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ABSTRACT

When designing an electric transmission grid, it is important to
ensure that the resulting grid is reliable. In particular, it should
remain operable if one piece of equipment fails (N − 1 criterion).
In this work we focus on the failure of single transmission lines.
We consider a criticality measure by Witthaut et al. [21], which
captures the dynamic behavior of failing lines. The criterion itself
is based on maximum graph-theoretic flows in suitably defined
residual networks. In a first step, we compare it to theN −1 criterion
and find that networks without critical edges tend to satisfy the
N − 1 criterion. We then formulate the criticality measure as set of
linear constraints, which may form a building block in transmission
network design problems.

In particular, we introduce these constraints into a basic Trans-
mission Network Expansion Planning (TNEP) formulation, ob-
taining models for the two problems Criticality-Constrained
Transmission Network Expansion Planning (CC-TNEP) and
Criticality Minimal Expansion (CME). We study the effects of
adding these constraints on the time needed for solving the models.
Moreover, we provide a simple heuristic for CME, which often finds
optimal solutions but in less time.
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1 INTRODUCTION

When designing a new electric transmission grid or re-designing an
existing one, one strives to make the grid robust against potential
equipment failures. Otherwise, a single failure may cause a collapse
of large parts of the grid leading to a widespread black out. To
prevent such widespread failures, one therefore has to take these
equipment failures into account both during the design and the
operation phase. In this work we focus on the design phase.

A widely used reliability criterion is the N − 1 criterion [22].
It roughly states that the grid must be operable even if a single
piece of equipment (e.g., a transmission line or a generator) fails.
It is widely used both while designing [6, 13, 18] and operating
transmission and distribution grids [16]. This criterion may also be
extended to include the failure of up to k pieces of equipment. This
is then called the N − k criterion [17].

Typically, these criteria consider the static behavior of the grid
after the failure. They do not include the dynamic behavior of, e.g.,
a line failure. In contrast, Witthaut et al. [21] consider the dynamic
behavior of the voltage angles in transmission grids. They classify
lines as either critical if their failure causes a widespread outage
or non-critical if the failure still leaves the grid operable. They
then develop two simple measures that try to predict for each line
whether they are critical or not. The first measure bases the decision
on the maximum graph-theoretic flow between the endpoints of the
line in the residual network after the line is removed; see Section 3
for a formal definition. If the fraction of the power flow on the line
and the value of the maximum is larger than some threshold h, then
they predict the line to be critical. In their evaluation they obtain
an optimal value of h = 0.614. The second measure is based on
the linear response on small perturbations in the existing power
flow. They claim that their measures more accurately predict critical
edges than standard load flow analyses. In this work, we employ the
first measure and present how to incorporate it into transmission
network design problems, e.g., TransmissionNetwork Expansion
Planning.

1.1 Related Work

There is a large body of research on Transmission Network Ex-
pansion Planning (TNEP). An overview over the various aspects
and solution methods for TNEP is given by Mahdavi et al. [15]. For
a literature review focusing on the solution methods see [20]. Here,
we focus on the works that incorporate reliability criteria such as
the N − 1 criterion [6, 18].

Domínguez et al. [7] present a mixed-integer linear program
(MILP) formulation for TNEP including both AC and DC links
considering the N −1 criterion. Moreover, they present a method to
reduce the search space, which significantly decreases the time to
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solve the model. Choi et al. [6] formulate an integer programming
formulation for TNEP taking the N − k criterion and variations
thereof into account. This means, they consider contingencies with
up to k components failures. However, to reduce the complexity
of the model, they ignore contingencies with probabilities below a
given threshold (10−9 in their study). Moreira et al. [17] address the
computational complexity of explicitly modeling the N −k criterion
differently. They formulate this problem as a trilevel mixed-integer
program and solve it using Benders decomposition.

Instead of employing the deterministic N − 1 criterion, Shortle
et al. [19] consider the stochastic nature of blackouts. They present
a variant of the transmission expansion planning problem with the
goal of minimizing the probability of blackouts.

Reliability criteria are not only important for designing but also
for operating transmission grids. A relaxed version of the N − 1
criterion is proposed by Zima and Andersson [22]. They find that
using this relaxed criterion during dispatch reduces the expected
blackout size. Heylen et al. [11] compare six reliability criteria
including the N − 1 criterion and various probabilistic criteria.
Their case study shows that probabilistic criteria allow for lower
expected total cost of reliability management.

