
Approximating
the Geometric Minimum-Diameter Spanning Tree

Joachim Gudmundsson
∗

Dept. of Comp. Science
Utrecht University
The Netherlands

joachim@cs.uu.nl

Herman Haverkort
†

Dept. of Comp. Science
Utrecht University
The Netherlands

herman@cs.uu.nl

Sang-Min Park
Dept. of Comp. Science

KAIST
Korea

smpark@jupiter.kaist.ac.kr

Chan-Su Shin
School of Electr. and Inform. Engineering

Hankuk University of Foreign Studies
Korea

cssin@hufs.ac.kr

Alexander Wolff
Institut für Mathematik und Informatik

Universität Greifswald
Germany

awolff@uni-greifswald.de

ABSTRACT
Let P be a set of n points in the plane. The geometric
minimum-diameter spanning tree (MDST) of P is a tree that
spans P and minimizes the Euclidian length of the longest
path. It is known that there is always a mono- or a dipolar
MDST, i.e. a MDST whose longest path consists of two or
three edges, respectively. The more difficult dipolar case can
so far only be solved in O(n3) time. In this paper we give
an O(n log n)-time approximation scheme for the MDST.

1. INTRODUCTION
The geometric minimum-diameter spanning tree (MDST)
can be seen as a network without cycles that minimizes the
maximum travel time between any two sites connected by
the network. This is of importance e.g. in communication
systems where the maximum delay in delivering a message
is to be minimized. Ho et al. showed that there always
is a mono- or a dipolar MDST [4]. For a different proof,
see [3]. Ho et al. gave an O(n log n)-time algorithm for the
monopolar and an O(n3)-time algorithm for the dipolar case
[4]. In the more difficult dipolar case the objective is to
find a minimum-diameter dipolar spanning tree (MDdST),
i.e. a tree with two roots x, y ∈ P such that the function
rx + |xy| + ry is minimized, where |xy| is the Euclidean
distance of x and y, and rx and ry are the radii of two disks

∗Supported by the Swedish Foundation for International Co-
operation in Research and Higher Education.
†Supported by the Netherlands’ Organization for Scientific
Research.

EuroCG’02 Warszawa

centered at x and y that cover P .

We show that there is a fast approximation scheme for the
MDdST. More precisely, given a set P of n points and
some ε > 0 we show how to compute in O(n log n) time and
space a dipolar tree whose diameter is at most (1+ ε) times
as long as the diameter of a MDdST. Our approximation
scheme is based on a well-separated pair decomposition [1]
of P , a very powerful tool that we will briefly review. This
decomposition makes it possible to consider only a linear
number of pairs of points on the search for the two poles of
an approximate MDdST. The main novelty of our scheme
is a discretization of the orientations of line segments to a
constant number of orientations. We only consider projec-
tions of P onto those directions, which gives us fast access
to farthest neighbors. For the full paper, see [2].

2. THE WELL-SEPARATED PAIR DECOM-
POSITION

Our algorithm uses the well-separated pair decomposition
(WSPD) of Callahan and Kosaraju [1] that we now review.

Definition 1. Let τ > 0 be a real number, and let A
and B be two finite sets of points in R

d. We say that A
and B are well-separated w.r.t. τ , if there are two disjoint
d-dimensional balls CA and CB both of radius r such that
A ⊂ CA, B ⊂ CB, and the distance between CA and CB is
at least equal to τr.

The parameter τ will be referred to as the separation con-
stant. The following lemma follows easily from Definition 1.

Lemma 1. Let A and B be two finite sets of points that
are well-separated w.r.t. τ , let x and p be points of A, and
let y and q be points of B. Then (i) |xy| ≤ (1 + 2/τ) · |xq|,
(ii) |xy| ≤ (1 + 4/τ) · |pq|, (iii) |px| ≤ (2/τ) · |pq|, and (iv)
the angle between the line segments pq and py is at most
arcsin(2/τ).

Definition 2. Let P be a set of n points in R
d, and τ >

0 a real number. A well-separated pair decomposition for
P w.r.t. τ is a sequence (A1, B1), (A2, B2), . . . , (A`, B`) of
pairs of non-empty subsets of P such that each pair is well-
separated w.r.t. τ and for any p 6= q ∈ P , there is exactly
one pair (Ai, Bi) with p ∈ Ai and q ∈ Bi or vice versa.

