Automated Label Placement

11

Theory and Practice

Dissertation of Alexander Wolff
Fachbereich Mathematik und Informatik

Freie Universitat Berlin
Supervisor: Dr. habil. Frank Wagner

External referees: Dr. Marc van Kreveld, Universiteit Utrecht,

and Prof. Christopher Jones, University of Glamorgan.

Date of doctoral defense: May 28, 1999

ii

Contents

Abstract

An Introduction to Label Placement

1.1 Historic Development,

1.2 Theory... e e
1.3 ...and Practice
1.4 Quality

1.5 Future Development
1.6 Overview
1.6.1 General Labeling, Compatible Representatives, and CSP .
1.6.2 Point Labeling: Label-Number Maximization
1.6.3 Point Labeling: Label-Size Maximization
1.6.4 Line Labeling
1.6.5 Designing Geometric Algorithms

General Labeling: Label-Number Maximization

2.1 Label Placement and CSP
2.2 Maximum Variable-Subset CSP
2.3 TIrreducibility oo
2.4 An Edge-Irreducibility Algorithm
2.5 A General Label-Placement Algorithm

Point Labeling: Label-Number Maximization

3.1 Comparing Various Models

3.2 Fixed-Position Models oL
3.2.1 Algorithm L
3.2.2 Experiments o
323 Results

3.3 Slider Models
3.3.1 NP-Hardness

3.3.2
3.3.3
3.3.4

A Greedy Approximation Algorithm
A Polynomial Time Approximation Scheme

Implementation and Experimental Results

4 Point Labeling: Label-Size Maximization
4.1 Rectangular Labels oL,
4.2 Circular Labels o

4.2.1
4.2.2
4.2.3
4.24
4.2.5

Previous Work oL,
Preliminaries
Algorithm
Analysis
NP-Hardness

5 Line Labeling
5.1 Previous Worko
5.2 A Buffer Around the Input Polyline
5.3 A Candidate Strip
5.4 Finding Good Label Positions
5.5 Experimental Results.

5.6 Discussion and Extensions

6 Designing Geometric Algorithms

6.1 Algorithm
6.2 Step by Step Towards Good Design

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5

The Naive Approach
Decoupling Algorithm and Data Organization
Tightening Control
Influencing Critical Decisions

The Complete Interface

6.3 Experiments. oo

6.3.1
6.3.2
6.3.3

Conclusion

Example Classes
Results

Evaluation

Zusammenfassung (Summary in German)

Curriculum Vitae

Bibliography

iv

81
81
82
84
84
86
88
91

97

99
100
102
105
106
110

113
115
115
116
116
118
119
121
124
124
126
127

131

133

135

139

Abstract

Placing labels that contain text or images is a common task in information
visualization. Labels convey information about objects in graphical displays
like graphs, networks, diagrams, or cartographic maps. Typically, each object
(or feature) that has to be labeled allows a number of positions where the
corresponding label can be placed. However, each of these label candidates
could intersect with label candidates of other features. This gives rise to the
following combinatorial problem, the general label-placement decision problem.
Given a set of features, each with a set of label candidates, can we assign each
feature a label from its candidate set such that no two labels intersect? In other
words, is there a complete labeling for the set of features?

Unfortunately, one cannot expect to find an efficient method for answering
this question. Therefore most previous work has focused on developing heuris-
tics and approximation algorithms for various optimization problems related
to label placement, such as finding a placement for a subset of the features of
maximum cardinality that has a complete labeling. This problem is referred to
as the label-number maximization problem.

In this thesis we approach label placement from two sides. On the one
hand we develop a general framework for label-placement problems. This
framework extends the classical constraint-satisfaction framework such that the
label-number maximization problem can be formulated and algorithms can be
developed that reduce the size of the search space for an optimal solution con-
siderably. We give such an algorithm and a simple, but very effective heuristic
based on this algorithm.

On the other hand we investigate special cases of the label-placement prob-
lem, which is generally divided into point, line, and area labeling. First we con-
sider the point-labeling problem. We apply our framework to labeling points
with axis-parallel rectangles, which can, for example, represent the bounding
boxes of textual labels. We allow the classical four label positions per point,
namely those where a corner of the rectangle coincides with the point. We com-
pare our method to five other point-labeling algorithms experimentally. Then
we investigate point labeling with an infinite number of label candidates per
point. We show that it is NP-hard to decide whether a set of points can be
labeled with unit squares or with unit disks if we require that each label touches
its point. Nevertheless we give efficient approximation algorithms for optimiza-
tion versions of both problems. More specifically we give a polynomial-time

vi

Abstract

approximation scheme for maximizing the number of axis-parallel rectangular
labels of common height, while we show that one cannot expect to find such a
scheme for maximizing the size of uniform circular labels.

For labeling polygonal chains like rivers or railway lines on maps, we study
the cartographers’ requirements and put them into two categories; hard and soft
constraints. Then we give an efficient algorithm that guarantees to satisfy all
hard constraints. In addition we show how to optimize the soft constraints. The
method we suggest is the first that simultaneously fulfills both of the following
two requirements: it allows curved labels and its runtime is at most quadratic
in the number of points on the given polyline.

Apart from analyzing asymptotical runtime behavior and storage require-
ments of our algorithms, we implemented most of them and studied their per-
formance on synthetic as well as real-world data. The last chapter of this thesis
is devoted to generic programming, a method for abstracting from concrete data
representation, that we found very helpful for keeping our geometric algorithms

flexible.

vi

Chapter 1

An Introduction to Label
Placement

In everyday life, we permanently categorize and label things or people accord-
ing to the categories into which they in our opinion fall. If we do not know
somebody’s name, we may refer to him by his physical appearance, his hair
style, profession or possessions, the way he dresses, behaves, or talks. That is,
we label him as “tall”, “brunette”, “poor”, “extroverted”, “southern”, or with
several of these predicates. If we accumulate enough labels, we get a unique
description. We use labels to identify, describe or simply store something in our
memory. Labels never catch all information available on an object but rather
focus on features that distinguish it from others. Spoken in terms of computer
science, a label can be seen as a hash key that allows us to access additional
information about the labeled object in the dictionary, which is represented by
our brain.

We use labels to describe objects and to communicate our ideas to others,
hoping that the hash key works in their dictionaries as well as in ours. In
order to illustrate our ideas, we often resort to images, i.e. two-dimensional
mappings of reality. These tend to consist of rather simple, and thus abstract
graphical elements, which can have an abundance of meanings. Thus we must
annotate these objects with some kind of labels to clarify our intentions. Such
a labeling must fulfill two important requirements, namely (a) legibility, i.e. a
label must be of sufficient size and must neither overlap objects of the image
nor other labels, and (b) unambiguity, i.e. it must be clear which object a label
annotates. The second requirement is also valid for the use of labels in speech,
while the first results from the geometric limitations of the plane. From now
on we will refer to objects that are to be labeled as features.

Labeling is one of the key tasks in the process of information visualization.
In diagrams, maps, technical or graph drawings, features like points, lines, and
polygons must be labeled to convey information. The interest in algorithms
that automate this task has increased with the advance in type-setting tech-
nology and the amount of information to be visualized. Cartographers, graph

Chapter 1. An Introduction to Label Placement

drawers, and computational geometers have suggested solutions to the label-
ing problem such as expert systems, 0-1 integer programming, approximation
algorithms, and simulated annealing to name only a few. The ACM Compu-
tational Geometry Impact Task Force report [CT96] denotes label placement
as an important research area. To fully comprehend the interest in automated
labeling systems, one has to realize that manually labeling a map, for instance,
is estimated to take fifty percent of total map production time [Mor80].

1.1 Historic Development

Going back in history, cartography is probably the oldest field that combined
graphical with textual elements and was thus forced to deal with the labeling
problem. The first record of a scaled map was found in China and is estimated
to be about 2,300 years old [SZ97].

In cartography, the basis for automation was laid in the early sixties when
the prominent Swiss cartographer Eduard Imhof published a catalogue of rules
for label placement including good and bad examples [Imh62, Imh75]. In the
same year, but independently of Imhof, Georges Alinhac, “Artiste Cartographe
Principale” at the French Institut Géographique National, published the book
“Cartographie Théorique et Technique”, which includes a similar set of labeling
guidelines [Ali62]. These first formalizations of label placement have certainly
facilitated the step from craftsmanship to technology. Before, based on his taste
and long work experience, a cartographer could judge a map as being “well”
or “poorly” labeled, but since the publication of Imhof’s and Alinhac’s rules,
the deficiencies of a map labeling can be named in detail. Only then, after
a model was found and the objectives were made clear, could technicians and
researchers without expertise in cartography start to automate the process of
label placement. This was crucial for the field since the apparently most basic
problem of label placement, i.e. labeling points, turned out to be hard in terms
of computational complexity.

Ten years after Imhof and Alinhac declared the principles of label place-
ment, the Israeli cartographer Pinhas Yoeli wrote the first article dealing with
the automation of map labeling [Yoe72]. He suggested an interactive system
consisting of a human map editor, a geographical database, an output and
a “principle-of-placement” module as well as a placement and an operational
program. He devoted a lot of attention to the arrangement and the interplay
between the parts of his system, which must be due to the limitations in storage,
computation speed and the type-setting abilities of output devices at that time.
He did not give any details of his placement program, but suggested that after
each run of the program, the map editor would evaluate the results and decide
whether his “preliminary estimate as to the name carrying abilities of his map
was too optimistic”. In that case “there will be names for which the computer
could not find any place”. If the map editor cannot add these manually, he has
to revise decisions (concerning font size, place selection) and rerun the program
until a satisfactory solution is found.

2

Section 1.2. Theory...

30

25 -
20 -
15 - -
10 -
5 L

e = =

\ T \ T T
1960 1965 1970 1975 1980 1985 1990 1995 2000

Figure 1.1: Number of publications over time in the label-placement literature.

Two articles by Boyle and a master’s thesis by Wilkie at the Department
of Electrical Engineering, University of Saskatchewan followed at the beginning
of the seventies [Boy73, Wil73, Boy74], but it was not until the eighties that a
larger number of researchers became interested in labeling problems, see Fig-
ure 1.1. The figure shows for each year the number of references contained
by the Map-Labeling Bibliography [WS96], an exhaustive list of literature about
(mostly automated) label placement. The Map-Labeling Bibliography was inte-
grated into the Collection of Computer Science Bibliographies [Ach95] in 1998.

Since the beginning of the eighties, there has been a steady flow of pub-
lications about the labeling problem in fields as diverse as artificial intelli-
gence, cartography, geography, geology, spatial data handling, database sys-
tems, data structures, image processing, graph drawing, and computational
geometry. Over the years, there were two diverging lines of research. Given the
complexity of the labeling problem, most publications were directed towards
developing and improving solutions for special cases. Another approach was
targeting at finding a general labeling framework.

1.2 Theory...

Theoreticians, mostly computational geometers, entered the field around 1990.
Nearly all work in terms of approximation algorithms and NP-hardness results
has been focussed on the point labeling problem. This may be due to the fact
that there are obvious models and objective functions for this problem. Never-
theless, there has been a rather controversial debate among cartographers over
the “right” point-labeling model [WB91, Mil94]. Usually labels are restricted
to axis-parallel rectangles, for example the bounding boxes of place names, but
squares in arbitrary positions and disks have also been considered [DMM*97].
These labels must (a) not intersect any other label, and (b) touch the point they

3

Chapter 1. An Introduction to Label Placement

label. While condition (a) guarantees legibility (given labels of sufficient size),
condition (b) is responsible for the unambiguity of a labeling. Condition (b)
has often been further restricted to the case where one of a label’s corners must
coincide with the point to be labeled. Some cartographers additionally allow
the four positions where the midpoint of a label edge coincides with the point.
This is how the basic labeling requirements mentioned above are modeled for
points.

However, even apparently simple special cases of the point labeling problem,
like deciding whether a set of points can be labeled with unit squares in one of
four positions, have turned out to be NP-hard [MS91, FW91, KR92]. Therefore
most theoreticians have studied approximation algorithms that maximize either
the label size [FW91, DMM™97], the number of points with labels [AvKS98,
vKSW99], or both criteria simultaneously [DMM197]. Nevertheless, algorithms
that can solve problems of a few dozen to a few hundred points optimally have
also been studied in the past [Pre93, KMPS93, Sch95, VA99).

1.3 ...and Practice

Practitioners on the other hand have proposed an abundance of models and
heuristics for labeling point, linear or area features on maps, and nodes or
edges in graph drawings. While most of these algorithms may work well in
practice, they lack guarantees on the quality of their results and often even
asymptotic bounds on their runtime.

If quality guarantees or time bounds cannot be given, it is important to
compare algorithms experimentally, both on real-world and synthetic data.
There are extensive experimental comparisons of point labeling algorithms
[CMS95, CFMS97, WW98]. However, we are not aware of similar work on
algorithms for labeling more complex features. The reason for this may be that
models for labeling one- or two-dimensional features tend to include aesthetic
criteria that are highly application dependent.

1.4 Quality

Only recently another, more fundamental, question has been treated; namely
how the quality of a label placement can be defined [vDvKSW99]. The basic
idea is to collect a set of rules similar to those proposed by Imhof, and to
quantify these rules subsequently. Such a quantification would have the task to
produce formulae with a small number of parameters that can be set according
to the application. The formulae should in turn be designed so that they are
easily computable. Given an automatic label-quality checker, it will be possible
to evaluate existing label-placement algorithms, locate their deficiencies, and
ultimately come up with better algorithms. Determining a set of evaluation
functions, upon which the label-placement community would generally agree,
would mean a significant progress of the field, a step from a technical to a

4

Section 1.5. Future Development

scientific level.

So far the most common criteria taken into account for judging the quality of
a label placement were either the number of features labeled or the label size.
Again, only for labeling points more elaborate quality criteria have already
been proposed and implemented, usually with the help of genetic algorithms
[Djo94, VWS97, Pre98, Rum98, Rai98, Rai99, vDTdB99]. An exception to this
is a rule-based system that Anthony Cook proposed and implemented in Prolog
in collaboration with the British Ordnance Survey [Coo88]. He explicitely lists
Imhof’s rules and takes many of them into consideration.

1.5 Future Development

Since Yoeli opened the field of literature on automated label placement, the
speed of hardware and the quality of printers has increased dramatically while
the price for storage has dropped by the same order of magnitude. Furthermore,
data structures and algorithms even for complex geometric problems have be-
come widely available through libraries like LEDA [NM90], CGAL [Ove96], or
the STL [MS96].

Concerning the future of label placement, I think that we can expect devel-
opment into two somewhat contrary directions, namely high-quality and on-line
labeling.

Assuming that the performance of computers and the price of human labour
will further increase, so will the interest in high-quality labeling systems. So far,
the only commercially available product is MAPLEX. This system was initially
developed by a team of researchers under Christopher Jones at the University of
Glamorgan, Wales [JC89]. Later the development of MAPLEX was continued by
a company that was recently bought by one of the large producers of geographic
information systems.

The core functionality of geographic information systems, or GIS for short,
is to allow geographic data to be easily linked with other layers of information.
Since GIS became available on PCs, they have gained enormous popularity for
all kinds of administrative and planning tasks. One would think that labeling is
a prominent feature of such systems, but so far most GIS offer only very basic
placement routines. In practice, a GIS user is still forced to invest several hours
in order to eliminate manually all label-label and label-feature intersections
on a map—in spite of the large number of publications on automated label
placement.

Given the success and the increasing availability of the Internet, the other
important string of development can be expected to focus on rather simple,
but very fast on-line applications. On-line mapping and label placement will
certainly benefit from future extensions of the hypertext mark-up language
(HTML). Soon it will be possible to transmit and depict vector images in-
cluding text instead of bitmaps that tend to consume a lot of transmission time
and computer storage. Already the current browser generation is able to place

5

Chapter 1. An Introduction to Label Placement

text on top of graphics. This is one of the features of a much broader concept,
namely cascading style sheets [JT98]. However, so far there is no generally ac-
cepted standard for font metrics. Thus the length of a textual label can vary
from browser to browser, which makes it impossible to avoid intersections.

1.6 Overview

With this thesis, I would like to help narrowing the gap between theory and
practice in automated label placement by presenting research in both directions.
The thesis deals with the general label-placement problem, then investigates
how to label points with rectangles or circles, how to label polygonal lines like
rivers and finally how to design flexible geometric algorithms.

1.6.1 General Labeling, Compatible Representatives, and CSP

The general label-placement problem consists of labeling a set of features
(points, lines, regions) given a set of label candidates (rectangles, circles, el-
lipses, irregularly shaped labels) for each feature. Each feature and each of its
label candidates has a specified position in the plane. In general, a label place-
ment or labeling simply specifies a subset of the features and choses for each of
these features a label from its set of label candidates such that no two labels
intersect. In a complete labeling all features receive labels. Deciding whether
a complete labeling exists is NP-hard in general [MS91, FW91]. Therefore,
researchers have turned their attention mainly to develloping heuristics and ap-
proximation algorithms for two obvious optimization versions of the problem,
namely label-number mazimization and label-size mazimization.

The decision problem is a special case of the problem of compatible repre-
sentatives introduced by Knuth and Raghunathan [KR92|. Label candidates
are compatible representatives of their features if they do not intersect. In
other words, we restrict compatibility to the geometric meaning implied by our
context. Knuth and Raghunathan point out that “cartographers face an inter-
esting case of the problem of compatible representatives”. The authors suggest
that “it seems worthwhile to add the problem of compatible representatives to
the class of ‘combinatorial problems that deserve a name’, and to investigate
heuristics and additional special cases that prove to have efficient solutions.”
Knuth and Raghunathan prove that the Metafont-labeling problem, a special
case of the point-labeling problem, is NP-complete.

In the artificial intelligence (AI) community, the problem of compatible rep-
resentatives has been addressed as the constraint satisfaction problem (CSP).
A CSP consists of a finite set V' of variables (corresponding to our features), of
finite variable domains, i.e. sets D, of at most d values (our label candidates) for
each variable v in V', and of relations R on subsets Vr of V' that exclude certain
combinations of values for V. If we use symmetric binary relations that exclude
intersecting candidates for each pair of features, the label-placement decision
problem fits into this framework. The usual objective in the Al community

6

Section 1.6. Overview

is either to list all assignment tuples without conflicts [MF85], to minimize
the number of conflicts [FW92], or to find the maximum weighted subset of
constraints that still allows an assignment (Max-CSP) [SFV95]. Since graph
coloring and the decision version of the label-placement problem are NP-hard
special cases of CSPs, one cannot expect to solve general CSPs in polynomial
time. For this reason, the class of network-consistency algorithms has been
invented. These algorithms use local arguments to exclude values from the do-
main of a variable that cannot be part of a global solution. Network-consistency
algorithms can be seen as a preprocessing step to backtracking since they often
reduce the search space very effectively.

In Chapter 2, we introduce a new framework for the general label-placement
problem. We first extend classical CSP in order to be able to express the label-
number maximization problem within this new framework. Then we develop a
new form of local consistency, namely r-irreducibility. We present an algorithm,
EI-1, that achieves 2-irreducibility in O(d?e) time using O(de) space, where d is
the size of the variable domains and e the number of binary relations. We also
give a simple algorithm that finds near-optimal solutions for problems within
our framework by combining EI-1 with a heuristic. This algorithm, EI-1* has
proven to perform very well in practice, see Section 3.2, where we apply it to
the point-labeling problem.

The following chapters are devoted to special cases of the general label-
placement problem. In Chapters 3 to 5, we investigate the problems of labeling
point and line features. When labeling a set of points, two fundamental ques-
tions can be asked. First, how many points can be labeled and second, how
large can the labels be if all points must be labeled.

1.6.2 Point Labeling: Label-Number Maximization

In Chapter 3, we focus on label-number maximization given axis-parallel rect-
angular label candidates. First, we present two classes of models for labeling
points with axis-parallel rectangles, namely so-called fized-position and slider
models. While the former restrict the number of candidates to a constant, the
latter allow an infinite number. We compare some of these models theoretically
by showing how many more points can be labeled in one model than in another.
This is joint work with Marc van Kreveld and Tycho Strijk, both at Universiteit
Utrecht [vKSW98, vKSW99].

Next, we exemplify our general framework at one of the fixed-position mod-
els. We do this such that it becomes clear how our concept can be applied to
other cases. The resulting algorithm is fast, simple and performs well even on
large real-world data sets. We study competing algorithms and do a thorough
empirical comparison. It turns out that our algorithm produces results com-
parable to simulated annealing but obtains them much faster. Our algorithm
outperforms a heuristic of Kakoulis and Tollis [KT98], not only in terms of
time, but also in terms of quality. Like our framework, both simulated anneal-
ing [ECMS97] and the heuristic of Kakoulis and Tollis can be applied to the

7

Chapter 1. An Introduction to Label Placement

general label-placement problem.

Since our framework is limited to fixed-position models, we also propose a
fast greedy algorithm that works for slider and fixed-position models. Then
we show that the slider models have polynomial-time approximation schemes.
Finally we compare the greedy algorithms for slider models experimentally to
those for fixed-position models. This part is also joint work with Marc van
Kreveld and Tycho Strijk [vKSW98, vKSW99).

1.6.3 Point Labeling: Label-Size Maximization

In Chapter 4, we look at the second aspect of point labeling, namely label-
size maximization. Instead of asking how many features can be labeled given
candidates of a fixed size, we now assume that all points must be labeled and
that their labels all have the same size. Under these circumstances it is natural
to search for algorithms that simultaneously maximize the size of all labels.
In the case of square label candidates, four per point, a theoretically optimal
algorithm is known [FW91, Wag94] and has been extended to perform very well
in practice [WW97]. We propose an algorithm for labeling points with uniform
circles. The algorithm guarantees to find a placement with circles of about
1/20 of the diameter of the labels in an optimum solution. This improves the
only known algorithm [DMM™97] by more than 50%. We also show that it is
NP-hard to approximate the problem beyond a certain constant factor. This is
joint work with Tycho Strijk.

1.6.4 Line Labeling

While an abundance of solutions for point labeling and some acceptable ap-
proaches to area labeling have been suggested, mostly using the medial axis
[AF84] or methods for computing the largest enclosed rectangle of given aspect
ratio [vVR89, ATK89, CK89, DMRI7], there seems to be a gap in the literature
concerning efficient geometric algorithms for labeling linear features such as
rivers or streets. In Chapter 5 we turn our attention to line labeling. There the
emphasis does not lie on maximizing label number or size, but on the question
where to place the label in the vicinity of the object to be labeled. In other
words, we are confronted with a modeling rather than an optimization problem.
We first list the requirements of high-quality line labeling and divide them into
two categories, hard and soft constraints.

In Section 5.3, we propose an efficient algorithm that produces a candidate
strip along the input polyline. The strip has the same height as the given
label, consists of rectangular and annular segments, and guarantees the hard
constraints, such as a lower bound on a label’s distance to the polyline and on
the label’s curvature.

In Section 5.4, we present algorithms for several evaluation functions whose
task is to produce one or several good label placements within the candidate
strip. These functions optimize soft constraints, such as the number of inflec-

8

Section 1.6. Overview

tions. Again, we perform a thorough experimental analysis by applying our
algorithm to synthetic as well as real-world data, see Section 5.5.

Although several line-labeling algorithms have been proposed in the liter-
ature [Coo88, DF92, BL95, AH95, ECMS97, Kra97, Bar97, PZC98, SvK99],
our algorithm is the first where at the same time curved labels are allowed
and bounds on the runtime given. Chapter 5 is joint work with Lars Knip-
ping, Freie Universitat Berlin, Marc van Kreveld, Tycho Strijk, both at Utrecht
Universiteit, and Pankaj K. Agarwal, Duke University [WKvK™99].

1.6.5 Designing Geometric Algorithms

In order to support the claim of the practical relevance of our concepts, we
implemented most of the algorithms we propose. The experience we have gained
from implementing led to a generic design concept for geometric algorithms,
which we present in Chapter 6 in the form of a tutorial. Our concept greatly
increases the flexibility of an implementation without sacrificing its ease-of-use.
The gain in flexibility can reduce implementation effort by facilitating code
reuse. Reusability in turn helps to achieve correctness since more users mean
more testing. The loss in terms of efficiency is small.

Our concept is based on the generic programming paradigm that has evolved
over the last few years. Generic programming is about making programs more
flexible by making them more general [BS98]. Abstracting from concrete in-
or output data representation is an example of generic programming. This
paradigm has been so successful that a model—the Standard Template Library
(STL) [MS96]—was created and added to C++, currently one of the most popu-
lar programming languages. The STL is a library of generic components, i.e. of
algorithms, data containers, and iterators mediating between the former two.
Iterators help to decouple algorithms from the type of data container they oper-
ate on. While iterators have been known before, the real novelty of the STL was
the introduction of a requirements-based taxonomy of iterators, which gives a
guideline for full decoupling, and an implementation of this taxonomy using the
C++ template mechanism. By becoming part of the C++ standard, the STL has
attracted considerable attention and has itself set a standard for good design.

After the introduction of the STL further concepts such as data accessors
have been suggested in the C++ literature to help programmers make their im-
plementations even more generic [Kith96, Wei97]. Data accessors are a means
to further decouple an implementation from the representation of in- and out-
put data [KW97]. So far, these extensions have been applied predominantly to
graph problems [NW96]. Exceptions such as [Wei98, Ket98] deal with the rep-
resentation of geometric objects, not with the design of geometric algorithms,
our main interest here. In order to show the relevance of STL-style generic
programming including later extensions as data accessors for geometric algo-
rithms, we investigate a simple rectangle-intersection algorithm that follows
the well-known sweep-line paradigm. Using this example we give a step-by step
guide from an inflexible, naive interface to a truly flexible interface that sup-

9

10

Chapter 1. An Introduction to Label Placement

ports code reuse. These steps reflect our own change of perspective during the
implementation of our label-placement algorithms. We base our presentation
on C++. While the ingredients of our concept have already been known, to
our knowledge this is the first time that they are applied so rigorously to a
geometric problem, that they are made accessible in the form of a tutorial and
that they are accompanied by a thorough experimental analysis on random and
real world data. Chapter 6 is joint work with Vikas Kapoor, Freie Universitéat
Berlin, and Dietmar Kiihl, Claas Solutions GmbH.

During the implementation phase of our algorithms, we developed a tool
for the automatic generation and maintenance of makefiles that we found very
helpful for administering inter-file dependencies in software projects [SW9§]|.
This was joint work with Sven Schonherr, Freie Universitat Berlin.

10

Chapter 2

General Labeling:
Label-Number Maximization

The problem of label placement is usually divided into point, line, and area
labeling, depending on the kind of features to be labeled. However, the problem
can be formulated independently of the shape of features. Two interesting
subproblems have been studied. In both cases, an instance consists of a set of
features and a set of label candidates for each feature.

1. The Label-Size Mazimization Problem: Find the maximum factor o such
that each feature gets a label stretched by this factor and no two labels
overlap. Compute the corresponding complete label placement.

2. The Label-Number Mazximization Problem: Find a maximum subset of the
features, and for each of these features a label from its set of candidates,
such that no two labels overlap.

The decision versions of both problems are NP-hard in general [FWO91,
FPT81]. The label-size maximization problem can be solved in polynomial
time if all features have at most two label candidates. Then the problem can
be encoded as a 2-SAT formula and tested for satisfiability in time linear in the
number of pairs of intersecting candidates [EIS76]. This was already observed
in [FW91]. If the label candidates of a feature overlap in a certain manner,
polynomial time algorithms are known for any constant number of label can-
didates per feature [PZC98, SvK99], and even for an infinite number of label
candidates per feature [KSY99).

In recent years, especially the point-labeling problem has achieved some
attention in the algorithms community. For maximizing the number of points
that are labeled with axis-parallel rectangles, the current status of the problem
is described in Chapter 3. For problems related to maximizing the size of
rectangular or circular labels for point features, refer to Chapter 4. In this
chapter we investigate the general label-number maximization problem.

12

Chapter 2. General Labeling: Label-Number Maximization

Methods that have been used for label-number maximization so far are
heuristical; they include simulated annealing [CMS95, ECMS97, Zor97] and an
algorithm that uses maximum-cardinality bipartite matching between features
and cliques of intersecting label candidates [KT98]. Both approaches will be
discussed in more detail in Section 3.2.

We propose a new framework for the general label-number maximization
problem. It leads to a heuristical algorithm that is easy to implement, and, for
point labeling, yields better results than the matching heuristic of [KT98] and
similarly good results as simulated annealing, but obtains them much faster,
see Section 3.2. Our framework is related to a concept suggested in the artificial
intelligence community under the name constraint satisfaction, which was inde-
pendently introduced into the discrete mathematics community by Knuth and
Raghunathan under the name problem of compatible representatives [KR92].
The difference of our approach to that of the artificial intelligence community
is that we try to maximize the number of variables (features) with a conflict-free
assignment, while their objective is either to list all assignment tuples without
conflicts [MF85], to minimize the number of conflicts [FW92], or to find the
maximum weighted subset of constraints that still allows an assignment.

Since constraint satisfaction is NP-hard in general, the artificial intelli-
gence community invented so-called network-consistency algorithms. These
algorithms establish a form of consistency; i.e. they use local arguments to
exclude values from the domain of a variable that cannot be part of a global
solution. Network-consistency algorithms can be seen as a preprocessing step
to backtracking since they often reduce the search space very effectively.

We develop the notion of r-irreducibility, a new form of local consistency
that is comparable to consistency in classical constraint satisfaction. We give
an algorithm, EI-1, that achieves 2-irreducibility in O(d3e) time using O(de)
space, where d is the maximum domain size and e the number of pairs of
variables whose values are in conflict with each other. The domain of a variable
corresponds to the set of label candidates of a feature in label placement. The
value of a variable is nothing but a label candidate, and for us, two values are
in conflict with each other if the corresponding candidates intersect.

While d is considered to be a small constant in point labeling (usually four
or eight), there are many applications in artificial intelligence where d can be
very large. Thus we take the size of d into account in this chapter. Note that
k, the number of pairs of intersecting label candidates, is of O(d?e).

In addition, we present an algorithm, EI-1*, for general label-number maxi-
mization that is based on EI-1. This algorithm first establishes 2-irreducibility.
Then it repeatedly makes a heuristical decision and restores 2-irreducibility un-
til each feature is either labeled or known to constrain too many other features
and therefore not labeled at all. Given the value conflict graph, EI-1* requires
O(d3e) time and O(de) space like EI-1.

Our new framework is called maximum variable-subset constraint satisfac-
tion. Our hope is that EI-1* or other efficient algorithms based on higher

12

Section 2.1. Label Placement and CSP

13

degrees of irreducibility will substitute simulated annealing for the wide variety
of problems that fit into our framework. Experiments in the context of point
labeling indicate that EI-1* is not only fast but also very effective in practice,
see Section 3.2.

This chapter is structured as follows. In Section 2.1 we give a quick introduc-
tion into the issues relevant for label placement that have been investigated by
the artificial intelligence community. We consider classical constraint satisfac-
tion problems (CSP) and a generalization, namely Max-CSP. In Section 2.2 we
extend classical CSP to maximum variable-subset CSP where the label-number
maximization problem can easily be formulated. In Section 2.3 and 2.4 we de-
fine irreducibility and describe our 2-irreducibility algorithm EI-1. Finally, in
Section 2.5 we present our algorithm EI-1* for the general label-number maxi-
mization problem.

2.1 Label Placement and CSP

A constraint satisfaction problem (CSP) is defined as follows. Given a set of
n variables v1,...,v,, each associated with a domain D; and a set of relations
constraining the assignment of subsets of the variables, find all possible n-tuples
of variable assignments that satisfy the relations [MF85]. Variable domains are
restricted to discrete finite sets, and often only binary relations are considered.

Graph coloring is a special case of a CSP where the variables are nodes,
the domains a given set of colors, and binary relations express the fact that a
node cannot have the same color as any of its neighbors. Since graph coloring,
i.e. deciding whether the nodes of a graph can be colored with the given set of
colors, is NP-complete, one cannot expect to solve general CSPs in polynomial
time [MF85]. For this reason, the class of network-consistency algorithms has
been invented. These algorithms use local arguments to exclude values from
the domain of a variable that cannot be part of a global solution. Network-
consistency algorithms can be seen as a preprocessing step to backtracking since
they often reduce the search space very effectively.

An m-consistency algorithm removes all inconsistencies among all subsets
of m of the given n variables. For the special cases of m = 1, 2, and 3,
polynomial-time algorithms have been suggested. They are called node-, arc-,
and path-consistency algorithms, respectively.

This framework can be used nearly one-to-one for attacking the label size
maximization problem. When maximizing simultaneously the sizes of all la-
bels, one can do a binary search on conflict sizes, i.e. label sizes for which label
candidates start to touch. For each conflict size, one then tries to find a com-
plete labeling. Obviously, a feature can be seen as a variable, the set of label
candidates of a feature then corresponds to the variable domain and intersec-
tions between label candidates are the constraining binary relations. Instead of
computing all satisfying variable assignments, finding one is usually sufficient
in the map-labeling context. This allows to reduce the search space dramati-

13

14

Chapter 2. General Labeling: Label-Number Maximization

cally since a variable can immediately be assigned an unconstrained value from
its domain if there is such a value. The algorithm for label size maximization
suggested in [WW97] exploits this simplification.

When maximizing the number of labeled features, label sizes are fixed and
one cannot give up and try a smaller label size as soon as it turns out that there
is no complete labeling for the current label size. Systems where one cannot
expect to find a complete solution, i.e. a non-conflicting variable assignment,
are called over-constrained systems. In such systems one has to be content
with imperfect solutions. Most effort in the CSP community has been directed
to finding solutions that violate as few constraints as possible [FW92, Jam96,
JFMO96]. When labeling maps, such violations would result in label over-plots
and thus poor legibility. It would be possible to take the output of an algorithm
that minimizes the number of violated constraints and then do some post-
processing. In order to get rid of the violations, one could drop a subset of the
variables and resign from labeling the corresponding features. Unfortunately
the problem of finding the largest violation-free subset of variables corresponds
to the maximum independent set problem and is thus NP-hard.

A related problem, Max-CSP, has also been investigated. There, one is in-
terested in finding a maximum (weighted) subset of the constraints such that
there is an assignment that satisfies them all. In order to reduce label-number
maximization to Max-CSP, one adds a new value A to the domain of each
variable. /A has a unary constraint of low weight; i.e. it only constrains it-
self. A variable that is assigned A then corresponds to an unlabeled feature in
our setting. For general Max-CSP, however, even arc consistency is NP-hard
[SFV95].

Therefore we take a different approach. We first extend classical CSP in
order to be able to express the label-number maximization problem within
this new framework, see Section 2.2. Then, in Section 2.3 we develop a new
form of local consistency, namely r-irreducibility. In Section 2.4, we present
an algorithm, EI-1, that achieves 2-irreducibility in O(d?e) time using O(de)
space, where d is the size of the variable domains and e the number of binary
relations. Finally, in Section 2.5 we give a simple algorithm that finds near-
optimal solutions for problems within our framework by combining EI-1 with
a heuristic. This algorithm has proven to be very effective in practice, see
Section 3.2, where we apply it to the point-labeling problem.

2.2 Maximum Variable-Subset CSP

Let us start by giving a formal definition of classical CSP [SFV95].

Definition 2.1 (CSP) An instance of a constraint-satisfaction problem
(CSP) is a triple (V,D,C) where V is a set of n variables, D a collection of
domains, one for each variable, and C a set of constraints. A domain D, of a
variable v is a (finite) set of values of v. A constraint C' € C is given by a pair

14

Section 2.2. Maximum Variable-Subset CSP

15

(Vo, Rc) where Vo C V' is a subset of the variables and Rc C I,ey, Dy is a
relation on the variables in V.

A solution of a CSP is a function 7 that maps each variable to a value of
its domain such that all constraints are satisfied, i.e. ey, m(v) € Rc for all
CcelcC.

In classical CSP one is either interested in finding one or in listing all solu-
tions. We extend classical CSP in order to be able to better formulate label-
number maximization. In the following definition we assume that no variable
domain contains an element 0.

Definition 2.2 (MVS-CSP) A solution of ¢ maximum variable-subset CSP
(MVS-CSP) (V,D,C) is a function ® that assigns every variable v in V to a
value of its domain D, or to 0 such that all relevant constraints are satisfied,

i.e. for allC € C if 0 & m(Ve) then Ilyey, m(w) € Re.

The size |r| of a solution 7 is the number of variables v in V' that m assigns
a value w(v) € D,. In MVS-CSP an optimal solution is a solution of mazimum
size. A solution of size |V| is called a complete solution,

In our definition we drop a constraint C' = (V¢, R¢) completely if any of
the variables v in V¢ is mapped to 0. The reason for this part of our definition
is that the restriction of C' imposed on the variables in V¢ \ {v} depends on the
value of v, thus we cannot make any assumption about which combination of
values of Vi \ {v} is excluded by C. It makes sense to require that Vi is in a
sense minimal, in other words that there is no v € Vi such that the projection
of Rc to {z} x I,ey,\ fv} Dw is identical for all values = € D,.

Definition 2.2 transfers the decision or enumeration problem of classical CSP
into an optimization problem.

For label placement only binary constraints are relevant, i.e. |Vo| = 2 for all
C € C. Given two features f and g of a label-placement instance, these binary
constraints encode which pairs of label candidates b and ¢ of f and g intersect,
respectively. Thus we can use a simpler definition.

Definition 2.3 (binary MVS-CSP) An instance of a binary MVS-CSP is a
triple (V, D, R) where R is a set of predicates Ry, on (D, U{0}) x (D, U{0}),
one for each pair (v,w) of variables. For x = 0 or y = 0 Ryy(x,y) is always
true. A solution m must fulfill Ry, (m(v),m(w)) for allv#w e V.

