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Abstract

Using a set of geometric containers to speed up shortest path queries in a weighted
graph has been proven a useful tool for dealing with large sparse graphs. Given a
layout of a graph G = (V, E), we store, for each edge (u, v) ∈ E, the bounding box
of all nodes t ∈ V for which a shortest u-t-path starts with (u, v). Shortest path
queries can then be answered by Dijkstra’s algorithm restricted to edges where the
corresponding bounding box contains the target.

In this paper, we present new algorithms as well as an empirical study for the
dynamic case of this problem, where edge weights are subject to change and the
bounding boxes have to be updated. We evaluate the quality and the time for
different update strategies that guarantee correct shortest paths in an interesting
application to railway information systems, using real-world data from six European
countries.

Key words: geometric container, dynamic shortest path, graph
layout.

1 Introduction

In this paper we consider a typical application in traffic, and in particular
in railway, systems where a central server has to answer a huge number of
customer queries asking for their best itineraries. The most frequently en-
countered applications of the above scenario involve route planning systems

1 This work was partially supported by the Human Potential Programme of the European
Union under contract no. HPRN-CT-1999-00104 (AMORE). Part of this work was done
while the second author was visiting the Computer Technology Institute in Patras.
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Fig. 1. A target container T (u, v) contains (at least) all nodes t for which a shortest
path from u to t starts with the edge (u, v). Analogously, a source container S(u, v)
contains all nodes s for which a shortest path from s to v ends with the edge (u, v).

for cars, bikes and hikers [21,2], or scheduled vehicles like trains and busses
[19,11,13,17,10]. Further applications include spatial databases [18] and web
searching [3]. Users of such a system continuously enter their requests for
finding their “best” connections.

The algorithmic core problem that underlies the above problem is a special
case of the single source shortest path problem on a given directed graph
with nonnegative edge lengths related to a layout of the graph which is also
provided. The particular graph is quite large (though sparse), and hence space
requirements are only acceptable to be linear in the number of nodes.

In [17], angular sectors were introduced to speed up the processing of such
shortest path queries. In a preprocessing step, the angular sector of each edge
is determined that contains all nodes to which a shortest path using this edge
exists. The shortest path queries are then answered by Dijkstra’s algorithm
[5] restricted to edges where the target node is inside the angular sector. Note
that this method is guaranteed to find a shortest path, but it requires a time
consuming all-pairs shortest paths computation as a preprocessing.

A recent experimental study in [20] replaces the angular sectors by other
convex geometric containers and compares their impact on the number of
visited nodes and the running time. Surprisingly, simple bounding boxes turn
out to produce the fastest algorithm and are also competitive in the number
of visited nodes.

This idea of geometric pruning can be extended to bi-directional search
[12]. A second set of bounding boxes is determined by reversing all edges
and running the preprocessing a second time on this modified graph. As
illustrated in Figure 1, we will refer to the bounding boxes of this graph
with reversed edges as “source containers” (containing the sources of shortest
paths that end with this edge) in contrast to “target containers” (containing
the target of shortest paths that start with this edge). A forward step in
the bi-directional search checks the target containers whereas a backward step
uses source containers.
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All previous approaches, however, deal with the static version of the inves-
tigated problem. In this paper, we are concerned with the dynamic version
of the above mentioned scenario; namely, with the case where the graph may
dynamically change over time as streets may be blocked, built, or destroyed,
and trains may be added or canceled. In this work, we present new algorithms
that dynamically maintain geometric containers when the weight of an edge
is increased or decreased (note that these cases cover also edge deletions and
insertions). We also report on an experimental study with real-world railway
data. Our experiments show that the new algorithms are 2-3 times faster than
the naive approach of recomputing the geometric containers from scratch.

Our dynamic algorithms are perhaps the first results towards an efficient
algorithm for the dynamic single source shortest path problem without using
the output complexity model – introduced in [14,15] and extended in [7,8] –
under which algorithms for the dynamic single source shortest path problem
are usually analyzed. We would also like to mention that existing approaches
for the dynamic all-pairs shortest paths problem (see e.g., [6,16,4,1,9], and [22]
for a recent overview) are not applicable to maintain geometric containers,
because of their inherent quadratic space requirements.