Callahan and Kosaraju show that a WSPD with ` = O(τ 2n)
can be computed using O(n log n + τ 2n) time and space.

3. A STRAIGHT-FORWARD APPROXIMA-
TION SCHEME

The approximation algorithm consists of two subalgorithms:
the first algorithm computes a minimum-diameter monopo-
lar spanning tree and the second computes an approxima-
tion of the MDdST. When these two trees have been com-
puted we output the one with smaller diameter. According
to [4] there exists a MDST that is either a monopolar or
a dipolar tree. The minimum-diameter monopolar tree can
be computed in time O(n log n), hence we will focus on the
problem of computing a MDdST. Let dmin be the diame-
ter of a MDdST and let Tpq denote a spanning tree with
dipole {p, q} whose diameter is minimum among all such
trees. For any dipolar spanning Tree T with dipole {u, v}
let ru(T) (rv(T)) be the length of the longest edge of T
incident to u (v) without taking into account the edge uv.
When it is clear which tree we refer to, we use ru and rv.

Observation 1. Let (A1, B1), . . . , (A`, B`) be a well-
separated pair decomposition (WSPD) of P with separa-
tion constant τ , and let p and q be any two points in
P . Then there is a pair (Ai, Bi) such that for every point
u ∈ Ai and every point v ∈ Bi the inequality diam Tuv ≤
(1 + 8/τ) · diam Tpq holds.

Proof. According to Definition 2 there is a pair (Ai, Bi)
in the WSPD such that p ∈ Ai and q ∈ Bi. If u is any
point in Ai and v is any point in Bi, then let T be the
tree with poles u and v where u is connected to v, p and
each neighbor of p in Tpq except q is connected to u, and
q and each neighbor of q in Tpq except p is connected to v.
By Lemma 1(ii) |uv| ≤ (1 + 4/τ)|pq| and by Lemma 1(iii)
ru ≤ |up|+ rp ≤ 2|pq|/τ + rp. Since diam T = ru + |uv|+ rv

we have

diam T ≤

„

rp + 2
|pq|

τ

«

+

„

|pq|+ 4
|pq|

τ

«

+

„

rq + 2
|pq|

τ

«

<

„

1 +
8

τ

«

· diam Tpq.

The lemma follows since Tuv has minimum diameter among
all dipolar spanning trees with dipole {u, v}.

A first algorithm is now obvious. For each pair (Ai, Bi) in
the WSPD of P pick any vertex p ∈ Ai and any vertex
q ∈ Bi, and compute Tpq. This is done by checking every
possible radius of a disk centered at p as in [4] in O(n log n)
time. Setting τ to 8/ε yields:

Lemma 2. A dipolar tree T with diam T ≤ (1 + ε) · dmin

can be computed in O(n
ε2 + n2 log n) time using O(n

ε2 +
n log n) space.

4. A FAST APPROXIMATION SCHEME
Now we describe a faster algorithm and show its time com-
plexity; we will prove its correctness in Section 5.

Theorem 1. A dipolar tree T with diam T ≤ (1+ε)·dmin

can be computed in O(n
ε3 + n

ε
log n) time using O(n

ε2 +n log n)
space.

The idea of the algorithm is again to check a linear number
of pairs of points, using the WSPD, but to speed up the
computation of the disks around the two poles. Note that
we need to find a close approximation of the diameters of
the disks to be able to guarantee a (1+ ε)-approximation of
the MDdST. Obviously we cannot afford to try all possible
disks for all possible pairs of poles. Instead of checking the
disks we will show in the analysis that it suffices to check a
constant number of partitions of the points among the poles.
The partition of points is done by cuts that are orthogonal
to the line through the poles. We cannot afford to do this for
each possible pair. Instead we select a constant number of
orientations and use a constant number of orthogonal cuts
for each orientation. For each cut we calculate for each point
in P the approximate distance to the farthest point on each
side of the cut. Below we give a more detailed description
of the algorithm. For its pseudocode refer to Algorithm 1.

Phase 1: Initializing. Choose an auxiliary positive con-
stant κ < min{0.9ε, 1/2}. As will be clear later, this param-
eter can be used to fine-tune which part of the algorithm
contributes how much to the uncertainty and to the run-
ning time. In phase 3 the choice of the separation constant
τ will depend on the value of κ and ε.