Given a binary CSP, constraint information can be encoded conveniently by
any of the graphs that we define in the following.

Definition 2.4 (variable/value constraint/conflict graph) We say that
a value z of a wvariable v constrains a value y of a variable w if Ryy(z,y)
is false. Let R}, (z,y) be the symmetric predicate that is true if Ry (z,y) and

VW

15

16

Chapter 2. General Labeling: Label-Number Maximization

Ry (y,z) are true. Then x and y are in conflict if R}, (z,y) is false. We say

that w excludes a value = of v if all values of w constrain x.

We say that a variable v constrains (is in conflict with) a variable w if there
is a value in the domain of v that constrains (is in conflict with) a value in
the domain of w. The variable constraint graph 6(‘/, ﬁ) has an arc for each
pair (v,w) where v constrains w; the variable conflict graph G(V, E) has an
edge for each pair {v,w} where v is in conflict with w. In the value constraint
(conflict) graph G—D> (Gp) there is a vertex for each variable-value pair [v, z]
with v € V and x € D, and an arc (edge) between two such pairs [v,x] and

[w)y] iff va(ﬂﬁ,y) (Riw(x,y)) false.

The question whether an instance of MVS-CSP has a complete solution
corresponds to classical CSP. Thus the decision version of MVS-CSP, namely Is
there a solution of size s?, is NP-hard as well. Note that MVS-CSP corresponds
to maximum independent set on Gp if we make the values of each variable into
cliques, i.e. if we add edges between [v,z] and [v,y] for all v € V and z,y € D,
with x # y.

In order to approach classical CSP in spite of its NP-hardness, the notion of
consistency has been developed. An instance is m-consistent if all m-element
subsets W C V are consistent, i.e. if for each value « in the domain of any vari-
able w in W there is a complete solution for W that maps w to . m-consistency
introduces a scale between totally inconsistent and perfectly consistent. Node-,
arc-, and path-consistency algorithms achieve 1-, 2-, and 3-consistency in poly-
nomial time [Mac77]. For backtracking algorithms, achieving arc- or path-
consistency is an important preprocessing step that reduces checking the same
inconsistent variable assignment repeatedly. In the extreme, for each v € V
and each x € D, a |V|-consistent instance yields a complete solution that maps
v to x.

The input to network-consistency algorithms comprises usually the variable
constraint graph, the domain of each variable, and for each arc (v, w) of the
graph a method that returns the value of Ry, (x, y) for all pairs (z,y) € Dy X Dy,.
The variable constraint graph can be transformed into a value constraint graph,
but the latter might need up to a factor of O(d?) more storage, where d is the
(maximum) size of the variable domains.

2.3 Irreducibility

The potential of network-consistency algorithms is our motivation for transfer-
ring the concept of consistency to MVS-CSP. In our setting, we refer to it as
wrreducibility, which we define as follows.

Definition 2.5 (reducible, redundant) Given @ binary = MVS-CSP
(V,D,R) and a subset W C V, a wvariable v € W is W-reducible iff
there is a value x € D, such that for all solutions m of W with 7(v) = x there

16

Section 2.3. Irreducibility

17

is a solution ™ of W with ©'(v) # x and |7’| > |7|. For allw € W, 7'(w) must
be either equal to w(w) or not in conflict with any values of variables in V\ W,
i.e. R (y, 7' (w)) for allv € V\W and all y € D,. If such solutions 7' ewist,
x 15 called W-redundant.

W C V s irreducible iff there is no v € W that is W-reducible. V is
r-irreducible iff all r-element subsets W C V' are irreducible.

Note that r-irreducibility implies i-irreducibility for all ¢ < r. Node-, arc-,
and path-irreducible will be used as synonyms for 1-, 2-, and 3-irreducible. If
all constraints are symmetric, we will use edge-irreducible instead of arc-irredu-
cible. The notion of reducibility helps us to remove redundant values from
variable domains and thus reduce the search space for an optimal solution.

Lemma 2.6 Let m be an optimal solution of a binary MVS-CSP (V,D,R). If
there is a subset W C V' and a variable v € W that is W -reducible, then there
is an x in the domain D, of v such that (V,D',R) has a solution of size |r|,

where D' = {D, \ {z} |v e V}.

Proof. We assume that (V,D’, R) has only solutions strictly smaller than 7. If
m(v) # x then 7 would also be a solution to the reduced instance, contradicting
our assumption. Thus 7m(v) = z. Then, by definition of reducibility, there must
be a solution 7’ of W with 7’ (v) # x and |7’| > || where 7" is the restriction
of m to W. For each w € W, 7’ must either fulfill 7/(w) = 7(w) or R}, (y, 7' (w))
forallve V\ W and all y € D,,. Let p be the following function on V.

p(u) = {

We show that p is a solution of the reduced instance. Let v, w € V with
p(v) =y # 0 and p(w) = z # 0. We must show that y and z are not in conflict.
This is clear if {v,w} C V \ W and if {v,w} C W since p equals 7 and =’
on the respective subsets of V, and 7 and 7" are solutions on V' '\ W and W,
respectively. Thus it is enough to consider the case v € V\ W and w € W. On
the one hand this implies 7w(v) = p(v) = y. On the other hand, we have either
m(w) = 7' (w) = p(v) = z or R, (a,7'(w)) for all w € V\ W and all a € D,.
In the first case y and z are both part of solution 7 and therefore cannot be in
conflict. In the second case, too, y and z are not in conflict since v ¢ W and
thus R, (y, 7'(w)).

Since [pV| = |7/| > |7#W] and pV\W = 7#V\W we have |p| > |r|, which
contradicts our assumption.

m(u) forallueV\W;
/

7'(u) otherwise.

|V |-irreducibility gives us direct access to an optimal solution.

Lemma 2.7 In a |V|-irreducible binary MVS-CSP (V,D,R) all variable do-
mains contain at most one value, i.e. |D,| <1 for all variables v € V.

17

18

Chapter 2. General Labeling: Label-Number Maximization

Proof. Suppose there is a variable v € V with |D,| > 1 and v is not V-
reducible. There are two possibilities. Either there is an optimal solution mgp¢
of V that maps v to a y € D, or all optimal solutions map v to 0. In the second
case let mope be one of these solutions, and set y to 0.

In either case there is a value x € D, \ {y} and for all solutions 7 of V' with
7(v) = x there is a solution 7’ of V' (namely mpt) with 7'(v) # z and |7/| > |«|.
Thus v is V-reducible since the additional condition, namely R}, (y, 7' (w)) for
allv € V\V and all y € D,, is trivial for V-reducibility. Hence our assumption
is contradicted.)

2.4 An Edge-Irreducibility Algorithm

Mackworth [Mac77] proposed an algorithm, AC-3, that achieves arc-consistency
in polynomial time, see Figure 2.2. With Freuder [MF85] he showed later that
AC-3 requires at least €2(d%e) and at most O(d%e) time, where e is the size
of the variable conflict graph and d the size of the variable domains, which
are assumed to be of equal size for all variables. AC-3 does not assume that
constraints are symmetric. It uses O(de) storage.

The heart of AC-3 is a procedure REVISE that, given a pair (v, w) of vari-
ables, eliminates all values from the domain of v that are excluded by w, see
Figure 2.1. AC-3 uses a stack to keep track of all pairs of variables that po-
tentially need revision. Initially the stack is filled with all arcs of the variable
constraint graph. Until the stack (or a variable domain) is empty, AC-3 re-
peatedly draws a pair (v, w) from the stack, calls REVISE(v, w), and, if REVISE
removed a value from the domain of v, adds all arcs (u,v) to the stack.

The task of REVISE is simple. It makes the arc (v, w)-consistent by removing
all values of v that are excluded by w and therefore cannot be part of any
complete solution. Without any additional data structures REVISE requires
O(d?) time. The time complexity of AC-3 follows from the fact that REVISE is
called at most d times for each of the e edges of the variable constraint graph.

Later, Mohr and Henderson introduced the notion of support [MH86]. A
variable-value pair [v, z] supports the value y of a variable w if Ry, (x,y). (We
will switch between value and variable-value pair depending on which is more
convenient.) As soon as [v,z] loses its last support from a variable w that
constrains v, £ must be removed from the domain of v. Mohr and Henderson
gave an algorithm, AC-4, that is based on this idea. For each variable-value
pair [v,z], AC-4 keeps track of the number k,, of values that support [v,]
and maintains a list S, , with all values that [v, z] supports. Using these data
structures yields AC-4’s optimal time complexity of O(d?e). However, they are
also responsible for the fact that AC-4 requires O(d%e) storage. In addition,
average and worst case runtime behavior of AC-4 do not differ much. These
disadvantages made AC-3 in spite of its inferior time complexity favorable in
many applications [Bes94].

18

Section 2.4. An Edge-Irreducibility Algorithm

19

REVISE (v, w)

deleted «+ false
for each x € D, do
for each y € D,, do
if Ryw(x,y) then exit inner loop end
end
if “R,u(x,y) then
Dy « Dy \ {z}
deleted «+— true
end
end
return deleted

Figure 2.1: The procedure REVISE makes the arc (v, w) consistent.

AC-3(V,D,R)

E—{(v,w)|v,weV, Iz € Dy,y€ Dy : ~Ryy(x,y)}
Q—FE
while Q # () do
(v,) — Q.pop()
if REVISE(v,w) = true then
for each u € V such that (u,v) € E do
Q.push((u,v))
end
end
end

Figure 2.2: The third arc-consistency algorithm AC-3.

Bessiere found out that it is not necessary to maintain counters and that
it is enough to keep one support for each of the O(de) arc-value pairs [Bes94].
His algorithm AC-6 exploits these observations and takes advantage of a total
order on the values in each domain. AC-6 needs less storage than AC-4, namely
O(de). Although it shares the time complexity of O(d?e) with AC-4, it needs
less predicate evaluations than both its predecessors AC-3 and AC-4. Shortly
after, Bessiere, Freuder, and Régin suggested improvements of AC-6 that led to
AC-7. This algorithm requires even less predicate evaluations than AC-6 while
keeping the asymptotic space and time complexity of its predecessor [BFR95].

Unfortunately the concept of support does not work in the context of MVS-
CSP. If a variable-value pair [b, 1] loses support from a variable ¢, this only
means that not both [b, 1] and a value y € D, can be part of a solution. However,
it does not imply that an optimal solution will not map b to 1. It does not even
imply that there is an optimal solution that does not map b to 1 as the example

19

20

Chapter 2. General Labeling: Label-Number Maximization

in Figure 2.3 demonstrates. There, variables are represented by boxes and their
values by circles. Conflicting values are connected by edges; all values have
degree 3 in the value conflict graph, except the values of ¢ that have degree 4.
While the optimal solution (indicated by bold circles) has size 4, all solutions
that map b to 2 (or 0) have size at most 3.

a

@C\n)

01€)

Figure 2.3: Example where the only value (b, 1) that is lacking support on an
edge (namely {b, c}) is in the only optimal solution (indicated by bold circles).

From now on we will only consider CSPs with symmetric constraints, i.e. for
all v,w € V and = € D,,y € Dy, we have Ry,(z,y) = Ruw(y,z) = R}, (y,x).
For this reason we will avoid saying [v, x] constrains [w,y] since this induces a
direction, but rather say [v,z] and [w,y]| are in conflict. Since constraints are
assumed to be symmetric, arc-irreducibility becomes edge-irreducibility accord-
ing to our notation.

Since AC-3 is not based on the concept of support, we can rewrite REVISE
and use AC-3 to achieve edge-irreducibility. For classical CSP, REVISE takes
O(d?) time. For our purpose, however, its task becomes more involved. Given
two variables v, w, REVISE must check whether v is {v, w}-reducible. To decide
whether we can remove a value x from D,, for each solution 7 of {v,w} with
7m(v) = 2 we must find a solution 7’ of {v,w} with #'(v) # x and |7'| > |x|.
7/ (w) must either equal 7(w) or not be in conflict with any values of variables
in V'\ {v,w}. For #/(v) the latter condition must hold.

Using brute force, we could do the following. For each of the O(d) values x
of v, we enumerate each of the O(d) possible solutions 7, that map v to « and
w to some y € D, U{0}. For each m, we search for a solution 7, that maps v to
a value 2’ # x and fulfills the conditions stated above. To find such a solution
7}, we go through all O(d?) pairs of values (2/,y') with 2’ € (D, U{0})\ {z} and
y' € D,,. For each pair we check R}, (z',y') and whether 2’ and ¢/ (if ¥/ # y)
are not in conflict with any values of variables in V' \ {v,w}. If this test can
be done in constant time REVISE requires at most O(d*) steps. Then AC-3

achieves edge-irreducibility in O(d%e) time.

Clearly this rough estimate can only serve as an upper bound. We can
definitively do better. Our approach is as follows. We give a list of three rules,

20

Section 2.4. An Edge-Irreducibility Algorithm

21

each of which consists of the description of a certain conflict situation and a
recipe of how to resolve it. We show that (a) only redundant values, i.e. values
that prove the reducibility of a variable, are removed, (b) if all rules are applied
exhaustively, the remaining instance is edge-irreducible, and (c) the application
of each rule takes O(d?) time. Given Lemma 2.6, (a) implies that the size of
the optimal solution remains the same until arc-consistency is achieved.

Let v and w be two variables in V, v # w. For each of the three rules
below there is a figure depicting a typical situation in which the rule applies. In
Figures 2.4 to 2.6 variables are represented by boxes and their values by circles.
Conflicting values are connected by edges. Short line segments not ending in a
circle indicate that the value from which they emanate might constrain further
values possibly of other variables. The values that are removed after applying
a rule are indicated by dotted circles.

v

1 }
t

% o0 B eTiete

o oy -
T T T T T

Figure 2.4: rule Al Figure 2.5: rule A2 Figure 2.6: rule A3

(A1) If there is a value z € D, and a subset X # () of D, \ {z} such that all
z' € X are at most in conflict with values of w, and for each value y of w
that = does not constrain, there is a value ' € X that does not constrain
y either, then remove x from D,,.

Special case (X = {2'}): If 2/ is only in conflict with values of w and
those form a subset of the values that are in conflict with x, then remove
z from D,,.

Special sub-case (X = {2/} and 2’ has no conflicts): Then remove all
values x # 2’ from D,. (This rule yields node-irreducibility.)

(A2) If there are values x and y of v and w, respectively, that are not in conflict
with each other and with values of variables other than v and w, then
set D, = {z} and D,, = {y}.

(A3) If there is a value z € D, that is excluded by w, and there is a value
y € D,, that is only in conflict with values of v, then remove x from D,,.

Special case (D, = {y}): If y is only in conflict with values of v, then
remove all these values from D,,.

Lemma 2.8 If any of the rules A1 to A3 are applied to two variables v and w,
only {v,w}-redundant values are removed from the domains of D, and D,,.

21

22

Chapter 2. General Labeling: Label-Number Maximization

Proof. Given the situation described in rule Al, we have to show that x is
{v,w}-redundant. Let 7 be any solution for v and w that maps v to z. If Al is
applicable there is a subset X # () of D, \ {z} that contains a value x’ that is
only in conflict with values of w, but not with m(w). (For m(w) = 0 this is true
for any 2’ € X.) Then 7'(v,w) = (2/,m(w)) is a solution of the same size as T,
and z is redundant.

For A2 we can argue as follows. Since {x,y} is a complete solution for {v, w},
it is obvious that all other values of v and w are redundant before applying A2.

Considering A3, a solution 7 for v and w that maps v to £ must map w to
0, hence it cannot be larger than a solution 7’ that maps w to y. This shows
that z is redundant. 4

Lemma 2.9 After rules A1 to A8 have been applied exhaustively to an instance
(V,D,R), the resulting instance (V,D',R) is edge-irreducible.

Proof. 1f |V| < 2 then there is nothing to show; arc-consistency is defined
for pairs of variables. (Still, the special sub-case of A1l would have removed
all but one value of the only variable, and the resulting instance would then
be (node-)consistent.) Thus let |V| > 2. We assume that there is a subset
W = {v,w} C V and that v is W-reducible in (V,D’,R). Then, due to the
definition of reducibility, there is a value x € D, such that for all solutions 7
of W with 7(v) = x there is a solution 7’ of W with 7/(v) # z and || > |n].
7/ (w) must be either equal to m(w) or not in conflict with any values of variables
in V\ W. For 7/(v) the latter condition must hold. We have to consider the
following three cases.

Case 1: D, = {z}

All y € D,, must be in conflict with x, otherwise there would be a solution
7 of W with 7(v) = z and |7| = 2, and all solutions 7" of W with 7’(v) # =
would have size at most one, contradicting our assumption.

Thus « is excluded by w, and all y € D,, must be in conflict with values
of variables u € V \ W, otherwise we could have applied A3. Then,
however, a solution 7 with m(v) = x has size one, while all solutions 7’
with 7/(v) # z have size zero, since m(w) # () would be in conflict with
values of variables in V' \ W. Thus z is not W-redundant, which yields
the contradiction.

Case 2: |D,| > 2 and there is a value y € D,, that is not in conflict with x.

Then for each such y there is a solution 7, of W with |7,| = 2, namely
my(v,w) = (x,y). Due to our assumption for each m, there must be
a solution 7, of W with 7 (v) # = and |m,| = 2. m,(w) must be
y, and y must constrain values of variables in V \ W, otherwise A2
would have applied and all values of v and w (among them xz) would
have been removed—except 7, (v) and m(w). Let X = {m (v) | y €

22

Section 2.4. An Edge-Irreducibility Algorithm

23

D,, and y is not in conflict with z}. The condition of case 2 guarantees
that X # (. All 2/ € X are at most in conflict with values of wj; this
is due to the restrictions imposed on each solution ﬂ;. In this situation,
however, A1l would have been applicable: for each value y of w that is
not in conflict with we have an 2’ € X that does not constrain y since
2" and y are both part of solution ;. Thus x would have been removed
from D,,, which contradicts our assumption.

Case 3: |D,| > 2 and z is excluded by w.

Then a solution 7 of W with 7(v) = x has size one. Due to our assumption
there must be a solution 7’ of W with 7(v) # z and size at least one.
Suppose =’ := 7'(v) # 0. Then 2’ is at most in conflict with values of w,
and those form a subset of the values that are in conflict with x. Thus the
special case of A1l would have applied and x would have been removed.

Hence 7/(v) = 0 and y := «'(w) # 0. In this case, however, A3 would
have applied and x would have been removed from D,,, contradicting our
assumption.

)

Lemma 2.10 Suppose there is an oracle that answers question of the type
“Given two variables v and w and a value x € D,, does x constrain at most
values of w?” in O(d) time, and suppose that the predicate Ry, (x,y) can be
evaluated in constant time for any x € D, and y € D,,, then applying any of
the rules A1 to A8 to a pair of variables {v,w} requires at most O(d?) time.

Proof. Let v and w be the two variables under consideration, and let ., (z)
be the answer of the oracle applied to the variables v and w, and to a value x in
D,. For rules Al and A3, we show that their application to (v,w) is in O(d?),
then obviously the same holds for (w,v).

Our algorithm for A1 is sketched in Figure 2.7. We assume that D, and D,,
are given as lists and that we can store an integer entry b(y) with each y € D,,.
We initialize these entries with zero. Let X be a subset of D,. Initially X is
empty.

Our algorithm consists of two phases. In the first phase we collect in X all
values x € D,, for which ay,, () is true, and set the entries b(y) for each y € D,,
to the number of z € X with Ry, (z,y) true. The fact that each b(y) equals
this number is an invariant of our algorithm. In the second phase we actually
remove the values from D, for which Al applies.

In phase 1 we go once through all values x of v. If v, (z) is true, we append
x to X and go through D,, incrementing all b(y) for which R, (x,y) holds. If
after this procedure X = (), we cannot remove any value and stop.

In phase 2 we go through D, once more and test which values z € D, we
can remove given the entries b(y) of each y € D,,. In order to do so, for each

23

24

Chapter 2. General Labeling: Label-Number Maximization

ALGO_A1(v, w; Dy, Dy, apw, Ruw)

// phase 1: initialize the data structures X, a(D,), and b(D,,)
X 0
for each y € D,, do b(y) =0
for each x € D, do
a(x) — auy(x)
if a(z) then
for each y € D,, do if R,,(z,y) then b(y) < b(y) + 1
X — X U{x}
end
end
// phase 2: remove values from the domain of v
for each x € D, do
if a(x) then threshold «— 0 else threshold — 1 end
can_remove «— true
for each y € D,, do
if Ry (z,y) and b(y) < threshold then can_remove «— false
end
if X # {z} and can_remove then
Dy — Dy \ {z}
if x € X then
for each y € D,, do if R,,(z,y) then b(y) « b(y) — 1
X o X\ {z}
end
end
end

Figure 2.7: The algorithm that implements rule Al.

x € D, we go through D,, and check whether X covers each y € D,, that is
not in conflict with z, i.e. if there is an 2’ € X that is not in conflict with y
either. If we want to remove a value x € X, we additionally have to make sure
that X \ {x} covers the same subset of D,, as X. The conditions for x € X
(x ¢ X) are fulfilled if the entries b(y) for all y € D,, with Ry, (x,y) are greater
than 1 (0). If this is the case and X # {z} holds, then we remove z from D,,.
If additionally 2 € X, we decrement the appropriate entries b(y) and remove
x from X. The condition X # {z} ensures that we do not remove the last
value x’ of X. This can only happen if 2’ is excluded by w. Keeping z’ in X
is necessary to remove—in accordance with the special case of Al—all other
values in D, \ X that are excluded by w.

Note that we do not attempt to find the set X with minimal cardinality
such that X covers all y € D,, that are not in conflict with . This would
enable us to remove the maximum number of values z from D,. However,
such an attempt would correspond to solving the set-cover problem, which is

24

Section 2.4. An Edge-Irreducibility Algorithm

25

NP-complete in general [Kar72]. One cannot even expect that set cover can
be approximated within a factor of In N, where N is the size of the set to be
covered [Fei96]. Our objective is only to remove enough values of v such that
no {v,w}-redundant value of v remains.

For a time bound of this algorithm, observe that we need to ask the oracle
O(d) times, and for each of the O(d) values of v we have to go through the
O(d) values of w at most three times. This yields a time complexity of O(d?) as
desired. (The necessary operations on the set X can be done in constant time
each if X is implemented by Boolean entries associated with each x € D, and
by a counter that keeps track of the current size of X.)

The algorithm for Al is correct for the following two reasons. First, when-
ever we remove a candidate z, the current set X and the current Boolean entries
of the values of w constitute a proof guaranteeing that Al applies: the entry
of each y € D,, that x does not constrain is marked true, thus there is a value
2’ € X that does not constrain y either. (If |X| = 1, and both z and the only
element of X constrain all values of W then we can still remove x according to
A1l.) Note that we append to X only values z for which au,,(x) is true.

Second, if no value is removed, there are two possibilities. If the algorithm
terminates with X = () then all values of v are in conflict with values of variables
in V' \ {w} and A1 does not apply.

If X # (), suppose there is a value z € D,, and a subset X' # () of D, \ {z}
with the properties required for applying A1l. We claim that then our algorithm
for A1l then would have removed z from D,. There are two cases.

Case 1: z is in conflict with values of variables in V' \ {w}.

Then () is false, and x is only considered during phase 2. Since we
assume that x is not removed, there must have been a value y € D,, with
Ryw(z,y) true and b(y) = 0. Due to our assumption, there must be a value
' € X' with Ryy(2',y) and au,(2’) true. If this is the case, however, b(y)
would have been greater than 0 when our algorithm processed z’ during
phase 2. The entries b(-) are never decreased from 1 to 0. Thus our
assumption is contradicted.

Case 2: z is at most in conflict with values of w.

Then there must be a value y € D,, with Ry, (z,y) and b(y) = 1 that
prevented x from being removed in the second pass through D,. Since
b(y) corresponds to the number of values ' in X with Ry, (2/,y) true,
X did not contain such a value except x itself. During the second pass,
no new values are added to X, and when the algorithm terminates, X
contains all values of D,, with ay,(x) true that have not been removed.
Thus X’ must be a subset of X. Since x ¢ X’ there is no value in X’ with
Ry (x,y), which contradicts the assumption.

The algorithm for A2 is simple. We mark each value of v and w with the
answer of the oracle. Then for each pair (z,y) of values of v and w with au., ()

25

26

Chapter 2. General Labeling: Label-Number Maximization

and u,(y) true we check whether Ry, (z,y) holds. If this is the case, we stop
and delete all values of D,, and D,, other than z and y.

Applying A3 is also easy. For each value x of v we go through all values y
of w and check ay,(y) and Ry (x,y). If Ryw(z,y) is false for all y € D,, and
there is one y with au,(y) true, then we remove z from D,,.

It is clear that the algorithms for A2 and A3 are correct and do not require
more than O(d?) time. 0

Lemma 2.11 There is an algorithm, EI-1, that given an instance (V,D,R) of
a MVS-CSP achieves edge-irreducibility in O(d3e) time under the conditions
stated in Lemma 2.10.

Proof. The structure of EI-1 is very similar to that of AC-3. First we put all
e edges of the variable conflict graph G(V, E) on a stack Q. While @ is not
empty we take an edge {v,w} from the stack and call REVISE(v, w). REVISE
applies rules Al to A3 until no further value of v and w can be deleted. Note
that our REVISE is symmetric; while the procedure of Mackworth makes the
arc (v, w) of the (directed) variable constraint graph G consistent, we make the
edge {v,w} of the (undirected) variable conflict graph G irreducible.

If REVISE eliminates values of v or w, we have to ensure edge-irreducibility
of all edges of G that are incident to v and w, respectively—except {v,w}.
Therefore we put these edges on () and continue by calling REVISE for the
following edge on Q.

Actually there is another point where EI-1 differs from AC-3 due to the
difference between arc-consistency and edge-irreducibility. Edge-irreducibility
induces node-irreducibility; but in the algorithm sketched so far we do not take
variables without conflicts into account at all. To each of these variables we
must apply the special sub-case of rule Al, i.e. we must remove all of its values
except one. Obviously this can be done in O(dn) total time given the variable
conflict graph.

The algorithm EI-1 is correct for the following reasons. Due to the initial-
ization of @ each edge {v,w} is made irreducible at least once. An edge can
only become reducible if (a) the domain of v or w changes or (b) a value of v
or w loses its last conflict with values of variables other than v and w. Both
kinds of changes are triggered by the removal of a value; namely a value of v,
w, or of a variable u that is adjacent to v or w in G. In the latter case it is
obvious that EI-1 puts {v,w} on @ and makes {v,w} irreducible again later.
If a value of v or w is removed, REVISE was called for either {v,w}, {v,s},
or {t,w}, where s is a variable adjacent to v and t a variable adjacent to w
in G. Lemma 2.9 guarantees that {v,w} is made irreducible since we apply
our rules Al to A3 exhaustively. In the other two cases EI-1 puts {v,w} on
Q since {v,w} is incident to {v, s} and {¢,w}, respectively. Later, when EI-1
takes {v,w} from @, the irreducibility of {v,w} is reestablished.

The time bound of O(d3e) that Mackworth and Freuder [MF85] gave for

26

Section 2.4. An Edge-Irreducibility Algorithm

27

AC-3 applies to EI-1 as well. In Lemma 2.10 we proved that one application
of rules Al to A3 costs O(d?) time given the oracle mentioned there. Suppose
we had such an oracle. We call an application of Al to A3 successful if it leads
to the removal of a value of at least one of the two participating variables.
The rules are applied at most dn times successfully and for each edge {v,w}
at most 2d + 1 times unsuccessfully, namely once for the edge we put on @
during initialization, and once for each of the 2d values we potentially remove
from v and w. We can assume that G is connected otherwise we can treat
each component separately. Thus e > n — 1, and the runtime of EI-1 sums
up to O(e+(dn+2de)-d?) = O(d3e) if we assume the existence of the oracle. [

It would be simple to implement the required oracle to run in O(d) time if
we were willing to accept a storage consumption of O(d?e). In this case we could
compute explicitly the value conflict graph Gp, see Definition 2.4. Computing
Gp from the given variable conflict graph costs O(d?e) time and space. Recall
that the oracle au,,(x) has to tell whether the value x of the variable v is only
in conflict with values of the variable w. Given Gp the oracle’s answer is “no”
if the length of the adjacency list of [v, x| is greater than the size of the domain
of w. Otherwise the adjacency list of [v,x] is short. Thus we simply have to
check to which variable each entry of the list refers and answer “yes” if each
of these variables is w, “no” otherwise. Since the domain of w has at most d
elements, the oracle’s answer can obviously be determined in O(d) steps.

However, for large values of d (and n) such an approach would consume too
much storage. Instead, we take advantage of ideas that Bessiere used in order
to speed up AC-6 and to lower its space requirements as compared to AC-4
[Bes94]. As mentioned before, AC-6 stores at most one support for each arc-
value pair, while AC-4 stores all supports. Recall that a value x of a variable
v has support on an arc (v,w) € E if there is a y € Dy, with Ry (z,y) true. If
2 has no support on (v, w), x cannot be in the solution of a classical CSP and
is therefore removed from the domain of v.

The data structure that AC-6 uses to keep track of which value has support
on which arc works as follows. For each arc-value pair [(v, w), 2] with z € D,
and (v,w) € ﬁ, AC-6 keeps a list S, , of all variable-value pairs that [v, z]
supports. If z is removed from the domain of v, all [w,y] in S, ; must get new
support. If it turns out that there is none, y must be removed from the domain
of w. The other “trick” Bessiere introduced is that he does not go through all
values of v when looking for new support for [w, y]. He observes that it is useless
to check values of v that have been checked before. Instead, he assumes that
the domains are given as lists, i.e. with an arbitrary but fixed total order, and
only checks those values z of v that succeed x in the domain list of v. Thus, for
each arc-value pair [(w,v), y], he can bound the time required for searching new
support for y by O(d). Since there are O(de) arc-value pairs, his support data
structure can be initialized and maintained in O(d?e) total time using O(de)
space. The following lemma shows how we can use these ideas for a space- and
time-efficient oracle data structure for EI-1.

27

28

Chapter 2. General Labeling: Label-Number Maximization

Lemma 2.12 There is a data structure that implements the oracle of
Lemma 2.10 for EI-1. It takes O(de) storage and can be maintained in O(d%e)
total time during the execution of EI-1.

Proof. For each edge-value pair [{v,w},z] with {v,w} € F and = € D,, we
keep a witness (i.e. a kind of support) [u, z] for the answer “no” of the oracle.
The witness testifies that the value = of v is in conflict with the value z of a
variable u # w. Like in Bessiere’s case, it is enough to have one such witness
per edge-value pair, and it is useless to check twice whether a value is a witness
for a given edge-value pair. Thus we can apply his ideas.

We keep a list W, . with all variable-value pairs for which z is a witness. In
addition, we store a Boolean entry with every edge-value pair [{v,w},z| that
encodes oy, (), the answer of the oracle. Suppose all these entries are correct
before we remove the value z of a variable u. After the removal, for each [v, z]
in the list W, . we must find a new witness or change its Boolean entry if no
further witness exists. We can do this exactly as Bessiere’s search for new
support, i.e. in O(d) time. The initialization is similar to his as well — except
that we do not remove values without witness, but only change their Boolean
entry. The Boolean entries require O(de) storage; so do the lists of type W, .
Thus our witness data structure can be maintained in O(d?e) total time using
O(de) space.

Now it is clear that EI-1 requires no more than O(de) storage. Combining
Lemmas 2.11 and 2.12 yields our main result concerning the algorithm EI-1.

Theorem 2.13 Given an instance (V, D, R) of a MVS-CSP, the algorithm EI-
1 achieves edge-irreducibility in O(d3e) time if all predicates Ry, in R can be
evaluated in constant time for anyv,w € V, x € Dy, andy € D,,. EI-1 requires
O(de) storage.

2.5 A General Label-Placement Algorithm

In this section we suggest a new algorithm for the general label-number maxi-
mization problem. Our algorithm is a combination of EI-1 and a heuristic that
removes additional candidates. The heuristic chooses a candidate ¢ according
to the conflict number of ¢, i.e. the number of candidates of other features that
¢ intersects.

Our algorithm is simple, but has turned out to be very effective. In Sec-
tion 3.2 we give experimental results obtained in the context of point labeling.
Our hope is that EI-1* or other efficient algorithms based on higher degrees of
irreducibility will substitute simulated annealing and other iterative methods
of gradient descent for the wide variety of problems that fit into the framework
of maximum variable-subset constraint satisfaction.

We proceed as follows. Given an instance of a maximum label-number
problem (F,D), where F' is a set of n features and D contains a set Dy of at

28

Section 2.5. A General Label-Placement Algorithm

29

most d candidates for each feature f € F', we first compute the candidate conflict
graph Geand, the equivalent to the value conflict graph Gp in Definition 2.4.
In Geang there is a vertex for each feature-candidate pair and an edge for each
pair of intersecting candidates that belong to different features.

We use Gcang to maintain the conflict number for each candidate. Our
invariant is that the conflict number of a candidate ¢ is always equal to the
degree of ¢ in Gcang, i.e. to the number of edges incident to c. If we remove
¢ from our label-placement instance, we decrement the conflict number of all
candidates whose vertices are adjacent to that of ¢c. Then we delete the vertex
v(c) corresponding to ¢ and the edges incident to v(c) from Geang-

Recall that REVISE needs constant-time access to the relation Ry, for each
pair of candidates of f and ¢g. If an intersection test for a pair of candidates
can be done in constant time, we can compute the candidate conflict graph
in O((dn)?). Tt requires O(k) space where k is the number of edges in the
graph. If we are given the feature conflict graph (the equivalent to the variable
conflict graph in Definition 2.4) we can use a data structure similar to the
witness data structure suggested in the proof of Theorem 2.13. With this data
structure we can initialize and maintain the conflict number of all candidates
in O(d?e) time using O(de) space. For large values of d this is better than
transforming the feature conflict graph into a candidate conflict graph that
requires O(k) C O(d?e) space.

This observation is useful for high-quality point labeling if each point has a
large set of candidates and each candidate is an axis-parallel rectangle!. If for
each point the union of its initial label candidates forms an axis-parallel rectan-
gle!, one can compute the feature conflict graph in O(e+mnlogn) independently
of d. An alternative would be to allow an infinite number of candidates and use
algorithms for so-called slider models, see Section 3.3.

In case label candidates have more complex shapes with at most s edges and
an intersection test needs f(s) time for some function f, computing the candi-
date conflict graph takes O(f(s)(dn)?) time in general. To ensure fast access to
Ry, the graph can be stored in an adjacency matrix. This requires O((dn)?)
space. However, a careful revision of the proof of Lemma 2.10 shows that
constant-time access to Ry, is only needed in loops over all pairs of candidates
[b,c] of f and g, respectively. Thus representing Gp by ordered adjacency lists
suffices. Since time and space for constructing and storing the conflict graph
are application-dependent, we assume for the following time and space bounds
that Geang is given.

Next we interpret the maximum label-number problem (F,D) as a MVS-
CSP (F,D,R) by identifying each feature with a variable and each candidate
with a value. We set Ry,4(b,c) to false if candidate b of feature f overlaps
candidate ¢ of feature g (g # f), or if this combination is not desired due to
some other application-dependent restriction.

Given (F,D,R), we use EI-1 to achieve edge-irreducibility, then remove a

Lthere are similar results for other shapes of constant complexity

29

30

Chapter 2. General Labeling: Label-Number Maximization

candidate ¢ of some feature f by means of a heuristic, and call REVISE(f, g)
for each feature g that was in conflict with f. This process is repeated until
each feature has at most one candidate left and no candidates are in conflict
any more.

We suggest the following two heuristics for determining the candidate c that
is to be removed next. Both base their decision on the conflict number of c.

RemoveTroubleMaker removes the candidate with the greatest conflict num-
ber, either locally, i.e. among the candidates of the current feature, or globally.
For the local version, the next feature either is the successor of the current
feature in a list containing all features, or it can be a feature that still has the
maximum number of candidates (MaxCandNumber).

TakeGoodChild does in a sense the opposite of what RemoveTroubleMaker
does. Among the candidates of the current feature f this heuristic selects
the candidate ¢ with the smallest conflict number, puts ¢ in the solution, and
removes all other candidates of f and all those that intersect ¢. Again, the
search for ¢ can be local or global. For the local version, the next feature
is either the successor of f in F' or a feature with the minimum number of
candidates.

Let EI-1* be the algorithm that combines EI-1 with RemoveLocalTrouble-
MakerMaxCandNumber, i.e. the local version of heuristic RemoveTroubleMaker
and selection according to MaxCandNumber. EI-1* operates on a given candi-
date conflict graph.

Using no data structures other than doubly connected lists, EI-1* requires
O(d?n) total time to repeatedly select the next candidate to be removed. Re-
moving all of these candidates can cause at most O(de) unsuccessful applications
of the rules A1 to A3, using ideas and terminology of the proof of Theorem 2.13.
Since the rules are applied at most O(nd) times successfully, and each applica-
tion requires O(d?) time, EI-1* has a time complexity of O(d>e).

We conclude with the following lemma. It is simple, but important for
applying the concept of edge-irreducibility in practice. A formal proof is omitted
since the basic ideas have been sketched above. The proof would use Lemma 2.9
and Lemma 2.10.

Lemma 2.14 Given an instance of a mazimum label-number problem (F,D),
where F' is a set of n features and D contains a set C'y of at most d candidates
for each feature f in F, and given the corresponding candidate conflict graph
Geand, there is an algorithm, EI-1*, that finds a solution m of (F,D) in O(d%e)
time and requires O(de) space, where e is the number of pairs of features with
conflicting candidates.