In the next section, a formal description of the dynamic shortest path
containers and necessary definitions are given. The subsequent section 3 re-
capitulates the static case of the preprocessing. Section 4 contains algorithms
to update geometric containers for weight decreases and weight increases. Ex-
periments and results are described in section 5 before the conclusion in the
last section.

2 Definitions

A directed simple graph G is a pair (V,E), where V is a finite set and E ⊆
V × V . The elements of V are the nodes and the elements of E are the edges
of the graph G. Throughout this paper, the number of nodes |V | is denoted
by n and the number of edges |E| is denoted by m. A path in G is a sequence
of nodes u1, . . . , uk such that (ui, ui+1) ∈ E for all 1 ≤ i < k. The edges of a
graph are weighted by a function w : E → R

+
0 . We interpret the weights as

edge lengths in the sense that the length of a path is the sum of the weights of
its edges. Throughout the paper we assume that for all pairs (s, t) ∈ V × V ,
the shortest path from s to t is unique. 2

If n denotes the number of nodes, a graph (without multiple edges) can
have up to n2 edges. We call a graph sparse, if the number of edges m is in
O(n), and we call a graph large, if one can only afford a memory consumption
in O(n). In particular for large sparse graphs, n2 space is not affordable.

We assume that we are given a layout L : V → R
2 in the Euclidean plane.

For ease of notation we will identify a node v ∈ V with its location L(v) ∈ R
2

2 This can be achieved by adding a small fraction to the edge weights, if necessary.
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in the plane. Throughout the paper, we will assume that the layout is fixed.

We call a region R ⊂ R
2 with

{

(x, y) ∈ R
2 : xmin ≤ x ≤ xmax ∧ ymin ≤ y ≤ ymax

}

an (axes-parallel) rectangle. Given a set of points P ⊂ R
2, the smallest rect-

angle R with P ⊂ R is called the bounding box of P . Note that the bounding
box of a finite set P always exists and is unique.

Definition 2.1 Let G = (V,E), w : E → R
+
0 be a weighted graph with layout

L : V → R
2. A rectangle T (u, v) for an edge (u, v) ∈ E is called a (consistent)

target container of (u, v), if T (u, v) contains (at least) all nodes t for which
there is a shortest u-t-path starting with the edge (u, v). Similarly, a rectangle
S(u, v) for an edge (u, v) ∈ E is called a (consistent) source container S(u, v)
of (u, v), if S(u, v) contains (at least) all nodes s for which there is a shortest
s-v-path ending with the edge (u, v).

Note that further nodes may be part of a target container. However, at
least the nodes that can be reached by a shortest path starting with e must
be in T (e). We will refer to the additional nodes as wrong nodes, since they
lead us the wrong way.

3 Creating Consistent Containers

We now describe in detail how to compute T (s, x) for all edges (s, x) ∈ E.
The complete algorithm is shown as Algorithm 1 (light gray lines indicate
Dijkstra’s original pseudocode, while the rest indicate our modifications). To
determine T (s, x) for every edge (s, x) ∈ E, Dijkstra’s algorithm is run for
each node s ∈ V . We keep a node array A where the entry A[v], v ∈ V , stores
the first edge (s, x) in a shortest s-v-path in G. This can be constructed in
a way similar to that of a shortest path tree: Every time the distance label
of a node v is adjusted via (u, v), we set A[v] to (u, v), if u = s, and to A[u],
otherwise (lines 14–17). When a node u is removed from the priority queue,
A[u] holds the outgoing edge of s with which a shortest path from s to u

starts. In line 18 and 19, for each edge (s, x) the bounding box of all nodes
y ∈ V with A[u] = (s, x) is computed. It is a consistent target container for
(s, x). The overall running time is O(n2 log n), because Dijkstra’s algorithm
runs in O(n log n) time for sparse graphs. The storage requirement is O(n).

Consistent source containers can be created by reversing the edges and
running Create-Containers on this modified graph.