Definition 3. A set of points P is said to be l-ordered if
the points are ordered with respect to their orthogonal pro-
jection onto the line l.

Let li be the line with angle iπ
γ

to the horizontal line, where

γ = d4/κe. This implies that for an arbitrary line l there
exists a line li such that ∠lil ≤

π
2γ

. For each i, 1 ≤ i ≤ γ,
sort the input points with respect to the li-ordering. We
obtain γ sorted lists F = {F1, . . . , Fγ}. Each point p in Fi

has a pointer to itself in F(i mod γ)+1. The time to construct
these lists is O(γn log n).

For each li, rotate P and li such that li is horizontal and
consider the orthogonal projection of the points in P onto li.
For simplicity we denote the points in P from left to right
on li by p1, . . . , pn. Let di denote the horizontal distance
between p1 and pn. Let bij , 1 ≤ j ≤ γ, be the point on li at
distance jdi

γ+1
to the right of p1. Let Lij and Rij be the set

of points to the left and to the right of bij respectively.

For each point bij on li we construct γ pairs of lists, denoted
L′

ijk and R′

ijk, where 1 ≤ k ≤ γ. A list L′

ijk (R′

ijk) contains
the set of points in Lij (Rij) sorted according to the lk-
ordering. Such a list can be constructed in linear time since
the ordering is given by the list Fk. (Actually it is not
necessary to store the lists L′

ijk and R′

ijk: we only need
to store the first and the last point in each list.) Hence
the total time complexity needed to construct the lists is

Algorithm 1 Approx-MDdST(P, ε)

Ensure: diam T ≤ (1 + ε) dmin

Phase 1: initializing
1: choose κ ∈ (0, min{0.9ε, 1/2})
2: γ ← d4/κe
3: for i← 1 to γ do

4: li ← line with angle i π
γ

to the horizontal
5: Fi ← li-ordering of P
6: end for

7: for i← to γ do

8: rotate P and li such that li is horizontal
9: let p1, . . . , pn be the points in Fi from left to right

10: di ← |p1.x− pn.x|
11: for j ← 1 to γ do

12: bij ← point on li at dist. j di

γ+1
to the right of p1

13: for k ← 1 to γ do

14: L′

ijk ← lk-ordered subset of Fk to the left of bij

15: R′

ijk ← lk-ordered subset of Fk to the right of bij

16: end for

17: end for

18: end for

Phase 2: computing approximate farthest neighbors
19: for i← 1 to γ do

20: for j ← 1 to γ do

21: for k ← 1 to n do

22: N(pk, i, j, L)← pk (dummy)
23: for l← 1 to γ do

24: pmin ← first point in L′

ijl

25: pmax ← last point in L′

ijl

26: if |pkpmin| > |pkpmax| then

27: f ← pmin

28: else

29: f ← pmax

30: end if

31: if |pkf | > |pkN(pk, i, j, L)| then

32: N(pk, i, j, L)← f
33: end if

34: end for

35: end for

36: repeat lines 21–35 with R instead of L
37: end for

38: end for

Phase 3: testing pole candidates
39: τ = 8(1+ε

(1+ε−(1+κ)(1+κ/24)
− 1)

40: build WSPD for P with separation constant τ
41: d←∞ {smallest diameter so far}
42: for each pair (A, B) in WSPD do

43: choose any two points u ∈ A and v ∈ B
44: D ←∞ {approx. diam. of tree with poles u and v}
45: l(u,v) ← the line through u and v
46: find li such that ∠lil(u,v) is minimized
47: for j ← 1 to γ do

48: D ← min{D,
|N(u, i, j, L)u|+ |uv|+ |vN(v, i, j, R)|,
|N(u, i, j, R)u|+ |uv|+ |vN(v, i, j, L)|}

49: end for

50: if D < d then

51: u′ ← u and v′ ← v
52: d← D
53: end if

54: end for

55: compute T ← Tu′v′

56: return T

O(γ3n+γn log n), see lines 1–18 in Algorithm 1. These lists
will help us to compute an approximate farthest neighbor
in Lij and Rij for each point p ∈ P in time O(γ), as will be
described below.