Let the predicate Rs4(b, c) be true iff candidate b of feature f does not inter-
sect candidate c of feature g, and let R be the set of predicates Ry,, one for each
pair {f,g} C F of features. Then 7 is optimal if for the MVS-CSP (F,D,R)
edge-irreducibility implies | F|-irreducibility.

30

Chapter 3

Point Labeling:
Label-Number Maximization

Generally it is assumed that a point label can be seen as an axis-parallel rect-
angle; the bounding box of the text, see Figure 3.1. Many algorithms for point
labeling have been described in the automated cartography literature and in
computational geometry. For an extensive bibliography see [WS96].

Good point labeling has two basic requirements. A label should be placed
close to the point to which it belongs, and two labels should not overlap each
other. For high quality cartographic label placement, further requirements have
been formulated [Imh75, Yoe72]. Given the basic requirements, an algorithm
can try to either label as many points as possible, or find the largest possible
font such that all points can be labeled. In general, both of these problems are
NP-hard [FW91, MS91]. In this chapter, we focus on the former problem, i.e.
label-number maximization. As in Chapter 2, we are given a set of features
(here: points) and for each point a set of label candidates. A solution is a
function that maps every point to 0 or to a label from its set of candidates such
that no two labels intersect. The size of a solution is the number of points that
receive a label. An optimal solution is a solution of maximum size.

Although finding an optimal solution is NP-hard, approximation algorithms
have been suggested. For axis-parallel rectangular labels of arbitrary height
and width, Agarwal et al. propose an algorithm with an approximation ratio
of 1/O(logn) [AvKS98]. Their algorithm is based on divide-and-conquer. If
the label height (or width) is fixed, the same paper suggests a line-stabbing
algorithm that labels in O(nlogn) time at least half the number of points
that are labeled in an optimal solution. For maximizing the size of uniform
rectangular labels, this approximation factor is optimal, but for maximizing
the number of fixed-height labels, Agarwal et al. also present a polynomial time
approximation scheme (PTAS).

Nearly all of the existing algorithms for point labeling limit the placement
of a label with respect to its point to a finite number of label positions. Most
algorithms described before allow four label candidates, namely those where a

32

Chapter 3. Point Labeling: Label-Number Maximization

rectangular label touches its point in one of its four corners [FW91, WW97]. In
the automated cartography literature eight candidates per point is also quite
common, while the approximation algorithm of Agarwal et al. [AvKS98] al-
lows any constant number as does a heuristic proposed by Kakoulis and Tollis
[KT98]. Their algorithm is based on a heuristic for splitting connected compo-
nents into cliques and uses maximum-cardinality bipartite matching.

We call restrictions of the allowed label positions a labeling model. Models
that allow a finite number of positions per label are fixed-position models, those
that allow an infinite number are slider models.

=

| i ol
L\ ‘ = o
R B e P . = |
i L L e | i 1L
e — s i B P

Figure 3.1: Rectangular labels of cities of the U.S.A.

This chapter is structured as follows. Section 3.1 introduces six point-
labeling models; three fixed-position and three slider models. We analyze how
many more labels can be placed in one model than another, in theory.

In Section 3.2 we specialize the general concept of Chapter 2 to the context of
point labeling and give the details of three variants of an algorithm based on this
concept. Our algorithm has a runtime of O(k + nlogn), where n is the number
of points and k the number of intersections among the label candidates. Other
than all approximation algorithms suggested so far, our algorithm does not
make any assumptions about label shapes and the position of a label relative to
its point. Due to this generality we could not expect to prove any approximation
factors. However, our algorithm works very well in practice. We compare it
experimentally to a number of other methods.

In Section 3.3 we drop the restriction that a label can only be placed at
a finite number of positions. Instead, we allow any position where an edge
of the label is incident to the point, see Figure 3.1. We show that it is NP-

32

Section 3.1. Comparing Various Models

33

complete to decide whether a set of points can be labeled with unit squares
in the four-slider model. However, each of our three slider models allows a
simple factor—% approximation algorithm that uses O(n) space and O(nlogn)
time. We also give a polynomial-time approximation scheme for each of our
slider models. Similar results were already known for fixed-position models
[AvKS98]. In order to support the practical relevance of our approximation
algorithms for the three slider models, we do a thorough experimental analysis
on real-world data and randomly generated point sets.

3.1 Comparing Various Models

This section is joint work with Marc van Kreveld and Tycho Strijk, both Uni-
versiteit Utrecht [vKSW98, vKSW99].

In this section we introduce and then compare some common point-labeling
models. All of the algorithms we present in the following sections aim to label
as many points as possible according to the chosen model.

- - - @
-

Figure 3.2: top-, two- and four-slider model

T
‘ ‘
Yool ¥

Definition 3.1 (point labeling, size of a labeling, optimum labeling)
Given a set P of n points in the plane, and for each point p € P a set of label
candidates Ly, a point labeling is a subset P C P and a function A which
maps every point p € P’ to a label \(p) € L, such that no two labels intersect.
The number of labeled points, i.e. the cardinality of P’, is the size of the point
labeling. An optimal labeling is a point labeling which has maximum size
among all point labelings.

In this chapter, we restrict ourselves to axis-parallel rectangular label can-
didates. If we require additionally that a label must be placed such that one of
its edges contains the point to be labeled, we get the following labeling models.

Definition 3.2 (slider models) In the four-slider model, a point p must be
labeled such that any edge of the label contains p. In the two-slider model, either
the label’s top or bottom edge has to contain p. In the one-slider or top-slider
model, the bottom edge of a label must contain p.

For an illustration of slider models, see Figure 3.2. Note that in all of our
models we allow that a label contains other points which then of course cannot
be labeled. Our labels are closed, i.e., we disallow touching. One alternative

33

34

Chapter 3. Point Labeling: Label-Number Maximization

would be “half-open” labels as in [WW97]. In that paper all edges of a label
which are not adjacent to its point are allowed to touch other labels or points.
This would make sure that if every label is scaled down by a small amount
with its point as scaling center, then all labels are disjoint. When labels do
not touch, a map user can more easily match a label and the point to which
it belongs. The algorithms could be adjusted to this additional requirement,
but intensive case study would be necessary to decide whether a label can be
placed when it touches other labels. The bounds of the following comparison
of models would still hold, but for the sake of simplicity we keep the number of
requirements to a minimum.

One alternative would be to consider labels open and thus allow touching
generally. In this case however, we were not able to keep the greedy algorithm’s
approximation guarantee of 50%, although the bounds of the comparison below
would hold.

We will compare the slider models introduced above to the following fixed-
position models.

Figure 3.3: one-, two- and four-position model

Definition 3.3 (fixed-position models) Labeling in the four-position model
requires that the a point p is labeled such that one of the label’s corners lies on
p. In the two-position model one of the label’s bottom corners must lie on p
and in the one-position model the lower left corner of the label must coincide
with p.

For an illustration of fixed-position models, see Figure 3.3. Our measure for
comparing the models above is based on optimal labelings of point sets. Some
point sets allow a labeling of the whole set in all models. Such point sets are
not very interesting for a comparison, so we are mainly interested in point sets
where the size of an optimal labeling differs from model to model. We define
the ratio of two models as follows.

Definition 3.4 (ratio of two models) Given unit square label candidates
and two label-placement models My and Ma, the (asymptotic) (M : My)-ratio

is
size(optimal M -labeling for P)

lim ma
n—oo P, |P|):(n size(optimal Ms-labeling for P)

This measure does not take into account aesthetic criteria as listed by Imhof
[Imh75]. Since it is a purely quantitative measure and, moreover, only refers

34

Section 3.1. Comparing Various Models

to square labels, it does not apply directly to many practical label placement
problems. However, it gives a fair indication of how many more points can be
labeled in one model than in another in general.

e for

dtop
>

1

>
dbot

k lbot

Figure 3.4: The ratio between the two- and Figure 3.5: 3/2 is a lower bound

the one-position model can become arbi- on the ratio between the two- or

trarily large for labels of different size. four-slider and any fixed-position
model

The reason why we only consider unit square labels in the definition above
and in the remainder of this section, is that otherwise some of the ratios between
two models would become arbitrarily bad, see Figure 3.4. All points depicted
there can be labeled in the two-position model, but only one point can be
labeled in the one-position model.

It is worth mentioning that the size of an optimal placement in a slider
model cannot be approximated arbitrarily well by a fixed-position model, no
matter at how many discrete positions a fixed-position label can be attached
to its point. Given such a model, consider all positions in which a unit square
label can be attached to its point. W.l.o.g. we may assume that the four corner
positions are among them. For each position, mark the place on the edge of
the label that the point touches. Choose some ¢ > 0 to be smaller than half
the minimum distance between two markers that both lie either on the top or
on the bottom edge of the label. Then there must be points piop and ppe on
the top and the bottom label edge, respectively, that are further than ¢ away
from any marker. Let diop and dpot be their respective distances to the label’s
left edge.

Now consider the six points marked by disks in Figure 3.5. The two leftmost
points have vertical distance € from each other and horizontal distance 1 + 2¢
from the corresponding rightmost points. These four points can be labeled in
all models that allow any corner of a label to lie on the point to be labeled.
The other two points lie at a distance of € 4 diop and € + dpo to the right of
the leftmost points. These two points can be labeled by labels liop and o in
the two- or four-slider model such that Iy, and [, keep a distance of € to the
labels of the left- and rightmost points. However these points cannot be labeled
properly in the given fixed-position model since moving liop and Iyt by up to €
to the right or left does not make the points coincide with any of the markers
at the top or bottom edge of lio, and l,o. This is due to our choice of diop and

dbot-

35

36

Chapter 3. Point Labeling: Label-Number Maximization

In order to get larger point sets as required by Definition 3.4, we simple
copy the group of six points depicted in Figure 3.5 at regular intervals along
the z-axis. This yields a ratio of 3/2 between the two- (or four-) slider model
and any given fixed-position model.

The labeling models used in this section will be the six introduced in Defi-
nition 3.2 and 3.3. All of our comparisons of two such models M7 and My are
based on the following strategy. We want to bound the ratio ¥ by which more
labels can be placed in the model with more freedom, say M;. We assume an
optimal label placement in M;. Then we canonically relabel the labeled points
by moving every label into a position that is valid in the more restrictive model
Ms. This might cause some labels to intersect. We determine the maximum
number g, of Ms-labels that intersect the leftmost Ms-label . Then we put
[into a set S of non-intersecting labels, remove [and all its conflicting labels
from the instance and repeat until no labels remain. At the end of the process,
S contains at least kJ/(dlers + 1) non-intersecting Mo-labels, where k! ; is the
size of the assumed optimal Mi-placement. The size of S is a lower bound for
the size of an optimal Ms-placement, thus di.i + 1 is an upper bound for the
(M, : My)-ratio. Lower bounds for the ratio ¥ are obtained by giving examples
of arbitrary size for which any Ms-placement is worse by a certain factor than
some M;i-placement.

Since we do not want to compare every two models in isolation, we define
three groups. They consist of pairs of models where points with labels in one
model can be canonically relabeled such that a certain fraction of points gets
labels in the other model.

Definition 3.5 (flipping) Given two different label placement models M, and
My, and an azxis-parallel vector v of unit length, model My can be flipped into
model My by v if any label position in My that is not allowed in Ms can be
translated by v into a valid Ms-label position.

Example 3.6 The two-slider model can be flipped into the top-slider model
by (0,1). Analogously, the four-position model can be flipped by (0, 1) into the
two-position model, while the two-position model can be flipped by (1,0) into
the one-position model.

Lemma 3.7 For any two labeling models My and Mo where My can be flipped
into My the (M : My)-ratio is 2.

Proof. Consider an optimal Mi-labeling of an arbitrary instance of points. Let
M> be a model into which M7 can be flipped by a vector v. Then the canonical
relabeling mentioned above means translating by v all M;-labels that are not
valid in M.

We can assume that the vector by which we flip is (0,1); the case (1,0) is
symmetric. This means that an Ms-label is either identical to the corresponding
M;-label or lies one unit above it. Let I; be the Mj-label corresponding to the

36

Section 3.1. Comparing Various Models

37

lgzll bl :b2
b2 1 ll
le 12

Figure 3.6: If My can be flipped into My then the leftmost Ms-label Iy (solid
edges) cannot intersect more than one Mas-label be. (The corresponding non-
intersecting Mj-labels are shaded.)

leftmost Ms-label lo. We show that l5 can intersect at most one Ms-label whose
Mi-counterpart is not in conflict with {;. As indicated above, this gives us an
upper bound of 2 for the (M : Ms)-ratio W.

Suppose that [is identical to the corresponding M;-label l1; the other case
is symmetric, see the left and right part of Figure 3.6, respectively. Let I be
the set of all Ms-labels intersecting ls and let I1 be the set of their mutually
non-intersecting M7-counterparts. Then all labels in I must contain the lower
right corner of ls; otherwise, either their M;j-counterparts intersect [, or lo is
not leftmost. This however forces all labels in I; to contain a point at unit
distance below that corner (marked by a cross in Figure 3.6) in order not to
intersect {1. Hence |I1| = |I2] <1 and ¥ < 2.

In order to establish the lower bound of 2 for ¥, just take the four corner
points of an axis-parallel square of edge length less than one. For all models
M; that we are considering and that can be flipped into a model My (see
Example 3.6), exactly twice as many of these points can be labeled as in the
corresponding Ms-model. An instance can consist of arbitrarily many of such
groups of four points, separated sufficiently. 4

Definition 3.8 (sliding) Given two different label placement models My and
Mo, and an azis-parallel vector v of unit length, model My can be slid into
model My along v if every label position in My can be translated by pv into a
valid Ma-label position for some u € [0,1]

Example 3.9 The four-slider model can be slid into both the two-slider and
the top-slider model along (0, 1). Along (1,0) we can slide the two-slider into the
four-position model and the top-slider into both the two- and the one-position
model. Note that the four-slider model cannot be slid into the four-position
model.

Lemma 3.10 Let My and My be two (different) labeling models where My can
be slid into Ma, and let U be the (M : Ms)-ratio. Then 2 < ¥ < 3.

37

38

Chapter 3. Point Labeling: Label-Number Maximization

Proof. Again we consider an optimal M;-labeling of an arbitrary instance. We
assume that we can slide M- into Ms-label positions along (0, 1); the case (1,0)
is symmetric. We canonically slide all M;-labels upwards until we arrive in an
Ms-label position. We show that the leftmost Ms-label I3 can then intersect at
most two other Ms-labels. This yields the upper bound of 3 for V.

A

Figure 3.7: If M; can be slid into My then the leftmost Ms-label I3 cannot
intersect more than two Ms-labels.

My-labels intersecting Iy can only lie within area Asg, a rectangle of width
two and height three that is placed such that its left edge is centered at the
left edge of I3, see Figure 3.7. This holds because [l is chosen to be leftmost.
The corresponding M;-labels are restricted to area Aj, a rectangle of width
two and height four obtained by extending Ao one unit downards. Every label
in A; must contain one of the three grid points in the interior of A; marked
by crosses in Figure 3.7. Thus A; can contain only three non-intersecting M-
labels including the M;i-counterpart of lo. It follows that Iy cannot intersect
more than two Ms-labels, and hence that ¥ < 3.

]
=

Figure 3.8: If M; can be slid into Ms then the M;i-Ms-ratio approaches 2.
Here we chose M to be the two-slider model (shaded labels) and M; to be the
four-position model (solid edges).

For a lower bound that approaches 2 refer to Figure 3.8. There are two rows
of n points. Two neighboring points of one row have z-distance 1 — ﬁ +¢ and
y-distance d, where ﬁ > & > ¢ > 0. The upper row is a copy of the lower,
shifted by the vector (§/2,9).

Comparing the top-slider model to the one- or two-position model is easy;

38

Section 3.1. Comparing Various Models

39

just consider one row. In order to compare the four- to the two-slider model,
the figure must be rotated by 90 degrees. So let us focus on comparing the
two-slider to the four-position model here.

It is obvious that all points can be labeled in the two-slider model. For the
four-position model we can argue as follows. Let p be a point of the upper row
excluding the last or first two points and let g be the right neighbor of p in the
upper row. If a four-position label is attached to p, then either it contains at
least one extra point (a, b and ¢, or ¢ in Figure 3.8), or it makes labeling ¢
difficult. Either g is not labeled, or ¢’s label is in a lower position and hence ¢
will contain at least two extra points. Since p is the only point whose label can
intersect the upper positions of ¢ without intersecting ¢ itself, a failure to label
g can be uniquely charged to p. And if p and ¢ are both labeled, we charge
the failure to label the two points in ¢’s label to p and ¢. In any case, we can
charge one point that cannot be labeled to each point that is labeled. For the
corresponding points p of the lower row, the same argument holds if we choose
q to be the left neighbor of p. 0

Note that the proof above can be simplified for closed labels. We chose to
give a proof that carries over to the case of open labels.

The upper bounds for ¥ can be improved to 3 for the pairs of models
satisfying the following definition.

Definition 3.11 (corner-sliding) Given two different label placement models
My and Ms, model My can be corner-slid into model My if every label position
in My can be shifted both to the left and to the right such that the point coincides
with a corner of the label, and these positions are valid in My. Vertical corner-
sliding is defined with left and right replaced by top and bottom.

Example 3.12 The top-slider model can be corner-slid into the two-position
or the four-position model. We can corner-slide the two-slider model into the
four-position model. The four-slider model can be vertically corner-slid into
the two-slider model. Note that the four-slider model cannot be corner-slid
into the four-position model since sliding would be necessary in two directions.
The top-slider model cannot be corner-slid into the one-position model since
top-slider labels cannot be slid to the left to reach a position in the one-position
model.

Lemma 3.13 Let My and My be two (different) labeling models where M can
be corner-slid into Ms. Then the (Mj : Ms)-ratio is at most 2. The same holds
if My can be vertically corner-slid into M.

Proof. Again we consider an optimal Mi-labeling of an arbitrary instance. We
assume that we can corner-slide M;- into Ms-label positions; the vertical corner-
sliding case is symmetric. We draw a set of vertical lines with unit spacing over
the M;i-labeling such that no line contains a point of the instance, nor a vertical

39

40

Chapter 3. Point Labeling: Label-Number Maximization

edge of a label. We count both the number of Mi-labels that intersect the odd
lines and the number of Mj-labels that intersect the even lines. Assume that the
even lines intersect the greater number of squares in the Mj-labeling; the other
case is symmetric. Delete the squares and corresponding points intersecting the
odd lines. The remaining squares are now corner-slid into a Ms-label position
such that each label intersects an even line, see Figure 3.9.

Figure 3.9: After removing Mj-labels intersecting the odd lines (dashed), the
remaining M;j-labels (shaded) are corner-slid to intersect an even line (solid).
This results in a valid Ms-labeling.

Note that if a given Mj-label intersects an even line, then the resulting
label in the Ms-position intersects that same even line. Since the spacing be-
tween even lines is 2 and the lines are in non-degenerate position, two Msy-labels
intersecting different even lines cannot intersect. Furthermore, two Ms-labels
intersecting the same even line arose from two M;-labels intersecting that same
even line. Since corner-sliding is done horizontally, the M»-labels do not inter-
sect since the Mj-labels did not intersect.

Since we never remove more than half the M;-labels, and the remaining
M;-labels are all corner-slid to non-intersecting Ma-labels, the (M : My)-ratio
is at most 2.

Lemma 3.14 Let Wig1p be the ratio between the top-slider and the one-
position-model. Then 2% <Vis1p <3

Rl

Figure 3.10: Sliding top-slider labels (shaded) to the right into one-position
labels (solid edges) can create 9-cycles in the resulting conflict graph of one-
position labels.

Proof. With Lemma 3.10 we get 2 < Wyg1p < 3. The example in Figure 3.10
raises the lower bound to 2%. a

40

Section 3.1. Comparing Various Models

41

Unfortunately we were not able to lower the upper bound of ¥4 1p although
we can show the following. In order to get from an optimal top-slider labeling
to a one-position labeling, we must shift all labels to the extreme right. Note
that this is not the same as the idea of a canonical relabeling. If we consider
the resulting conflict graph of the one-position labels, then this graph is planar,
has maximum degree A = 4 and all odd cycles have length at least 9. Grotsch’s
Theorem says that a planar and triangle-free graph is three-colorable, but this
gives us only a more graph-theoretic proof of the upper bound of 3.

1P
b 4 A S
1 - AN
27 <WVi5:p <3, L) 4
. ’ 9 v ‘\\\2\ \\\\
/ P2
IS| =fm S0y 4P
2
» W 2S
\ v 4
\ 2 - ///)
N 79 K
\\\ - //
2 < \1145'715 < 3\\ é) 2 < \1145”413 < 4
\ 2 /
\\ -ls //
NI, A/
——e——
v \
-
4S

Figure 3.11: Ratios between some label placement models. From top to bottom:
the one-position, two-position, top-slider (left), four-position (right), two- and
four-slider model

Figure 3.11 summarizes our results. The reason for the upper bound 4
for the ratio W45 4p between the four-slider and the four-position model is the
following. First we convert the four-slider labeling to a two-slider labeling
as described in the proof of Lemma 3.13. After that we convert this two-
slider labeling to a four-position labeling in the same way. Since both these
conversions keep at least half the number of labels, we get Wyg54p < 4.

41

42

Chapter 3. Point Labeling: Label-Number Maximization

3.2 Fixed-Position Models

In this section we specialize the general concept of Chapter 2 to the context
of point labeling. First, however, we review some of the previous approaches
to maximizing the number of labeled points. For an extensive bibliography on
label placement in general, refer to [WS96]. At the beginning of this chapter
we have already mentioned a number of approximation algorithms. Let us add
the most prominent heuristic methods.

In [CMS95] Christensen et al. compare simulated annealing to gradient de-
scent, to an incremental force-driven algorithm by Hirsch [Hir82], and to 0-1
integer programming suggested by Zoraster [Zor86, Zor90]. The conclusion of
their comparison is that simulated annealing is the method of choice for point
labeling, see the results in Figure 3.72, page 79. Zoraster later also applied
the simulated-annealing algorithm of Christensen et al. to labeling very dense
point sets and reported good results [Zor97]. Edmondson et al. showed that the
simulated annealing algorithm of Christensen et al. can also be used for general
label placement, i.e. for arbitrary feature and label shapes [ECMS97].

Recently, Kakoulis and Tollis suggested another approach to label-number
maximization [KT98] that is independent of the shape of the label candidates.
The authors compute the candidate conflict graph Geand- Geand has a node for
each candidate and an edge for each pair of intersecting candidates. In the next
step they compute the connected components of Geang- Then Kakoulis and
Tollis use a heuristic similar to the greedy algorithm for maximum independent
set to split these components into cliques. Finally they construct a bipartite
“matching graph” whose nodes are the cliques of the previous step and the
features of the instance. In this graph, a feature and a clique are joined by an
edge if the clique contains a candidate of the feature. A maximum-cardinality
matching yields the labeling. Given Gcanq, the runtime of their algorithm de-
pends on how the clique check and the matching algorithm are implemented.
Practical matching algorithms take O(k+/n) time; however, our implementation
of their heuristic has an asymptotic runtime of O(kn), where k refers to the
number of edges in the candidate conflict graph. The authors do not give any
time bounds.

The algorithm for label-number maximization we present here unites the
following advantages. Our algorithmic approach
e does not depend on the shape of labels,

e can be applied to point, line, or area labeling (even simultaneously) if a
finite set of label candidates has been precomputed for each feature,

e is easy to implement,
e runs fast (i.e. in O(n + k) time given the candidate conflict graph), and
e returns good results in practice—at least for labeling points with rectan-

gular labels.

To our knowledge, none of the algorithms described so far shares all of these

42

Section 3.2. Fixed-Position Models

43

characteristics.

The input to our algorithm is the candidate conflict graph of the label
candidates. The algorithm is divided into two phases similar to the first two
phases of the algorithm for label size maximization described in [WW97]. In
phase I, we apply a set of rules to all features in order to label as many of
them as possible and to reduce the number of label candidates of the others.
These rules do not destroy a possible optimal placement. Then, in phase II, we
heuristically reduce the number of label candidates of each feature to at most
one. Given the candidate conflict graph, our algorithm takes O(k+n) time and
O(n) space.

In Section 3.2.1 we give the details of three variants of the algorithm based
on this concept. In Section 3.2.2 we describe the set-up and in Section 3.2.3 the
results of our experiments. We compare our algorithm to five other methods,
namely simulated annealing, a greedy algorithm (see Section 3.3.2), two variants
of the matching heuristic of Kakoulis and Tollis, and a hybrid algorithm that
combines our rules with their clique matching.

Part of the examples on which we do the comparison are benchmarks that
were already used in [WW97]. We added examples for placing rectangular
labels of varying size, both randomly generated and from real world data. Our
samples come from a variety of sources; they include the location of some 19,400
ground-water drill holes in Munich, 373 German railway stations, and 357 shops.
The latter are marked on a tourist map of Berlin that is labeled on-line by our
algorithm. The algorithm is also used by the city authorities of Munich to label
drill-hole maps. All example generators, real world data and algorithms are
available on the World Wide Web!.

3.2.1 Algorithm

As an application of the ideas of the previous chapter, we describe three closely
related variants of a label-placement algorithm. Although these algorithms
do not make any assumptions about the features to be labeled or the label
candidates, our description is based on the context of point labeling. This
simplifies presentation and experimental evaluation. We used four rectangular,
axis-parallel label candidates per point, namely those where one of the label’s
corners is identical to the point. Our objective is to label as many points as
possible.

Each of our algorithms consists of two phases. In phase I, we try to remove
as many label candidates as possible without destroying an optimal placement.
Then, in phase II, we heuristically pick a candidate, remove it, and fall back
on the methods of phase I to further reduce the number of label candidates.
We repeat this process until each point has at most one label candidate left,
and none of these intersects any of the other remaining candidates. These
candidates form our solution.

"Mttp://wuw.math-inf .uni-greifswald.de/map-labeling/general

43

44

Chapter 3. Point Labeling: Label-Number Maximization

While the heuristic in phase II is identical for all algorithms, the way they
choose candidates for removal in phase I differs.

Rules applies a set of rules exhaustively to all points. Each rule tries to find a
candidate that can be put into the solution and then removes all candidates of
the same site or those that intersect the chosen candidate.

EI-1* establishes edge-irreducibility as described in Section 2.4.

EI+L3 establishes edge-irreducibility and additionally applies rule L3 that is
described below.

Phase I of Algorithm Rules

This algorithm was joint work with Frank Wagner and Vikas Kapoor, both at
Freie Universitat Berlin.

In the first phase of algorithm Rules, we apply all of the following rules
to each of the points. Let p; be the label candidate of point p in position 7.
For each of the rules we supply a sketch of a typical situation in the context
of point labeling. We shaded the candidates that are chosen to label their
point, and we used dashed edges to mark candidates that are eliminated after
a rule’s application. We say that two label candidates (of distinct features) are
in conflict if they intersect. The conflict partners of a candidate c are all those
candidates that are in conflict with c¢. Finally let the conflict number of ¢ be
the number of conflict partners of c.

Figure 3.12: Rule L1 Figure 3.13: Rule L2 Figure 3.14: Rule L3

(L1) If p has a candidate p; without any conflicts, declare p; to be part of the
solution, and eliminate all other candidates of p, see Figure 3.12.

(L2) If p has a candidate p; that is only in conflict with some g, and ¢ has a
candidate ¢; (j # k) that is only overlapped by p; (I # i), then add p;
and ¢; to the solution and eliminate all other candidates of p and g, see
Figure 3.13.

(L3) If p has only one candidate p; left, and the candidates overlapping p;

form a clique, then declare p; to be part of the solution and eliminate all
candidates that overlap p;, see Figure 3.14.

44

Section 3.2. Fixed-Position Models

45

We want to make sure that the rules are applied exhaustively. Therefore,
after eliminating a candidate p;, we check whether the rules can be applied in
the neighborhood of p;, i.e. to p or to the points of the conflict partners of p;.

Similar to the rules Al to A3 in Section 2.4 the rules L1 to L3 have the
property that if there is a solution of size ¢ (i.e. ¢ points can be labeled) before
applying any of the rules, then this is also the case after the rule’s application.
This is easy to show, see [WWO8]. Note that L1 and L2 are special cases of Al
and A2.

Phase 11

If we have not managed to reduce the number of candidates to at most one per
point in the first phase, then we must do so in phase II. Since phase II is heuristi-
cal, we are no longer able to guarantee optimality. The heuristic RemoveLocal-
TroubleMakerMaxCandNumber described in Section 2.5 is conceptually simple
and makes the algorithm work well in practice, see Section 3.2.2. The intuition
is to start eliminating “troublemakers” where we still have a choice. Speaking
more algorithmically, we go through all points p that have the maximum num-
ber of candidates, and delete the candidate with the maximum number m of
conflicts among the candidates of p if m # 0. This process is repeated until
each point has at most one candidate left and these candidates have no more
conflicts. These candidates then form the solution.

As in phase I, after eliminating a candidate, we check whether our rules (i.e.
L1 to L3 for Rules, Al to A3 for EI-1*, and Al to A3 plus L3 for EI+L3) can
be applied in its neighborhood.

Analysis

Other than in Chapter 2 we assume here that the number of candidates per
point is a small constant, typically four or eight for point labeling. Let n be the
number of points, and & the number of pairs of intersecting candidates in the
instance, i.e. the number of edges in the candidate conflict graph. Then EI-1*
runs in O(k) time according to Lemma 2.14. In order to bound the running
time of Rules and EI4+L3, we must analyze the time complexity of rule L3.
Rules L1 and L2 are special cases of A1 and A2; thus they can also be checked
in constant time per application, see Lemma 2.10.

We use a stack to make sure that our rules are applied exhaustively. After
we have applied a rule successfully and eliminated a candidate, we put all points
in its neighborhood on the stack and apply the rules to these points. A point
is only put on the stack if one of its candidates was deleted or lost a conflict
partner.

For rule L3, we have to check whether a candidate is intersected by a clique.
In general, this takes time quadratic in the number of conflict partners. Falling
back on geometry, however, can help to cut this down. In the case of axis-
parallel rectangles, a clique can be detected in linear time by testing whether

45

46

Chapter 3. Point Labeling: Label-Number Maximization

the intersection of all conflicting rectangles is not empty. A simple charging
argument then yields O(k?) total time for checking L3.

Note that for L3 other than for the heuristic RemoveLocalTroubleMaker-
MaxCandNumber it is not enough to have access to the conflict number of a
candidate c¢; we actually need access to each conflict partner of c. For imple-
menting rules Al to A3 one only needs to know whether ¢ is in conflict with
candidates of points other than a query point. Of course the candidate conflict
graph gives access to all this information.

However, checking L3 can be done in constant time if we apply L3 only to
candidates with less than a constant number of conflicts. This makes sense since
it is not very likely that the neighborhood of a candidate with many conflicts
is a clique. In this case, phase I can be done in O(n + k) time.

In phase II, we can afford to simply go through all points sequentially and
check whether they have the current maximum number of candidates. If so,
we go through the candidates of the current point and determine the one with
the maximum number of conflicts. The amount of time needed to delete this
candidate and apply our rules has already been taken into account in phase I.
Thus phase II needs only O(dn) extra time.

Putting things together, Rules and EI+L3 take O(n + k2) time if rule L3
can be checked in linear time, and O(n + k) time if we allow only constant
effort for checking L3. In our experiments, we have not bounded this effort,
yet this part of the algorithms showed a linear-time behavior. Finally, for axis-
parallel rectangular labels, the candidate conflict graph can be determined in
O(k + nlogn) time and takes O(k) space.

Thus our algorithms can be implemented to label n points in O(k+mnlogn)
total time, given a constant number of axis-parallel rectangular label candidates
per point and constant effort for checking L.3. The algorithms require O(n)
storage apart from the candidate conflict graph.

A Hybrid Algorithm

This algorithm was joint work with Tycho Strijk, Universiteit Utrecht.

Since the decisions our algorithms make in phase II are only based on local
properties of the candidate conflict graph, these decisions can be made very
efficiently. Using more global information is time-costly, but might also improve
the quality of the results. Therefore we thought that it would be interesting
to combine our set of rules with the global aspect of the matching heuristic of
Kakoulis and Tollis [KT98]. The resulting hybrid algorithm proceeds as follows.

As before, we compute the candidate conflict graph. In phase I, we apply
our set of rules L1 to L3 exhaustively. In the new phase II, however, we use the
heuristic proposed by Kakoulis and Tollis to break up the connected components
of the candidate conflict graph into cliques. Recall that in every connected
component, they determine the candidate with the highest degree, eliminate
it, and repeat this process recursively until each component is a clique. The

46

Section 3.2. Fixed-Position Models

47

choice of the candidate that is to be eliminated has the following exception.
If the candidate belongs to a feature that has “few” candidates left, then the
candidate with the second highest degree in the current connected component
is eliminated, and so on.

Like in the old phase II, after each deletion, we apply our rules in the
neighborhood of the eliminated candidate in order to propagate the effect of
our heuristical decision.

As soon as all connected components are cliques, we use a maximum-
cardinality bipartite-matching algorithm to match as many cliques with features
as possible.

The new phase II can be implemented by an extended breadth-first search
(BFS). First, we compute all connected components of the candidate conflict
graph by common BFS. At the same time, we store the candidate with the
highest, second-highest and the lowest degree for each component. To decide
whether a component C' is a clique, we simply check whether the vertex with
minimum degree in C' matches the number of vertices in C' minus one. If this
is not the case, we delete the vertex v; with the highest degree. There is one
exception. Let a vertex be important if it corresponds to a candidate that is
the last candidate of a feature. If v; is important and the vertex vy with the
second highest degree in C' is not important, then we delete ve instead of v;.

Now let v be the vertex we deleted. We apply our rules in the neighborhood
of v and then the extended BFS recursively to all vertices that were adjacent
to v just before its deletion. In each level of the recursion at least one vertex
is deleted, and each edge is considered at most twice by BFS. Thus, if each
of the n features has a constant number of candidates, we have at most O(n)
recursion levels and each takes at most O(k) time. This results in O(nk) time
for the new phase II compared to O(n + k) for the previous version.

Computing a maximum-cardinality bipartite matching takes O(ky/n) in
practice.

3.2.2 Experiments

We compare our algorithms Rules, EI-1*, and EI4L3 to the following five
other methods that we all implemented in C++.

Anneal is a simulated-annealing algorithm based on the experiments by Chris-
tensen et al.. We follow their suggestions for the initial configuration, the
objective function, a method for generating configuration changes, and the an-
nealing schedule [CMS95]. In order to save time, we allowed only 30 instead
of the proposed 50 temperature stages in the annealing schedule. This did not
seem to influence the quality of the results.

Greedy picks repeatedly the leftmost label (i.e. the label whose right edge
is leftmost), and discards all candidates that intersect the chosen label. This
simple algorithm has an approximation factor of 1/(H + 1), where H is the
ratio of the greatest and the smallest label height [vVKSW9S8]. Greedy can be

47

48

Chapter 3. Point Labeling: Label-Number Maximization

implemented to run in O(nlogn) time by using a priority-search tree and a heap,
see Remark 3.18 in Section 3.3.2 (page 71). However, our O(n?)-implementation
is simply based on lists and uses brute force to find the next leftmost label
candidate.

Match refers to the “pure” matching heuristic of Kakoulis and Tollis [KT98].
Our implementation uses the recursive extended BFS of Section 3.2.1 and the
maximum-cardinality bipartite-matching algorithm supplied by LEDA [NM90)].
It runs in O(kn) time. We did not apply any of our rules and did not do any
pre- or post-processing.

Match+L1 is a variant of their algorithm, also proposed in [KT98]. Here
rule L1 is applied exhaustively before the heuristic that reduces all connected
components to cliques. This does not change the asymptotic runtime behavior.

Hybrid refers to the algorithm sketched in Section 3.2.1. It combines the
heuristic by Kakoulis and Tollis that reduces connected components to cliques
with our rules L1 to L3. Our implementation uses LEDA’s matching algorithm
and requires O(kn) time.

We run our algorithm and those described above on the following instance
classes. Figures 3.31 to 3.38 depict an example of each of these classes. The first
figure in each caption refers to the number of points in the depicted instance.
In some figures, an additional number in parenthesis is given, namely the size
of the solution of our algorithm Rules applied on the depicted instance. Where
Rules found a complete labeling no extra number is given.

RandomRect. We choose n points uniformly distributed in a square of size
25n x 25n. To determine the label size for each point, we choose the length of
both edges independently under normal distribution, take its absolute value and
add 1 to avoid non-positive values. Finally we multiply both label dimensions
by 10.

DenseRect. Here we try to place as many rectangles as possible on an area of
size a1y/n X a1y/n. a1 is a factor chosen such that the number of successfully
placed rectangles is approximately n, the number of points asked for. We do
this by randomly selecting the label size as above and then trying to place the
label 50 times. If we don’t manage, we select a new label size and repeat the
procedure. If none of 20 different sized labels could be placed, we assume that
the area is well covered, and stop. For each rectangle we placed successfully, we
return its height and width and a corner picked at random. It is clear that all
points obtained this way can be labeled by a rectangle of the given size without
overlap.

RandomMap and DenseMap try to imitate a real map using the same point
placement methods as RandomRect and DenseRect, but more realistic label
sizes. We assume a distribution of 1:5:25 of cities, towns and villages. After
randomly choosing one of these three classes according to the assumed distri-
bution, we set the label height to 12, 10 or 8 points accordingly. The length
of the label text then follows the distribution of the German Railway station
names (see below). We assume a typewriter font and set the label length to the

48

Section 3.2. Fixed-Position Models

49

number of characters times the font size times 2/3. The multiplicative factor
reflects the ratio of character width to height.

VariableDensity. This example class is used in the experimental paper by
Christensen et al. [CMS95]. There the points are distributed uniformly on a
rectangle of size 792 x 612. All labels are of equal size, namely 30 x 7. We
included this benchmark for reasons of comparability.