4 Updating Containers

If a weight of an edge is changed, some source and target containers must
be enlarged to stay consistent. More precisely, for every new shortest path
u0, u1, . . . , uk−1, uk in the graph, T (u0, u1) and S(uk−1, uk) have to be updated
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Create-Containers

Input: graph G = (V,E), weights w : E → R
+
0

Output: consistent target containers
0 for all s ∈ V do
1 set d(u) := ∞ for all nodes u ∈ V

2 create empty priority queue Q

3 insert source s in Q and set d(s) := 0
4 while priority queue is not empty
5 get node u with smallest tentative distance in Q

6 for all neighbor nodes v of u

7 set new-dist := dist(u) + w(u, v)
8 if new-dist < dist(v)
9 if d(v) = ∞

10 insert neighbor node v in Q with priority new-dist

11 else
12 set priority of neighbor node v in Q to new-dist

13 set dist(v) := new-dist

14 if u = s

15 set A[v] := (s, v)
16 else
17 set A[v] := A[u]
18 for all nodes y ∈ V \{s}
19 enlarge the bounding box of A[y] to contain y

Algorithm 1. Create-Containers. Running a modification of Dijkstra’s algo-
rithm for all nodes s ∈ V to create consistent target containers.

to include uk and u0, respectively. Throughout this section, we will mark
variables before the update with the subscript “old” and updated values with
the subscript “new”.

4.1 Increasing an edge weight

Let us first consider the case of increasing the weight of an edge (x, y) ∈ E. We
will show that it suffices to consider paths that start at vertices in Sold(x, y) to
correct all source containers (see Figure 2). The update itself can be achieved
by running a truncated Dijkstra’s algorithm for all these nodes.

Lemma 4.1 Let G = (V,E), w : E → R
+
0 be a weighted graph. Assume that

the increase of the weight of an edge (x, y) ∈ E creates a new shortest s-t-path
Pnew in G. Then, before the weight change, (x, y) is the last edge of a shortest
s-y-path and the first edge of a shortest x-t-path.

Proof. Let Pold denote the old shortest path from s to t. Since the weight
w(x, y) is increased, (x, y) ∈ Pold. Let Psy denote the first part of this path
Pold from s to y. Since a sub-path of a shortest path is again a shortest path,
Psy was the shortest path from s to y. For symmetric reasons, the first edge
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Fig. 2. When the weight of the edge (x, y) is increased, the source s of a new shortest
path from s to t must be inside Sold(x, y).

of a shortest x-t-path is (x, y). 2

Corollary 4.2 Let G = (V,E), w : E → R
+
0 be a weighted graph. Assume

that the increase of the weight of an edge (x, y) ∈ E creates a new shortest
s-t-path Pnew in G. Then

s ∈ Sold(x, y) and t ∈ Told(x, y).

So, to enlarge the containers, it suffices to search for shortest paths that
start from a node in Sold(x, y) and end with a node in Told(x, y). Running
Create-Containers restricted to nodes in Sold(x, y) therefore fixes the source
containers. However, it is possible to further truncate Dijkstra’s algorithm
using the following Lemma.

Lemma 4.3 Let G = (V,E), w : E → R
+
0 be a weighted graph and let Pnew

be a path from a node s to a node t that has become a shortest path because of
an increase of the weight of an edge (x, y). Then, for all nodes u ∈ Pnew:

dnew(s, u) < dnew(s, x) + wnew(x, y) + dnew(y, u)

Proof. The new shortest path Pnew does not contain the edge (x, y), and the
sub-path of Pnew from s to u is also a shortest path that does not contain the
edge (x, y). The right hand side of the inequality is the length of some path
from s to u containing (x, y). Since shortest paths are assumed to be unique,
the lemma follows immediately. 2

Algorithm 2 (Increase-Edge-Weight(x, y)) combines the result of Corol-
lary 4.2 and Lemma 4.3. Dijkstra’s algorithm is only run for all nodes in
Sold(x, y) and nodes are only inserted into the queue Q, if the condition of
Lemma 4.3 is fulfilled. The rest of the nodes that do not satisfy Lemma 4.3
are never inserted in the queue Q.