Phase 2: Computing approximate farthest neigh-

bors. Compute, for each point p, an approximate farthest
neighbor in Lij and an approximate farthest neighbor in Rij ,
denoted N(p, i, j, L) and N(p, i, j, R) respectively. This can
be done in time O(γ) by using the lists L′

ijk and R′

ijk: just
compute the distance between p and the first respectively
the last point in each list. There are γ lists for each pair
(i, j) and given that at most two entries in each list have to
be checked, an approximate farthest neighbor can be com-
puted in time O(γ). Hence the total time complexity of this
phase is O(γ3n), as there are O(γ2n) triples of type (p, i, j).
The error we make by using approximate farthest neighbors
is small:

Observation 2. If p is any point in P , pL the point in
Lij farthest from p and pR the point in Rij farthest from p,
then (a) |ppL| ≤ (1 + κ/24) · |pN(p, i, j, L)|
and (b) |ppR| ≤ (1 + κ/24) · |pN(p, i, j, R)|.

Proof. Due to symmetry it suffices to check (a). If the
algorithm did not select pL as farthest neighbor it holds
that for each of the li-orderings there is a point further from
p than pL. Hence pL must lie within a symmetric 2γ-gon
whose edges are at distance |pN(p, i, j, L)| from p. This
implies that |pN(p, i, j, L)| ≥ |ppL| cos(π/(2γ)) ≥ |ppL|/(1+
κ/24), using some basic calculus and κ ≤ 1/2.

Phase 3: Testing pole candidates. Compute the WSPD
for P with separation constant τ . To be able to guarantee a
(1 + ε)-approximation algorithm the value of τ will depend
on ε and κ as follows:

τ = 8

„

1 + ε

1 + ε− (1 + κ)(1 + κ/24)
− 1

«

.

Note that the above formula implies that there is a trade-off
between the values τ and κ, which can be used to fine-tune
which part of the algorithm contributes how much to the
uncertainty and to the running time. Setting for instance
κ to 0.9ε yields for ε small 16/ε + 15 < τ/8 < 32/ε + 31,
i.e. τ = Θ(1

ε
). For each pair (A, B) in the decomposition we

select two arbitrary points u ∈ A and v ∈ B. Let l(u,v) be
the line through u and v. Find the line li that minimizes
the angle between li and l(u,v). That is, the line li is a close
approximation of the direction of the line through u and v.
From above we have that li is divided into γ + 1 intervals
of length di

γ+1
. For each value of j, 1 ≤ j ≤ γ, compute

min(|N(u, i, j, L)u|+ |uv|+ |vN(v, i, j, R)|, |N(u, i, j, R)u|+
|uv| + |vN(v, i, j, L)|). The smallest of these O(γ) values is
saved, and is a close approximation of the diameter of Tuv,
which will be shown below.

The number of pairs in the WSPD is O(τ 2n), which implies
that the total running time of the central loop of this phase
(lines 42–54 in Algorithm 1) is O(γ · τ 2n). Building the
WSPD and computing Tu′v′ takes an extra O(τ 2n+n log n)
time. Thus the whole algorithm runs in O(γ3n + γτ2n +
γn log n) time and uses O(n log n+γ2n+τ2n) space. Setting

s

s′

t

t′

t

t
′

s

s′

cl cr

(b)
π(s)

π(t)

π(t′)

π(s′)

a

δ

u v

rv
rκ

ru

s
t

s′
t′

s
t

s′
t
′

(a)

Cu

Cv

Cκ

Figure 1: A valid cut.

κ = 0.9ε yields γ = O(1
ε
) and τ = O(1

ε
) and thus the time

and space complexities we claimed. It remains to prove that
the diameter of the dipolar tree that we compute is indeed
at most (1 + ε) · dmin.

5. THE PROOF OF CORRECTNESS
From Observation 1 we know that we will test a pair of
poles u and v for which diam Tuv ≤ (1 + 8/τ) dmin =

1+ε
(1+κ)(1+κ/24)

dmin. The equality actually explains our choice

of τ . In this section we will prove that our algorithm al-
ways computes a dipolar tree whose diameter is at most
(1 + κ)(1 + κ/24) diam Tuv and thus at most (1 + ε) dmin.