HardGrid. In principle we use the same method as for DenseRect and Dense-
Map, that is, trying to place as many labels as possible into a given area. In
order to do so, we use a grid of |aay/n] x [agy/n] cells with edge lengths n.
Again, as is a factor chosen such that the number of successfully placed squares
is approximately n. In a random order, we try to place a square of edge length
n into each of the cells. This is done by randomly choosing a point within the
cell and putting the lower left corner of the square on it. If it overlaps any of
the squares placed before, we repeat at most 10 times before we turn to the
next cell.

RegularGrid. We use a grid of |/n]| x [y/n] squares. For each cell, we
randomly choose a corner and place a point with a small constant offset near
the chosen corner. Then we know that we can label all points with square labels
of the size of a grid cell minus the offset.

MunichDrillholes. The municipal authorities of Munich provided us with
the coordinates of roughly 19,400 ground-water drill holes within a 10 by 10
kilometer square centered approximately on the city center. From these points,
we randomly pick a center point and then extract a given number of points
closest to the center point according to the L—norm. Thus we get a rectangular
section of the map. Its size depends on the number of points asked for. The
drill-hole labels are abbreviations of fixed length. By scaling the x-coordinates,
we make the labels into squares and subsequently apply an exact solver for
label-size maximization. This gives us an instance with a maximum number of
conflicts which can just be labeled completely.

In addition to these example classes, we tested the algorithms on the point
sets depicted in Figures 3.39 and 3.40, see page 58.

3.2.3 Results

We used examples of 250, 500, ..., 3000 points. For each of the example classes
and each of the example sizes, we generated 30 files. Then we labeled the points
in each file with axis-parallel rectangular labels. We used four label candidates
per point, namely those where one of the label’s corners is identical to the point.
We allowed labels to touch each other but not to obstruct points.

Quality

The graphs in Figures 3.15 to 3.22 (see pages 53 and 54) show the performance
of the eight algorithms. The average example size is shown on the x-axis,

49

50

Chapter 3. Point Labeling: Label-Number Maximization

the average percentage of labeled points is depicted on the y-axis. Note that
we varied the scale on the y-axis from graph to graph in order to show more
details. The worst and the best performance of the algorithms are indicated by
the lower and upper endpoints of the vertical bars. To improve legibility, we
give two graphs for each example class; on the left the results of Rules, EI-1*,
EI+L3, Anneal, and Hybrid are depicted, while those of Greedy and the two
variants of Match are shown in the graph on the right side of each figure.

The example classes are divided into two groups; those that have a complete
labeling and those that have not. For the former group, the percentage of
labeled points expresses directly the performance ratio of an algorithm. For
examples of the latter group, which consists of RandomRect, RandomMap and
VariableDensity, there is only a very weak upper bound for the size of an optimal
solution, namely the number of labels needed to fill the area of the bounding
box of the instance completely. Thus for VariableDensity at most 2539 points
can possibly be labeled. Experiments we performed with an exact solver on
examples of up to 200 points showed that on an average about 85% of the
points in an instance of RandomRect and usually less than 80% in the case
of RandomMap can be labeled. Other than VariableDensity, these classes are
designed to keep their properties with increasing point number. This is reflected
by the fact that the algorithms’ performance was nearly constant on these
examples. We used the same set of rules as in phase I of our algorithm to speed
up the exact solver.

In terms of performance the algorithms can be divided into two groups. The
first group consists of simulated annealing, our rule-based algorithms and the
new hybrid algorithm; the second group is represented by the greedy method
and the two variants of the matching heuristic. The first group outperforms the
second group clearly in all but one example class. On RegularGrid data, the
second group and Hybrid achieve 100%, followed very closely by the remaining
algorithms; note the scale in Figure 3.20. For all example classes (except Regu-
larGrid and MunichDrillholes, where all algorithms performed extremely well),
there is a 5- to 10-percent gap between the results of the two groups.

For all examples that have a complete labeling, Rules, EI4+L3, EI-1*, and
Hybrid label between 95 and 100% of the points. Experiments on small ex-
amples hint that the same holds for larger RandomRect and RandomMap ex-
amples. For some of the example classes, simulated annealing outperforms our
algorithms by one to two percent. However, in order to achieve similarly good
results, simulated annealing needs much longer (see below), in spite of the fact
that it uses the same fast O(nlogn) algorithm for detecting rectangle intersec-
tions (based on an interval tree). It is not surprising that EI4L3 is better than
Rules in most cases; recall that the rules L.1 and L2 are special cases of Al and
A2. However, we were astonished to see that Hybrid and Rules yield practically
identical results in spite of their different approaches. Only for HardGrid and
RegularGrid Hybrid was better than Rules—by merely one percent. The sim-
ilarity of their results suggests that it is the rules which do most of the work.
Rules and EI-1* also yield very similar results; for DenseRect, DenseMap, and

50

Section 3.2. Fixed-Position Models

51

RegularGrid EI-1* is slightly better, Rules on the other example classes. The
graph for VariableDensity suggests that EI-1* becomes worse than Rules when
the density of the candidate conflict graph increases.

In the second group, the greedy algorithm performed well given that it
makes its decisions only based on local information. Surprisingly, its results
were practically always better than that of the “pure” Kakoulis-Tollis heuristic
that relies on a global matching step. Adding rule L1 as a pre-processing step
improved the result of the matching heuristic by up to three percent. This
variant performed better than the greedy algorithm in most example classes,
but was still clearly worse than simulated annealing and our algorithms except
on the rather degenerate RegularGrid data.

Time

In Figures 3.23 to 3.30 (see pages 55 and 56) we present the running times of our
implementations in CPU seconds on a Sun UltraSparc. We used the SUN-Pro
compiler with optimizer flag -fast.

Again, to improve legibility, we give two graphs for each example class;
on the left the results of the faster algorithms Rules, EI4+L3, Hybrid, and the
two variants of Match are depicted, while those of Anneal and Greedy are
shown in the graph on the right of each figure. Since EI-1* is only slightly
faster than EI+L3, and a difference was only perceivable for RandomMap and
VariableDensity, we dropped the graphs for EI-1*.

Given heaps and priority search trees, the greedy algorithm would defini-
tively run faster. Our implementation of simulated annealing seems to be slower
by a factor of 2 to 3 than that of Christiansen et al. [CMS95]. This difference in
running time may be due to the machines on which the times were measured.

On large examples, Rules is faster by a factor of 2 to 10 as compared to
the matching heuristic, and by a factor of 30 to 100 with respect to simulated
annealing. Applying rule L1 as a pre-processing step speeds up the matching
algorithm up to a factor of a third.

EI4+L3 (and thus EI-1*) is slower by a factor of 2 as compared to Rules.
This is due to the fact that we did not implement REVISE as in Lemma 2.10
but with the brute-force algorithm sketched at the beginning of Section 2.4.

The fact that some of the algorithms are faster on larger than on smaller
point sets of VariableDensity, see Figure 3.30 on page 56, is due to the fact
that with the increase in density, many label candidates contain points and are
therefore eliminated during preprocessing, see also Figure 3.56 on page 60.

Phase 1

Since the difference between the three variants of our algorithms (Rules, EI-1*,
and EI4+L3) does not show very clearly, we also investigated how efficient they
were in phase I, i.e. before applying the heuristic RemoveLocalTroubleMaker-

51

52

Chapter 3. Point Labeling: Label-Number Maximization

MinCandNumber. Note that EI-1* is identical to EI-1 before phase II.

The graphs in Figures 3.41 to 3.48 (see page 59) show how many percent
of the given points are already labeled at the end of phase I. The graphs in
Figures 3.49 to 3.56 (see page 60) show how many percent of the label can-
didates are removed in phase I. The x-axis in these figures shows the initial
number of candidates, which is four times the number of points. Recall that we
eliminate all candidates that contain points before phase I. These removals are
also counted here.

It is not surprising that EI+L3, whose rules are a superset of those of Rules
and EI-1, is always better than both Rules and EI-1. However, it is interesting
to see that in most of the graphs EI-1 dominates Rules. EI-1 is more effective in
labeling points (in all classes except RandomMap and VariableDensity) and in
removing candidates (in all but VariableDensity). In our opinion these graphs
support the hypothesis that EI-1 represents a considerable progress compared
to Rules in attacking label-placement-type problems. It opens the road for
other efficient algorithms that achieve higher degrees of irreducibility and will
yield even better results since the need for heuristical decisions will decrease
with the gain in terms of irreducibility.

On the example class VariableDensity EI-1 is better for small examples,
while Rules does better on the larger and thus denser point sets. This seems to
be where rule L3 that is used by Rules but not by EI-1 becomes effective. At
the same time, this does not influence the runtime behavior of Rules noticeably,
see Figure 3.30, page 56.

52

Section 3.2. Fixed-Position Models

53

82
80
78
6

72
70
68
66
64
62

92

90

88

86

84

82

80

78

76

100

99.5

99

98.5

98

97.5

97

96

Quality of Results I

1500

L
2000 2500

I
3000

76

60

L L
500 1000 1500 2000 2500 3000

Figure 3.15: RandomMap

NP

500

1000

1500

I
2000 2500

I
3000

84

82

80

78

76

0

I I
500 1000 1500 2000 2500 3000

Figure 3.16: RandomRect

0

!
500 1000 1500 2000 2500 3000

Figure 3.17: DenseMap

. . . ‘ .
500 1000 1500 2000 2500 3000
Tigr XTI =T ®r—= X ™
47

z\

. S0 O

. ‘ ‘ ‘ ‘ .
500 1000 1500 2000 2500 3000

95
94
93
92
91
90
89
88
87
86
85

I I I L L

0

I
500 1000 1500 2000 2500 3000

Figure 3.18: DenseRect

Rules # EI-1* 4 EI+L3 ¢~ Anneal & Hybr. ¢

Greedy % Match % Match+L1 &=

53

54

Chapter 3. Point Labeling: Label-Number Maximization

100 = 97
B & o® B M KK Hog
25 |- B 6 |-
99 - 05 1
98.5 - -
94 |
98 - B
93 |
97.5 | -
92 |
97 - B
96.5 b 91 |
o . ; ‘ ‘ ‘ ‘ w ‘ ‘ ‘ .
0 500 1000 1500 2000 2500 3000 0 500 1000
Figure 3.19: HardGrid
100 115
99.8 | b 10 b
99.6 - B
105 -
99.4 - -
100 B—@—H—0—0—00 00008
99.2 - L B
99 - : 4 B
055 . ‘ ‘ ‘ ‘ < w ‘ ‘ ‘ .
0 500 1000 1500 2000 2500 3000 0 500 1000
Figure 3.20: RegularGrid
100 5 ‘i‘ = 100
99.95 - 4 I - I
P—d 995 -
99.9 - - é
99.85 B 99
99.8 - -
98.5 -
99.75 -
99.7 - - 98
99.65 B
97.5 -
99.6 - -
0955 . l , l ‘ l or , ,
0 500 1000 1500 2000 2500 3000 0 500 1000
Figure 3.21: MunichDrillholes
100 100
90 - 90
80 B 80
70 B 70
60 - 60
50 - 50
40 B 40
20 . s s s s A 20 s s
0 500 1000 1500 2000 2500 3000 0 500 1000

Quality of Results II

L L
1500 2000 2500 3000

I I
1500 2000 2500 3000

L 1 1

!
1500 2000 2500 3000

I L L

Figure 3.22: VariableDensity

I
1500 2000 2500 3000

Rules # EI-1* 4 EI+L3 ¢~ Anneal & Hybr. ¢

Greedy % Match % Match+L1 &=

54

Section 3.2. Fixed-Position Models

55

Running Time I

14 300 T T
12 b 250 - 1
10 E
200 | -
sl |
150 -
ol i
N i
2l i
0 =+ I I I = 4
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Figure 3.23: RandomMap
18 T T 300 T
16 - |
250 |- 1
14 B
12 B 200 - =
&
10 [—
S 150 |- g
8- & R
6 - 100 -
N |
50 =
T 1 el g =¥
0 = | I | 0 e 8 & wm @ om ko b M OF |
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Figure 3.24: RandomRect
30 T T T T T 300 T T T T
- 250 - .
b
4 200 | 4
- 150 -
- 100 - 1

i 50 /M 4
3

M

BB

~ o8 2 mox K K I
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Figure 3.25: DenseMap
30 T 300
25 250 -
20 200 |
15 150 -
10 - 100 -
5+ 50 -
X
] B ¥
0 = 0 L T S~ W~ [] 1 I I
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

Figure 3.26: DenseRect

Rules 4 EI+L3 ¢ Match ¢ Match+L1 & Hybrid &

Anneal % Greedy

55

Chapter 3. Point Labeling: Label-Number Maximization

Running Time I1

70 . . 250 T T \
60 |- E

200 |- R
50 - E p
ol | 150 |- .
301 7 100 - R
20 | E

50 |- R
10 F | .

V/@/ P &

0 Lg% mowmom K X .

& L L
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

Figure 3.27: HardGrid

18 . 250 T
16 4
jTys 200 - i
12| 4

150 | 4
10+ 4
sl i

100 | 4
6 i
ar 7 50 - 4

&
2| 4 X
A e g =¥
0 - £ | I 0 e o 5 wm owmon B % I |
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

Figure 3.28: RegularGrid

40 T T T T T 400 T T T T T

35 - — 350 | 1

30 - B 300 B

25 = 250 B
/

20 | / - 200 - -
15 - R 150 - /‘f/ 1
10 - - 100 @/?/ -
5+ . 50 - -

o ®
L aa 8 o s 8 o o a8 6@ 0 w6 M

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

Figure 3.29: MunichDrillholes

160 [~
140 |
120 |-
100 [~
80 |
60

40

£ L L I L
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

Figure 3.30: VariableDensity

Rules 4 EI+L3 ¢ Match ¢ Match+L1 & Hybrid * Anneal 4 Greedy &

56

Section 3.2. Fixed-Position Models

57

Example Classes

]

o eRS th goOte, 2
& B O T
050 H

oy E\:PD Dﬁb
[Ij%jlj[‘ DDDD

Figure 3.35: HardGrid 253 (252) points

. N
s e e JBERDN e

Figure 3.37: MunichDrillholes 250 points ~ Figure 3.38: VariableDensity 250 points

o7

O monno

O
\

[
L] L]

Figure 3.36: RegularGrid 240 points

=
== FeEe =
= = = =)
= =
= — = =
=, — =
e = R
= T = = =2 =
= — = S50
= = = = =
= =) = = e
= s = —
=5 = =
= = ey = = =
T e =R) = N5 ey
= =
= . = ==
= = — = e = =
= = =
= - = — =
(=] =1 =
— =" = o e e
= = — = — :F.él:":'
= 5 = T,
= — [—
= ——t, =
— = — =
=
— = —
= == = —
T =S A
= = e R =
= =, ==

58 Chapter 3. Point Labeling: Label-Number Maximization

Two Real-World Examples

JuFu’s Trodelkiste

An- und Verkauf SChur%Ila s Kinder Paradies

Antiques DockalMOde”ba‘hm'}n Brause Antik und Trédel Nehring
Trodel Rode’

.
Trodelsprotfe Juwelier Stern Jechnikcenter “Antiquariat Doering
Schmuck Seestr. 42 Gelegenhens Shop ModeIIE|5enbahnen Peter
Platten Unre%t Kmderklste Antik & Kuns? ¢ Anthuanat Toewe
Antiquitaten — Trodel Grothe “Gebrauchtwaren Randjelovic ~ Manu's Trédelladen
Antik Leonhar® ® Fundgrube BIKE Markey ~_ Dralon

Antiquitaten ARBES

* Mrien-Antiquariat

Buffalo Recor
Gebrauchtwaren aller Art . c%econd Hand DOfles Antiquitaten Lauterbach

Elegant aus 2. Ha'hd

Trédelschatulfe

Antiquitaten An— und Verkauf LP COVER An- und Verkauf Wlnklér Antiquariat Gntheroth nSchmokerkablnett
Humana Second Hafld . . .
Buch- und Kunstantiquariat Haulke ~ Humana SeCond Hehd Annqilrt%:ﬂezslréﬂophmnsfra‘lseﬂ«mlquanat Kunze Antiquariat Zeisig

Figure 3.39: left: 357 tourist shops in Berlin, right: 45 of 63 labeled.

Niebiill NVAGNiebiil
Dagebill Mof€Tensbury

libek Sassnitz Hafen
Husum ® .Puttgarden Bergen auf Ruge[n
. e . ietzow
KielKiel Oslo-Kai Stralsund Rigendamm
RendSburg o Stralsund
Heid® Neumiinster Warnemiinde)
d Rostock Greifswald
Libeck Wismat Butzow
Cuxhaveh Elmshomn ° e vyism

Bad Kleinch Gustroll %Lalendorf
BremerhaVerHamburg—AItonaHamburg Schwerift Karow Waren Neubrandenburg

Buxtehud® ® *Blicheh * Jagenow Lafid .Neustrelnz’:’asewak
Leer . Liineburg .
Bidenbur Buchnol? ~ gtneu aviWitistock Firstenberg
- 9h o BremerRotenburg g Sritwak ‘Angerminde
elmenhor: Neuruppip
Wittenberg® pp
Bassuth Yerden elzef Lowenberly Eberswalde
assu e Bermau
; Celle RahenowNauep o
Nienburf Berlin-Lichtenberg

Wunstorf OEb'5f5|de Berlm Spanddie “erlin-Schonef. Flu
Bohmte Hannover 9
Bad Bemhelm Mmden ¢, Lehrte BraunschwagBrandenbu’g - Bankenf *rankfurt/Oder

. .
Rhein® Bunde Magdeburg Belzig %ossen

M'[—Jelggeflc |e|efe|d Herford Hamelﬂ-hldeshelm * Wiesenbu®®

Emmerich . Gutersloh Kreiensen RoRlay Pratau Lubbenay Gubeh
K'eVéWesel Rheda—Wledenbruﬁk Altenbeken .Northelm Kothen 'Dessau Cott!:'):uosrst
Bottrop ey - Paderl:/(\:/ﬁﬂb ordhausen : BltteIrkfemb MR prember.g
% % & Schwerte arburg ... Halle Falkenbe uhland

(] .
Krefeld ®* h-Bf"O” Wald Kagsoet}lngeE n Le'zalnefelde ¢ L&ipzig, Elsterwerdh .Se_nﬂenberg
Vierseh oo Korbacﬂ d ichenberg WeiRenfels ® Riesd .Prlestewnz Gorlitz
‘Sollngen Ohligs ’Gumershausen . Dresd &
Koln DomksIn-Deutz Wabern Eisenach Naumburl rescep Zittau
I Siegen-Weidenal] .
B KOB Jmlsdorf Siegen Bebrd Gothd Erflt ¢ GOBnitg Floha %Bad Schandau
Aacheh 5NN Bc?r?rf Marburg Arnstadt te'aZwmkau
Dlllenburg GielRen Fulda Suh] SaalfemRE'ChenbaCﬁflchtentanne
‘Andemach etzlar Glimmenth® ¢ Plauen
Mayen Ot ® (NiederlahnsteinFriedberg %lieden Eisfeld Sonnebergo “Johanngeorgenstadt
Gerolsteih Llchtenfels -
Wiesbadert H;rg}fjfenbach Geminden Schirnding
Ehran Bingelt ’\ﬂalnz Sud %SChaffenburg BambergBayreuth] 'Markt}redwnz
T Bad Kreuznac,’rDarmstadt Wiirzbur Kirchenlaibach
ne Worms gHeppenheim urzburg Pegm&Weideﬁ
irch Mannheig « - Eberbact” Farth -auf
Neunkirchen ° . 'Nurnber “Amberg
ok ¢ *Homburg Neustadt Neckarelz Ansbach Schw%ndoff *urth i wald
Saarbriicken Bruchsal . Crailsheim Saverisch Eisensiei
Karlsruhe-Durlach - . ayerisch Eisenstein
RiSiay & Uvacker Goldshdfe«Treucmlmgen Regensburg
Baden-Baden . acknang
. Ingolstadt Plattling
Kehl Plochlngeh ‘Goppmgen 'Donauworth .Landshut passd
OﬁenburfppenWEIEF *riibingen Stnzburg Neumarkt-St Veit
Hechingeh UlnfNeu-Uim ‘Augsburg Mihidorf
Geltendorf Munchen
Fr(-:olburg\h”mgeS"‘Jmamg""I1 Memmingen « ;I ®**Miinchen Ost
* .
Donauesching&n 'Immendmgehulendorf uchioe Rosenheim
Schaffhausen e e konstanz Kempten Weilheim Freilassiny
Konstanz Haféh © Pfromen Steinach

Basel Bal
Linda® armisch— Parterfk Mittenwald

Figure 3.40: 373 German railway stations, 270 labeled.

58

Section 3.2. Fixed-Position Models 59

Phase I: Number of points labeled

65
60 [
55
50 -
45 |
40 -
35 -

30 -
25
20 -
15

10 I L L 1 I I 25 1 I I I L 1
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

Figure 3.41: RandomMap Figure 3.42: RandomRect

100

90 -

80 |

70 -

60 |

50

40 -

30

s

20 L 1 1 20 I ! 1 1

I I I
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

Figure 3.43: DenseMap Figure 3.44: DenseRect

80

70 T

60 -
60 -
50 -

40
40 -

30 -
30 -

20 -

10 I I L 1 I I 10
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

Figure 3.45: HardGrid Figure 3.46: RegularGrid

100

99 |

98 -

97 |

96 -

95

94 -

92 1 L L L I I 0 I I
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

Figure 3.47: MunichDrillholes Figure 3.48: VariableDensity

Rules % FI-1 & EI+L3 %

59

60

Chapter 3. Point Labeling: Label-Number Maximization

50

75

40

54

32

Phase I:

1
2000 4000 6000

Figure 3.49:

8000

RandomMap

10000

12000

L 1

I
2000 4000 6000

Figure 3.51:

8000

DenseMap

10000

12000

1
4000 6000

8000 10000

Figure 3.53: HardGrid

12000

72

2000

1
4000 6000

8000

10000

12000

Figure 3.55: MunichDrillholes

50

75

40

45

10

40

Number of removed label candidates

1
2000 4000 6000 8000 10000 12000

Figure 3.50: RandomRect

1 ! 1 L L 1

2000 4000 6000 8000 10000 12000

Figure 3.52: DenseRect

2000 4000 6000 8000 10000 12000

Figure 3.54: RegularGrid

I
2000

Figure 3.56: VariableDensity

4000 6000 8000 10000 12000

Rules & EI-1 & EI+L3 $

60

Section 3.3. Slider Models

61

3.3 Slider Models

This section is joint work with Marc van Kreveld and Tycho Strijk, both Uni-
versiteit Utrecht [vKSW98, vKSW99].

In this section we drop the restriction that a label can only be placed at a
finite number of positions. Instead, we allow any position on the edges of the
rectangle to coincide with the point, see Figure 3.1. Such a model is called a
slider model. We will study how many more labels can be placed with slider
models than with fixed-position models, and to what extent slider models re-
quire more difficult algorithms. We generally assume that labels have equal
height but not necessarily the same width. This is a natural assumption if
labels contain text or numbers of a fixed font size. We consider the rectangle
that represents a label to be closed, which implies that labels are not allowed
to touch.

Slider models have been used in two previous papers. Hirsch’s paper [Hir82]
defines repelling forces for overlapping labels and computes translation vectors
for them. After translation, this process is repeated and hopefully, a labeling
with few overlaps appears after a number of iterations. This is completely
different from our approach, which is combinatorial. The paper by Doddi et
al. [DMM™97] contains a number of labeling problems and algorithms, each
using a different labeling model. One of the problems is solved in a slider
model, where each label is allowed to rotate around the point to be labeled.
The labels must be equal-size squares (or other regular polygons); the objective
is to maximize the label size.

Point labeling has long been known to be NP-complete for fixed-position
models [FW91, FPT81, KR92, MS91]. However, this does not imply that label
placement is also hard for slider models. In Section 3.3.1 we show that this is
the case; we prove that it is NP-complete to decide whether a set of points can
be labeled in the four-slider model.

In Section 3.3.2, we show that the slider models allow a simple factor—%

approximation algorithm that uses O(n) space and O(nlogn) time. This was
already known for the fixed-position models [AvKS98]. Our algorithm is greedy
in that it always places the label whose right edge is leftmost among the right
edges of all possible label placements. The algorithm uses a kind of generalized
sweep-line in order to select the next label. We remark that our algorithm
can be adapted to labels of varying height, but then the approximation factor
depends on the ratio of maximum and minimum label height.

In Section 3.3.3, we give a polynomial time approximation scheme for each
of our slider models, showing that for any constant € > 0, there is a polynomial
time algorithm that labels a fraction of at least 1 — € of the optimal number
of labels that can be placed. Again, this result was already known for fixed-
position but not for slider models.

In order to support the practical relevance of the greedy algorithm, we do
a thorough experimental analysis in Section 3.3.4. We have implemented our

61

62

Chapter 3. Point Labeling: Label-Number Maximization

greedy algorithm for the six models. We test it on three data sets from different
application areas. One contains 1000 city names of the USA, another contains
a data posting with 236 measurements, and the third contains 75 sequence
numbers in a scatter plot near a regression line. We give tables showing how
many points are labeled in each model for a range of font sizes. It appears that
the greedy algorithm produces about 10-15% more labels for a slider model
than in the corresponding fixed-position model. This improvement is significant,
because more labels are placed in dense areas. We also compare our algorithm
to a simulated annealing algorithm proposed by Christensen et al. [CMS95] on
a sequence of randomly generated point sets.

3.3.1 NP-Hardness

The complexity of labeling points with axis-parallel rectangular labels from a
finite set of label candidates is well established in the literature [FW91, FPTS81,
IL97, KR92, MS91]. Slider models are a generalization of those fixed-position
models that force a label to touch the point to be labeled. However, this
observation does not yield the NP-hardness of the slider models, since it is not
clear how an instance for a fixed-position model can be reduced to an instance
of a slider model. Recall for example that the NP-completeness of 0-1-integer
programs does not apply to their relaxation. Therefore we show that placing
unit square labels in the 4-slider model is NP-complete.

Theorem 3.15 [t is NP-complete to decide whether a set of points can be
labeled with axis-parallel unit squares in the 4-slider model.

Proof. The problem is in NP for the following reason. We can guess (i.e.
compute non-deterministically) a permutation of the points and an integer be-
tween 1 and 4 for each point. This number indicates which edge of a label
will be attached to the point. Then we go through the points according to
the permutation and check for each point whether we can label it such that its
label touches it on the chosen edge—given the labels we have already placed.
If the new point can be labeled, we move its label into a canonical position:
Depending on whether the pre-computed edge is horizontal or vertical, we slide
the label along this edge as far left or down as possible. If all points can be
labeled this way, we accept. Otherwise we discard the subset. The reason why
we can reject in this case is the following. If all points could be labeled, we
could push all labels in their canonical positions and name a permutations of
the points, such that the procedure outlined above would produce the same
canonical label placement.

The proof of the NP-hardness is by reduction from planar 3-SAT. Licht-
enstein showed that this restriction of 3-SAT is NP-hard [Lic82]. Our proof
follows Knuth and Raghunathan’s proof of the NP-hardness of the Metafont-
labeling problem [KR92]. We encode the variables and clauses of a Boolean
formula ¢ of planar 3-SAT type by a set of points such that all points can only
be labeled if ¢ is satisfiable, i.e. if there is a variable assignment such that all

62

Section 3.3. Slider Models

clauses evaluate to true. The advantage of a planar 3-SAT formula is that the
variables can always be arranged on a straight line such that they are connected
by non-intersecting three-legged clauses, see [KR92, Figure 5].

I .
R e L= L
------ e 1
—— HTH1 P

Figure 3.57: Label placements Figure 3.58: Zig-zagging cluster patterns model
encoding true and false. a variable; the labels its Boolean value.

The main observation leading to our proof is the following. Given a cluster
of four points (the corner points of a square with edges slightly longer than 1/2
and rotated by a small angle against the axes), there are two fundamentally
different ways to label these points, see Figure 3.57. Under the condition that
all points have to be labeled, the points can only be labeled as on the left side
(which allows some sliding) or on the right side (where the labels are nearly
fixed) of Figure 3.57. Note that is impossible that some points are labeled as
on the left and others as on the right side. This gives us a means to encode
the Boolean values of a variable in the planar 3-SAT formula ¢ that we want
to reduce to a set of points.

The building blocks (or “gadgets”) of our reduction are the clusters for
variables, three-legged “combs” for clauses, and adapters connecting variables
to clauses. In order to be able to connect a variable to all clauses in which
it occurs, we model it not by one but by several four-point clusters in a zig-
zag pattern as shown in Figure 3.58. Then still all points have to be labeled
according to one of the two schemes mentioned above.

ENEENENEEEEME
EUEEEEREREERNE
L Loy L
B%D BQD BQD

Figure 3.59: Clause with pressure
from two variables.

EREEEEEEREERE

ENEEEEREEEENE

I I Oy B e By

o el L
f T f

Figure 3.60: Clause with pressure
from three variables.

We model the clauses by point sets which resemble large combs with three
legs, see Figure 3.59. The fourth column of points from the right and the left
can be repeated as often as needed to reach the three variables belonging to
the clause. The legs can be extended by duplicating the bottom-most row of
points. Each leg is connected to a variable by an adapter. An adapter consists
of three points a, b, and ¢. There are two types of adapters, see Figure 3.61

63

64

Chapter 3. Point Labeling: Label-Number Maximization

and 3.62. Which type is chosen depends on whether the variable is negated in
the clause. If the variable is set to a value which negates the corresponding
literal in the clause, the lowest point b in the adapter must be labeled upwards,
i.e. the label sticks into the pipe leading to the clause in question. This forces
all other points above b to have their label above them as well. Graphically
speaking, pressure is transmitted. This is indicated by arrows in Figure 3.59
to 3.62. When the pressure arrives in the top row of points in the representation
of a clause, it is transmitted further horizontally, see the labels of the points =
and y in Figure 3.59 and 3.60. Note that a variable assignment which fulfills
the corresponding literal does not force anything; no pressure is exerted.

If all literals of a clause evaluate to false, then the points of type b in the
adapters of the corresponding variables are labeled upwards and pressure is
transmitted through all three vertical pipes into the clause. In this case there
is a point which cannot be labeled, see Figure 3.60. If, however, there is at
least one vertical pipe without pressure, all points belonging to a clause can be
labeled, see Figure 3.59.

adapter pipeto clause

variable

Figure 3.61: Adapters for unnegated lit- Figure 3.62: Adapters for negated
erals exert pressure when a variable is literals exert pressure when a vari-
set to false. able is set to true.

Hence the question whether ¢ is satisfiable is equivalent to asking whether
all points can be labeled in the 4-slider instance to which ¢ is reduced. It
is easy to see that the reduction is polynomial: if ¢ consists of m clauses,
the instance has O(m?) points. Their position can certainly be computed in
polynomial time. 0

64

Section 3.3. Slider Models

65

3.3.2 A Greedy Approximation Algorithm

In this section we describe algorithms for point feature labeling in the slider
models. They apply to labels of fixed height but arbitrary width. We describe
an O(nlogn) time algorithm for the slider models that approximates an optimal
solution in the following sense. If the maximum number of labels that can
be placed is kopt, then our algorithm places at least kop/2 labels: a factor—%
approximation algorithm. In most data sets, however, we expect to come much
closer to the optimum.

For the fixed position models, a simple O(nlogn) time, factor—% approxima-
tion algorithm was described recently by Agarwal et al. [AvKS98]. We obtain
the same result for the slider models. We’ll only describe the most general four-
slider algorithm; it is an extension of the top-slider and two-slider algorithms.
It is based on a greedy strategy. For convenience we’ll first describe the algo-
rithm with labels allowed to touch, unlike in the previous sections where labels
were considered to be closed. Later we show that simple adaptations can be
made to obtain non-touching labels.

Given a set of points with labels that have already been placed, and a set
of points that don’t have a label yet, define the leftmost label to be the label
whose right edge is leftmost among all label candidates of unlabeled points and
that does not intersect previously placed labels.

Lemma 3.16 Given labels of fixed height and any of the slider models, the
greedy strateqy of repeatedly choosing the leftmost label finds a labeling of at
least half the number of points labeled in an optimal solution.

Proof. Given a set P of points and a sliding model M, let Loy be an optimum
M-labeling. Let Ly be the set of labels computed by the greedy strategy.
The set Lje; is maximal in the sense that no label can be added to it without
intersecting another label in L. So any label in Lo, must either be in Ljeg
as well, or intersect some label in Ljef;, whose right edge is at least as much to
the left. Charge each label in Lopt \ Liefy to a label in Lje that lies as least
as much to the left and intersects it. For any label in Loy N Liegr, charge it to
itself.

We claim that any label in Ljeg is charged at most twice, from which the
lemma follows. For labels in Lope N Liefs the claim is obviously true. For any
other label | € Ljef, observe that a label of Loy that charges [must intersect
the closed right edge of I. Since all labels have unit height, and the labels
in Lopy don’t intersect each other, there can only be two labels of Ly that
intersect the closed right edge, and hence, charge [. 0

A brute-force algorithm for this simple strategy would need O(n?) steps. In
order to achieve an O(n logn) time bound, we must use some common geometric
data structures.

Let {pi1,...,pn} be the set of points that has to be labeled. The label of

65

66

Chapter 3. Point Labeling: Label-Number Maximization

p; is denoted I;, and the reference point of a label is its lower left vertex. The
possible positions of the reference point of a point p; are represented by four
line segments. Two are horizontal, he;—; and hg;, and two are vertical, vg;_1
and wve;. Their position is exactly the position of the edges of the label [; if it
were placed left and below p;. The width of I; is denoted w;, and the height
is 1. We can always scale the y-coordinates to this situation.

If a label I; has been placed, then no reference point position inside I; is
possible. The same holds for reference points inside the rectangle I precisely
one unit below [; (since any label extends one unit above its reference point).
The open rectangle that exactly covers [; and [} and their mutual bounding
edge is the extended rectangle l;. Since labels are placed from left to right, no
reference point positions in nor to the left of I; will still be accepted by the
algorithm. Suppose a subset of the points has already received labels by the
algorithm.

Figure 3.63: Frontier of the placed labels (dark grey) and their lowered copies
(light grey).

Hy; ght Hipng, Vint ,right

Figure 3.64: The sets Hyight, Hing, and Ving right- The dashed lines in the middle
picture separate the segments of Hiy that are in different red-black trees 7;.

The right envelope of all extended rectangles [for all labels [outlines all
reference point positions that are impossible, or cannot occur any more, see the
bold line in Figure 3.63. We call this right envelope the frontier and denote it
by F.

66

Section 3.3. Slider Models

67

To determine the next leftmost label, we only have to consider the frontier
F and the segments ho;_1, ho;, v9;_1, and ve; of the points p; to the right of
F that don’t have a label yet. Given a horizontal segment h and the frontier
F, there are three possibilities: (i) h lies completely left of F'. Then h can be
discarded; a point on it cannot be a reference point for a label that doesn’t
overlap another label. (ii) h lies completely right of F'. Then the leftmost point
on h is a candidate for the next leftmost label. (iii) & intersects F'. Then a point
just right of the intersection point is the candidate. For a vertical segment v, a
similar situation occurs. If v lies left of F'| it can be discarded; if v lies right of
F, any point on v can be chosen; and if v and F' intersect, then any point on v
right of F' can be chosen as a candidate.

Let H be the set of all horizontal segments that represent reference points
of the labels. Similarly, let V' be the set of the corresponding vertical segments.
Let Hyigny € H be the subset of all horizontal segments that lie completely right
of F, see Figure 3.64. Let Hiyy € H be the subset of all horizontal segments
that intersect F'. Let Hiorp € H be the subset of all horizontal segments that lie
completely left of F' (these cannot give a valid label any more). Let Vint,right €V
be the subset of all vertical segments that contain at least some point right of
F.

To maintain the frontier and the candidates for the best reference point
efficiently, we need some data structures. Some of the data structures are used
to find the next leftmost label; other data structures are only used to update
the former ones efficiently. The data structures are red-black trees 7, heaps
H, and priority search trees P [McC85]. These are also described in standard
textbooks on algorithms [CLR90] and computational geometry [dBvKOS97].

Finding the Leftmost Label

We use three data structures to find the leftmost label position among the ones
represented by Hing, Hyight, and Vipg rignt. They are:

1. For each segment in H,jzp; we store the z-coordinate of its right endpoint.
This corresponds to the right edge of a label whose reference point is the
left endpoint of the segment. These values are stored in a heap Hyight,
where the root stores the minimum.

2. The subset Hiyt is stored as follows. For each vertical segment f; of F', we
maintain a red-black tree 7; with the segments in Hj that intersect f; (see
the middle picture of Figure 3.64). These are stored in the leaves sorted on
y-coordinate. With each leaf we also store the width of the corresponding
label. We augment each red-black tree by storing at each internal node the
minimum width label in the subtree of that node [CLR90]. We use a heap
Hint to have fast access to the segment in Hj,; that allows the leftmost
label placement. Hiy stores for each 7; the sum of the z-coordinate of
fi and the minimum width of the segments in 7;. Thus the root of Hius
corresponds to the leftmost label among the labels represented by Hiyt.

67

68

Chapter 3. Point Labeling: Label-Number Maximization

3. For the vertical segments in V', we don’t maintain the set Viy rignt but
some set V' for which Vipt right € V' C V. The set V'’ may contain vertical
segments that lie completely left of the frontier; these are removed later.
The x-coordinate of each segment of V' is stored in a heap Hy . After
extracting the minimum from Hy, we test whether it is in Viyg right, as
described later in 3a. If not, we discard it and extract the next minimum
from the heap, until we find one in Viy right-

We query the three heaps described above. Among their answers, one cor-
responds to the leftmost label. This is the label we place.