Theorem 4.4 Increase-Edge-Weight(x, y) (Algorithm 2) enlarges all tar-
get containers after an increase of the weight w(x, y) as necessary.
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Increase-Edge-Weight(x, y)
Input: graph G = (V,E), weights w : E → R

+
0 ,

consistent target containers for old edge weight wold(x, y),
increased edge weight wnew(x, y)

Output: consistent target containers for increased edge weight wnew(x, y)
0 for all s ∈ Sold(x, y) do
1 set d(u) := ∞ for all nodes u ∈ V

2 create empty priority queue Q

3 insert source s in Q and set d(s) := 0
4 while priority queue is not empty
5 get node u with smallest tentative distance in Q

5a if u 6= s enlarge T (A[u]) to contain u

6 for all neighbor nodes v of u

7 set new-dist := dist(u) + w(u, v)
7a if new-dist < d(s, x) + wnew(x, y) + d(y, v)
8 if new-dist < dist(v)
9 if d(v) = ∞

10 insert neighbor node v in Q with priority new-dist

11 else
12 set priority of neighbor node v in Q to new-dist

13 set dist(v) := new-dist

14 if u = s

15 set A[v] := (s, v)
16 else
17 set A[v] := A[u]

Algorithm 2. Increase-Edge-Weight(x, y). Dijkstra’s algorithm truncated to
enlarge target containers after an increase of the weight w(x, y). A neighbor v is
only visited, if the path from s to v does not contain the edge (x, y).

Proof. Consider the shortest path P from s to t that is found by an unmod-
ified Dijkstra’s algorithm. If for all nodes v ∈ P the condition in line 7a is
fulfilled, the path P is found by Increase-Edge-Weight(x, y), because the
pruning does not change the order in which the edges are processed. 2

Let

Pot-Aff(s) := {v ∈ V : dnew(s, v) < dnew(s, x) + wnew(x, y) + dnew(y, v)}

denote the set of potentially affected nodes for s ∈ V after an increase of
the edge weight w(x, y). For each node s ∈ Sold(x, y), Increase-Edge-

Weight(x, y) runs Dijkstra’s algorithm restricted to the graph induced by
Pot-Aff(s). The running time of Increase-Edge-Weight(x, y) is therefore
linear in

∑

s∈Sold(x,y)

|Pot-Aff(s)|

If |Pot-Aff(s)| is bounded for all s ∈ Sold(x, y) by some p, then the running
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time is O(k · p log p) where k := |{s ∈ Sold(x, y)}|.

The source containers are the counterpart to target containers, if all edges
in the graph are reversed. So, Increase-Edge-Weight(x, y) applied to a
graph with reversed edges enlarges the source containers as necessary.

The algorithm Increase-Edge-Weight(x, y) uses distance values d(u, x)
and d(y, u) for different u ∈ E, which have to be computed beforehand. So,
the overall method for an increase of w(x, y) is as follows:

(i) Run Dijkstra’s algorithm for the source y to compute d(y, u) for all u ∈ V .

(ii) Run Dijkstra’s algorithm with reversed edges for the source x to compute
d(u, x) for all u ∈ V .

(iii) Run Increase-Edge-Weight(x, y) to enlarge target containers.

(iv) Run Increase-Edge-Weight(x, y) with reversed edges to enlarge source
containers.

4.2 Decreasing an edge weight

Similar to the case of an increase, we can prove a lemma about start and end
nodes of new shortest paths for the case of a decrease. This time however, the
updated source and target containers must be used.

Lemma 4.5 Let G = (V,E), w : E → R
+
0 be a weighted graph. Assume that

the decrease of the weight of an edge (x, y) ∈ E creates a new shortest s-t-path
Pnew in G. Then, after the weight change, (x, y) is the last edge of a shortest
s-y-path and the first edge of a shortest x-t-path.

Proof. Obviously, the edge (x, y) must be part of this path Pnew. Let Psy

denote the sub-path of Pnew from s to v. As a sub-path of a shortest path Psy

is also a shortest path. In particular, Psy is a shortest path that ends with
the edge (x, y). For symmetric reasons, the first edge of a shortest x-t-path is
(x, y). 2

Corollary 4.6 Let G = (V,E), w : E → R
+
0 be a weighted graph. Assume

that the decrease of the weight of an edge (x, y) ∈ E creates a new shortest
s-t-path Pnew in G. Then

s ∈ Snew(x, y) and t ∈ Tnew(x, y).