Consider the tree Tuv. For simplicity we rotate P such that
the line l through u and v is horizontal and u lies to the
left of v, as illustrated in Figure 1a. Let δ = |uv|. Our aim
is to prove that there exists an orthogonal cut that splits
the point set P into two sets such that the tree obtained
by connecting u to all points to the left of the cut and con-
necting v to all points to the right of the cut will give a
tree whose diameter is a (1+κ)-approximation of diam Tuv.
Since the error introduced by approximating the farthest
neighbor distances is not more than a factor of (1 + κ/24)
according to Observation 2, this will prove the claim in the
previous paragraph.

Denote by Cu and Cκ the circles with center at u and
with radius ru and rκ = ru + κz respectively, where z =
diam Tuv = δ + ru + rv. Denote by Cv the circle with center
at v and with radius rv. Let s and s′ (t and t′) be two points
on Cu (Cv) such that if Cu (Cκ) and Cv intersect then s and
s′ (t and t′) are the two intersection points, where s (t) lies
above s′ (t′). Otherwise, if Cu (Cκ) and Cv do not intersect,
then s = s′ (t = t′) is the intersection of the line segment
(u, v) and Cu (Cκ), see Figure 1a.

We say that a cut with a line lκ is valid iff all points in P
to the left of lκ are contained in Cκ and all points of P to
the right of lκ are contained in Cv. A valid cut guarantees
a dipolar tree whose diameter is at most δ + rκ + rv =
(1 + κ) · diam Tuv.

We will prove that the algorithm above always considers a
valid cut. For simplicity we assume that ru ≥ rv. We will

show that there always exists a point bij on li such that
cutting li orthogonally through bij is valid. Actually it is
enough to show that the two requirements below are valid
for any Tuv. For a point p, denote the x-coordinate and the
y-coordinate of p by p.x and p.y, respectively. For simplicity
we set u = (0, 0).

(i)
z

γ + 1
·

1

cos π
2γ

≤
1

2
(t.x− s.x), and

(ii) tan
π

2γ
≤

t.x− s.x

2(ru + rv)
.

The reason for this will now be explained. First we need to
define some additional points. The reader is encouraged to
study Figure 1 for a visual description. Let s = (s.x, ru),

s′ = (s′.x,−ru), t = (t.x, rv) and t
′

= (t′.x,−rv). Let a
be the perpendicular bisector of the projections of s and t
on the x-axis and let π be the orthogonal projection of the
plane on a. Now we can define cl to be the intersection
point of the lines (s, π(t

′

)) and (s′, π(t)), and cr to be the

intersection point of the lines (t, π(s′)) and (t
′

, π(s)).

It now follows that any bisector l′ that intersects the three
line segments (s, t), (cl, cr) and (s′, t

′

), will be a valid cut.
This follows since all points to the left of l′ will be connected
to u and all points to the right of l′ will be connected to v,
and the diameter of that tree will, obviously, be bounded
by δ + (ru + κz) + ru which is a (1 + κ)-approximation of
diam Tuv.

From the algorithm we know that (a) there is a line li such
that ∠(li, l(u,v)) ≤ π/(2γ), and that (b) there are γ orthogo-
nal cuts of li that define equally many partitions of P . The
distance between two adjacent orthogonal cuts of li is at
most z/(γ + 1). This implies that the length of the largest
interval on l(u,v) that is not intersected by any of these or-
thogonal cuts is at most

1

cos π
2γ

·
z

γ + 1
.

Hence requirement (i) ensures that for every Tuv the distance
|clcr| = (t.x−s.x)/2 must be large enough to guarantee that
there is an orthogonal cut of li that intersects it.

An orthogonal cut of li has an angle of at least π/2−π/(2γ)
to l(u,v). To ensure that an orthogonal cut of li that inter-
sects the line segment clcr also passes between s and t and
between s′ and t

′

it suffices to add requirement (ii).

It remains to prove the following lemma which implies that
for every Tuv there is a valid orthogonal cut.

Lemma 3. For any u, v ∈ P (u 6= v) the tree Tuv fulfills
the requirements (i) and (ii).

Proof. The tree Tuv can be characterized by the rela-
tionship of the two ratios

α :=
δ

ru + rv
and E :=

1 + κ/2

1− κ/2
.