Update assistance structures

After the leftmost label has been determined, we must update the frontier F
and several of the data structures described above. This is not so easy. We’ll
use some more data structures that help to do the updating after the frontier
has changed. Let fpew be the right edge of the extended rectangle [of the newly
placed label [. The new frontier F' is the right envelope of the old frontier and
fnew, see Figure 3.65.

Ts T3
I Ts _ 1 Th1
= R e
i el T L Foow Tio
T3 mmmmmmm e e T
1 7> 1 T
T T

Figure 3.65: When the fat horizontal segment s from Hjy is chosen, the frontier
becomes the right envelope of frew and the old frontier. The new label is dark
grey. The grey range (light and dark) is the one with which queries in the
priority search trees are done.

la. To determine which segments move from Hyigne to Hing or Hiefy when the
frontier changes, we use a priority search tree Pl on the left endpoints
of segments in Hyep. After placing a label, we query Pier, with the region
left of frew (grey in Figure 3.65) to locate the left endpoints of all segments
that are no longer in H,zp¢. We delete these endpoints from Peg;, and we
delete the corresponding segments from the heap Hyigne. For each deleted
segment we test whether its right endpoint is right of the frontier. If so,
that segment is in Hj,, and we insert it in the data structures for Hijy.
If not, the segment is in Hjeg, and can be discarded.

68

Section 3.3. Slider Models

69

2a.

3a.

To determine which segments move from Hiyt to Hiey when the frontier
changes, we use a priority search tree Pgn; on the right endpoints of
segments in Hiy. After placing a label, we query Prigne with the region left
of fuew (grey in Figure 3.65) to locate all right endpoints of segments that
have moved from Hiyt to Hier. Then we delete the entries corresponding
to these segments from the trees 7;, from the heap Hiy and from Prigne
itself.

When the frontier changes, we must also reorganize the red-black trees
and Hint as a whole. Recall that we use a red-black tree 7; for each vertical
segment of F'. At most three new vertical segments can arise when the
frontier changes, but many more vertical segments may cease to exist. We
use the trees of the destroyed vertical segments of F' to assemble the at
most three new red-black trees. This is done by the operations SPLIT and
CONCATENATE, which are standard for red-black trees. In Figure 3.65
the trees 73, 74, 75, and 7g are reorganized to the new trees 79, 719, and
T11. The heap Hiy is updated by removing the value of each destroyed
tree, and by inserting the value of each new tree.

Due to the lazy deletion of segments from Hy, we don’t need any addi-
tional data structures to update the heap on the vertical segments. How-
ever, we need to decide whether an extracted minimum from the heap
really is in Ving right- We use an augmented red-black tree 7y for this test.
The leaves of this tree store the vertical segments of the frontier sorted
from bottom to top. Each leaf also stores the x-coordinate of its segment.
Each internal node is augmented with a value that represents the mini-
mum z-coordinate in its subtree. For any query y-interval, a search in 7y
reports the minimum z-coordinate of the frontier in this y-interval.

Algorithm

While there are still segments in any of the heaps Hint, Hright, or Hy, do the
following steps:

1.

Let v be the vertical segment that corresponds to the minimum of Hy .
Search with v in the augmented red-black tree 7y, to see if v has some
point right of F'. If not, remove v from Hy and repeat this step.

. Determine the smallest among the minima of the three heaps Hint, Hright,

and Hy . Remove this minimum from its heap. Let [; be the label position
of point p; corresponding to this minimum. Choose [; as the next label
to be placed.

. Determine frew, the right edge of the extended rectangle l;. Update the

frontier F with fhew. Update the augmented red-black tree 7y (from 3a.)
with fhew-

Search with the region horizontally left of fhew (grey in Figure 3.65) in
the priority search trees Piery and Prigne (from la and 2a) and update the

69

Chapter 3. Point Labeling: Label-Number Maximization

structures Hyight (from 1), Plege(from 1a), Hiye and the 7;’s (from 2), and
Pright (from 2a) as explained in the description of these structures.

4. Remove all other reference segments corresponding to p; from the data
structures, in which they occur.

Analysis

The basic structures used by the algorithm are heaps, red-black trees, aug-
mented red-black trees, and priority search trees. All of these structures require
O(n) space for a set of size n. Also, these structures can be updated in O(logn)
time per insertion or deletion, or extract-min for heaps. Red-black trees allow
SPLIT and CONCATENATE in O(logn) time. The queries on the red-black trees
take O(logn) time, and the queries on the priority search trees take O(k+logn)
time, where k is the number of points found in the query range.

The algorithm’s runtime of O(nlogn) follows from the following observa-
tions. Any vertical segment fyeyw creates one vertical edge in the frontier F', and
shortens at most two of them. It follows that throughout the whole algorithm,
at most 3n — 2 different vertical edges appear in F. Therefore, at most 3n — 2
vertical edges can be destroyed in the whole algorithm (although many can be
destroyed when one vertical segment fyey is added to the frontier). This bounds
the total number of red-black trees 7; (from 2) that can appear, the total num-
ber of SPLIT operations, and the total number of CONCATENATE operations by
O(n). Since SPLIT and CONCATENATE operations take O(logn) time each, at
most O(nlogn) time is spent on splitting and concatenating. The augmented
red-black tree 7y (from 3a) can also be maintained in O(nlogn) time for the
same reasons.

For each new label placed, one query is done on each of the two priority
search trees Py, and Pright. Such a query takes O(k + logn) time, where k
is the number of points in the range. These points are always deleted from
the priority search tree, so the algorithm cannot spend time on reporting these
points again later in the algorithm. The priority search trees are initialized
with one point for each horizontal segment, and we never add more points to
them. So in total, at most O(nlogn) time is spent for initializing, querying and
updating the priority search trees.

Closed labels

So far we have only discussed the placement of labels that were allowed to touch
at the boundaries, that is, the disjoint placement of open rectangles. How can
the ideas be adapted to incorporate closed rectangles as labels? Firstly, we let
the frontier represent a closed region where reference points of labels cannot lie
any more. But the real problem is that we cannot choose and place the leftmost
label, because this is not well-defined in the slider model with closed rectangles.
The solution is to make a distinction between a placement of a rectangle at

70

Section 3.3. Slider Models

71

some position with z-coordinate Z and a placement at some position with z-
coordinate arbitrarily close to &, but still strictly to the right of it. Such a
distinction can be made by using a symbolic value ¢ > 0 that is arbitrarily close
to 0. In case of ties in z-coordinates of labels in the heap, one of them may
have been moved symbolically to the right, which resolves the tie. If neither or
both labels have been moved symbolically, there is a real tie and we can choose
either label as the leftmost. When the algorithm finishes and a set of labels has
been selected, then the actual positions of these label can be computed.

We conclude:

Theorem 3.17 Given n points in the plane, and for each point a rectangular
label with fixed height and some given width, then for each of the fixed-position
and slider models, there is an O(nlogn) time and linear space algorithm which
places at least half the optimal number of labels.

Remark 3.18 For fixed position models, the algorithm can be implemented
using only one priority search tree and one heap. We initialize the priority
search tree with the reference points of all label positions. In the heap, we store
the sum of z-coordinate and label width for each reference point. When the
label corresponding to the heap’s minimum is chosen, we query in the priority
search tree with the appropriate range to find the reference points that are no
longer valid. We remove the entries of these reference points from heap and
priority search tree, and repeat by selecting the minimum from the heap.

3.3.3 A Polynomial Time Approximation Scheme

In this section we present schemes for approximating the number of points we
can label with unit height labels in all slider models. First we will only consider
the top-slider model and then show how these results can be generalized to
polynomial time approximation schemes for the two- and four-slider model.

Top-slider model

Given a constant € € (0,1) we show that there is an algorithm that finds a
top-slider labeling of at least (1 —¢) - kégt points, where k},gt is the number
of labeled points in an optimal top-slider solution. The algorithm has running
time O(n*/*).

We use line stabbing to split the problem into smaller units as suggested
in [AvKS98]. We stab the unit height labels with horizontal lines of spacing
strictly greater than 1 such that each label is stabbed by exactly one line. This
can be done in O(nlogn) time [AvKS98] and gives us a partition of the set of
input points P into disjoint sets P4, ..., Py, where P; contains all points whose
label intersects the i-th line, and m is the number of stabbing lines.

If we want to obtain an approximation ratio better than 1/2, we cannot
afford to discard every second subset P; of input points. Instead, we have to

71

72

Chapter 3. Point Labeling: Label-Number Maximization

look at groups of ¢ consecutive subsets. For 1 <i <t 41, let

m—1

t+1

P'=P— U Piij.a+1)
=0

be the set of points that we get from P if we discard every (¢ + 1)-st subset
starting with P;. This makes sure that if we compute the optimal solution for
t consecutive lines, then we get an approximation for P’ since solutions for its
blocks of ¢ lines do not interfere with each other. The pigeon hole principle
guarantees that one of the ¢ + 1 sets of type P’ has an optimal solution of size
at least t% . kégt. In [AvKS98] this approach was taken, where the optimal
solution for the t-lines problem was solved by dynamic programming. In the
case of sliding labels one cannot take this approach because the number of
candidate label positions in the discretization is superpolynomial. We will still
arrive at a polynomial time approximation scheme for the original problem by
approrimating the t-lines subproblem.

Suppose we find a %—approximation for the t-line problem, then we can
approximate the original problem by a factor of v = ﬁ . HLI, which depends
on the two parameters t and k. Setting k = (t+1)(t—1) and t = [2/¢]| —2 then
yields v =t/(t +2) > 1 — ¢, the desired approximation factor. If the instance
needs less than [2/e] — 2 stabbing lines, the solution of the problem becomes
easier. In this case we set k = (m — 1)([1/e] — 1) and approximate the m-line

problem directly with a factor of v = > 1 — . The running time would
k+1

k+m—1

then slightly improve to n**. So we can assume ¢t < m from now on.

It remains to show how we can approximate an optimal solution for ¢ lines
k

by a factor of ;= . The idea is simple and uses the geometrical flavor of the
problem. We call a labeling of a set of points canonical if all points are labeled
and, going through the points from left to right, all labels have been pushed as
far left as possible, that is, until they nearly hit another label or have arrived
in their leftmost position. (Recall that labels are not allowed to touch each
other. As in Section 3.3.2 we treat the distinction between an z-coordinate
and a position slightly more to the right symbolically.) Now we just look at all
canonical label placements of k£ points. For each such placement we consider
the vertical line that goes through the right edge of its rightmost label. We
search for the canonical labeling of k points with the leftmost such line fjq¢, see
Figure 3.66. (We have not visibly drawn the infinitesimally small spaces between
the labels.) We call this placement leftrmost and compare it to the leftmost &
labels of the optimum. Let £, be the vertical line that goes through the k-th
leftmost right label edge of the optimal solution, see Figure 3.67. Then we
know that fef, is at least as far to the left as £,p;. We would like to repeat this
process with all sets of k£ points to the right of fi.;. We must label them under
the restriction that their labels can only be placed to the right of i If we do

so, by how much do we get worse than the optimal solution?

By definition /¢ touches one label of the optimal solution and intersects
up to ¢ — 1 labels on the other ¢ — 1 lines. Since {jef; is not to the right of oy,

72

Section 3.3. Slider Models

Figure 3.66: Leftmost label placement for a subset of & = 4 labels and t = 2
lines.

1

[
.

Zopt

Figure 3.67: An optimal solution for the same points as in the figure above.

the constraint that our leftmost labeling exerts on the next group of k labels
is no stronger than the constraint defined by the labels of the optimal solution
touching or intersecting /opt, see the gray zones in Figure 3.66 and 3.67. Thus
we have placed our first £ labels in at most as much ‘space’ as the first k+¢—1
labels of the optimal solution. This makes sure that the next line like /e,
defined by the next (restricted) leftmost labeling of k points, will again be at
most as far to the right as the vertical line through the (2k + ¢ — 1)-st leftmost
right label edge of the optimal solution. By repeating this process until all
points are used up, we get a k/(k + t — 1)-approximation for the number of
labeled points in an optimal solution since we always fit k£ labels in at most as
much space as k +t — 1 labels of the optimal solution. This shows that for the
appropriate choice of ¢ and k, we obtain a (1 — ¢)-approximation for the whole
problem.

Let n’ be the number of points whose labels intersect a fixed set of ¢ consec-
utive lines. What is the time we need to compute the first leftmost placement
of k out of these n’ points? We enumerate all (Z) choices of these k points.
For each choice we have to find its canonical labeling—if there is any. Observe
that labeling a point p; can constrain the labeling of a point ps to its left only
by not at all allowing to label it. Since we are only interested in subsets of k
points that can be labeled completely, it is enough to go through the points

73

74

Chapter 3. Point Labeling: Label-Number Maximization

in lexicographical order and try to place each of them leftmost. We can find a
label’s leftmost position by going through the list of its predecessors once, so
finding a canonical labeling can certainly be done in O(k?) steps. This means
that it takes us O((n/)*) steps to compute the first leftmost labeling. Thus we
need T} _jine(n') = Z]“:L/({k] O((n' — jk)¥) = O((n')*+1) time for an approximate
solution of the t¢-line problem. In order to get the total running time Tioa1,
we must sum up T;_jine over all possible groups of ¢ consecutive lines. In every
group there are at most n points and m, the number of stabbing lines, is at most
n as well. Hence Tioia1(n) = O(n*+2). Using k = (t+1)(t —1) and t = 2/ — 2
as above yields Tioa1(n) = O(n4/52).

Two and four sliders

The scheme for the top-slider model immediately translates into a polynomial
time approximation scheme for the two-slider model. For each point of the
input set, we simply place a copy at unit distance below it. (To avoid trouble
with an original point at the same place, we can move all copies upwards by
an infinitesimal amount.) Then only one point of every such pair is labeled in
a top-slider solution. Optimal top-slider solutions for this instance correspond
one-to-one to optimal two-slider solutions for the original instance. The running
time increases only by a constant factor.

In order to use the ideas given above for the four-slider model, we have to
do a little more work. Since labels can now move up and down, the use of
stabbing lines is not appropriate any more. Instead, we partition the set of
input points into m strips of unit height. A strip contains all points between
its two bounding horizontal lines and all points that lie on the upper boundary.
Similar to our approach above, we will approximate the solution of ¢ consecutive
strips. This time, however, we have to drop the points of two strips between two
blocks to guarantee that solutions of one block do not interfere with solutions
of an adjacent block. The pigeon hole principle makes sure that one of the
t + 2 different sets we get by gluing blocks together has at least cardinality
t4%2' Suppose we have a kiﬂ—approximation for the t-strip problem, then
we could approximate an optimal solution of the whole instance by a factor of
v = kiH - L. Setting k = t(t +2) and t = [3/¢] — 3 would then result in

+2°
v=1t/(t+3) >1—e¢, the desired approximation factor.

n -

The additional difficulty in designing an approximation for the t-strip prob-
lem is that we do not know on which of its four sides a label in the optimal
solution is attached to its point. We can handle this by considering all four
possibilities for each of the k points we have chosen. Now we define a canonical
labeling as follows. If a label is to be attached to its point on the top or bottom
edge, we again push it as far left as possible. If however its point is going to lie
on the right or left edge, we push the label as far down as possible. The idea
with considering a special order of the points does not work in this setting, so
we try to label the k points in every of the k! possible orders, and for every
order we check each of the 4% possible kinds of placement: left, right, bottom,

74

Section 3.3. Slider Models

75

or top. In this way we can again find a leftmost labeling and a line fjof;. The
constraint that the leftmost labeling exerts on the next group of k labels is at
most as strong as the corresponding constraint of the assumed optimal solution.
As above, the constraint of the optimal solution is defined by £, and the labels
of the optimal placement intersected by fop. Apart from the label whose right
edge defines /o, at most ¢ labels can intersect f,p; without intersecting each
other since their points have to lie within a vertical strip of height strictly less
than ¢ (the bottom borderline is excluded). Hence we have a kiﬁ—approximation
for the t-strip problem.

n/

In the approximation algorithm for the four-slider model, we need (A)k!4k k2
steps to compute the first leftmost labeling. This still yields an overall running
time of O(n%/¢%).

Theorem 3.19 For each of the slider models and for any constant e > 0, there
is a polynomial time algorithm which labels at least (1 — €) times the maximum
number of input points that can be labeled.

3.3.4 Implementation and Experimental Results

The greedy algorithm of Section 3.3.2 has been implemented for the fixed-
position and slider models and tested on three real world data sets from different
application areas and on a large sequence of randomly generated point sets. In
this section we compare experimentally how many labels are placed in each of
the six models.

The algorithms were implemented by Tycho Strijk, Universiteit Utrecht,
in C++. For the data structures he made use of the LEDA library [NM90].
He simplified the implementation described in Section 3.3.2 in three respects.
Firstly, the red-black trees 73 can be expected to contain only a few horizontal
segments at any moment. So he used simple lists for them. Secondly, LEDA
does not have an implementation for priority search trees; he used orthogonal
range trees instead. Thirdly, the augmented red-black tree Hy does not profit
much from the augmentation in practice. When searching for the minimum
z-coordinate of the frontier F' in a y-interval, he simply scans all leaves of the
red-black tree in that interval. One can expect to visit only a few leaves, since
the y-interval is only twice the unit height.

The first of the three data sets contains 1000 cities of the USA that must be
labeled with their name. We used several different font sizes, and determined
the bounding boxes of the label text. The tables of Figure 3.68 show the results.
The codes 1P, 2P, and 4P are shorthand for the 1-, 2-, and 4-position models.
The codes 1S, 2S, and 4S are shorthand for the corresponding slider models.
The values in the second table show the results in percentages with respect to
the 4-position labeling.

The second data set contains the 236 points of a data posting. The labels are
measurement values and come from a book on geostatistics [IS89]. Figure 3.69
shows the labeled data set and the number of labels placed in each model.

75

76

Chapter 3. Point Labeling: Label-Number Maximization

Number of labels placed Percentage w.r.t. 4-position model
model model

font 1P 2P 4P 1S 28 48 font 1P | 2P 4P 1S 2S 4S
5 851 | 950 | 971 | 990 | 993 | 999 5 87 | 97 | 100 | 101 | 102 | 102
6 777 | 910 | 952 | 967 | 982 | 986 6 81 95 | 100 | 101 | 103 | 103
7 705 | 852 | 901 | 932 | 964 | 972 7 78 94 | 100 | 103 | 106 | 107
8 686 | 845 | 896 | 918 | 952 | 958 8 76 94 | 100 | 102 | 106 | 106
9 607 | 758 | 817 | 836 | 890 | 902 9 74 | 92 | 100 | 102 | 108 | 110
10 554 | 704 | 769 | 787 | 853 | 872 10 72 91 | 100 | 102 | 110 | 113
11 520 | 657 | 721 | 735 | 805 | 831 11 72 91 | 100 | 101 | 111 | 115
12 500 | 637 | 709 | 719 | 796 | 813 12 70 | 89 | 100 | 101 | 112 | 114
13 448 | 570 | 638 | 649 | 716 | 734 13 70 | 89 | 100 | 101 | 112 | 115
14 433 | 557 | 624 | 637 | 695 | 712 14 69 89 | 100 | 102 | 111 | 114
15 382 | 494 | 550 | 556 | 627 | 645 15 69 89 | 100 | 101 | 114 | 117

Figure 3.68: One thousand cities on a large map.

The third data set contains 75 points of a regression analysis. Here the
points are clustered near a regression line, and the labels are simply identifica-
tion numbers. Figure 3.70 shows the labeling.

The bottom tables of Figures 3.69 and 3.70 show that the 4-slider model
sometimes places 10-15% more labels than the 4-position model. This improve-
ment is significant, since it is always caused by a better labeling of the areas
that are difficult to label. We also created artificial, pseudo-random data sets
where all areas are hard to label. These sets were constructed by first placing
all points on a grid and after that they were moved randomly a slight distance

away from the grid point. Here we indeed found higher improvements: up to
92%.

Efficiency was not the main motivation for these experiments. Still it ap-
peared that the label placement was computed in a few seconds for all data
sets we tried, up to 2500 points. A plot shown on a computer screen seldom
contains more than 1000 labeled points.

Christensen, Marks and Shieber compared different algorithms using ran-
dom point sets [CMS95]. Their standard data sets were generated as follows.
Inside a grid of size 792 by 612 units, n points were randomly placed and
had to be labeled with labels of 30 by 7 units. We considered examples with
n = 100, 250, 500, 750, 1000, and 1500 points. For each example size, we gener-
ated 25 files. We ran the greedy algorithm for each of our six models on all of
the generated files. The average percentages of placed labels over the 25 trials
are shown in Figure 3.71. Clearly the labeling model has a big influence on the
results.

In Figure 3.72 we extend the comparison of Christensen et al. by the results
of our algorithm for the four-position and the four-slider model. Our four-
position algorithm is always better than gradient descent, and the denser the
map the better it gets in relation to gradient descent. For 1500 points it is
almost as good as simulated annealing. The four-slider algorithm yields almost
equal results as simulated annealing for less than 750 points and is always better
beyond 750 points. The running time of our algorithm is generally only a few

76

Section 3.3. Slider Models vd

a5, A% B ange 62524 3G 165
15 134 189 15&227846' 73?,301-575-7 333-513. 65?1'62‘26& 5 8 L 114, 223, EEES q
W gpy SR Fag
67ieh 1sd
o5 =Y a5G 2 65%022937325553‘%45&23-? q 487 457, % A3 37 7
379 305, 365 383, 39% 573 724 .
T % on BBy
417‘61Q601'&,':;z 8 41"5\69.526413,5% 1% SR 2T 1o, 5, sa7, R AN w2 gng S 4
915'19&3961905 ”4‘269‘542‘60%4g§si ELTE LR Y o N nd
434, m“ﬂ'ﬁﬂg;m‘?ﬁ n, T IR iy 26 %, 53, q q a5 24 am,
S8 eV %23‘?3;?& q
-~ L 105, 25?-49%5,'_4”_52% a4 7% 333, 84 5 308 2 g
84 472 60241L
5 57'0.395. m
Q 7% o5 2353 670 S0 o e = 326 188, 203 7% 224, 147,
781
115, . 14 & ot :57;97_ BIIE gaq
4 28 99.51?.5123?.550‘ 245, I68, 399, 572 P a4 348, 35&660‘?.37513517'513740 187,
Number of labels placed Percentage w.r.t. 4-position model
model model
font 1P 2P 4P 1S 2S 4S font 1P 2P 4P 1S 2S 4S8
5 229 | 236 | 236 | 236 | 236 | 236 5 97 | 100 | 100 | 100 | 100 | 100
6 216 | 235 | 235 | 236 | 236 | 236 6 91 | 100 | 100 | 100 | 100 | 100
7 197 | 219 | 230 | 236 | 236 | 236 7 85 95 | 100 | 102 | 102 | 102
8 197 | 219 | 230 | 236 | 236 | 236 8 85 95 | 100 | 102 | 102 | 102
9 185 | 205 | 218 | 235 | 236 | 236 9 84 94 | 100 | 107 | 108 | 108
10 175 | 193 | 207 | 223 | 231 | 230 10 84 93 | 100 | 107 | 111 | 111
11 174 | 189 | 200 | 213 | 221 | 224 11 87 94 | 100 | 106 | 110 | 112
12 174 | 189 | 200 | 213 | 221 | 224 12 87 94 | 100 | 106 | 110 | 112
13 169 | 180 | 188 | 203 | 212 | 212 13 89 95 | 100 | 107 | 112 | 112
14 169 | 180 | 188 | 203 | 212 | 212 14 89 95 | 100 | 107 | 112 | 112
15 157 | 170 | 176 | 192 | 200 | 203 15 89 96 | 100 | 109 | 113 | 115

Figure 3.69: Labeling of the data posting in 9pt font using the 4-slider model
(scaled to fit), and tables with the performance.

7

78

Chapter 3. Point Labeling: Label-Number Maximization

66, 74,
69, .
58, 72
48, 6765 T
5% 645570
62
60,
50,56, 55, ,
43, 6l 63,
20, 38, 42, 405235
37414339265 154
22 2532333536
B om
23, 40,
L5, L&, 2427
& S
20
L7
L] Lg 26,
4, a, L3,
L4, 30,
& 12,
5‘
Lo,
3‘
L2
0‘
Number of labels placed Percentage w.r.t. 4-position model
model model
font 1P | 2P | 4P | 1S | 25 | 4S font 1P 2P 4P 1S 2S 4S8
5 75| 75 | 75| 75 | 75 | 75 5 100 | 100 | 100 | 100 | 100 | 100
6 75| 75| 75| 75 | 75 | 75 6 100 | 100 | 100 | 100 | 100 | 100
7 70 | T4 | T4 | 75 | 75 | 75 7 94 | 100 | 100 | 101 | 101 | 101
8 70 | 74| T4 | 75 | 75 | 75 8 94 | 100 | 100 | 101 | 101 | 101
9 60 | 69 | 70 | 73 | 74 | 74 9 85 98 | 100 | 104 | 105 | 105
10 58 | 65 | 68 | 72 | 72 | 72 10 85 95 | 100 | 105 | 105 | 105
11 55 | 61 66 | 66 | 70 | 70 11 83 92 | 100 | 100 | 106 | 106
12 55 | 61 66 | 66 | 70 | 70 12 83 92 | 100 | 100 | 106 | 106
13 51 58 | 64 | 63 | 68 | T1 13 79 90 | 100 98 | 106 | 110
14 51 58 | 64 | 63 | 68 | 71 14 79 90 | 100 98 | 106 | 110
15 50 | 56 | 61 | 62 | 67 | 68 15 81 91 | 100 | 101 | 109 | 111

Figure 3.70: Labeling of the scatter plot in 11pt font using the 4-slider model
(scaled to fit), and tables with the performance.

78

Section 3.3. Slider Models

79

seconds; even the four-slider algorithm needed just 12 seconds for the largest
data sets with 1500 points on a SUN Ultra Sparc. Simulated annealing takes

several minutes to label these point sets on the same machine.

Percentage of labels placed

number of points
model 100 250 500 750 1000 1500
1P 92.60 | 84.30 | 73.16 | 64.56 | 57.96 | 48.58
2P 99.56 | 97.39 | 90.24 | 82.22 | 74.73 | 62.75
4P 99.84 | 99.07 | 95.45 | 90.47 | 83.99 | 71.74
1S 99.72 | 98.42 | 93.80 | 87.80 | 81.92 | 71.04
2S 99.92 | 99.55 | 97.83 | 94.85 | 90.71 | 80.75
4S 99.96 | 99.58 | 98.02 | 95.37 | 91.68 | 82.68

Figure 3.71: Random data sets (results are averaged over twenty-five trials).

Random Data with Selection

1 e
09 f 0.9
0.8 r 0.8
0.7 r 0.7
0.6 0.6
05 f Tl 0.5
Score 4 Slider Score
04 4 Position 1 04
03 b Simulated Al;neal}ng - | 03 L
/oraster
02 F Hirsch - 4 0.2
’ Gradient Descent -~ i
01 F Greedy -——- i 0.1
Random Placement ------
0 0
0 150 300 450 600 750 900 1050 1200 1350 1500

Number of Point Features

Random Data with Selection

4 Slider

4 Position

Simulated Annealing ——-

| Gradient Descent (3-opt) - - -
Gradient Descent (2-opt) -

| Gradient Descent (1-opt) -

Random Placement ----
.

0 150

300 450

600 750

900 1050 1200 1350 1500

Number of Point Features

Figure 3.72: Comparison of the four-position and four-slider algorithm to other

labeling algorithms.

79

80

Chapter 3. Point Labeling: Label-Number Maximization

80

Chapter 4

Point Labeling:
Label-Size Maximization

When placing labels on maps, maximizing the (weighted) number of features
that receive a label is certainly the aim that plays the greatest role in practice.
However, one might think of other, for instance technical applications where
holes must be drilled next to a given number of points on a piece of metal, and
the size of these holes is to be maximized. This is an example of the label-size
maximization problem that we consider in this chapter.

When comparing the complexity status of label-number and label-size max-
imization, it is difficult to decide which problem is harder. Label-size maximiza-
tion can be solved in polynomial time in some special cases: efficient algorithms
are known for two label candidates per feature [FW91] and, if the label candi-
dates overlap in a certain way, for any constant number of label candidates per
feature [PZC98, SvK99], and even for an infinite number of label candidates per
feature [KSY99]. On the other hand the problem of maximizing the number
of points with axis-parallel rectangular labels can be approximated arbitrarily
well (see Section 3.3.3) while maximizing the size of square labels cannot be
approximated better than by a factor of 1/2 [FW91].

The label-size maximization problems that have been considered so far are
the following: labeling points with circles, squares or other regular polygons
[FW91, DMM*97] and labeling axis-parallel line segments with axis-parallel
rectangles that have the same length as the segment they label and must touch
or contain the segment [PZC98, SvK99, KSY99]. In this chapter we will consider
labeling points with axis-parallel rectangles and with circles.

4.1 Rectangular Labels

Formann and Wagner proposed an approximation algorithm that maximizes the
size of uniform axis-parallel square labels. It is optimal in respect to both, its
approximation factor of 1/2 and its running time of O(nlogn) [FW91, Wag94].

82

Chapter 4. Point Labeling: Label-Size Maximization

Here n refers to the number of points, each of which has four label candidates.
For the same problem, there is an algorithm that keeps the theoretical optimal-
ity of the approximation algorithm, but performs close to optimal in practice
[WW9T7].

It is obvious that the approximation result of Formann and Wagner also
holds for uniform rectangular labels; the coordinate system can always be scaled
such that these labels become squares. For rectangles of arbitrary width, how-
ever, or for rectangles of arbitrary height and width, no approximation al-
gorithms are known, not even heuristics have been suggested. However, the
label-size maximization problem can be reduced to the decision problem if the
number of conflict sizes can be bounded, i.e. the scaling factors for which label
candidates start to intersect. Then one can do a binary search on a sorted list
of these conflict sizes. For each step of the search, one would compute the cur-
rent candidate conflict graph and call an algorithm for the decision problem for
the current scaling factor. Any algorithm for the label-number maximization
problem could be employed; if it does not find a complete labeling, we return
false, and the binary search continues with a lower value, with a higher value
otherwise.

In practice, however, the number of available font sizes is usually a small
constant, hence a binary search on a list of conflict sizes is not necessary. One
can simply start with the smallest font, call label-number maximization, and
repeatedly increase the font size as long as the number of unlabeled points is
tolerably small.

In [DMM197] Doddi et al. suggest such a bi-criteria algorithm that mediates
between the two fundamental optimization problems, namely label-size and
label-number maximization. Given an € > 0, the algorithm labels at least a
(1 —¢) - fraction of the points with axis-parallel uniform square labels of size
at least nopt /(14 €), where ngp is the edge length of the squares in an optimal
solution of all points. The algorithm puts 1/¢ equidistant markers on each label
edge and places the label such that one of the markers coincides with the point
to be labeled.

In the same paper, Doddi et al. give approximation algorithms that max-
imize the size of square labels of arbitrary orientation and of circular labels,
again under the restriction that all labels are uniform, i.e. of equal size. The
approximation factors of their algorithms are approximately 3% for squares and
% for circles. In the next section we will improve the approximation factor of
their algorithm for circular labels by about 50%.

4.2 Circular Labels

This section is joint work with Tycho Strijk, Universiteit Utrecht.

When labeling points, labels are usually restricted to axis-parallel rectangles
which (a) have to touch the point they label, and (b) must not intersect any
other label. Condition (a) has often been further restricted in that one of a

82

Section 4.2. Circular Labels

83

label’s corners must coincide with the point to be labeled. In this section we
restrict ourselves to a different label shape, namely circles of uniform size, while
keeping conditions (a) and (b). We label a point by attaching a circle to it such
that the circle’s boundary contains the point. Our objective is to find the largest
real dopt, which still allows us to label all given points with non-overlapping
circles of diameter dop;. We consider our labels to be open circles, thus they
may touch other points or labels.

In considering a set of three points in general position, it is clear that ap-
proximating the maximum size of circular labels cannot be reduced to the same
problem for square labels. While the solution in the former case is bounded
(linearly in the diameter of the point set), it is unbounded in the latter.

We show that even deciding whether a set of points can be labeled with
unit circles is NP-hard, see Section 4.2.5. This settles an open question raised
in [DMM*97]. The same proof implies that there is a constant § < 1 such
that it is NP-hard to label points with circles of diameter greater than § - dopt.
Nevertheless, the maximization problem has already been approximated. Doddi
et al. suggested a simple algorithm that labels points with circles whose diameter
is at least 1/(4(2 + v/3)) ~ 1/14.93 times the optimum and takes O(nlogn)
time [DMM™197]. However, a careful revision of their proof, see Section 4.2.1,
shows that the approximation factor of their algorithm is actually worse by a
factor of 2; i.e. the label diameter is guaranteed to be at least 1/(8(2 4 v/3)) ~
1/29.86 times the optimum. In this paper, we present an algorithm with an
approximation factor of 1/19.59. While the analysis that yields this factor
becomes more involved, the algorithm remains simple.

Both algorithms first determine the smallest diameter D3 of any three-point
subset of the input points. This can be done in O(nlogn) time [DLSS95]. D3 is
needed to compute the diameter of the labels, which in both cases is a constant
fraction of D3. The observation that no point set of more than two points
can be labeled with circles of diameter greater than 2(2 4 /3)Ds yields the
respective approximation factors.

Like the algorithm of Doddi et al., when labeling a point our algorithm
only needs to know the location of the point’s closest neighbor in the set of
input points. However, while Doddi et al. maximize the distance between the
labels of a pair of closest neighbors, we minimize it in order to use space more
efficiently. This implies that they only need to know the direction of the closest
neighbor while we also need its distance. Another difference is that while they
label the points in arbitrary order, we exploit this order and process the points
in pairs of increasing distance. In order to build and access the data structure
that supplies us with this order we need no more than O(nlogn) time in total.
Thus our algorithm runs in O(nlogn) time. It requires linear storage.

This section is structured as follows. In Section 4.2.1, we sketch the algo-
rithm of Doddi et al.. In Section 4.2.2 we formalize our main ideas. Then, in
Section 4.2.3 we present our algorithm, analyze it in Section 4.2.4, and finally
present our NP-hardness proof in Section 4.2.5.

83

84

Chapter 4. Point Labeling: Label-Size Maximization

4.2.1 Previous Work

For a (finite) set S of points in the plane, Doddi et al. define the diameter
diam(S) the usual way as the maximum distance of any two points in S. They
define the k-diameter Dy (S) to be the minimum diameter over all k-element
subsets of S. Then they make the following two observations. In our description
we will abbreviate D3(S) by Ds where appropriate.

Figure 4.1: Label placement according Figure 4.2: Optimal label placement
to the algorithm of Doddi et al.. for three points.

1. The open circle centered at a point p € S with radius D3/2 contains at
most one other point ¢ € S — {p}. Due to symmetry, an open circle of
the same diameter centered at g only contains p and ¢. This allows p and
q to be labeled with labels of diameter d’ = D3/4 as in Figure 4.1. Given
the distance of p and ¢ to other points in S, it is obvious that labels of
other points cannot overlap those of p and q.

2. The maximum label diameter dopt(S) of any set S of more than two
points cannot exceed the maximum label diameter dsma.x of three points
at pairwise distance D3(S), see Figure 4.2. Doddi et al. compute dsmax
to be (2 4+ v/3) D3, but this is incorrect: we have dzmax = 2x + D3, where
x = (d3max/2) - cos(m/6), see the shaded triangle with a right angle and a
30° angle in Figure 4.2. Thus we obtain dsmax = 2(2 + v/3)D3 ~ 7.46 D3
as an upper bound for dp.

Combining these observations yields the approximation factor d'/dops >
1/(8(2 4 v/3)) =~ 1/29.86 of the algorithm of Doddi et al..

4.2.2 Preliminaries

We formalize the idea of the free space around a point as follows.

Definition 4.1 Let Cy,, be an open circle with radius r centered at m. We
say that two points are a pair of closest neighbors if each is a closest neighbor
of the other. Given two points p,q € S, we denote the point-free zone of p and
q bY Zsree(p,q) = (Cpps N Cypg) UCpaUCyua C R? where d = d(p,q) is the
Euclidean distance of p and q.

84

Section 4.2. Circular Labels

85

The definition is illustrated in Figure 4.3. We show that the point-free zone
of a pair of closest neighbors {p, ¢} does not contain any other point of S. This
will enable us to use part of the zone for labeling p and q.

Lemma 4.2 Zyeo(p,q) NS = {p,q} for any pair {p,q} of closest neighbors in
S.

Proof. Suppose Zgee(p, q) contains a point t € S\{p, ¢}. Thent € C, p,NCy p,
ort € CpqUC,q. In the first case the diameter of {p, ¢, ¢} would be less than
Dj3; a contradiction to the definition of Dg. The second case would contradict
{p, q} being closest neighbors. Q

Note that Doddi et al. implicitly also used the concept of a point-free zone,
namely the union of the dashed circles C), p,/» and C, p,/» depicted in Fig-
ure 4.1. However, their zone is always contained in our point-free zone Zgee,
independently of d. This helps us to place larger labels. Let d,j, be the diam-
eter of the labels our algorithm is going to place.

Figure 4.3: The point-free zone Zgee Figure 4.4: The label zone Zpe
of p and gq. of p and q lies inside Zee-

Definition 4.3 Given two points p,q € S and a real number dago < D3. Then
we denote the label zone of p and q by

Zlabel(pa q; dalgo) = Zfree(pa Q) S C(O,da]go = Zfree(pa Q) - U Cx,dalgo
S Rz_Zfree(p7Q)

where © is the Minkowski subtraction operator and 0 is the origin.