In order to run a (truncated) Dijkstra for all nodes in Tnew(x, y), it is
necessary to compute Tnew(x, y), i.e. to enlarge it if necessary. This can
be achieved by Algorithm 3 Compute-Tnew(x, y). The container is enlarged
similar to its creation in Create-Containers. If a new shortest path is found
to a node t, the container T (x, y) is enlarged in line 5a. This variant of
Dijkstra’s algorithm is truncated to the part of the graph, where distance
labels change.

Theorem 4.7 Let G = (V,E), w : E → R
+
0 be a weighted graph and Sold(x, y)

8
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Compute-Tnew(x, y)
Input: graph G = (V,E), weights w : E → R

+
0 ,

consistent target containers for old edge weight wold(x, y),
decreased edge weight wnew(x, y)

Output: consistent target container Tnew(x, y)
0 set s := x

1 set d(u) := ∞ for all nodes u ∈ V

2 create empty priority queue Q

3 insert source s in Q and set d(s) := 0
4 while priority queue is not empty
5 get node u with smallest tentative distance in Q

5a if u 6= s and T (A[u]) = (x, y) enlarge T ((x, y)) to contain u

6 for all neighbor nodes v of u

7 set new-dist := dist(u) + w(u, v)
7a if new-dist < wold(x, y) + dold(y, u)
8 if dist(v) > new-dist

9 if d(v) = ∞
10 insert neighbor node v in Q with priority new-dist

11 else
12 set priority of neighbor node v in Q to new-dist

13 set dist(v) := new-dist

14 if u = s

15 set A[v] := (s, v)
16 else
17 set A[v] := A[u]

Algorithm 3. Compute-Tnew(x, y). Dijkstra’s algorithm truncated to enlarge
target container T (x, y) after an decrease of the weight w(x, y). A neighbor v is
only visited, if the distance from x to v is shorter than the old distance dold(x, v).

a consistent source container. Compute-Tnew(x, y) (Algorithm 3) enlarges
the source container for a decrease of the weight w(x, y) as necessary.

Proof. It is obvious that without line 7a the algorithm Compute-Tnew(x, y)
works as expected. If a node v is excluded in line 7a, we distinguish between
two cases. If new-dist = wnew(x, y) + dold(y, v), the distance of v has not
changed. Furthermore, the distance has not changed for all nodes a where
the shortest x-a-path contains v. Ignoring nodes v ∈ V with new-dist =
wnew(x, y) + dold(y, v) therefore does not change the result of the algorithm.
If new-dist > wnew(x, y) + dold(y, v), there exists a shorter path from x to v

that does not contain (u, v). The node v can therefore be ignored in this case,
too. 2

Our final goal is to run a truncated version of Dijkstra’s algorithm for all
nodes in Snew(x, y) to adjust all start containers after an edge weight decrease.
The truncation is realized similarly to Lemma 4.3, but this time the old weight
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Fig. 3. When the weight of the edge (x, y) is decreased, for all nodes u on a new
shortest path from s to t, dnew(s, u) < dnew(s, x) + wold(x, y) + dnew(y, u).

of the edge (x, y) is used in the comparison.

Lemma 4.8 Let G = (V,E), w : E → R
+
0 be a weighted graph and let Pnew

be a path from a node s to a node t that has become a shortest path because of
a decrease of the weight of an edge (x, y). Then, for all nodes u ∈ Pnew:

dnew(s, u) < dnew(s, x) + wold(x, y) + dnew(y, u)

Proof. Since wnew(x, y) < wold(x, y), the new distance dnew(s, t) must be
shorter than the old distance dold(s, t). The new shortest path Pnew does con-
tain the edge (x, y) in contrast to the old shortest path from s to t. Therefore

dnew(s, t) = dnew(s, x) + wnew(x, y) + dnew(y, t)

