. Automata Lang. Program., pages 1–5, 1990.

[12] Tycho Strijk and Marc van Kreveld. Practical extensions of point labeling in the
slider model. In Proc. 7th ACM Symposium on Advances in Geographic Informa-
tion Systems, pages 47–52, 5–6 November 1999.

[13] Marc van Kreveld, Tycho Strijk, and Alexander Wolff. Point labeling with sliding
labels. Computational Geometry: Theory and Applications, 13:21–47, 1999.

[14] Frank Wagner. Approximate map labeling is in Ω(n log n). Information Processing
Letters, 52(3):161–165, 1994.

[15] Frank Wagner and Alexander Wolff. A practical map labeling algorithm. Com-
putational Geometry: Theory and Applications, 7:387–404, 1997.

[16] Frank Wagner and Alexander Wolff. A combinatorial framework for map labeling.
In Sue H. Whitesides, editor, Proceedings of the Symposium on Graph Drawing
(GD’98), volume 1547 of Lecture Notes in Computer Science, pages 316–331.
Springer-Verlag, 13–15 August 1998.

[17] Alexander Wolff. Label Placement in Theory and Practice. PhD thesis, Fachbere-
ich Mathematik und Informatik, Freie Universität Berlin, May 1999.

[18] Chyan Victor Wu and Barbara Pfeil Buttenfield. Reconsidering rules for point-
feature name placement. Cartographica, 28(1):10–27, 1991.

[19] Steven Zoraster. The solution of large 0-1 integer programming problems encoun-
tered in automated cartography. Operations Research, 38(5):752–759, 1990.

14

A
p
p
e
n
d
ix

A
:

E
x
p
e
rim

e
n
ta

l
C

o
m

p
a
riso

n

�� � �
��

� � � �
��

� � � �
� �

� � � �
� �

� � � �
��

� �

	
 ��

�
�

�
�

�
�

� � � � � �
�

��� � � � �� � �

�
�

�
�

�
�

� � � � � �
�

�� �� � �

�
�

�
�

�
�

� � � � � �
�

��
��

��
� �

�
�!

 "
" � " " # " " " # � " " $ " " " $ � " " % " " "

&' (()*

+
+ +

+ +
+ + + + + + +

+

,- ./ 012 3

4
4 4

4 4
4 4 4 4 4 4 4

4

,- ./ 0 12 3 5 6 #

7
7

7
7 7 7 7 7 7 7 7 7

7

Figure 8: RandomRect

8 9;: <
8=

8 = : <
8 8

8 8 : <
>? ?

? <? ? >? ? ? > <? ? @? ? ? @ <? ? A? ? ?

BC DEF

G
G

G G
G G G

G G G G G
G

H�I I EJ DK I L

M M M M M M M M M M M M
M

NO PQ K R

S
S S

S S
S S S S S S S

S

T U;V W
T T

T T V W
TX

T X V W
XY

X Y V W
XZ

X Z V W
X[

X [V W
X\

Y WY Y Z Y Y Y Z WY Y [Y Y Y [WY Y \ Y Y Y

]^ _ _ `a

b
b

b b b
b b b b b b b

b

cd ef ghi j

k
k

k k
k k k k k k k k

k

cd e f gh i j l mZ

n
n

n n
n n n n n n n n

n

Figure 9: DenseMap

15

A
p
p
e
n
d
ix

A
:

E
x
p
e
rim

e
n
ta

l
C

o
m

p
a
riso

n
(co

n
tin

u
e
d
)

�� � �
� �

� � � �
��

� � � �
� �

� � � �
� � �

� 	 � � �

� �
�

� �
�
�

�
�

� � � � � �
�

��� �
 � �� � �

� � � � � � � � � � � �
�

�� �� � �

� �
� � �
� � � � � � �

�

��
�� � !

�"
�" � !

�#
�# � !

� $
� $� !

� !
� !� !

% !% % � % % % � !% % " % % % " !% % # % % %

&' (()*

+ + +
+ +

+

+ + + + + +
+

,- ./ 012 3

4
4 4

4

4
4

4 4
4

4 4 4
4

,- . / 01 2 3 5 6 �

7
7 7 7 7 7 7
7

7
7 7 7

7

Figure 10: HardGrid

89
:9

; 9
<9

=9
>9

?9
@ 9 9

9 ;9 9 @ 9 9 9 @ ; 9 9 A 9 9 9 A ;9 9 89 9 9

BC DEF

G G G
G

G
G

G
G

G
G
G
G

G

H�I I EJ DK I L

M M M
M

M
M

M
M

M
M
M
M

M

NO PQ K R

S S S
S

S
S

S
S

S
S
S
S

S

TU
VU

W U
XU

YU
ZU

[U
\ U U

U WU U \ U U U \ W U U] U U U] WU U TU U U

^_ ` ` ab

c c
c

c
c

c
c

c
c
c
c
c

c

de fg hij k

l l
l

l
l

l
l

l
l
l
l
l

l

de fg hij k m n \

o o
o

o
o

o
o

o
o
o
o
o

o

Figure 11: VariableDensity

16

Appendix B: Instances of our Example Classes

RandomMap: 250 (193) points RandomRect: 250 (212) points

DenseMap: 253 (249) points DenseRect: 261 (258) points

HardGrid: 253 (252) points RegularGrid: 240 (240) points

MunichDrillholes: 250 (250) points VariableDensity: 250 (250) points

17

Appendix C: Example Maps

Antik und Trödel NehringModellbahnen Brause
An− und Verkauf SchürerElla’s Kinder Paradies