In other words, the label zone is the erosion of the point-free zone with a disk
of radius daig,. The definition is illustrated in Figure 4.4.

Lemma 4.4 If we label a pair of closest neighbors {p,q} with circles of diam-
eter dago that are contained in the label zone Zianel(p, ¢; dalgo), then these labels
cannot overlap the label of any other point t € S — {p,q}.

85

86

Chapter 4. Point Labeling: Label-Size Maximization

Proof. Suppose the label of ¢t overlaps that of p. Lemma 4.2 tells us that
t & Ziree(P, q)- Then the definition of the label zone ensures that Cy 4, does
not intersect Ziapel(p; ¢; dalgo). Observing that t’s label is contained in Cyq
and p’s label in Ziapel (p, ¢; dalgo) contradicts our assumption.

algo

The question is, of course, how large we can choose daig, so that the labels
of any pair of closest neighbors fit into their label zone—independently of their
distance. This question is dealt with in Section 4.2.4. Let us suppose for the
moment that dag, can be expressed as a fraction of D3. The next section
answers two other important questions, namely how to place the labels, and in
which order.

4.2.3 Algorithm

Our algorithm proceeds as described in Figure 4.5. The value of D3(S) is
computed with the algorithm of Datta et al.[DLSS95]. In contrast to Doddi et
al. who place the labels of two neighboring points as far apart from each other
as possible, we label p and ¢ such that their labels are as close as possible. This
means that they will touch each other as in Figure 4.6 if d(p, q¢) < 2dajgo. The
vectors p and ¢ denote the coordinates of p and ¢ in the plane. We place the
center m7y of ¢’s label at My = p/4 + 3¢/4 + d. The vector @ is perpendicular
to pg and oriented so that it points to the left of (p— ¢). The length of @ is

||| = \/dilgo/él — d?(p,q)/16. Correspondingly, the center of p’s label is placed

at m, = ¢/4 + 3p/4 — d. We call the union of these two (open) labels the
label space of p and ¢. If there are unlabeled points left after executing the
while-loop, we label them arbitrarily.

LABEL_POINTS_WITH_CIRCLES(.S)

compute D3(S) dalgo

daigo := 0.381 D3(S)

while |S| > 1
choose {p, ¢} C S with d(p, q) minimal
if d(p,q) > 2d,15 then exit while-loop
label p and ¢ as in Figure 4.6
S:=85\{p,q}

end

for all x € S do label x arbitrarily end

return all label positions

Figure 4.6: Labeling a
Figure 4.5: Our algorithm. pair of points.

Lemma 4.5 Given a set S of n points and a label diameter dag, such that the
label space is contained by the label zone for any pair of points in S, then the
labels our algorithm places do not intersect.

86

Section 4.2. Circular Labels

87

Proof. The fact that no two labels overlap follows from the order in which
we process the points. It is clear that the first pair {p,q} is a pair of closest
neighbors. Due to Lemma 4.4, we know that we do not constrain the labeling
of any other point in S when we label such a pair within its label zone. In other
words, if we remove {p, ¢} from S, then we can ignore p and ¢ as well as their
labels for solving the remaining problem. The next pair of points will be a pair
of closest neighbors in the reduced set S. Thus Lemma 4.4 applies to this pair
as well.

After we leave the while-loop, there may be unlabeled points left. For each
such point x there are two possibilities. Either its closest neighbor in the original
set is at least 2da15, away. Or all points y with d(x,y) < 2daig, have been labeled
before, since each had a closer neighbor z. In either case the labeling of z is not
constrained by any previous label placement. Hence we can label x arbitrarily.

Q

Lemma 4.6 The algorithm can be implemented such that it labels a set S of n
points in O(nlogn) time with linear space.

Proof. Our algorithm labels S in three phases. In the first phase, we compute
D3 in O(nlogn) time [DLSS95]. We need D3 to compute the diameter daig, =
0.381 D3 of the labels we are going to place, see Section 4.2.4.

In the second phase, we set up a simple data structure that will answer a
limited closest pair query; limited in the sense that we only need to know pairs of
points closer than 2d,)g, in the Euclidean metric. We call these pairs of relevant
neighbors. An axis-parallel rectangle of size 2d,1go X dalgo contains at most two
input points since it fits into a circle of diameter Ds. Thus an axis-parallel
square of edge length 4d,,, centered at a point p € S contains at most twelve
input points apart from p. The relevant neighbors of p are obviously among
these. This observation enables us to collect all pairs of relevant neighbors with
a sweep-line—or rather sweep-window—approach.

As usual we use two data structures: an event-point queue as horizontal
structure and a sweep-line status as vertical structure. Our sweep window is a
vertical strip of width 2d,g, and moves over the plane from left to right. Its
right border line r stops at each event point. We have two kinds of events: when
an input point p = (zp,y,) enters the window (r is at z,) and when p leaves
the window (7 is at xp, + 2da150). When p enters the window we want to report
efficiently all points in the window whose y-coordinate is less than 2d,jg, from
yp. For this purpose the sweep-window status is implemented by a balanced
binary tree on the y-coordinates of the points in the window. For later on, we
insert each pair {p, ¢} that is reported during the sweep into a priority queue
according to its Euclidean distance d(p, q) if d(p,q) < 2da1g,. Our sweep takes
O(nlogn) time and uses linear space.

In the third phase, we repeatedly extract the minimum {p, ¢} of the priority
queue, label p and ¢ with circles of diameter day, as in Figure 4.6, and delete all
pairs containing either p or ¢ from the queue. The remaining points are labeled

87

88

Chapter 4. Point Labeling: Label-Size Maximization

arbitrarily in constant time per point. Phase 3 can also be done in O(nlogn)
steps.

The running time of the three phases sums up to a total of O(nlogn). The
necessary data structures require linear space. Q

4.2.4 Analysis

Given a pair {p, q} of closest neighbors in S, our objective now is to compute
the maximum radius r of their labels so that the label space is still contained in
the label zone Zjapel(p, ¢; 2r) of p and ¢. Since this radius will only depend on
the distance d of p and ¢, we want to find the minimum ry;, of r(d), set daigo to
a value slightly less than 2rp;, and run our algorithm. Lemma 4.5 guarantees
that no two labels will intersect then.

Since we place the labels of p and ¢ symmetrically, it is enough to analyze
the placement of ¢’s label. We consider two cases depending on the distance of
p and gq.

In case d < D3/2, the point-free zone Zg.ee(p, q) is the intersection of C, p,
and Cy p,. The corresponding label zone Zjnel(p, ¢;27) is the intersection of
Cp,ps—2r and Cy p,—2,. As described in the previous section, the label has its
center point m4 on a line h, normal to the line connecting p and ¢. This normal
line has distance d/4 to ¢q. The distance of mg to the line pq is \/r? — d?/16
using Pythagoras’ rule.

The radius of ¢’s label is maximized when the label touches the boundary of
the label zone, i.e. the circle C) p,_2,. We use the property that the touching
point of two circles always lies on the line through their centers, see Figure 4.7.

Figure 4.7: Point-free zone Zge and label zone Zjape of p and ¢ for d < D3 /2.

88

Section 4.2. Circular Labels

89

This observation yields the equality

d(p,mg) + 1 = D3 —2r. (4.1)

We use that d(p,mg) = \/(%d)2 + (r2 — d?/16) = +/d?/2 + r2. The resulting

equation
\/d2/2—|-’l"2 = D3 —3r

is quadratic and has two solutions. The solution valid for our problem is

3D3 — /D3 + 4d?
r= .

8

(4.2)

We will use the notation d = d/Ds and 7 = r/Ds to obtain less complicated
formulas and to express the fact that the formulas can also be obtained as
follows: first scale the point set by a factor 1/Ds, then determine the optimum
label size, and after that scale by a factor Ds to the original size. As a result
Equation (4.2) is simplified to

3—V1+4d?

=" (4.3)
8
7 7
0.3 | { 03
) 1 0.25
0.25 g 5
0.2 | 1 0.2
T'min
0.15 0.15
0.1 Ff 0.1
0.05 | { o0.05
0 0.2 0.4 J* 106 0.8 1 CZ

min

Figure 4.8: The graph of r(d) is determined by the functions f and g. For
d < d* = 0.53 D3, the value of r is determined by f, otherwise by g. The
minimum 7y &~ 0.19 D3 of r(d) is reached at dpyin ~ 0.56 Ds.

Graph f in Figure 4.8 depicts Equation (4.3) as a function of d.

The case d > D3/2 is more difficult. In this case, the point-free zone
Zree(p, q) is the union of three areas, namely Cp, p, N Cq p,, Cpd, and Cy g4,
see Figure 4.9.

Accordingly, the boundary of Zjpel(p, ¢; 2r) consists of arc segments that
are part of the circles C}, p,—2,, Cq.p3—2r, Cp.d—2r, Cq.a—2, and four circles with

89

90

Chapter 4. Point Labeling: Label-Size Maximization

Figure 4.9: The point-free zone Ze. and the label zone Zj,e of p and ¢ for the
case d > D3/2. The bold dotted label touches the circle centered at m .

radius 2r centered at the intersections of C, p, with C; 4 and at the intersections
of Cy p, with Cp, 4. One of these last four circles is Cy,,, 2, whose center m lies
at an intersection of C) p, and Cy 4, see Figure 4.9.

It turns out that a label with maximum radius inside the label zone always
touches either Cp, p,—2, or Cp,, 2,. This depends on the value of d. There is a

real d* = ;t}g@~D3 ~ 0.53 D3 such that for d < d* the label touches C}, p,_a,

and for d > d* it touches Cy, 2,

The values of r for which the label touches Cy p,_2, have already been
computed, see Equation (4.3). The values, for which the label touches Cy,, o,
are computed similarly as follows. The line connecting the center points m,
and my intersects the touching point of the two circles. This gives rise to the
equation

d(mg,myx) = 3r, (4.4)

see Figure 4.9. If we put the origin of our coordinate system at ¢ and let the
negative x-axis contain p, then we get

1—2d? 4—d-2 1, L d?
mx = <2CZD33 —2D3>, mg= | —-d-D3, —\|7?—— D3
The equation d(mg, myx) = 3r has the following solution for our problem:

\/8 _d2asd2_ \/1—16;;2—1-48&4

P = <75 . (4.5)

90

Section 4.2. Circular Labels

91

Graph ¢ in Figure 4.8 depicts Equation (4.5) as a function of d. The graph of
r(d) equals f(d) for d < d* and g¢(d) otherwise. The minimum 7y, of r(d) is
reached at the minimum of g since f decreases monotonically for d < d* and g
has a negative derivative at d = d*. A numeric computation shows that g has
its minimum value when d ~ 0.56085 D3. The corresponding minimum value
of g and thus of 7(d) is 7min ~ 0.190526 Ds.

Theorem 4.7 Our algorithm labels a finite point set S with circles of diameter
daigo = 0.381 Ds5(S). The approzimation factor ~ is 0.381/(2(2 + V/3)) =~
1/19.59.

Proof. When we label the points with circles of diameter 2r,;,, we know that
the label space of any pair of closest neighbors will be contained in its label zone.
Then Lemma 4.5 ensures that for a label diameter dajg, = 0.381 D3 < 27y, our
algorithm will label all points with non-overlapping labels. The approximation
factor is the ratio of the upper bound 2(2 + v/3)D3 (see Figure 4.2) and the
diameter dy)g, of the labels we place. Q

It is clear that any set of congruent equilateral triangles will force our al-
gorithm to produce a labeling with circles of diameter = - dqpt if the triangles
are spaced appropriately. However, there are also examples with a smaller op-
timum labeling where the algorithm performs better. The triangular lattice
formed by the centers of a densest disk packing, for example, has an optimal
labeling with circles of diameter dopy = D3. Here our algorithm yields a ratio
of dajgo/dopt = 0.381.

4.2.5 NP-Hardness

In this section we show that deciding whether a set of points can be labeled
with unit circles is NP-hard. This answers an open question raised by Doddi
et al. [DMM™*97]. Our proof also implies that there is a constant § < 1 such
that it is NP-hard to label points with circles of diameter greater than § - dopt.
Consequently no polynomial-time approximation scheme exists. The proof is
by reduction from planar 3-SAT. For a Boolean formula of planar 3-SAT type
the variable-clause graph is planar. In this graph, the nodes are the variables
and clauses of the formula, and there is an edge between a variable node and a
clause node if the variable occurs in the clause. The planarity of the variable-
clause graph helps to simplify the proof. The same idea is used in Knuth
and Raghunathan’s proof of the NP-hardness of the Metafont-labeling problem
[KR92].

In the Metafont-labeling problem and other label-placement problems stud-
ied previously,[FPT81, FW91, MS91] every label can only be placed in a con-
stant number of positions. In our case, there are infinitely many ways to label
a point with a circle. This relaxation could potentially make circle labeling
polynomially solvable (even given P # N'P) and thus simpler than the discrete
label-placement problems studied before, just as real-valued linear program-
ming is simpler than zero-one linear programming. Of course the previous

91

92

Chapter 4. Point Labeling: Label-Size Maximization

NP-hardness proofs can be modified to allow a certain continuum of feasible
label position in the vicinity of the original discrete positions. In [MS91] this
was achieved by adding dummy points that do not receive any label; [IL97] uses
a similar strategy.

In our reduction, we do not use dummy points, but restrict the infinite
number of potential label positions of all points to at most three by using
immobilizing clusters. These are special gadgets that consist of three points
that must be labeled in a unique way. This approach is also different from
the other two NP-hardness proofs for label-placement problems with an infinite
number of label positions per point [IL97, vVKSW99]. We take advantage of the
special geometry of circles.

Another major difference to all other label-placement problems we know of
is the fact that it is not clear whether circle labeling is in N'P. We do not know
whether there is always a polynomial encoding of a solution, even if the input
points have rational coordinates.

Theorem 4.8 [t is NP-hard to decide whether a set of points can be labeled
with unit circles.

Proof. We encode the variables and clauses of a Boolean formula ¢ of planar 3-
SAT type by a set of points such that all points can be labeled if and only if ¢ is
satisfiable, i.e. if there is a variable assignment such that all clauses evaluate to
true. Since Lichtenstein showed that planar 3-SAT is NP-hard [Lic82], it follows
that circle labeling is NP-hard as well. Note that the variables and clauses of
a planar 3-SAT formula can be embedded in the plane as in Figure 4.10 where
all variables lie on a horizontal line and all clauses are represented by non-
intersecting three-legged combs [Lic82].

Figure 4.10: Embedding of a planar 3-SAT formula.

The main observation leading to our proof is the following. Given three
equidistant points on a line, there are exactly two ways to label these points
optimally, see Figure 4.11. Since all labels have diameter 1 here, some basic
geometry shows that this distance must be (1 — v/2v/3 — 3)/2 &~ 0.159. This
observation gives us a means to encode the Boolean values of a variable in the
planar 3-SAT formula ¢ that we want to reduce to a set of points.

The gadgets of our reduction are the clusters for variables and three-legged
combs for clauses. In order to be able to connect a variable v to all clauses in
which it occurs, we model v not by one but by several variable clusters on a

92

Section 4.2. Circular Labels

93

horizontal line h as in Figure 3.58. Note that the cluster-to-cluster distance of
14+ v/2v/3 — 3 (from midpoint to midpoint) is chosen such that every second
cluster must be labeled the same way. The value of v is represented by the label
positions of the leftmost cluster on h (according to Figure 4.11). We call this
cluster and every second cluster to its right odd. Accordingly, all other clusters
are even. Then the label positions of all odd clusters encode the value of v and
all even clusters that of —w. This differentiation is important for connecting
v to the clauses in which it occurs. Each connection depends on whether v is
negated in that clause or not.

Figure 4.11: A variable clus-
ter and the label placements
encoding true and false.

Figure 4.12: Rows of variable clusters model
a variable; the label positions of the leftmost
cluster determine the variable’s Boolean value.

The central idea for modeling the clauses is that we restrict the possible
label positions of all points (except one) to a maximum of two. To achieve
this, we use immobilizing clusters that can only be labeled in one specific way.
They consist of three points at pairwise distance 1/(4 4 21/3), see Figure 4.2.
In order to distinguish these auxiliary points from the others, we use the term
active points for all clause points with at least two possible label positions.

a5

N

a

Figure 4.13: Clause with pressure from two variables. The current label posi-
tions are marked by shaded labels, alternatives are indicated by solid or dashed
circles, and immobile labels are dotted.

We model the clauses by point sets that resemble large combs, see Fig-
ure 4.13. Such a comb consists of a horizontal part and three legs. The hori-
zontal part is formed by active points like b in Figure 4.13 and by immobilizing

93

94

Chapter 4. Point Labeling: Label-Size Maximization

clusters above and below b that restrict the label of b to two possible positions.
All points of type b lie on a horizontal.

The legs consist of points like a in Figures 4.13 and 4.14. These points lie on
a vertical line and are also forced into one of two possible positions. Where the
legs are joined to the horizontal part of a comb, lack of space does not allow us
to use the immobilizing clusters as elsewhere. Instead, we simply attach points
like z, y, and z in Figure 4.13 to cluster labels in the vicinity such that the
labels of z, y, and z are also immobile and at the same time restrict the label
positions of active points (like I, r, s, ¢, and q) as desired.

Both the horizontal part and the legs of a comb can be extended as far as
needed to reach the three variables belonging to the clause. This is done by
repeating—at a distance of v/3—patterns of seven points like those contained
in the boxes A and B in Figure 4.13.

Each leg is connected to the encoding of a variable v. Let g be the vertical
on which all points of the leg lie. It is perpendicular to the line h that contains
all points encoding v. The lines g and h intersect in the midpoint d of one of the
variable clusters on h, see Figure 4.14. The distance of v/3 between the lowest
leg point a and d is chosen to assure that the label of a can only intersect the
label of d among the points modeling v. Note that the labels of a and d only
intersect if the label of a is placed right below a and that of d right above d.

If variable v is negated in the clause under consideration, we join the leg
to an odd cluster of v. Thus the cluster with d is labeled the same way as
the leftmost cluster of v, see Figure 4.14. Now if v is set to true, d is labeled
upwards. Then a and all other points on line g must also be labeled upwards.
To put it graphically, pressure is transmitted upwards. If v is set to false, d can
be labeled downwards, and no pressure is transmitted.

Figure 4.14: We connect the leg of a clause to a variable above the midpoint d
of a variable cluster. If the variable is negated in the clause, then we join the
leg to an odd cluster (as in this case), otherwise to an even cluster.

94

Section 4.2. Circular Labels

95

On the other hand, if v is not negated in the clause under consideration,
then we join the clause’s leg to an even cluster of v, which is labeled the opposite
way as the leftmost cluster. Then pressure is transmitted if and only if v is set
to false.

If all literals of a clause evaluate to false, then pressure is transmitted
through all three legs into the clause. In this case there is a point (like p)
that cannot be labeled, see Figure 4.13. In case there is at least one leg with-
out pressure, it is obvious that all points belonging to a clause can be labeled.
Hence the question whether ¢ can be satisfied is equivalent to asking whether
all points in the set resulting from the encoding of ¢ can be labeled with unit
circles.

To show that we can in fact connect a variable to several different clauses
(below and above), we use a grid of width v/3 and move all active points to grid
points—except points of type [, r, and p, see Figure 4.13. In order to accommo-
date also the midpoints of the variable clusters on the grid (see Figure 4.14), we
slightly increase the distance of neighboring variable clusters to that of immo-
bilizing clusters, i.e. from 1 + +/ 2v/3 —3 2~ 1.68 to /3 &~ 1.73. Then the label
positions in every second cluster are still combinatorically equivalent, although
labels can slightly wiggle now. Given such a grid embedding of our instance, it
is clear that we can connect all variables to clauses according to ¢.

We still have to ensure that the reduction is polynomial: if ¢ consists of m
clauses and n < 3m variables, the instance has O(m?) points. Their position
can be computed in polynomial time if we round the grid-cell size and the
distance between the three points of the immobilizing clusters to slightly greater
rational numbers. The resulting instance is combinatorically equivalent to the
one described before. @

Our gadget proof of the NP-hardness of circle labeling also shows that we
cannot expect to approximate this problem arbitrarily well. Formann and Wag-
ner used a similar argument to show that maximizing the size of axis-parallel
square labels cannot be approximated beyond a factor of 1/2 [FW91]. In the
formulation of their problem they only allow a constant number of label posi-
tions per point (namely four), which makes it easier to determine a good bound
for the approximability.

Corollary 4.9 There is a constant § < 1 such that it is NP-hard to label points
with uniform circles of diameter greater than ¢ - dop.

Proof. The proof of Theorem 4.8 still holds if the diameter of all labels is
slightly reduced to a § < 1. The reason for this is that though labels have
a certain degree of freedom now, every new label position is combinatorically
equivalent to exactly one former position. ¢ must be chosen close enough to
1 to prevent a label from being moved continuously from one old position to
another.

If there was a polynomial-time algorithm that could label the point set of
the reduction with labels of size §, we could solve planar 3-SAT in polynomial

95

96

Chapter 4. Point Labeling: Label-Size Maximization

time and would thus have P = NP. Q

The bottleneck that determines the minimum value of § seems to be the
encoding of a variable, see Figure 4.12. When the labels (and thus 0) are scaled
down gradually, there is a point when two neighboring clusters can have iden-
tical instead of alternating label positions, see Figure 4.11. Then the variable’s
Boolean value is no longer well defined, and the proof collapses.

96

Chapter 5

Line Labeling

This chapter is joint work with Lars Knipping, Freie Universitat Berlin, Marc
van Kreveld, Tycho Strijk, both Universiteit Utrecht, and Pankaj K. Agarwal,
Duke University [WKvK™99].

The interest in algorithms that automatically place labels on maps, graphs,
or diagrams has increased with the advance in type-setting technology and
the amount of information to be visualized. However, though manually la-
beling a map is estimated to take fifty percent of total map production time
[Mor80], most geographic information systems (GIS) offer only very basic label-
placement features. In practice, a GIS user is still forced to invest several hours
in order to eliminate manually all label-label and label-feature intersections on
a map.

In this chapter, we suggest an algorithm that labels one of the three classes
of map objects, namely polygonal chains, such as rivers or streets. Our method
is simple and efficient. At the same time, it produces results of high aesthetical
quality. It is the first that fulfills both of the following two requirements: it
allows curved labels and runs in O(n?) time, where n is the number of points
of the polyline.

In order to formalize what good line labeling means, we studied Imhof’s rules
for positioning names on maps [Imh62, Imh75]. His well-established catalogue
of label placement rules also provides a set of guidelines that refers to labeling
linear objects. (For a general evaluation of quality for label-placement methods,
see [vDvKSW99].) Imhof’s rules can be put into two categories, namely hard
and soft constraints. Hard constraints represent minimum requirements for
decent labeling:

(H1) A label must be placed at least at some distance € from the polyline.

(H2) The curvature of the curve along which the label is placed is bounded
from above by the curvature of a circle with radius r.

(H3) The label must neither intersect itself nor the polyline.

98

Chapter 5. Line Labeling

Soft constraints on the other hand help to express preferences between ac-
ceptable label positions. They formalize aesthetic criteria and help to improve
the visual association between line and label. A label should

(S1) be close to the polyline,
(S2) have few inflection points,
(S3) be placed as straight as possible, and

(S4) be placed as horizontally as possible.

We propose an algorithm that produces a candidate strip along the input
polyline. This strip has the same height as the given label, consists of rectangu-
lar and annular segments, and fulfills the hard constraints. In order to optimize
soft constraints, we use one or a combination of several evaluation functions.

The candidate strip can be regarded as a simplification of the input polyline.
The algorithm for computing the strip is similar to the Douglas-Peucker line-
simplification algorithm [DP73] in that it refines the initial solution recursively.
However, in contrast to a simplified line, the strip is never allowed to intersect
the given polyline. The strip-generating algorithm has a runtime of O(n?),
where n is the number of points on the polyline. The algorithm requires linear
storage.

Given a strip and the length of a label, we propose three evaluation functions
for selecting good label candidates within the strip. These functions optimize
the first three soft constraints. Their implementation is described in detail in
[Kni98]. We can compute in linear time a placement of the label within the
strip so that the curvature or the number of inflections of the label is minimized.
Since it is desirable to keep the label as close to the polyline as possible (while
keeping a minimum distance) we also investigated the directed label-polyline
Hausdorff distance. This distance is given by the distance of two points; a) the
point p on the label that is furthest away from the polyline and b) the point
p’ on the polyline that is closest to p. Under certain conditions we can find a
label position that minimizes this distance in O(nlogn) time [Kni98|. Here we
give a simple algorithm that finds a near-optimal label placement according to
this criterion in O(nk + klog k) time, where k is the ratio of the length of the
strip and the maximum allowed discrepancy to the exact minimum Hausdorff
distance.

If a whole map is to be labeled, we can also generate a set of near-optimal la-
bel candidates for each polyline, and use them as input to general map-labeling
algorithms as [ECMS97, KT98, WW098]. Some of these algorithms accept a
priority for each candidate; in our case we could use the result of the evaluation
function.

In his list of guidelines for good line labeling, Imhof also recommends to
label a polyline at regular intervals, especially between junctions with other
polylines of the same width and color. River names e.g. tend to change below

98

Section 5.1. Previous Work

99

the mouths of large tributaries. This problem can be handled by extending
our algorithms as follows. We compute our strip and generate a set of the, say
ten best label candidates for each river segment that is limited by tributaries
of equal type. Then we can view each river segment as a separate feature,
and again use a general map-labeling algorithm to label as many segments as
possible. Prioritizing each label candidate with its distance to the closer end
of the river segment would give candidates in the middle of a segment a higher
priority and thus tend to increase label-label distances along the polyline.

This chapter is structured as follows. In the next section we briefly review
previous work on line labeling. In Section 5.2 we explain how to compute a
buffer around the input polyline that protects the strip from getting too close
to the polyline and from sharp bends at convex vertices. In Section 5.3 we
give the algorithm that computes the strip and in Section 5.4 we show how
this strip can be used to find good label candidates for the polyline. Finally,
in Section 6.3 we describe our experiments. Our implementation of the strip
generator for z-monotonous polylines and the three evaluation functions can be
tested on-line!.

5.1 Previous Work

In the label-placement literature the problem of automated line labeling has
been treated before. In [Coo88, DF92, BL95, AH95, ECMS97, Kra97| only
rectangular labels are allowed; curved labels are not considered. In [Fre88| a
set of label-placement rules similar to those of Imhof [Imh75] is listed, followed
by a rough description of an algorithm. An analysis of Figure 8 in [Fre88| shows
that river names are broken into shorter pieces that are then placed parallel to
segments of the river. Each piece ends before it would run into the river or end
too far from the current river segment.

In [Bar97] curved labels are taken into account. First, the input polyline
is split into sections depending on its length and junctions (forks) with other
polylines. For details of this step, see [BL95]. Then the polyline is treated with
an adaptation of an operator from morphological mathematics, closure, that is
a mixture of an erosion and a dilation. This operator yields a baseline for label
candidates where the polyline does not bend too abruptly. It is not clear how
this is done algorithmically; no asymptotic runtime bounds are given. Finally,
simulated annealing is used in order to find a good global label placement, i.e.
a placement that maximizes the number of features that receive a label and at
the same time takes into account the cartographic quality of each label position.

In [PZC98, SvK99] a more theoretical problem is analyzed; an instance of
axis-parallel line segments is labeled with rectangular labels of common height.
While the length of each label equals that of the corresponding line segment,
the label height is to be maximized.

While the restriction to rectangular labels is acceptable for technical maps

"http://www.math-inf .uni-greifswald.de/map-labeling/lines

99

100

Chapter 5. Line Labeling

or road maps (where roads must be labeled with road numbers), we feel that
curved labels are a necessity for high-quality line labeling. The method we
suggest is the first that fulfills both of the following two requirements: it allows
curved labels and its runtime is in O(n?). The runtime thus only depends on
the number of points of the polyline, and not on other parameters such as the
resolution of the output device. Note that the time bound holds even if the
approximate Hausdorff distance is used to select good label candidates within
the strip as long as we choose the parameter k linear in n.

5.2 A Buffer Around the Input Polyline

In order to reduce the search space for good label candidates, we generate a strip
along the input polyline that is (a) likely to contain good label positions and (b)
easy to compute. Generating our strip consists of two major tasks. First, we
compute a buffer around the polyline that our strip must not intersect. Second,
we generate an initial strip and refine it recursively. Each refinement step brings
the strip closer to the polyline, but also introduces additional inflections.

The input to our algorithm consists of a polyline P = (p1,...,p,) with
points p; = (;,y;), a minimum label-polyline distance €, a maximum curvature
1/r, and a label height h. It makes sense to choose r >> ¢ but the algorithm does
not depend on this. We assume that P is z-monotonous, i.e. 1 < ... < .
Non-monotonous polylines can be split up into monotonous pieces of maximum
length in linear time by a simple greedy algorithm. That algorithm goes sequen-
tially through the edges of the polyline. Whenever adding the current edge to
the current piece would make that piece non-monotonous, a new piece is started
with the current edge.

For ease of presentation we direct P from p; to p, and only label the upper
(i.e. left) side of the polyline. We use r-disk (r-arc) as shorthand for a disk
(arc) of radius r. We say that p; is at a right turn of P if p;+1 lies to the right
of the directed line through p;_1 and p;, see p3 or py in Figure 5.1.

We define the e-r-buffer B(P) in two steps. First let the e-buffer be the
union of all e-disks whose center lies on P, see the light-shaded area in Fig-
ure 5.1. Second we add certain pieces of r-disks D; placed at right turns p; of
P . Their task is to bound the curvature of our strip. The center m; of D;
is placed on the angular bisector b; of the adjacent edges of P such that D;
touches and contains the e-disk centered at p;, see Figure 5.2. Let D; be the
part of D; that is left of the e-buffer and touches the e-disk, see the dark-shaded
areas in Figure 5.1. Then B(P) is the union of the e-buffer and the D; for each
right turn p;.

To simplify the calculation of the strip, we also place r-disks Di and D,
at the endpoints p; and p, of P, respectively. Let b, be the normal to the
edge pp_1pn in p,. Then the center of D, lies on b, such that D,, touches and
contains the e-disk centered at p,, see D,, in Figure 5.2. The placement of D
is analogous.

100

Section 5.2. A Buffer Around the Input Polyline

101

Figure 5.1: The boundary of the e-r-buffer B(P) (bold dashed line) of the input
polyline P (bold solid line).

In order to compute the boundary of the e-r-buffer we first compute that of
the e-buffer. This is simple since the z-monotonicity of P guarantees that the
e-buffer does not have any holes.

For computing the candidate strip it is important that we have access to
the elements of the outer face of the e-r-buffer in the order in which they occur.
We compute the e-r-buffer in two phases.

In the first phase, for each right turn p; we follow the boundary of the e-
buffer from t; to the right until we intersect the boundary of D; for the first
time. This intersection point is denoted by 7;, see Figure 5.2. The arc from ¢; to
r;, oriented clockwise, is the right arc R;, one of the two parts of the boundary
of D; we are interested in. The left arcs L; that go counterclockwise from ¢; to
l; can be computed analogously. A special case arises if ¢; lies in the interior
of the e-buffer. Then R; or L; is empty, and we have to follow P from p; in
both directions until we arrive at a point or edge that corresponds to an arc or
line segment on the upper part of the e-buffer. From there, we can continue as
usual.

Figure 5.2: Placing r-disks D; at right turns p; of the input polyline P.

101

102

Chapter 5. Line Labeling

Clearly, this procedure has a worst-case runtime of O(n?). The worst case
occurs if there are a linear number of right turns p; where we have to walk
over a linear number of segments of the e-buffer until we hit I; or r;, i.e. if r
is large compared to the length of the edges of P. However, in practice one
can expect to walk only over a constant number of segments of the e-buffer;
then the running time is ©(n), see Section 6.3. The worst-case running time
can be improved using more sophisticated data structures, but we omit this
improvement here as it makes the algorithm more complicated.

In the second phase, we incrementally extend the e-buffer to the e-r-buffer
using the left and right arcs we just computed. We maintain By, the outer
face of the union of the e-buffer and the areas D; we have processed so far.
Initially let B.ur be the boundary of the e-buffer and let the interior of Beypr
the interior of the e-buffer. Let the r-arc A; be the union of L; and R;. Note
that A; is the part of the boundary of D; that is a potential part of the outer face
of the e-r-buffer. For each right turn p; we check whether A; lies completely
in the interior of Bcyy. If this is not the case we extend By, by using the
appropriate parts of A;.

The boundary of the e-buffer consists of a linear number of line and arc
segments to which we add O(n) arcs of type A;. One can prove that each of
these arcs can contribute at most three pieces to the outer face of B(P). Our
implementation does not depend on this result, but it shows that the outer face
of B(P) has linear complexity. Due to the incremental construction this is also
an upper bound for the size of Beyyr.

Given these observations it is easy to devise an O(n?)-algorithm that com-
putes the boundary of the outer face of B(P). We store B.y, in a doubly
connected list. Since the length of this list is linear we can afford to scan the
whole list when we search for intersections with the current arc A;. If we con-
sider carefully whether we enter or leave the interior of the area delimited by
Beuwrr, we can update By in linear time for each right turn. We omit details
here.

In our implementation of the second phase we use a similar trick as in the
first phase to avoid a quadratic runtime in many cases. We exploit the fact that
an arc A; usually spans only a constant number of elements of Bey,;.

5.3 A Candidate Strip

Once we have the outer face of the e-r-buffer, we compute the baseline of
the label candidate strip and refine it recursively. We refer to the line and
arc segments that delimit the buffer on the upper side between [; and r, as
baseline objects. We have access to these objects in the order in which they
appear on the boundary of the buffer’s outer face. We start with an arc A that
touches the first and last object O; and Oy, respectively. We bend A towards
the buffer until it hits a third object O;. There, we split A into two pieces,
its children. We connect the children of A with a piece of O; that initially has

102

Section 5.3. A Candidate Strip

103

length zero. Then we recursively bend the children further towards the buffer,
see Figure 5.4. While we bend, the portion of O; that connects the children of
A is growing. Note that there are two phases: in the first, the radius of the arcs
increases while it decreases in the second. The recursion ends where O; and Oy
are adjacent on the buffer (since there is no O; then) and in the second phase
where the curvature of an arc would exceed 1/(r + h), h the label height. For
the pseudo-code of this algorithm, refer to Figure 5.3.

REFINE(B, i, k, state, G)

if k=741 then return
gik := oriented bisector of O; and O;: R — R?
for j:=i+1tok—1do
A; := touching_arc(O;, Oj, Oy, state)
if A; #10
then choose (3; such that l_);-k(ﬁj) = center(A;)
else ; := oo
end
end
if min{ﬂHl, ey Bk—l} = oo then
if state =1
then REFINE(B, i, k, 2, G)
else return
end
choose j such that (3; minimal
replace O;—Oy, in G by A;
REFINE(B, i, j, state, G)
REFINE(B, j, k, state, G)

Figure 5.3: pseudo-code for the baseline refinement algorithm

For each level of the recursion, the sequence of arcs we obtain in this way
forms a continuous curve L. If we direct L from left to right, it becomes obvious
that the radius of all arcs that turn right (i.e. towards the buffer) is at least r
and the radius of arcs that turn left is at least » 4+ h. By using L as the baseline
of our strip of height h we ensure that all arcs that form the upper boundary
and the baseline of the strip have at least radius r. Thus the strip fulfills the
curvature constraint H2. Since the baseline of the strip cannot intersect the
e-buffer it is clear that the strip also fulfills the distance constraint H1. The
non-self-intersection constraint H3 can easily be kept by ending the recursion
where the distance between O; and Oy, is less than 2h.

If the number of inflections is to be kept small, the recursion can also be
stopped whenever the directed distance of a strip segment to the polyline is
below a given threshold. However this is difficult to check without the Voronoi
diagram of the points and (open) edges of P.

It is possible to add two interesting refinement levels. In both, an arc of

103

104

Chapter 5. Line Labeling

Sm=”

outer face of B(P)

Figure 5.4: refining the candidate strip: first level (solid), second level (dashed),
third level (densely dotted), and forth level (dotted)

the baseline does not necessarily touch three objects on the boundary of the
buffer’s outer face. For a strip with more rectangular segments one could add a
refinement level between level 2 and 3 of the leftmost strip segment in Figure 5.4.
Note that the radii of the annular strip segments there increase up to level 2
and then decrease again. Rectangular segments in an additional refinement
level can thus be viewed as annular segments with infinite radius. On the other
hand, to make the strip follow P as closely as possible, a final refinement level
could be added where all annular strip segments are delimited by two arcs with
radius r and r + h. The baseline of this strip is part of the curve on which a
disk of radius 7 4+ h is rolled around the buffer if the disk must always touch
the buffer but not intersect its interior.

In order to determine the third object on an arc, we test each object between
the left- and rightmost object in constant time. Thus we need linear time for
each level of the recursion. As with the Douglas-Peucker line-simplification
algorithm, the number of recursion levels depends on the distribution of the
input data and can vary from Q(logn) to O(n). Given the outer face of the
e-r-buffer the strip can hence be computed in O(n?) time, while the average
case can be expected to be in O(nlogn).

104

Section 5.4. Finding Good Label Positions

105

5.4 Finding Good Label Positions

In order to satisfy the soft constraints, we evaluate label candidates within the
strip according to curvature, number of inflections, or directed label-polyline
Hausdorff distance. (We define the curvature of a label as the sum over curva-
ture times length of each label segment. The curvature of a rectangular segment
is 0; that of an annular segment with arcs of radius r; and ro =71 +h is 1/r;.)
For all three evaluation functions, the basic idea is the same. We discretize
the space of label candidates such that the discrete space has linear size and
contains minima. Then we search the discrete space for a minimum.