< dnew(s, x) + wold(x, y) + dnew(y, t)

Consider now some node u ∈ Pnew (illustrated in Figure 3). Let Ps,u denote
the sub-path of Pnew from s to u. If Ps,u does not contain (x, y), i.e. if the
edge (x, y) appears in Pnew after u,

dnew(s, u) < dnew(s, x) < dnew(s, x) + wold(x, y) + dnew(y, t)

since wold(x, y) > 0. If Ps,u contains (x, y), then

dnew(s, u) = dnew(s, x) + wnew(x, y) + dnew(y, u)

otherwise a shorter path from s to u would exist which contradicts the fact
that Pnew is a shortest path. Since wold(x, y) > wnew(x, y) the lemma follows.2

Using Lemma 4.6 and 4.8, the correctness of Decrease-Edge-Weight(x, y)
(Algorithm 4) follows immediately as stated in the following Theorem.

Theorem 4.9 Decrease-Edge-Weight(x, y) (Algorithm 4) enlarges all tar-
get containers after a decrease of the weight w(x, y). 2

Let

Pot-Aff
′(s) := {v ∈ V : dnew(s, v) < dnew(s, x) + wold(x, y) + dnew(y, v)}

denote the set of potentially affected nodes for s ∈ V after a decrease of
the edge weight w(x, y). For each node s ∈ Snew(x, y), Decrease-Edge-

10
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Decrease-Edge-Weight(x, y)
Input: graph G = (V,E), weights w : E → R

+
0 ,

consistent target containers for old edge weight wold(x, y),
decreased edge weight wnew(x, y),

consistent source container Snew(x, y)
Output: consistent target containers for decreased edge weight wnew(x, y)

0 for all s ∈ Snew(x, y) do
1 set d(u) := ∞ for all nodes u ∈ V

2 create empty priority queue Q

3 insert source s in Q and set d(s) := 0
4 while priority queue is not empty
5 get node u with smallest tentative distance in Q

5a if u 6= s enlarge T (A[u]) to contain u

6 for all neighbor nodes v of u

7 set new-dist := dist(u) + w(u, v)
7a if new-dist < d(s, x) + wold(x, y) + d(y, v)
8 if dist(v) > new-dist

9 if d(v) = ∞
10 insert neighbor node v in Q with priority new-dist

11 else
12 set priority of neighbor node v in Q to new-dist

13 set dist(v) := new-dist

14 if u = s

15 set A[v] := (s, v)
16 else
17 set A[v] := A[u]

Algorithm 4. Decrease-Edge-Weight(x, y). Dijkstra’s algorithm truncated to
enlarge target containers after an decrease of the weight w(x, y). A neighbor v is
only visited, if the path from s to v is shorter than the shortest path from s to v

that uses edge (x, y) with the old weight wold(x, y).

Weight(x, y) runs Dijkstra’s algorithm restricted to the graph induced by
Pot-Aff

′(s). The running time of Decrease-Edge-Weight(x, y) is therefore
linear in

∑

s∈Snew(x,y)

|Pot-Aff′(s)|

If |Pot-Aff′(s)| is bounded for all s ∈ Snew(x, y) by some p, then the running
time is O(k · p log p) where k := |{s ∈ Snew(x, y)}|.

In summary, the combination of Compute-Tnew(x, y) for reversed edges
and Decrease-Edge-Weight(x, y) enlarges the target containers after an
decrease of an edge weight w(x, y). As in the previous case, source containers
can be treated similarly with all edges reversed. The complete algorithm to
update source and target containers after an edge decrease is therefore:

(i) Run Dijkstra’s algorithm for the source y to compute d(y, u) for all u ∈ V .
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(ii) Run Dijkstra’s algorithm with reversed edges for the source x to compute
d(u, x) for all u ∈ V .

(iii) Run Compute-Tnew(x, y) to enlarge the target containers S(x, y).

(iv) Run Compute-Tnew(x, y) for y with reversed edges to enlarge the source
container S(x, y).

(v) Run Decrease-Edge-Weight(x, y) to enlarge start containers.

(vi) Run Decrease-Edge-Weight(x, y) with reversed edges to enlarge source
containers.