Fundgrube

Schmuck Seestr. 42

Juwelier Stern

Gelegenheits−Shop

Antik & KunstKinderkiste

Gebrauchtwaren Randjelovic

Antik Leonhard
Antiquitäten − Trödel Grothe

Platten Unrest
Modelleisenbahnen Peter
Antiquariat Toewe

Gebrauchtwaren aller Art
Buffalo Records

BIKE Market

Elegant aus 2. Hand

JuFu’s Trödelkiste

Trödelschatulle

Antiquitäten Zintl
Antiques Sophienstraße

Humana Second Hand
LP COVERAntiquitäten An− und Verkauf

Buch− und Kunstantiquariat Haucke

Manu’s Trödelladen

Humana Second Hand

Antiquariat Güntheroth Schmökerkabinett

Antiquariat ZeisigAntiquariat Kunze

An− und Verkauf Winkler

Second Hand Dolle

Antiquitäten ARBES

Antiquitäten Lauterbach

Marien−Antiquariat

Dralon

Trödelsprotte Technikcenter Antiquariat Doering
Trödel Rode

Antiques Dockal

Figure 12: left: 357 tourist shops in Berlin, right: 45 of 63 labeled.

Zittau

Lüneburg Süd AVLWittstock
Pritzwalk

Nordhausen

Nauen

Hanau

Brilon Wald
Schwerte

Lünen
Rheda−Wiedenbrück

Paderborn

Gera

Hagenow Land
Schwerin Karow Waren

Neustrelitz

Fürstenberg

Flöha

Dresden
Weißenfels

NaumburgEisenachWabern
Siegen−Weidenau

Marburg
Gießen

Wetzlar

Dillenburg

FalkenbergRuhland

Priestewitz

Halle
Leipzig Elsterwerda

Senftenberg

Spremberg
Forst

Cottbus

Neckarelz
Bruchsal

Solingen−Ohligs
Köln DomKöln−Deutz

Köln
Bonn−Beuel

Gütersloh

Rathenow

Berlin−SpandauOebisfelde
HannoverWunstorfBohmte

Rheine
LengerichBielefeld

Rendsburg
KielKiel Oslo−Kai

Stralsund
Stralsund Rügendamm

LietzowBergen auf Rügen

BayreuthBamberg

Crailsheim

Ansbach

Bitterfeld

Wiesenburg

Pratau
DessauKöthenNortheim

Altenbeken

Bad Schandau

Bünde
Minden

Rastatt
Baden−Baden

Kehl

Offenburg

Buchloe
Aulendorf

Memmingen
Geltendorf

Augsburg

GünzburgTübingenAppenweier
Plochingen

ErfurtGotha
Arnstadt

Saalfeld

Gemünden
Lichtenfels

Sonneberg
Grimmenthal

Eisfeld

Eberbach

Heppenheim
Darmstadt

Aschaffenburg
Offenbach

Riesa

Lehrte
Magdeburg

Braunschweig

Göttingen Leinefelde

Troisdorf
Siegen

Lüneburg

Elze
HamelnHerford

Karlsruhe−Durlach
Goldshöfe

Aalen
Backnang

Mühlacker

Gößnitz

Hildesheim

EichenbergKassel

GuntershausenKorbach

Löwenberg Eberswalde

Bernau

Berlin−Lichtenberg

Würzburg

Ulm Neu−Ulm

Nürnberg

Göppingen

Reichenbach

Plattling

Passau

Görlitz

Delmenhorst
Verden

Bassum

Nienburg
Celle

Kirchenlaibach

Weiden
Pegnitz

Bremen
Oldenburg
Leer

Immendingen

Konstanz Kempten Freilassing
Rosenheim

Weilheim

Bebra

NiederlahnsteinFriedberg Flieden

Fulda

Hechingen

Sassnitz Hafen

GubenLübbenau

Wiesbaden

Bingen
Bad Kreuznach

Ehrang
Trier

Neubrandenburg

Pasewalk

Husum
Jübek

Flensburg
Niebüll NVAGNiebüll

Dagebüll Mole

Andernach
Mayen Ost

Gerolstein

Brandenburg

Roßlau

Suhl

Puttgarden

Kreiensen

Viersen

Krefeld

Bottrop
WeselKleve

Emmerich
Münster

Bad Bentheim

Angermünde
NeuruppinWittenbergeUelzen

Rotenburg
Buchholz

Buxtehude

BremerhavenHamburg−Altona

Büchen

Hamburg

Cuxhaven Elmshorn
Bad Kleinen Lalendorf

Bützow
Wismar

Lübeck

Heide Neumünster

Worms

Mannheim
Neunkirchen

Saarbrücken
NeustadtHomburg

Schirnding

Marktredwitz

München Ost
München

Mühldorf
Neumarkt−St Veit

Donauwörth Landshut

Ingolstadt

Treuchtlingen Regensburg

Fürth Lauf

Amberg
Schwandorf Furth i Wald

Bayerisch Eisenstein

Bonn

Pfronten−Steinach
MittenwaldGarmisch−Partenk.Lindau

Konstanz Hafen
Basel Bad

Schaffhausen
Donaueschingen

Sigmaringen
VillingenFreiburg

Warnemünde
Rostock Greifswald

Lauda

Mainz Süd

Berlin−Schönef.Flug
Blankenf Frankfurt/Oder

Belzig Zossen

Güstrow

Warburg

Hagen

Hof

Plauen

Johanngeorgenstadt

Zwickau
Lichtentanne

Aachen

Figure 13: 373 German railway stations, 270 labeled.

18