For curvature and number of inflections it is easy to see that there is a
minimizing label candidate that starts or ends with one of the rectangular or
annular segments of the strip. In order to find a minimum, we push a label of
the given length through the strip and stop whenever a new segment starts (or
ends). To compute the measure of the current candidate, we only have to do
a constant number of updates given the value at the previous position. This is
how we can find a placement minimizing curvature or number of inflections in
linear time.

For Hausdorff distance, the discretization is more difficult. We only take
into account the baseline of the strip. In order to compute efficiently the dis-
tance between the baseline of a label candidate and the polyline P, we need
to know the closest object (point or edge) of P for every point on the whole
baseline. Intersecting the baseline with the Voronoi diagram of the objects of P
would yield this information and lead to an O(nlogn) algorithm under certain
conditions [Kni98].

However, computing the Voronoi diagram for a set of points and line seg-
ments is not a trivial task in practice. Therefore we implemented a simpler
algorithm that finds a near-optimal label placement as follows. Given an inte-
ger k, we split the baseline into k pieces of equal length. Let v be the length
of such a piece. We approximate the distance between each piece and P by the
distance of the piece’s midpoint from P. This can be done by brute force in
O(nk) time with O(k) storage. Then we proceed as above: we push the label
through the strip, stop at each midpoint and evaluate the current label position.
Its Hausdorff distance to P is within v from the maximum over the distances
of all baseline pieces covered by the label. For fast access to this approximate
maximum, we keep the appropriate distances in a priority queue. During the
execution of the algorithm, we must insert the distance of each piece at most
once into the queue. The same holds for deletions. Each such operation costs
O(log k) time, hence we can compute an optimal placement among all those
starting at a midpoint of a baseline piece in O(nk + klogk) time with O(k)
storage. The triangle inequality guarantees that this placement is at most ~y
further away from P than a placement minimizing the exact directed Hausdorff
distance. A detailed description of the implementation of the above evaluation
functions can be found in [Kni98] (in German).

105

106

Chapter 5. Line Labeling

5.5 Experimental Results

In order to analyze our line-labeling algorithm, we applied it to synthetic and
to real-world data. The latter is taken from the CIA-map data collection?,
see Figures 5.5 and 5.6. In both figures, labels were placed according to the
approximated minimum Hausdorff distance.

Figure 5.5: A piece of the Dordogne (109 points). Above with candidate strip
and label placement (shaded grey), below with lettering

Figure 5.6: A piece of the Guadalquivir (130 points)

The synthetic data belongs to three different example classes. For all three
classes we use random numbers Ax; and Ay; that we draw from a normal
distribution with mean 0 and standard deviation 1. In order to get an x-
monotonous polyline we choose the z-coordinates as follows: =1 = 0 and x; =
xi—1 + |Az;|. Then we scale all x; by x,, such that 0 =z; <z < ... <z, = 1.
The choice of the y-coordinates depends on the example class.

For RandomWalk we set y; = 0 and y; = y;—1 + Ay;/100, i.e. we use the
same scheme as for the abscissae except we do not take the absolute value of
the random number and we scale it with a constant factor.

For NoiseLine and NoiseSine we use the z-axis and sine as base functions
and add some noise: y; = f(z;) + Ay; /100, where f(z) = 0 for NoiseLine and
f(z) = sin(11mx) for NoiseSine.

Figures 5.7 to 5.9 depict instances of each of the three example classes.
In each figure, the strip of the last refinement level (not counting the second
additional refinement level mentioned in Section 5.3) is depicted three times for
the same input polyline. The grey regions in the three strips indicate an optimal

*ftp://gatekeeper.dec.com/pub/graphics/data/cia-wdb/db.tar.Z

106

Section 5.5. Experimental Results 107

Synthetic Example Classes

Figure 5.9: NoiseSine with 200 points

107

108

Chapter 5. Line Labeling

label placement within the strip minimizing curvature, number of inflections,
and approximative Hausdorff distance (top to bottom). The parameters for the
strip computation were minimum label-polyline distance ¢ = 0.005, curvature
bound r = 0.01, and label height h = 0.02. More examples can be found in
[Kni98] or generated on our Web page.

We generated 50 examples with 100, 200, ..., 1000 points and measured the
frequency of some basic operations and the runtime of our C++ implementa-
tion, see Figures 5.10 to 5.17. The two additional refinement levels mentioned
in Section 5.3 were included in all experiments. In all figures, the z-axis gives
the number n of points of the polyline. The points on our graphs give the
results averaged over all 50 examples; the extent of the vertical bars indicates
the minimum and maximum value among these 50 examples.

Runtime. In Figure 5.10 to 5.12 we depict the running times of the e-
buffer, e-r-buffer and strip generation for our three example classes. Here the
parameters were r = 8/n, € = 2/n, and h = 10/n. The y-axis gives the average
CPU time (in seconds) on a Sun Ultra-Sparc 250. We used the SunPRO-CC
compiler with optimizer flags -fast -03. Note that the three curves in each
figure are additive; i.e. the topmost curve corresponds to the total runtime.
RandomWalk takes twice as long as the other two example classes, which behave
very similarly—as in all following graphs.

In Figure 5.13 we give the runtimes for placing labels within the pre-
computed strip according to curvature and approximated Hausdorff distance.
We used a label length of 50/n, and for minimizing the Hausdorff distance we
set the approximation parameter v to 1/(2n). We omitted the curves for num-
ber of inflections since they were identical to those of curvature; we also omitted
those for NoiseSine, which were very similar to those of NoiseLine. Other than
in the description in Section 5.4 we used lists instead of priority queues for the
approximated Hausdorff distance, hence the quadratic runtime behaviour.

Operation counters. In Figure 5.14 to 5.17 we measured the frequency
of some basic operations in order to further analyze our implementation on the
three example classes. Figures 5.14 and 5.15 refer to the buffer computation,
Figures 5.16 and 5.17 to the strip generation.

In Figure 5.14 we show how many segments of the e-buffer we visit when
computing the extend of the r-arcs A;. Figure 5.15 shows how many segments
of the current outer face of the buffer are visited in Bcyr when computing the
outer face of the e-r-buffer. Both figures show graphs with approximately linear
growth as suggested in Section 5.2.

The graphs in Figure 5.16 count the number of tests we do to find the
third object O; between two objects O; and Oy on the outer face of the e-r-
buffer. The growth rate here seems to be between linear and quadratic. Finally
Figure 5.17 gives the number of recursion levels, which grows very slowly.

108

Section 5.5. Experimental Results

109

Graphs for Runtime and Operation Counters

0.8 T

e-buffer ©—
07+ (g,7)-buffer + "
strip generation -B— N

0.6 -

100 300 500 700 900

Figure 5.10: Strip generation time
for RandomWalk

05 r
L e-buffer ©—

0.45 (e,r)-buffer +

strip generation -B—

0.4
0.35 -
0.3
0.25 -
02+
0.15 -
0.1+

oos - -

L
100 300 500 700 900

Figure 5.12: Strip generation time
for NoiseSine

3500 T
NoiseLine ©—
3000 NoiseSine +
RandomWalk H—

2500
2000
1500
1000 (-

500

0 L L L L L
100 300 500 700 900

Figure 5.14: Number of Opera-
tions for computing r-arcs

7000

:
NoiseLine <— :
NoiseSine +

6000 RandomWalk 5— .

5000

4000 |-

3000 |-

2000 |-

1000

0

100 300 500 700 900

Figure 5.16: Number of Opera-
tions for Strip Placement

0.5 T T
L e-buffer ©—

045 (e,r)-buffer +

strip generation -=—

04
035
03
0.25 |
02
015 |
01 ..
0.05 - ¥

100 300 500 700 900

Figure 5.11: Strip generation time
for NoiseLine

30 T T T

Hausdorff distance, NoiseLine <—

curvature, NoiscLine +
25 |- Hausdorff distance, RandomWalk -5— 8
curvature, RandomWalk -x- -

20 - |
15 4
10 | 4
51 |
0

100 300 500 700 900

Figure 5.13: Running times for la-
bel placement

7000

T
NoiseLine <$—
NoiseSine +

6000 1~ RandomWalk -

5000
4000
3000
2000

1000 |- &

0 L L L L L
100 300 500 700 900

Figure 5.15: Number of Opera-
tions for placing r-arcs

35

T
NoiseLine ©—
| NoiseSine +
RandomWalk -5—

100 300 500 700 900

Figure 5.17: Number of refine-
ment levels

109

110

Chapter 5. Line Labeling

5.6 Discussion and Extensions

We have presented a new and conceptually simple method for high-quality line
labeling. It is the first that fulfills both of the following two requirements: it
allows curved labels and its worst-case runtime is in O(n?). We introduced
a concept of gradual refinement that is similar to the idea of the Douglas-
Peucker line-simplification algorithm. This concept allows to introduce addi-
tional application-dependent criteria and to stop the refinement when these
criteria are met.

An experimental evaluation of our algorithm shows that it usually runs
in sub-quadratic time and generally yields good results in practice. However,
since we reduce the search space for good label candidates to a one-dimensional
strip, it is clear that we cannot hope to find an optimal label placement in every
case. As the following example indicates, a more flexible strategy in the buffer
construction might help to overcome problems caused by the reduction of the
search space.

In Figure 5.18 we depicted all r-arcs at right turns of the input polyline
P. The parameter r was chosen large compared to the average segment length
of P. As a result, some of the arcs that contribute to the e-r-buffer are quite
distant from the input polyline P. They were caused by right turns incident
to two very steep but short edges of P. It would be desirable to remove these
arcs. However, we must ensure that the resulting strip does not violate the
curvature constraint H2. This can be done as follows. After the first phase of
the e-r-buffer computation we compute the directed Hausdorff distance of each
r-arc A; to the e-buffer between [; and r;. In order of descending distance we
check for each A; whether the corresponding e-arc lies completely in the area
Fj of another r-arc A;. If this is the case, we remove A;. Then we proceed to
the second phase of the buffer computation as usual. Note that the resulting
outer face of the buffer still consists exclusively of r-arcs and line segments.
Thus the strip will still keep H2.

Figure 5.18: Disturbing effects of the definition of the e-r-buffer. (The upper
part of its outer face is marked by bold grey arcs; the input polyline below
consists of bold black line segments.)

An alternative approach is as follows. We observed that our placement of
the r-disks is good if the the adjacent edges of the polyline are long enough.
Then the directed Hausdorff distance between the arc A; and the e-buffer is
minimized. However, in general the placement of the r-disks is too inflexible.
It could certainly be improved if we tried to minimize the aformentioned dis-
tance during the placement. Then the placement of the r-disks would take into

110

Section 5.6. Discussion and Extensions

111

account not only the adjacent edges of the polyline but all of the polyline (or
the e-buffer) between [; and ;.

Finally we would like to acknowledge a simple and elegant idea of Mike
Lonergan, University of Glamorgan, Pontypridd. He suggested to put the e-
buffer around the label (and thus simply thicken the strip by 2¢) instead of
the polyline. Unfortunately, this does not solve the problem of placing the
r-circles.

111

112 Chapter 5. Line Labeling

112

Chapter 6

Designing
Geometric Algorithms

This chapter is joint work with Vikas Kapoor and Dietmar Kiihl.

The design phase of an implementation is of utmost importance for its effi-
ciency, flexibility, and ease-of-use. While focusing on flexibility, we demonstrate
that there is no reason for sacrificing ease-of-use. Furthermore, we show that a
gain in flexibility does not necessarily cause a loss in efficiency.

In this chapter we present a design concept for geometric algorithms that
is based on the generic programming paradigm. Generic programming is about
making implementations more flexible by making them more general. Abstract-
ing from concrete in- or output data representation is an example of generic pro-
gramming. In contrast to normal programs, the parameters of generic programs
are often quite rich in structure. Such parameters might be other programs,
types or type constructors, or even other programming paradigms [BS98].

The generic programming paradigm has been so successful that a model—
the Standard Template Library (STL) [MS96]—was created and added to C++,
currently one of the most popular programming languages. The STL is a li-
brary of generic components, i.e. of algorithms, data containers, and iterators
mediating between the former two. Iterators help to decouple algorithms from
the type of data container they operate on. While iterators have been known
before, the real novelty of the STL was the introduction of a requirements-based
taxonomy of iterators, which gives a guideline for full decoupling, and an imple-
mentation of this taxonomy using the C++ template mechanism. By becoming
part of the C++ standard, the STL has attracted considerable attention and has
itself set a standard for good design.

After the introduction of the STL further concepts such as data accessors
have been suggested in the C++ literature to help programmers make their im-
plementations even more generic [Kith96, Wei97]. Data accessors are a means
to further decouple an implementation from the representation of in- and out-
put data [KW97]. So far, these extensions have been applied predominantly to
graph problems [NW96]. Exceptions such as [Wei98, Ket98] deal with the rep-

114

Chapter 6. Designing Geometric Algorithms

resentation of geometric objects, not with the design of geometric algorithms,
our main interest here. In order to show the relevance of STL-style generic
programming including later extensions as data accessors for geometric algo-
rithms, we investigate a simple rectangle-intersection algorithm that follows the
well-known sweep-line paradigm.

Using this example we lead the reader step by step from an inflexible, naive
interface to a truly flexible interface that supports code reuse. These steps
reflect our own change of perspective during the implementation of our label-
placement algorithms. Note that reusability helps to lower implementation costs
in the long run and to achieve correctness—for the simple reason that more
users mean more testing. The reader should be familiar with the programming
language C++ that we chose to demonstrate our concept.

In order to support our concept with experimental data, we implemented
a sweep-line algorithm for the rectangle intersection problem in C++ in two
ways; (a) using straight-forward object orientation and (b) following our design
concepts. We compare the runtime of both implementations, as well as the
size of their source code and executables. The data we used for the runtime
comparison stems from random generators as well as from real world instances.
The example classes have been used for an experimental analysis of map-labeling
algorithms and are described in detail in [WW98]. The source code of our
implementations, the documentation of the interfaces, the test data and its
description are accessible via the WWW?.

While the ingredients of our concept have already been known, to our know-
ledge this is the first time that they are applied so rigorously to a geometric
problem, that they are made accessible in the form of a tutorial and that they
are accompanied by a thorough experimental analysis.

Other than the STL, the C++ Library of Efficient Data Types and Algo-
rithms (LEDA) [NM90] was designed having mostly ease-of-use rather than
genericity in mind. The resulting short-comings in terms of interfacing with
user-defined data structures are investigated in [Kiih96]. This has led to the
implementation of a LEDA extension package for graph iterators [NW96].

A recent report about the design of CGAL, the Computational Geometry
Algorithms Library [Ove96], also a C++ library, includes a section about the
pros and cons of generic versus object-oriented programming [FGK™98].

This chapter is structured as follows. In Section 6.1, we describe our example
algorithm for the rectangle-intersection problem. In Section 6.2, we present a
naive interface for this algorithm, investigate its disadvantages and modify it
step-by-step to a generic and thus flexible interface. Finally, in Section 6.3, we
compare the implementations of the naive and the most flexible interface of the
previous section.

'see http://www.math-inf .uni-greifswald.de/map-labeling/design/

114

Section 6.1. Algorithm

115

6.1 Algorithm

We demonstrate our design concepts at the example of a sweep-line algorithm
for detecting all intersections among a set of axis-parallel rectangles in the
plane [Ede80]. Our sweep line will be a vertical line sweeping the plane from
left to right. As usual, the sweep line is supported by two data structures, the
event-point schedule and the sweep-line status.

Event points are the z-values where the sweep line must stop because either
its status changes or intersections have to be reported. In our case all event
points are known before the sweep begins: they are the z-values of the left
and right edges of the rectangles. Thus a sorted list suffices to implement our
event-point schedule. An event point must be stored in such a way that it is
clear whether it refers to a left or right edge of a rectangle.

The sweep-line status stores intervals corresponding to the intersections of
the sweep line with the given rectangles. The endpoints of the intervals are
the y-values of the lower and upper edges of the input rectangles. Initially the
sweep-line status is empty. When a left edge of a rectangle is encountered during
the sweep, the interval corresponding to the edge is inserted into the sweep-line
status. A rectangle is reported if its interval is currently in the sweep-line status
and intersects the new interval. When a right edge of a rectangle is encountered,
the corresponding interval is deleted from the sweep-line status.

This reduces the rectangle intersection problem to the problem of maintain-
ing a set of intervals such that intervals can be efficiently inserted and deleted,
and interval-intersection queries can be answered quickly. To achieve this, we
implement our sweep-line status with the interval-tree data structure [Ede80].
We have implemented a semi-dynamic version, which must be initialized with
the endpoints of all intervals it is going to contain during the sweep. The pre-
processing, namely sorting the points and building up an empty balanced tree,
takes O(nlogn) time, where n is the number of intervals. Inserting intervals
can then be done in O(logn) time, deleting in constant time, while a query
takes O(k + logn) steps, where k is the number of intervals reported. Since
every interval is stored only once in the interval tree, the storage consumption
is linear.

6.2 Step by Step Towards Good Design

In this section we start with a naive interface for the algorithm described in the
previous section. Then we consider the limitations of this approach and show
how these can be overcome. We will improve the straight-forward solution in
several steps, each of which is independent of the others. Note that the naive
interface could easily be implemented without explicit data conversion by all of
the subsequent solutions—if that was our goal.

115

116

Chapter 6. Designing Geometric Algorithms

6.2.1 The Naive Approach

How would a naive programmer interface an algorithm for the rectangle in-
tersection problem described above? He might implement a function, whose
input would be an array of rectangles and their number. The output could
either consist of a list of pairs of intersecting rectangles, or, more user-friendly,
of a so-called conflict graph. In this graph, each rectangle is represented by a
node, and two nodes are connected by an edge, if the corresponding rectangles
intersect. This is the interface described in Program 6.2.1.

class Rectangle;
class Graph;
Graph* rectangle_intersection(Rectangle* rectangle_array, int n);

Program 6.2.1: a naive functional interface

This interface would force the programmer to implement the data structures
Rectangle and Graph. On the other hand, it would force the user in most cases
to convert his rectangles into those required by the interface, and, after calling
rectangle_intersection, extract the desired information from the conflict
graph. In order to do so, the user would have to study the interfaces of the in-
and output data structures. Another disadvantage of the naive interface is that
it would not even allow the user to hand over rectangles in a container different
from an array, like a list or a set.

6.2.2 Decoupling Algorithm and Data Organization

The most obvious disadvantage of our previous interface is the tight link be-
tween the algorithm and its in- and output data structures. In order to decouple
algorithm and data organization, we must solve two problems.

(P1) container independence, i.e. we do not want to force the user to hand
over an array of rectangles.

(P2) representation independence, i.e. we should not require the use of a fixed
representation of rectangles or graphs, but rather accept any representa-
tion fulfilling certain requirements.

The first problem can be solved with the help of iterators. Iterators are
a generalization of pointers; they are light-weight objects that point to other
objects. As the name suggests, iterators are used to iterate over a range of
objects: if an iterator points to an element in a range, it can be incremented so
that it points to the next element or to an end-of-range marker. Iterators can
also be tested for equality, e.g. to test whether the end of a range is reached.
They represent an extremely versatile link between containers and algorithms.
If an algorithm’s interface takes iterators as arguments, then the algorithm can
be applied to any container that provides access to its elements via iterators.
This is the central concept introduced by the STL [MS96].

116

Section 6.2. Step by Step Towards Good Design

117

Consequently, our next interface will expect iterators to manage the
input. Handling the output via iterators is not so simple, as the con-
flict graph is not a linear structure. This problem is attacked in the
following section. For the time being, we ask the user to provide his
definition of a graph as a template parameter to our interface. Of
course, this definition must fulfill some requirements. The implemen-
tation expects the member functions for inserting nodes and edges.

class User_Rectangle;

class User_graph<User_Rectanglex*>;

typedef User_graph<User_Rectangle*> Graph;
// requirements

typedef Graph::node_type node;

node Graph::insert_node (User_Rectanglex);
void Graph::insert_edge (node&, node&);

Note that the user is not forced to write his own graph data structure; he
can use that of any library and write a simple wrapper that implements our
requirements with the help of the library graph.

In order to solve the second problem, we use so-called data accessors.
While iterators realize access to objects, data accessors are used to ac-
cess the data associated with these objects [KW97]. Data accessors have
two parts, a data accessing function, which is responsible for the actual
access, and a light-weight object. This object is also referred to as the
data accessor. It encapsulates the data type to be accessed and is used to
select the correct data accessing function. Our next interface will require
the user to provide such data accessors for his representation of the input
data. Assume that the user declares the following User Rectangle type.

typedef CoordType double;
struct User_Rectangle { CoordType 1lx, lly, urx, ury; };
typedef User_Rectangle* User_iterator;

where 11x, 1lly, urx, and ury represent the coordinates of the lower left
and upper right corner of the rectangle, respectively. The data accessor
for the xz-coordinate of the lower left corner can then be defined as follows.

// data accessor

struct LLXDA { typedef CoordType value_type };

// data accessing function

CoordType get(LLXDA const& da, User_iterator const& it)
{ return (*it).11x; }

All our algorithm needs to know about the user’s rectangles are the coor-
dinates of their corners. This is exactly what the data accessors will supply.
Note the interplay between data accessing function and its arguments, namely
the data accessor and the iterator, in Program 6.2.2.

117

118

Chapter 6. Designing Geometric Algorithms

template < class Iterator, class Graph,
class LLXDA, class LLYDA, class URXDA, class URYDA >
void rectangle_intersection(Iterator begin, Iterator end,
Graph& graph,
LLXDA 1llxda, LLYDA llyda,
URXDA urxda, URYDA uryda)

{

for (Iterator rect_it = begin; rect_it != end; ++rect_it)
typename LLXDA::value_type lower_x = get(llxda, rect_it);
/...
Iterator rect_itl, rect_it2; // ...
typename Graph::node_type nodel = graph.insert_node(rect_itl),
node2 = graph.insert_node(rect_it2);

graph.insert_edge(nodel, node2); // ...

}

Program 6.2.2: a functional, data-organization independent interface

6.2.3 Tightening Control

Suppose the user of our implementation is only interested in a tiny fraction of
the output, like the number of intersections or all rectangles intersecting a given
rectangle. Or suppose he would like to abort the execution of the algorithm
when the sweep line reaches a certain x-value or if another condition becomes
true. With the interface suggested in the previous subsections, he would not
be able to take advantage of such a situation. It is clear that a functional
implementation cannot provide such a degree of interaction between the user
and the algorithm. Thus we will switch to a class interface, which allows us to
have a state and offer the user more information about the algorithm’s progress.

The key to more control is the loop kernel [Kiith96, Wei97]. The loop kernel
is a method which encapsulates the body of the central loop of the algorithm. It
can be advanced in single steps and informs the user about the current state of
the algorithm. The loop kernel makes the whole algorithm look like an iterator
that can be incremented until the execution is finished.

For our example algorithm, we would define the following states: none at the
beginning, done at the end, rectangle begin when the sweep line hits the left
edge of a rectangle, and rectangle_end when a right edge is reached. We im-
plement the loop kernel by a member function step() that advances the sweep
line to the next event point and returns the current state, see Program 6.2.3.

The concept of the loop kernel would be incomplete without the idea of
full logical inspectability. An algorithm is fully logically inspectable if the user
can access all important intermediate results during the execution. This is
important for animation, interaction or simply for debugging. In our example
this would mean access to the content of the whole sweep-line status, not just
to those rectangles that intersect the current one. Hence we offer two pairs of
iterators, one referring to the whole sweep-line status, and one marking just the
range of current intersections. Their type is discussed in Section 6.2.5.

118

Section 6.2. Step by Step Towards Good Design

119

template < class Iterator,
class LLXDA, class LLYDA, class URXDA, class URYDA >
class Rectangle_intersection {
public:
// constructor
Rectangle_intersection(Iterator begin, Iterator end);
// return the result in user supplied graph
template <class Graph> void run(Graph& graph);
// loop kernel
enum state { none, rectangle_begin, rectangle_end, done I};
bool valid() { return (state != done); }
state step(Q);
// full logical inspectability
Iterator current(); // rectangle represented by curr. event point
typedef /* ... */ Solution_iterator;
Solution_iterator begin();
Solution_iterator end();
// queries: report all rectangles intersecting the curr. rectangle
Solution_iterator current_begin();
Solution_iterator current_end();

Program 6.2.3: a class interface

Note that the user can still get the output in a graph representation as
before, but the existence of a graph data structure is no longer a prerequisite
to using the algorithm. (This can also be achieved without templated member
functions like run (), which are standard conform, but not yet supported by all
C++ compilers.)

6.2.4 Influencing Critical Decisions

Another important question is the following. Which definition of “intersection”
do we implement? Does touching already imply an intersection? What about
inclusion? Of course, the answers to these questions will differ from application
to application. Instead of trying to cover all possible interpretations, we leave
the definition of an intersection to the user. To do so, we must isolate the
decision making parts of our implementation such that no information local to
the algorithm is needed. Then the user can provide function objects, with which
the algorithm is parameterized.

Our rectangle intersection algorithm has two basic data structures, the
event-point schedule and the sweep-line status. The order of event points de-
cides, whether the projections of the corresponding rectangles intersect on the
r-axis. Similarly, a query of the sweep-line status returns rectangles, whose
projections intersect that of the current rectangle on the y-axis. To differenti-
ate between these two categories of intersections, we require the user to provide
two function objects, one that enables us to sort the event-point schedule ac-
cordingly and the other for determining the behavior of the interval tree that

119

120

Chapter 6. Designing Geometric Algorithms

implements the sweep-line status.

In the following we give examples of function objects that view rectangles
as topologically open and thus do not report rectangles touching each other. To
sort the event points accordingly, we just have to make sure that an event point
e; corresponding to the left edge of a rectangle will be inserted into the schedule
after all event points that belong to right edges with the same z-coordinate.
Then all of the latter rectangles are already removed from the sweep-line status
and will not be reported when we reach e;.

Since an event point is internal to our algorithm, it cannot be accessed
directly by the user. Thus we have to isolate the information needed to sort
the event points. If two event points have the same z-value, we need to know
whether each corresponds to a left or right edge of the respective rectangle.
This information can easily be obtained via the z-coordinate of the event point
plus the iterator pointing to the corresponding rectangle. Their types are of
course known to the user. Thus we require a function object, which realizes a
comparison between two pairs of the corresponding types, see Program 6.2.4.

class Compare_x {
public:
typedef pair<CoordType, User_iterator> Pair;
bool operator() (const Pair& p, const Pair& q) {
bool before = true;
if (p.first == q.first)
{
// p is the x-coordinate of the left edge of a rectangle
if (p.first == p.second->11x) before = false;
}
else before = (p.first < q.first);
return before;

}

};

Program 6.2.4: compare function object for sorting the event-point schedule

The function object for the interval tree is quite simple, see Program 6.2.5.

class Compare_y {

public:
bool operator() (CoordType const yl, CoordType const y2)
{ return (y1 < y2); }

};

Program 6.2.5: compare function object for querying the sweep-line status

Note the difference of this technique to the approach of implementing the
most general definition of intersection and then filtering out all undesired infor-
mation. Our function objects have the potential to reduce the complexity not
just of the output, but also of the computation.

120

Section 6.2. Step by Step Towards Good Design

121

6.2.5 The Complete Interface

Program 6.2.6 shows the interface resulting from our successive improvements.
At first sight it might look more complicated than the naive interface. To guar-
antee a smooth learning curve for users not familiar with generic programming
and the algorithm we implemented, a good library would provide a concrete
representation of rectangles and graphs, say Our_rectangle and Our_graph, as
well as defaults for the other template parameters. This would make it possible
to use our algorithm as in Program 6.2.7.

Note that the constructor has been parameterized by objects of each of the
class’s template parameters. This allows the user to instantiate our algorithm
with objects that may be constructed other than by their default constructor.
The data accessors URXDA and URYDA for the coordinates of the upper right
corner of the input rectangles might for example be parameterized with a given
height and width of the rectangles, which could change from instantiation to
instantiation of the intersection algorithm.

Of course, we have also implemented the interval tree for the sweep-line
status with the concepts presented here. This is the point where the flexibility
of our algorithms bears fruit, since we do not have to convert any rectangles
into intervals to construct the interval tree. This is due to the fact that the
endpoints of the intervals we want to store in the tree correspond to the y-
coordinates of the corners of our input rectangles. Thus we just parameterize
the nested interval tree class with a subset of the template parameters of the
class Rectangle_intersection. The required parameters are the types of the
rectangle iterator and the compare function object for y-coordinates as well
as the data accessors LLYDA and URYDA, see the private definition of the type
Interval tree in Program 6.2.6. So in a way, the class Interval tree con-
siders our input rectangles to be nothing but intervals, namely the rectangles’
projection on the y-axis.

The iterator Solution_iterator needed to traverse the sweep-line status
is provided by the class Interval _tree. Dereferencing a Solution_iterator
supplies the user with an iterator of the type, with which he has parameterized
the class Rectangle_intersection.

Program 6.2.8 shows how the data structures required by our algorithm
could be declared. Our example demonstrates one of the advantages of using
data accessors. If the input consists of squares of common size, the user has to
store only the coordinates of their lower left corners. When our algorithm needs
a coordinate of the opposite corner, the corresponding data accessing function
computes it on the fly. This reduces the storage consumption of the input by
50%.

Note that not all compilers support the pointer-to-member mechanism for
template parameters we used here. The obvious workaround is to declare ex-
plicitly all four data accessors and accessing functions required by the generic
implementation.

The intersection algorithm for squares can then be declared as in Program 6.2.9.

121

122

Chapter 6. Designing Geometric Algorithms

class Our_rectangle; class Our_graph;
class Our_lxda; class Our_lyda; class Our_hxda; class Our_hyda;
class Our_compare_x; class Our_compare_y;

template < class Iterator = Our_rectanglex,

class LLXDA = QOur_lxda, class LLYDA
class URXDA = Our_hxda, class URYDA
class CompareX = Qur_compare_x,
class CompareY = Our_compare_y >

Our_lyda,
Our_hyda,

class Rectangle_intersection

{

// type of the sweep-line status
typedef Interval_tree<Iterator, LLYDA, URYDA, CompareY>
Sweep_line_status;

public:

// type of rectangle coordinates

typedef typename LLXDA::value_type value_type;

// type of iterator used to return intersections

typedef typename Sweep_line_status::iterator Solution_iterator;

// constructor

Rectangle_intersection(Iterator begin, Iterator end,
LLXDA 1xda = LLXDA(), LLYDA lyda
URXDA hxda = URXDA(), URYDA hyda
CompareX comp_x = CompareX(),
CompareY comp_y = CompareY());

LLYDAQ),
URYDA(),

// loop kernel

enum state { none, rectangle_begin, rectangle_end, done };

bool valid() const { return (state != done); };

state step();

// full logical inspectability

Iterator current(); // rectangle represented by current event point
value_type current_sweep_line_position() const;

Solution_iterator begin();

Solution_iterator end();

// queries: report all rectangles intersecting the curr. rectangle
Solution_iterator current_begin();

Solution_iterator current_end();

// miscellaneous member functions

int number_of_intersections() const;

// return conflict graph of input rectangles

template <class Graph> void run (Graph& graph);

Program 6.2.6: flexible interface of the class Rectangle intersection

122

Section 6.2. Step by Step Towards Good Design

123

Our_rectangle rects[10];
Our_graph our_graph;
/...

// declare and run the rectangle intersection algorithm

rectangle_intersection.run(our_graph) ;

Rectangle_intersection rectangle_intersection(rects, rects+10);

Program 6.2.7: Ease-of-use: applying Rectangle intersection to library-

supplied data structures

// representation of a square
typedef int CoordType;

const CoordType length = 50;
struct Square { CoordType x, y; };

// data accessors for the above representation
template<CoordType Square: :*member>

struct CoordLowDA { typedef CoordType value_type; I};
template<CoordType Square: :*member>

struct CoordHighDA { typedef CoordType value_type; I;

// data accessing functions

template <CoordType Square::*member>

inline CoordType get(CoordLowDA<member> consté&,
User_iterator const& it)

{ return (*it).*member; };

template <CoordType Square::*member>

inline CoordType get(CoordHighDA<member> const&,
User_iterator const& it)

{ return (*it).*member + length; I};

// compare function objects as defined above
class Compare_x; class Compare_y;

Program 6.2.8: Flexibility: user-supplied types for using the
Rectangle_intersection

class

// algorithm

typedef Rectangle_intersection< User_iterator,
CoordLowDA<&(Square: :x)>,
CoordLowDA<&(Square: :y)>,
CoordHighDA<&(Square: :x)>,
CoordHighDA<&(Square: :y)>,
Compare_x, Compare_y >

Square_intersection_algo;

// iterator for access to the solution
typedef typename Square_intersection_algo::Solution_iterator
Solution_it;

Program 6.2.9: declaration of the class Rectangle intersection for squares

of common size

123

124

Chapter 6. Designing Geometric Algorithms

Program 6.2.10 shows how the types declared in Program 6.2.8 and 6.2.9 are
plugged into our interface.

main()
{
Square squares[10]; // input of squares...
Square_intersection_algo my_algo(squares, squares+10);
while (my_algo.valid())
if (my_algo.step() == Square_intersection_algo::rectangle_begin)
{
Squarex curr = my_algo.current();
// assuming output operator for Square

cout << *curr << " intersects: " << endl;
Solution_it end = my_algo.current_end();
for (Solution_it it = my_algo.current_begin(); it != end; ++it)

cout << *it << endl;

Program 6.2.10: a toy application for user-supplied data structures

6.3 Experiments

We compare two different implementations of the rectangle intersection problem
in terms of runtime. The implementations are characterized as follows.

1. the object-oriented approach encapsulates the interface of Section 6.2.1 in
a class. Its implementation requires a fixed type of rectangle. Similarly,
the underlying interval tree is a class requiring a fixed type of interval.

2. the generic approach implements the generic interface of Section 6.2.5.
All data structures are implemented according to the concepts suggested
in this chapter.

6.3.1 Example Classes

We ran both implementations on the following eight example classes. These
benchmarks have also been used to compare the quality of map-labeling algo-
rithms experimentally, see Section 3.2. They are available from our Web page.

RandomRect. We choose n points uniformly distributed in a square of size
25n x 25n. Each point corresponds to the lower left corner of a rectangle.
To determine the size of each rectangle, we choose the length of both edges
independently under normal distribution, take its absolute value and add 1 to
avoid non-positive values. Finally we multiply both rectangle dimensions by
10.

DenseRect. Here we try to place as many rectangles as possible on an area of
size apy/n X a1y/n. ag is a factor chosen such that the number of successfully

124

Section 6.3. Experiments

125

placed rectangles is approximately n, the number of sites asked for. We do
this by randomly selecting the rectangle size as above and then trying to place
the rectangle 50 times. If we don’t manage, we select a new rectangle size and
repeat the procedure. If none of 20 different sized rectangles could be placed,
we assume that the area is well covered, and stop. For each rectangle we placed
successfully, we return its height and width. To generate (a limited amount of)
intersections, we randomly choose a corner and use that as the position of the
lower left corner of the rectangle we return.

RandomMap and DenseMap. These example classes try to imitate a real
map using the same methods as RandomRect and DenseRect for placing the
lower left corner of the rectangles, but more realistic rectangle sizes. We assume
a distribution of 1:5:25 of cities, towns and villages. After randomly choosing
one of these three classes according to the assumed distribution, we set the
rectangle height to 12, 10 or 8 points accordingly. The length of the rectangle
text then follows the distribution of a set of 377 German Railway station names.
We assume a typewriter font and set the rectangle length to the number of
characters times the font size times 2/3. The multiplicative factor reflects the
ratio of character width to height.

VariableDensity. This example class was suggested in an experimental com-
parison of map-labeling algorithms by Christensen et al. [CMS95]. There, the
points are distributed uniformly on a rectangle of size 792 x 612. All rectangles
are of equal size, namely 30 x 7.

HardGrid. In principle we use the same method as for DenseRect and Dense-
Map, that is, trying to place as many rectangles as possible into a given area.
In order to do so, we use a grid of |aa/n| X [a4/n] cells with edge lengths n.
Again, as is a factor chosen such that the number of successfully placed squares
is approximately n. In a random order, we try to place a square of edge length
n into each of the cells. This is done by randomly choosing a point within the
cell and putting the lower left corner of the square on it. If it overlaps any of
the squares placed before, we repeat at most 10 times before we turn to the
next cell. Finally, we choose a random corner of the square we placed and use
that as the lower left corner of the square we return.

RegularGrid. We use a grid of |/n] x [y/n] square grid cells. For each cell,
we randomly choose a corner and place a point with a small constant offset
near the chosen corner. On this point, we place a square with an edge length
of grid cell size minus the offset.

MunichDrillholes. The municipal authorities of Munich provided us with
the coordinates of roughly 19,400 ground-water drill holes within a 10 by 10
kilometer square centered approximately on the city center. From these sites,
we randomly pick a center point and then extract a given number of sites
closest to the center point according to the maximum norm. Thus we get a
rectangular section of the map. Its size depends on the number of points asked
for. The drill-hole labels are abbreviations of fixed length. By scaling the
z-coordinates, we make these rectangular labels into squares and subsequently
apply an exact solver for label size maximization. The label size determined in

125

126

Chapter 6. Designing Geometric Algorithms

this way is the size of the squares we return. We place them with their lower
left corner on the scaled drill holes.

Figures 6.17 to 6.24 show an important parameter of these example classes,
namely their average number of intersections. We did not count pairs of touch-
ing rectangles, like in the example implementation of the compare function
objects in Section 6.2.4. We used examples of approximately 250, 500,... up
to 3000 rectangles. For each of the example classes and each example size, we
averaged the runtime and the number of intersections over 30 files.