5 Experiments

5.1 Experimental Setup

We performed an experimental study to evaluate the performance and quality
of our algorithms. More precisely the following two questions were examined:

• How much time is needed to update the containers (on average)?

• How much do the containers differ from containers computed from scratch?
(Remember that we do not shrink containers in our updates.)

The quality of a set of containers was evaluated according to the following
criterion.

Definition 5.1 Let C denote the set of containers we want to examine and
Cref denote the reference set of containers that has been computed from
scratch. For both sets, we count the number of nodes inside all containers
∑

e∈E |{t ∈ C(e)}|. Both sums are bounded by n ·m. We therefore define the
quality of C as:

nm −
∑

e∈E |{t ∈ C(e)}|

nm −
∑

e∈E |{t ∈ Cref(e)}|

This fraction equals 1, if the number of wrong nodes inside containers is
the same for C and Cref , but is biased by the number of correct nodes. If all
containers in C contain the entire graph, the quality of C is 0.

The test graphs in our computational study are railway networks of dif-
ferent European countries. The nodes of such a graph are the stations and
an edge between two stations exists iff there is an non-stop connection. The
edges are weighted by the average travel time. The sizes of these networks are
given in Table 1.

For each graph, we increase the weight of 100 random edges to a large
value (i.e. the sum of all weights in the graph). This is similar to removing the
edge from the graph. After every weight change, the containers are updated
according to section 4.1. A second set of containers is determined from scratch
to compute the quality and compare the computation time.
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For the evaluation of decreasing edge weights, we start with the graph
where 100 random edges have been set to a large weight. The weights are
then decreased to their original values. Again, the updated containers are
compared to newly computed containers.

Apart from the algorithms in section 4, we evaluated updates, if source
containers are not maintained. In this case, Increase-Edge-Weight(x, y)
and Decrease-Edge-Weight(x, y) cannot iterate over all nodes in Sold(x, y)
and Snew(x, y), respectively. The nodes, where containers have to be updated,
must be determined beforehand. According to Lemma 4.1 and 4.5, for such a
node s ∈ V , the last edge on a shortest s-y-path is (x, y). These nodes can be
determined by a run of a modified Dijkstra starting at y with reversed edges.
Note that in this case only half of the containers need maintenance.

Both variants, with source containers and without source containers, find
those nodes for which the containers of incident edges must be updated. For
both variants, we studied three methods to update the container of an edge:

• Enlarge the container as described in Section 4. A variant of Dijkstra’s
algorithm pruned according to Lemma 4.3 and 4.8 enlarges the containers.

• Compute the container from scratch. The result is slightly different from
recomputing all containers from scratch, because some may shrink but are
not updated. However, the distances of all nodes to x and from y to all
nodes are not needed in this case and their computation can be omitted.

• Enlarge the container to infinity (without any further computation). If the
entire graph is inside the container, it is certainly consistent. However, the
quality of the containers is going down rapidly. Again, the distances of all
nodes to x and from y to all nodes are not needed in this case and their
computation can be omitted.

All six variants have been implemented in C++ based on the graph struc-
ture provided by LEDA 4.4. The programs were compiled with GCC 3.2 and
run on a single Intel Xeon with 2.4 GHz performing Linux 2.4.

5.2 Computational Results

Figures 4 and 5 depict the changes of the quality for updated containers. In
both cases – with and without source containers – the outcome is very similar.
Furthermore, the case of an edge weight increase resembles the case of an edge
weight decrease.

• If containers are only enlarged, their quality decreases most of the time as
expected. It is interesting to note that the larger the graph, the larger its
quality remains. Single “bad” containers are clearly less important, if the
graph contains more edges. For large graphs, the quality stays close to 1
even after 100 updates.