We distinguish three cases: (1) α < 1, (2) 1 ≤ α ≤ E, and
(3) α > E. For each of these three cases we will show that
Tuv fulfills the two requirements.

Case 1: Using the following two straight-forward equalities,
s.x2 + s.y2 = r2

u and (δ − s.x)2 + s.y2 = r2
v, we obtain that

s.x = (δ2 + r2
u − r2

v)/(2δ). A similar calculation for t.x
yields t.x = (δ2 + r2

κ− r2
v)/(2δ). Inserting these values gives

t.x−s.x = (κ2z2 + 2κzru)/(2δ). The fact that α ≤ E allows
us to further simplify the expression for t.x−s.x by using
the following two expressions:

z

δ
=

δ + ru + rv

δ
= 1 +

ru + rv

δ
≥

2

1 + κ/2
, and

ru

δ
≥

1− κ/2

2(1 + κ/2)
.

From this we obtain that

t.x− s.x =
κz

2

„

κz

δ
+

2ru

δ

«

>
κz

2
.

This fulfills requirement (i) since

z

γ + 1
·

1

cos π
2γ

≤
κz

4
≤

1

2
(t.x− s.x). (1)

For requirement (ii) note that tan π/(2γ) ≤ 2κ tan π/16 <
2κ/5. Since κ ≤ 1/2 we get that z/δ ≥ 2/(1 + κ/2) ≥ 8/5.
Combining this inequality, Equality 1, and our assumption
that ru ≥ rv shows that requirement (ii) is also fulfilled:

t.x− s.x

2(ru + rv)
≥

κz

4δ

„

2ru + κz

ru + rv

«

≥
κz

4δ
≥

2κ

5
.

Case 2: In this case we argue in the same manner as in
the previous case. Using the fact that s.x = ru and t.x =
(δ2 + r2

κ − r2
v)/(2δ) yields

t.x− s.x ≥
κz

2

„

κz

δ
+

2ru

δ

«

>
κz

2
.

The rest of the proof is exactly as in case 1.

Case 3: The first requirement is already shown to be ful-
filled since t.x− s.x ≥ δ − ru − rv ≥ κz/2, hence it remains
to show requirement (ii). We have

t.x− s.x

2(ru + rv)
≥

δ − (ru + rv)

2(ru + rv)

plugging in the values gives κ/(2−κ), which is at least 2κ/5.
The lemma follows.

The lemma says that for every dipole {u, v} there exists a
line a such that the dipolar tree obtained by connecting all
the points on one side of a to u and all the points on the
opposite side to v, is a (1 + κ)-approximation of Tuv.

Conclusions
While it seems to be hard to reduce the running time for
computing an exact MDST to o(n3), we have given a fast
PTAS for approximating the MDST. It computes in O(n log n)
time and space a tree whose diameter is at most (1+ε) times
that of a MDST. The runtime dependency on ε is moderate.
The PTAS also works for higher dimensional point sets, but
the running time increases exponentially with the dimen-
sion. A similar scheme yields an O(n log n)-time PTAS for
the discrete two-center problem.

The main novelty of our scheme is a discretization of the
orientations of line segments to a constant number of ori-
entations. We only consider projections of the input points
onto those directions, which gives us fast access to farthest
neighbors.

6. REFERENCES
[1] Paul B. Callahan and S. Rao Kosaraju. A

decomposition of multidimensional point sets with
applications to k-nearest-neighbors and n-body
potential fields. Journal of the ACM, 42(1):67–90,
January 1995.

[2] Joachim Gudmundsson, Herman Haverkort, Sang-Min
Park, Chan-Su Shin, and Alexander Wolff.
Approximating the geometric minimum-diameter
spanning tree. Technical Report 4/2002, Institut für
Mathematik und Informatik, Universität Greifswald,
February 2002. Available at
http://www.math-inf.uni-greifswald.de/~awolff/

pub/ghpsw-agmds-02t.pdf.

[3] Refael Hassin and Arie Tamir. On the minimum
diameter spanning tree problem. Information
Processing Letters, 53(2):109–111, 1995.

[4] Jan-Ming Ho, D. T. Lee, Chia-Hsiang Chang, and
C. K. Wong. Minimum diameter spanning trees and
related problems. SIAM Journal on Computing,
20(5):987–997, October 1991.