6.3.2 Results

In Figures 6.1 to 6.24, the average number of rectangles over the 30 files for
each example size is shown on the z-axis. On the y-axis, Figures 6.1 to 6.8
show the average runtime for both implementations for the interesting special
case that the user is merely interested in the number of intersections. This
is slightly favorable for the generic implementation since there, no information
about which rectangles are in fact intersecting, has to be stored. In this setting,
the running times were nearly identical.

Figures 6.9 to 6.16 show the runtime when all intersections are stored in
adjacency lists during the execution of the two programs. Here the generic
implementation took between 0 and 60% longer than the object-oriented ver-
sion. Note however that this gap is smaller—not more than 20%—when the
two example classes RegularGrid and MunichDrillholes with the lowest density
are ignored, i.e. those with the smallest ratio of the number of rectangles and
the number of intersections, see Figure 6.22 and 6.23.

The average runtime is given in CPU seconds. It was measured on a Sparc-
Ultra-1 machine; the programs were compiled with the SUN CC-4.2 compiler
with optimizer option -fast. On our Web page, we provide graphs for the same
test suite run on an SGI IP27 with the mipsPRO CC-7.1 compiler. The results
were comparable.

While the generic and the object-oriented implementation do differ much
in their source code size, we listed the sizes of executables for identical test
programs for both implementations in Table 6.1. The source code is available
via our Web page as well.

test program for ... size of executable in KBytes
object-oriented interval tree 63
generic interval tree 74
object-oriented rectangle intersection 128
generic rectangle intersection 120

Table 6.1: sizes of the executables

126

Section 6.3. Experiments

127

It is interesting to note that although the executable of a simple test program
for the generic version of the interval tree is slightly larger than that of its
object-oriented counterpart, it is opposite for the corresponding versions of the
rectangle intersection data structure. The reason for this seems to be that the
generic implementation does not need to convert and store the input data for
the interval tree explicitly. This difference in the sizes of the executables may
become substantial in case of larger class hierarchies.

6.3.3 Evaluation

We have presented a toolbox of concepts which helps to turn inflexible into
generic and thus reusable interfaces. We have exemplified this transition at a
geometric algorithm, namely a sweep-line algorithm for the rectangle intersec-
tion problem. On the road from a naive to a flexible interface for this algorithm,
we suggested to decouple algorithms from the organization of their in- and out-
put data. Then we presented the loop kernel as an important means of gaining
control over the execution of an algorithm. Full logical inspectability introduced
additional transparence. Finally, we came up with function objects as a way to
parameterize algorithms with information that can be used to influence critical
decisions.

In our experiments, we compared a generic to an object-oriented implemen-
tation of the rectangle intersection algorithm. We investigated the runtime of
the two implementations on eight example classes from random and real world
sources and in two different settings. In the first setting, which was favorable
for the generic implementation, the running times were nearly identical. In
the second setting, the generic implementation was just 20% slower than its
competitor on all example classes but the two least dense. We do not think
that this is too high a price for the gain of flexibility achieved by the generic
interface.

The slowdown caused by an object-oriented library like LEDA is of a differ-
ent order of magnitude. In [MN92], the runtime of Dijkstra’s algorithm using
LEDA Fibonacci heaps is compared to an implementation using special integer
Fibonacci heaps. For this example, the authors report a slowdown by a factor
of 3.

127

128 Chapter 6. Designing Geometric Algorithms

Runtimes for Computing the Number of Intersections

045 T T T T T 0.6 T T T T T
04 E/? b /V@
0.5 4
0.35 - 4
0.3 - 0.4 —
0.25 | 4
0.3 4
0.2 -
0.15 - - 0.2 1
0.1 -
0.1 =
0.05 4 m/a/&
o' ‘ ‘ ‘ ‘ ‘ oL_& ‘ ‘ . ‘ ‘
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Figure 6.1: RandomMap Figure 6.2: RandomRect
045 T T T T T 0.6 T T T T T
P
04 - B
0.5 4
0.35 - 4
0.3 — 0.4 =
025 - i /?/
0.3 4
02 -
0.15 - - 0.2 | -
0.1 -
0.1 =
0.05 B
e le
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Figure 6.3: DenseMap Figure 6.4: DenseRect
0.6 T T 0.2
0.18 - 4
05 1 7 0.16 |- 1
0l i 0.14 e
0.12 - B
0.3 — 0.1 -
0.08 - -
02 b 0.06 - B
o1l i 0.04 | g
002 E
N l , ‘ ‘ l L F , ‘ . l ‘
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Figure 6.5: HardGrid Figure 6.6: RegularGrid
0.3 T 0.3 T

025 B 0.25 - /%ﬁ 4
02 E 02 | & g
A

0.15 - g 015 |- /@/%/é/ 4
01| E 01| R

0.05 - é/@/@/ q 0.05 - —
0 0 560 1(;00 15‘00 20‘00 25‘[[! 3(;00 0 0 5(;0 10‘00 15‘00 20‘00 25‘00 30‘00
Figure 6.7: MunichDrillholes Figure 6.8: VariableDensity
Generic Implementation # Object-Oriented Implementation e % -

128

Section 6.3. Experiments

129

Runtimes for Generating Adjacency Lists

0.5 T T T T T

0.35
03 [
0.25
0.2 [
0.15
0.1 |-

wsr &

0 L I I I I

T

045
0.4 [

0 500 1000 1500 2000 2500

Figure 6.9: RandomMap

I
3000

0.6 T T T T
0.5 -
0.4 |
03
0.2 -

0 L I I

I
0 500 1000 1500 2000 2500

Figure 6.11: DenseMap

I
3000

0.7

0.5

0.4

et ‘

I
0 500 1000 1500 2000 2500

Figure 6.13: HardGrid

3000

0.4
0.35
0.3 -
025
0.2 [
0.15

0.1 [

0.05

L8 ‘ ‘ ‘
0 500 1000 1500 2000 2500

I
3000

Figure 6.15: MunichDrillholes

Generic Implementation #

0.7 T T T T T

0.5

0.4

0.3

0.2

- . . .

I I
0 500 1000 1500 2000 2500 3000

Figure 6.10: RandomRect

0.7

0.6 -

0.5

0.4

0.3

I I
0 500 1000 1500 2000 2500 3000

Figure 6.12: DenseRect

0.35 T

0.3

0.25 -

0.2

0 I L I L L

0 500 1000 1500 2000 2500 3000
Figure 6.14: RegularGrid

0.4

0.35 [

0.3

0.05 - é/g
I I I !

I I
0 500 1000 1500 2000 2500 3000

Figure 6.16: VariableDensity

Object-Oriented Implementation . %] -

129

130

Chapter 6. Designing Geometric Algorithms

4500
4000

3000
2500
2000
1500
1000

500

2200
2000
1800
1600
1400
1200
1000
800
600
400
200

1800
1600
1400
1200
1000
800
600
400

200

I I
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

Numbers of Intersecting Rectangles

T /é 3500 T

3000 B

2500

, 2000

[%/ 7 1500 R
1000 i
| | s00 L / |

L L L I L L 0 I L I L L I
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

Figure 6.17: RandomMap Figure 6.18: RandomRect

2500 T T

2000 4

1500 B

1000 B

I I 0 I I I L I I
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

Figure 6.19: DenseMap Figure 6.20: DenseRect

T 1800 .

B 1600

T
I

1400 B
B 1200 B
B 1000 - b
= B 800 B

F E 600 - e
~

» / | or |
F E 200 - 4
&

L I I I I 0 L I I L

Figure 6.21: HardGrid Figure 6.22: RegularGrid

8000

T T T T

T
5 g 7000 -
L g 6000 |-
L g 5000 -
s 1 1000 |-
L - g 3000 |-
F ?/%/ . 2000 |-

. \ \ \ \ \

500

B 1000

o i ‘ . ‘ ‘
1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

Figure 6.23: MunichDrillholes Figure 6.24: VariableDensity

130

Conclusion

In this thesis we have presented research on the problem of attaching labels
to features in graphs, networks, diagrams, or cartographic maps. We have ap-
proached the problem from two sides. On the one hand we have developed
a general framework for maximizing the number of features that receive a la-
bel by extending the classical constraint-satisfaction framework to maximum
variable-subset constraint satisfaction. The features and label candidates of
a label-placement problem are called variables and values, respectively, in the
context of constraint satisfaction. The fact that two candidates intersect and
thus should not both appear in a solution is expressed by symmetric binary
constraints. Our new framework is of interest not only for label-placement
problems, but for any overconstraint system where it is possible to drop some
of the variables in order to find an assignment for the remaining variables that
satisfies all constraints. We have proposed an algorithm, EI-1, that achieves
edge-irreducibility, a new form of local consistency similar to arc-consistency in
classical constraint satisfaction. EI-1 considers pairs of variables and removes
their redundant values, i.e. values whose removal does not reduce the size of an
optimal solution. We have also given an efficient algorithm, EI-1*, that com-
bines EI-1 with a simple heuristic and proved to be very effective for labeling
point sets.

It would be interesting to extend EI-1 to problems where constraints are not
necessarily symmetric or binary, and to take priorities into account. The rules
that EI-1 checks in order to achieve edge-irreducibility for all pairs of variables
can easily be generalized to any constant number r of variables. However, it
is not clear whether the generalized rules achieve r-irreducibility and whether
there are efficient and practical algorithms that can apply these rules for a
constant r > 2 exhaustively.

Our hope is that EI-1* or other efficient algorithms based on higher degrees
of irreducibility will substitute simulated annealing and other iterative methods
of gradient descent for the wide variety of problems that fit into the framework
of maximum variable-subset constraint satisfaction.

In this thesis we have also investigated special cases of the label-placement
problem. For labeling points with squares or with circles we have shown that
the NP-hardness for picking labels from finite candidate sets carries over to
infinite candidate sets, more precisely to the case where we require that the
boundary of a label contains the point to be labeled. For rectangles of fixed

132

Conclusion

height we have given a corresponding positive result, namely a polynomial-
time approximation scheme (PTAS) for label-number maximization. Since this
scheme uses stabbing lines of equal spacing, it is not clear how to extend our
result to arbitrary rectangles. Even for choosing a non-intersecting subset of
maximum cardinality from n (fixed-position) rectangles only a factor-O(logn)
approximation algorithm is known [AvKS98|.

We have shown that one cannot expect to find a PTAS for maximizing the
size of uniform circular labels. Although we proposed an efficient approximation
algorithm for this problem, there is still a large gap between the approximation
factor of about 1/20 that we have shown for our algorithm and the factor 1/2
that we conjecture to be best possible.

While the hardness results and approximation schemes above are predomi-
nantly of theoretical interest, the algorithm EI-1* for features with a constant
number of label candidates and the greedy algorithm for sliding rectangular
labels, our method for labeling polygonal chains, and our toolbox for designing
flexible geometric algorithms can and should be applied in practice.

The point-labeling algorithm Rules, which is described in Section 3.2, is
actually used by the city authorities of Munich for labeling ground-water drill
holes. We also cooperated with a company that wants to label tourist shops
in Berlin. This company plans to offer the following on-line service?. A user
can select a subset of the shops according to what articles (s)he is interested in.
After pressing the submit button, the corresponding shops in the current map
area are labeled with their names. More information on a shop can be obtained

by clicking on its label.

*http://von-kunst-bis-krimskrams.de/

132

Zusammenfassung

Bei der Visualisierung von Information auf Landkarten, in Graphen oder Dia-
grammen spielt die Beschriftung von Gestaltungselementen wie Punkten, Lini-
enziigen oder Kanten eine grofle Rolle. So schétzt man, dass bei der manuellen
Erstellung einer Landkarte ungefahr die H#lfte der Zeit fiir die Beschriftung
benétigt wird. Dieser Umstand erklédrt das Interesse daran, den Prozess des
Beschriftens moglichst weitgehend zu automatisieren. Das Beschriftungspro-
blem lésst sich ganz allgemein als kombinatorisches Entscheidungsproblem aus-
driicken: Gegeben eine Menge von zu beschriftenden Elementen einer Grafik
und zu jedem Element eine Menge von Beschriftungskandidaten, ist es moglich,
jedem Element einen Kandidaten aus der betreffenden Menge zuzuordnen, ohne
dass sich zwei der gewédhlten Kandidaten schneiden?

Leider muss man davon ausgehen, dass dieses Problem im allgemeinen nicht
effizient zu entscheiden ist. Daher haben fast alle bisherigen Arbeiten zu diesem
Thema heuristische oder approximative Verfahren fiir entsprechende Optimie-
rungsprobleme vorgeschlagen, etwa um eine Beschriftung einer moéglichst groflen
Teilmenge der Grafikelemente zu finden. Dieses Problem bezeichnet man als
das Anzahlmaximierungsproblem.

In meiner Dissertation ndhere ich mich dem Beschriftungsproblem von zwei
Seiten. Einerseits stelle ich ein theoretisches Gertist auf, mit dessen Hilfe man
das Anzahlmaximierungsproblem fiir endliche Kandidatenmengen gut formu-
lieren und effiziente Algorithmen angeben kann, die den Suchraum fiir eine
optimale Losung erheblich verkleinern. Dieses Gertist verallgemeinert das klas-
sische Constraint-Satisfaction-Problem. Ich gebe einen solchen Algorithmus
sowie eine einfache Heuristik an, die auf diesen Algorithmus aufbaut und in der
Praxis sehr gute Resultate liefert.

Andererseits beschéftige ich mich mit Spezialfdllen des Beschriftungspro-
blems. Ich habe mich zuerst mit der Beschriftung von Punkten mit achsenpar-
allelen Rechtecken befasst, wobei fiir jeden Punkt die vier klassischen Positionen
zugelassen wurden, also die, bei denen eine Ecke der Beschriftung den betreffen-
den Punkt beriihren muss. Auf dieses Spezialproblem habe ich den erwéhnten
allgemeinen Algorithmus angewandt und mit anderen Verfahren experimentell
verglichen. Dann habe ich mich mit Beschriftungsmodellen beschéftigt, in de-
nen eine unendliche Anzahl von Beschriftungskandidaten zugelassen wird. Ich
konnte zeigen, dass man nicht erwarten kann, obiges Entscheidungsproblem fiir
quadratische oder kreisformige Beschriftungen effizient zu l6sen, falls jede Be-

134

Zusammenfassung

schriftung ihren Punkt berithren muss. Trotzdem habe ich effiziente Algorith-
men fiir Optimierungsversionen beider Probleme gefunden. Fiir achsenparallele
rechteckige Beschriftungen gleicher Hohe stelle ich ein Approximationsschema
fiir das Anzahlmaximierungsproblem vor. Andererseits zeige ich, dass man nicht
erwarten kann, ein solches Schema fiir die Maximierung der Grofle kreisformiger
Beschriftungen zu finden.

Ausser der Beschriftung von Punkten untersuche ich das Problem, wie man
Linienziige, also Fliisse oder Straflen, qualitativ hochwertig beschriften kann.
Dies ist im Gegensatz zur Punktbeschriftung, wo die Zielfunktion meist klar
ist, eher ein Modellierungsproblem, bei dem man die Anformderungen der Kar-
tographen erst herausfinden muss. Ich habe diese dann in harte und weiche
Anforderungen eingeteilt und einen effizienten Algorithmus vorgeschlagen, der
garantiert, die harten Anforderungen zu erfiillen, und der innerhalb eines Teils
des Suchraums die weichen Anforderungen soweit wie moglich optimiert.

Um die Praxisrelevanz meiner Untersuchungen zu unterstreichen, sind die
meisten angegebenen Algorithmen implementiert worden. Dabei bin ich auf
das schon bekannte Paradigma des generischen Programmierens gestof3en, das
es ermoglicht, Programme sehr allgemein und flexibel zu halten. Ich zeige, wie
man damit erfolgreich geometrische Algorithmen entwirft.

134

Curriculum Vitae

30.11.67

2.6.87

1.7.87 — 28.2.89
1.10.89

1.10.91

19.12.95

1.6.96 — 31.5.99

14.7. —10.8.97
22.3. - 31.3.99

10.2.99
26.4. —30.4.99

28.5.99

born in Stuttgart, Germany
A-levels at Morike Gymnasium Ludwigsburg
alternative service

enrolment at Albert Ludwig University Freiburg;
major in mathematics, minor in computer science

enrolment at Freie Universitat Berlin;
study focus: theoretical computer science

graduation from Freie Universitdt Berlin;
title of Master’s Thesis: “Map Labeling”

research assistent of Dr. Frank Wagner at Freie Universitat
Berlin; work on project “Efficient Algorithms for Map La-
beling” funded by the German Science Foundation (DFG)

and
research guest of Dr. Marc van Kreveld, Utrecht University,
The Netherlands

completion of PhD thesis

research guest of Prof. Peter Widmayer, ETH Zurich,
Switzerland

doctoral defense, talk on “Parametrized Complexity—
a New Approach for Hard Problems”

136

136

Thanks

Thanks to Sabine.

Thanks to Frank for giving me a great research topic.

Thanks to Vikas for implementing our algorithms at day and night.
Thanks to Sven for being such a great office mate at the institute.
Thanks to Christian for answering my technical questions.

Thanks to Marc for giving me the opportunity to do research in Utrecht.
Thanks to Tycho for all the mathematical lessons he taught me.

Thanks to Jack for suggesting Lemma 3.13 and its proof.

Thanks to Frank Schumacher for waiting as patiently as a spider in the Web.
Thanks to Rudi Kramer and Karsten for real-world data.

Thanks to Ulrike for pointing me to the topic of my defense talk.

Thanks to Karla Thiede for steering me smoothly through administration.

Thanks to the German Science Foundation (DFG) for funding the project.

138

138

Bibliography

[Ach95]

[AF84]

[AHO5]

[ATK89]

[Ali62]

[AVKS98]

[Bar97]

[Bes94]

[BFRO5]

Alf-Christian Achilles. The collection of computer science bibli-
ographies. http://liinwww.ira.uka.de/bibliography/, 1995.

John Ahn and Herbert Freeman. A program for automatic name
placement. Cartographica, 21(2-3):101-109, 1984.

David H. Alexander and Carl S. Hantman. Automating linear
text placement within dense feature networks. In Proc. Auto-
Carto 12, pages 311-320. ACSM/ASPRS, Bethesda, 1995.

Hiromi Aonuma, Hiroshi Imai, and Yahiko Kambayashi. A visual
system of placing characters appropriately in multimedia map
databases. In Proceedings of the IFIP TC 2/WG 2.6 Working
Conference on Visual Database Systems, pages 525-546. North-
Holland, 1989.

Georges Alinhac. Cartographie Théorique et Technique, chap-
ter IV. Institut Géographique National, Paris, 1962.

Pankaj K. Agarwal, Marc van Kreveld, and Subhash Suri. Label
placement by maximum independent set in rectangles. Compu-
tational Geometry: Theory and Applications, 11:209-218, 1998.

Mathieu Barrault. An automated system for name placement
which complies with cartographic quality criteria: The hydro-
graphic network. In Proceedings of the Conference on Spatial
Information Theory (COSIT’97), volume 1329 of Lecture Notes
in Computer Science, pages 499-500, Pittsburgh, PA, 1997.
Springer-Verlag.

Christian Bessiere. Arc-consistency and arc-consistency again.
Artificial Intelligence, 65:179-190, 1994.

Christian Bessiere, Eugene C. Freuder, and Jean-Charles Régin.
Using inference to reduce arc-consistency computation. In
Proc. International Joint Conference on Artificial Intelligence,
Montréal, August 1995.

140

Bibliography

[BL95]

[Boy73]

[Boy74]

(BS9S]

[C+96]

[CFMS97]

[CKS89]

[CLR90]

[CMS95]

[Coo88]

[dBvKOS97]

[DF92]

Mathieu Barrault and Francois Lecordix. An automated system
for linear feature name placement which complies with carto-
graphic quality criteria. In Proc. Auto-Carto 12, pages 321-330,
Charlotte, NC, March 1995. ACSM/ASPRS, Bethesda.

A. Raymond Boyle. Computer aided map compilation. Techni-
cal report, Department of Electrical Engineering, University of
Saskatchewan, Canada, 1973.

A. Raymond Boyle. Report on symbol and name manipulation
and placement. Technical report, Department of Electrical En-
gineering, University of Saskatchewan, Canada, 1974.

Roland Backhouse and Tim Sheard. Call for Participation
of “Workshop on Generic Programming”, Marstrand, Swe-

den. http://www.cs.uu.nl/people/johanj/wgp98.html, June
1998.

Bernard Chazelle et al. Application challenges to computational
geometry: CG impact task force report. Technical Report TR-
521-96, Princeton Univ., April 1996.

Jon Christensen, Stacy Friedman, Joe Marks, and Stuart Shieber.
Empirical testing of algorithms for variable-sized label placement.
In Proceedings of the 13th Annual ACM Symposium on Compu-
tational Geometry (SoCG’97), pages 415-417, 1997.

L. Paul Chew and Klara Kedem. Placing the largest similar
copy of a convex polygon among polygonal obstacles. In Pro-
ceedings of the Fifth Annual Symposium on Computational Ge-
ometry, Saarbricken, pages 167-174, New York, 5-7 June 1989.
ACM, ACM Press.

Thomas Cormen, Charles Leiserson, and Ronald Rivest. Intro-
duction to Algorithms. The MIT Press, 1990.

Jon Christensen, Joe Marks, and Stuart Shieber. An empiri-
cal study of algorithms for point-feature label placement. ACM
Transactions on Graphics, 14(3):203-232, 1995.

A.C. Cook. Automated Cartographic Name Placement Using
Rule-Based Systems. PhD thesis, Polytechnic of Wales, 1988.

Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried
Schwarzkopf. Computational Geometry: Algorithms and Appli-
cations. Springer-Verlag, Berlin, 1997.

Jeffrey S. Doerschler and Herbert Freeman. A rule-based system
for dense-map name placement. Communications of the ACM,
35:68-79, 1992.

140

Bibliography

141

[Djo94]

[DLSS95]

[DMM+97]

[DMRO7]

[DP73]

[ECMS97]

[Ede80]

[EIST6]

[Fei96)

[FGKT98]

[FPT81]

[Fress)]

Y. Djouadi. Cartage: A cartographic layout system based on
genetic algorithms. In Proc. EGIS’94, pages 48-56, 1994.

Amitava Datta, Hans-Peter Lenhof, Christian Schwarz, and
Michiel H. M. Smid. Static and dynamic algorithms for k-point
clustering problems. J. Algorithms, 19:474-503, 1995.

Srinivas Doddi, Madhav V. Marathe, Andy Mirzaian,
Bernard M.E. Moret, and Binhai Zhu. Map labeling and its
generalizations. In Proceedings of the 8th ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA’97), pages 148-157, New
Orleans, LA, 4-7 January 1997.

Karen Daniels, Victor Milenkovic, and Dan Roth. Finding the
largest area axis-parallel rectangle in a polygon. Computational
Geometry: Theory and Applications, 7:125-148, 1997.

David H. Douglas and Thomas K. Peucker. Algorithms for the
reduction of the number of points required to represent a digitized

line or its caricature. Canadian Cartographer, 10(2):112-122,
December 1973.

Shawn Edmondson, Jon Christensen, Joe Marks, and Stuart
Shieber. A general cartographic labeling algorithm. Cartograph-
ica, 33(4):13-23, 1997.

Herbert Edelsbrunner. Dynamic data structures for orthogonal
intersection queries. Report F59, Inst. Informationsverarb., Tech.
Univ. Graz, Graz, Austria, 1980.

Shimon Even, Alon Itai, and Adi Shamir. On the complexity of
timetable and multicommodity flow problems. SIAM Journal on
Computing, 5:691-703, 1976.

Uriel Feige. A threshold of In n for approximating set cover. In
Proceedings of the 28th Annual ACM Symposium on Theory of
Computing, pages 314-318, 1996.

Andreas Fabri, Geert-Jan Giezeman, Lutz Kettner, Stefan
Schirra, and Sven Schonherr. On the design of CGAL, the
Computational Geometry Algorithms Library. Research Re-
port MPI-I-98-007, Max-Planck Institute for Computer Science,
Saarbriicken, 1998.

Robert J. Fowler, Michael S. Paterson, and Steven L. Tanimoto.
Optimal packing and covering in the plane are NP-complete. In-
formation Processing Letters, 12(3):133-137, 1981.

Herbert Freeman. An expert system for the automatic placement
of names on a geographic map. Information Sciences, 45:367-378,
1988.

141

142

Bibliography

[FW91]

[FW92]

[Hir82]

[1L97)

[Imh62]

[Imh75]

[1S89)]

[Jam96]

[JC89]

[JTFMO6]

[JTO8]

[Kar72]

[Ket9g]

[KMPS93]

Michael Formann and Frank Wagner. A packing problem with
applications to lettering of maps. In Proc. 7th Annu. ACM Sym-
pos. Comput. Geom. (SoCG’91), pages 281-288, 1991.

Eugene C. Freuder and Richard J. Wallace. Partial constraint
satisfaction. Artificial Intelligence, 58:21-70, 1992.

Stephen A. Hirsch. An algorithm for automatic name placement
around point data. The American Cartographer, 9(1):5-17, 1982.

Claudia ITturriaga and Anna Lubiw. NP-hardness of some map
labeling problems. Technical Report CS-97-18, University of Wa-
terloo, Canada, 1997.

Eduard Imhof. Die Anordnung der Namen in der Karte. In
International Yearbook of Cartography, pages 93-129, Bonn Bad
Godesberg, 1962. Kirschbaum.

Eduard Imhof. Positioning names on maps. The American Car-
tographer, 2(2):128-144, 1975.

Edward H. Isaaks and R. Mohan Srivastava. An Introduction to
Applied Geostatistics. Oxford University Press, New York, 1989.

Michael B. Jampel. OQuver-Constrained Systems in CLP and
CSP. PhD thesis, Dept. of Comp. Sci. City University, London,
September 1996.

Christopher B. Jones and Anthony C. Cook. Rule-based name
placement with Prolog. In Proc. Auto-Carto 9, pages 231-240,
1989.

Michael Jampel, Eugene Freuder, and Michael Maher, editors.
Over-Constrained Systems. Number 1106 in LNCS. Springer,
August 1996.

Joseph R. Jones and Paul Thurrott. Cascading Style Sheets: a
primer. MIS Press, P. O. Box 5277, Portland, OR 97208-5277,
USA, Tel: (503) 282-5215, 1998.

Richard M. Karp. Reducibility among combinatorial problems. In
R.E. Miller and J.W. Thatcher, editors, Complexity of Computer
Computations, pages 85—103. Plenum Press, 1972.

Lutz Kettner. Designing a data structure for polyhedral surfaces.
In Proc. 14th Annu. ACM Sympos. Comput. Geom., pages 146—
154, June 1998.

Ludek Kuéera, Kurt Mehlhorn, Bettina Preis, and Erik Schwarze-
necker. Exact algorithms for a geometric packing problem. In
Proc. 10th Sympos. Theoret. Aspects Comput. Sci., volume 665

142

Bibliography 143

of Lecture Notes in Computer Science, pages 317-322. Springer-
Verlag, 1993.

[Kni9g| Lars Knipping. Beschriftung von Linienziigen. Master’s the-
sis, Fachbereich Mathematik und Informatik, Freie Universitat
Berlin, November 1998.

[KR92] Donald E. Knuth and Arvind Raghunathan. The problem of
compatible representatives. SIAM J. Discr. Math., 5(3):422-427,
1992.

[Kra97] Joshua C. Kramer. Line feature label placement for ALPS5.0. un-

published manuscript, available at http://paul.rutgers.edu/
~jckramer/academics/Report/, 1997.

[KSY99] Sung Kwon Kim, Chan-Su Shin, and Tae-Cheon Yang. Labeling
a rectilinear map with sliding labels. Technical Report HKUST-
TCSC-1999-06, Hongkong University of Science and Technology,
July 1999.

[KT98] Konstantinos G. Kakoulis and Ionnis G. Tollis. A unified ap-
proach to labeling graphical features. In Proc. 14th Annu. ACM
Sympos. Comput. Geom. (SoCG’98), pages 347-356, June 1998.

[Kiih96] Dietmar Kiihl. Design patterns for the implementation of graph
algorithms. Master’s thesis, Technische Universitat Berlin, 1996.

[KW97] Dietmar Kiihl and Karsten Weihe. Data access templates. C++
Report, 9(7):18-21, July 1997.

[Lic82] David Lichtenstein. Planar formulae and their uses. SIAM Jour-
nal on Computing, 11(2):329-343, 1982.

[Mac77] Alan K. Mackworth. Consistency in networks of relations. Arti-
ficial Intelligence, 8:99-118, 1977.

[McC85] Edward M. McCreight. Priority search trees. SIAM Journal on
Computing, 14(2):257-276, 1985.

[MF85] Alan K. Mackworth and Eugene C. Freuder. The complexity of
some polynomial network consistency algorithms for constraint
satisfaction problems. Artificial Intelligence., 25:65-74, 1985.

[MHB86] Roger Mohr and Thomas C. Henderson. Arc and path consis-
tency revisited. Artificial Intelligence, 28(2):225-233, 1986.

[Mil94] William Mills. Practical considerations in name placement: A
defence of Pinhas Yoeli. Cartographica, 31(4):58-62, 1994.

[MN92] Kurt Mehlhorn and Stefan Naher. Algorithm design and software
libraries: Recent developments in the LEDA project. In Jan van
Leeuwen, editor, Proceedings of the IFIP 12th World Computer

143

144

Bibliography

[Mor80]

[MS91]

[MS96]

[NMOO]

[NWO6]

[Ove96]

[Pre93]

[Pre9s|

[PZC98]

[Rai9g]

[Raig9]

Congress. Volume 1: Algorithms, Software, Architecture, pages
493-508, Amsterdam, The Netherlands, September 1992. Else-
vier Science Publishers.

Joel L. Morrison. Computer technology and cartographic change.
In D.R.F. Taylor, editor, The Computer in Contemporary Car-
tography. J. Hopkins Univ. Press, New York, 1980.

Joe Marks and Stuart Shieber. The computational complexity of
cartographic label placement. Technical Report TR-05-91, Har-
vard CS, 1991.

David R. Musser and Atul Saini. STL Tutorial and Reference
Guide. Addison-Wesley, Reading, MA, 1996.

Stefan Néaher and Kurt Mehlhorn. LEDA: A library of efficient
data types and algorithms. In Proc. Internat. Collog. Automata
Lang. Program., pages 1-5, 1990.

Marco Nissen and Karsten Weihe. Combining leda with customiz-
able implementations of graph algorithms. Technical Report 17,
Fakultat fiir Mathematik und Informatik, Universitat Konstanz,
October 1996. ISSN 1430-3558.

Mark H. Overmars. Designing the Computational Geometry Al-
gorithms Library CGAL. In M. C. Lin and D. Manocha, edi-
tors, Applied Computational Geometry (Proc. WACG ’96), vol-
ume 1148 of Lecture Notes Comput. Sci., pages 53-58. Springer-
Verlag, 1996.

Bettina Preis. Ein NP-vollstandiges Plazierungsproblem. Mas-
ter’s thesis, Fachbereich Informatik, Universitit des Saarlandes,
Saarbriicken, February 1993.

Mike Preuf. Solving map labeling problems by means of evolution
strategies. Master’s thesis, Fachbereich Informatik, Universitat
Dortmund, February 1998.

Chung Keung Poon, Binhai Zhu, and Francis Chin. A polyno-
mial time solution for labeling a rectilinear map. Information
Processing Letters, 65(4):201-207, 1998.

Giinther Raidl. A genetic algorithm for labeling point features.
In Proc. of the Int. Conference on Imaging Science, Systems, and
Technology, pages 189-196, Las Vegas, NV, July 1998.

Giinther Raidl. An evolutionary approach to point-feature label
placement. In W. Banzhaf, J. Daida, A.E. Eiben, M.H. Gar-
zon, V. Honavar, M. Jakiela, and R.E. Smith, editors, Proceed-
ings of the Genetic and Evolutionary Computation Conference
(GECCO’99), page 807. Morgan Kaufmann, July 1999.

144

Bibliography 145

[Rum9s] Wolfgang Rumplmaier. Optimierung von Labelanordnungen mit
Genetischen Algorithmen und Simulated Annealing. Master’s
thesis, Institute of Computer Graphics, Vienna University of
Technology, April 1998.

[Sch95] Erik Schwarzenecker. Ein NP-schweres Plazierungsproblem.
PhD thesis, Technische Fakultdt der Universitit des Saarlandes,
Saarbriicken, 1995.

[SFV95] Thomas Schiex, Hélene Fargier, and Gérard Verfaillie. Valued
constraint satisfaction problems: Hard and easy problems. In
Proc. International Joint Conference on Artificial Intelligence,
Montréal, August 1995.

[SvK99] Tycho Strijk and Marc van Kreveld. Labeling a rectilinear map
more efficiently. Information Processing Letters, 69(1):25-30,
1999.

[SWOg] Sven Schonherr and Alexander Wolff. MAKEIT! — Generating

and maintaining makefiles automatically. In Roberto Battini and
Alan A. Bertossi, editors, Proc. Workshop on Algorithms and
Experiments (ALEX98), Trento, Italy, pages 165-174. Universita
di Trento, 9-11 February 1998.

[SZ97] Phil Stephens and Ray Zhang. Archaeologists claim finding
world’s oldest scaled map. China News Digest, 20 November
1997. http://www.herbaria.harvard.edu/china/focnews/
October-97/0011.html.

[VA99] Bram Verweij and Karen Aardal. An optimisation algorithm for
maximum independent set with applications in map labelling.
In Proc. Tth Annu. Europ. Symp. on Algorithms (ESA’99), vol-
ume 1643 of Lecture Notes in Computer Science, pages 426437,
Prague, 16-18 July 1999. Springer-Verlag.

[vDTdB99] Steven van Dijk, Dirk Thierens, and Marc de Berg. On the
design of genetic algorithms for geographical applications. In
W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar,
M. Jakiela, and R.E. Smith, editors, Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO’99), pages
188-195. Morgan Kaufmann, July 1999.

[vVDvKSW99| Steven van Dijk, Marc van Kreveld, Tycho Strijk, and Alexander
Wolft. Towards an evaluation of quality for label placement meth-
ods. In Proceedings of the 19th International Cartographic Con-
ference (ICA’99), pages 905-913, Ottawa, 14-21 August 1999.
Int. Cartographic Association.

[VKSWO98] Marc van Kreveld, Tycho Strijk, and Alexander Wolff. Point set
labeling with sliding labels. In Proc. 14th Annu. ACM Sympos.
Comput. Geom. (SoCG’98), pages 337-346, 7-10 June 1998.

145

146

Bibliography

[VKSW99]

[vR89)]

[VWS97]

[Wag94]

[WB91]

[Wei97]

[Wei98]

[Wil73]

[WKvK+99]

[WS96]

[WW97]

[WWOS]

Marc van Kreveld, Tycho Strijk, and Alexander Wolff. Point
labeling with sliding labels. Computational Geometry: Theory
and Applications, 13:21-47, 1999.

Jan W. van Roessel. An algorithm for locating candidate labeling
boxes within a polygon. The American Cartographer, 16(3):201—
209, 1989.

Oleg Verner, Roger Wainwright, and Dale Schoenefeld. Placing
text labels on maps and diagrams using genetic algorithms with
masking. INFORMS Journal on Computing, 9(3):266-275, 1997.

Frank Wagner. Approximate map labeling is in Q(nlogn). In-
formation Processing Letters, 52(3):161-165, 1994.

Chyan Victor Wu and Barbara Pfeil Buttenfield. Reconsidering
rules for point-feature name placement. Cartographica, 28(1):10—
27, 1991.

Karsten Weihe. Reuse of algorithms: Still a challenge to
object-oriented programming. In Proceedings of the ACM SIG-
PLAN Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA-97), volume 32, 10 of
ACM SIGPLAN Notices, pages 3448, New York, October 1997.
ACM Press.

Karsten Weihe. Using templates to improve C++ designs. C++
Report, 10(2):14-21, 1998.

W.T. Wilkie. Computerized cartographic name processing. Mas-
ter’s thesis, Department of Electrical Engineering, University of
Saskatchewan, Canada, 1973.

Alexander Wolff, Lars Knipping, Marc van Kreveld, Tycho Strijk,
and Pankaj K. Agarwal. A simple and efficient algorithm for high-
quality line labeling. In David Martin and Fulong Wu, editors,
Proc. GIS Research UK Tth Annual Conference (GISRUK’99),
pages 146-150, Southampton, 14-16 April 1999. Department of
Geography, University of Southampton.

Alexander Wolff and Tycho Strijk. A map labeling bib-
liography. http://www.math-inf.uni-greifswald.de/map-
labeling/bibliography/, 1996.

Frank Wagner and Alexander Wolff. A practical map labeling
algorithm. Computational Geometry: Theory and Applications,
7:387-404, 1997.

Frank Wagner and Alexander Wolff. A combinatorial framework
for map labeling. In Sue H. Whitesides, editor, Proceedings of the
Symposium on Graph Drawing (GD’98), volume 1547 of Lecture

146

Bibliography 147

Notes in Computer Science, pages 316-331. Springer-Verlag, 13—
15 August 1998.

[YoeT2] Pinhas Yoeli. The logic of automated map lettering. The Carto-
graphic Journal, 9:99-108, 1972.

[Zor86] Steven Zoraster. Integer programming applied to the map label
placement problem. Cartographica, 23(3):16-27, 1986.

[Zor90)] Steven Zoraster. The solution of large 0-1 integer programming
problems encountered in automated cartography. Operations Re-
search, 38(5):752-759, 1990.

[Zor97] Steven Zoraster. Practical results using simulated annealing for
point feature label placement. Cartography and GIS, 24(4):228—
238, 1997.

147