• If the containers are simply set to infinity, the situation is dramatically dif-
ferent though. After a few updates, the containers settle in a state where

13
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nl 409 1215 1331 2.17 2.45 269 2.52 5.02

au 1660 4327 8093 1.99 2.54 1551 2.07 2.13

ch 2279 6015 10211 2.18 2.56 2235 2.77 2.48

i 2399 8008 9552 2.85 2.77 2095 2.80 2.64

fr 4598 14937 17691 2.09 2.87 4382 2.55 4.25

de 6884 18601 33160 1.72 2.04 6568 2.53 2.56

Table 1
Average speed-up for updating the containers after increasing an edge weight

almost all nodes are inside all containers. Such a state is clearly not desir-
able, because no nodes are pruned by Dijkstra’s algorithm for queries.

The situation is slightly better in Figure 5, where source containers are
not used, because they may already be very bad from previous updates.
Still the resulting containers are not acceptable after a few updates.

• The case where containers of adjacent edges are recomputed from scratch
is missing in the figures, since the resulting containers coincide most of
the time with the newly computed containers. In other words, the quality
equals 1 after almost every update. In practice, such updates can therefore
be considered as good as using freshly determined containers.

The analysis of the time measurements are shown in Table 1 for weight
increases and Table 2 for weight decreases. The first two columns list the
number of nodes and the number of edges in the respective graphs. The other
six columns refer to the six cases that have been examined in our study. The
three types of updates (enlarge the containers to infinity, enlarge the containers
according to Lemma 4.3 and 4.8, and recompute the containers from scratch)
were tested with maintenance of source containers and without it (using a
backward Dijkstra instead). Although the time improvements are huge, if the
containers are enlarged to infinity, these values are more or less meaningless,
because of the inacceptable quality. Discussing them does not really make
sense and they are mainly shown for sake of completeness.

An interesting observation is the fact that the speed-up factor does not
seem to be correlated with the size of the graph. Furthermore the similarity
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(c) infinite containers after increasing
weights
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Fig. 4. The quality of containers after 100 changed edge weights, if source containers
are available and maintained. In the upper diagrams, the containers are updated
by a pruned Dijkstra for all nodes in the source container of the edge with changed
weight (see Algorithms 2 and 4). In the lower diagrams, containers are enlarged to
infinity for all edges incident to nodes inside Sold(x, y).

of the algorithms for increasing and decreasing edge weights probably ex-
plains the similar behavior in terms of timings. The speed-up values with and
without source containers are quite similar, but note that the absolute time
values with source containers are about twice as large. Maintaining source
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Fig. 5. The quality of containers after 100 changed edge weights. In the upper
diagrams, the containers are enlarged by a pruned Dijkstra for all nodes s with
(x, y) as the last edge of a shortest s-y-path. In the lower diagrams, the containers
are enlarged to infinity for all edges incident to nodes s with (x, y) as the last edge
of a shortest s-y-path.

containers can therefore only justified, if they are used otherwise (e.g. for a
bi-directional search). The most interesting observation however is the fact
that using a pruned Dijkstra (column “enlarge”) is often slower than Dijkstra
without pruning (column “from scratch”). Obviously the additional check and
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nl 409 1215 173 2.00 2.70 228 3.43 3.02

au 1660 4327 700 1.90 2.38 1429 2.10 2.10

ch 2279 6015 953 2.24 2.58 2300 2.85 3.09

i 2399 8008 965 2.75 2.68 2097 2.65 2.94

fr 4598 14937 1932 2.21 2.66 4291 3.13 3.36

de 6884 18601 2974 1.71 2.21 6583 2.31 2.76

Table 2
Average speed-up for updating the containers after decreasing an edge weight

computing the distances to x and from y for all nodes outweigh the gain of
the pruning.

6 Conclusion and Outlook

We have seen that it is possible to speed up the maintenance of geometric con-
tainers by a factor of about 2-3 while preserving optimality in almost all cases.
Enlarging containers to infinity leads to a cascading effect that destroys the
benefit of geometric containers. If containers are only enlarged, the presented
pruning of Dijkstra’s algorithm does not justify the loss of quality.

It would be interesting to find other simplifications that guarantee con-
sistent containers, but realize a good compromise between optimality and
running time. Furthermore, our results suggest that it should be possible to
get a speed-up factor of about 2 with an (provable) optimal update strategy.
Finally, it might be possible to combine edge weight increases and edge weight
decreases in a single algorithm.
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