1.2 Contribution and Outline

We present a linear program formulation of the criticality criterion
by Witthaut et al. [21]. This formulation is general in the sense
that it can be in included in various transmission network design
problems. As an example application, we include it in a basic ver-
sion of the Transmission Network Expansion Planning (TNEP)
problem. This yields the two problems Criticality-Constrained
Transmission Network Expansion Planning (CC-TNEP) and
Criticality Minimal Expansion (CME). In the former problem,
the total criticality of all edges is bounded and the expansion costs
are minimized. In the latter problem, the goal is to minimize the
total criticality in the expansion subject to budget constraints. We
study the effect of the criticality constraints in these problems by
simulations on example networks. We also compare the criticality
constraints with the more standard N − 1 constraints both theo-
retically and by simulations on the example networks. For CME
we present a greedy heuristic, which is both fast and gives very
good results compared to solving the mixed-integer linear program
formulation with Gurobi.

The paper is structured as follows. In the following section we
define basic terms and models that we use throughout this work. In
Section 3 we reformulate the criticality criterion by Witthaut et al.
[21] and relate it to the N − 1 criterion in a theoretical analysis.
We formulate the criticality criterion as linear constraints, which
are then included in a model for TNEP resulting in models for CC-
TNEP and CME. A theoretical comparison to the N − 1 criterion is
presented in Section 3.2. We develop a greedy heuristic for CME
in Section 4. In Section 5 we evaluate and compare the presented
models and algorithms on example networks. We further compare
the criticality criterion and the N − 1 criterion. We finally conclude
with a summary of the results and give an outlook on potential
future work on this topic in Section 6.

2 PRELIMINARIES

As input we are given a graph G = (V ,E), where the edge set E is
partitioned into existing edges E0 and candidate edges E1. Vertices of
the graph correspond to buses in a power grid. The existing edges
are lines in the power grid, and the candidate edges correspond to
lines that may be added to the power grid. For notational conve-
nience we assume that all edges are directed but the choice of the
direction is arbitrary. It has no physical significance; we only use
it to define the direction of a flow on the edge. Each edge e ∈ E
further has a capacity cap(e) ∈ R≥0 and a susceptance b(e) ∈ R.
The cost for building a candidate edge e ∈ E1 is given by cost(e).

Additionally, we are given a set of timestampsT . For each times-
tamp t ∈ T and vertex v ∈ V , the generation дt (v) and load lt (v)
at v is fixed. We call the input tuple (G, cap,b, cost,T ,д, l) contain-
ing the graphG , the edge properties cap, b, cost, the timestamps T ,
and generation and load functions (д and l ), an instance.

A graph H = (VH ,EH ) is an expansion of G if V = VH and
E0 ⊆ EH ⊆ E. That is, an expansion of G contains all exist-
ing edges of G and possibly some candidate edges. We call the
edges in EH ∩ E1 selected. The cost of an expansion H is given by
the sum of the costs of the candidate edges selected by H ; i.e.,
cost(H ) B ∑

e ∈EH∩E1 cost(e). Note that the graph (V ,E0) with
only the existing edges is an expansion without any selected edges.
Therefore, any notion we define for expansions applies to the exist-
ing graph as well.

2.1 Power Flows

As it is often done in the context of Transmission Network Ex-
pansion Planning problems, we use a linearized version of the AC
power flow, which is called the DC power flow [14]; see [9] for the
underlying assumptions and a derivation of the power flow model.

We represent the power flow on an edge e = (u,v) ∈ E at
time t ∈ T by ft (e). We interpret positive flow on e as flow from u
to v and negative flow on e as flow from v to u. Here, the arbitrary
direction of the edges comes into play.

Definition 2.1. Given an expansion H = (V ,EH ), a flow in H at
time t ∈ T is a function ft : EH → R such that

(1) the flow is conserved at all vertices (Kirchhoff’s Current
Law),∑

(x,v)∈EH
ft (x ,v) −

∑
(v,x )∈EH

ft (v,x) = lt (v) − дt (v) ∀v ∈ V ,

(2) the edge capacities are not exceeded,

| ft (e)| ≤ cap(e) ∀e ∈ EH .

A flow ft is a power flow if additionally
(3) there is a function θt : V → R such that Kirchhoff’s Voltage

Law is satisfied, i.e.,

ft (u,v) = b(u,v) · (θt (v) − θt (u)) ∀(u,v) ∈ EH .

The value θt (v) in the last condition is called the power angle
at the vertex v . We say an expansion H admits a power flow at
time t ∈ T if there is a power flow in H at time t . It is known that
a power flow is unique if it exists, and if the capacities are large
enough there always is a power flow [4].
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2.2 Transmission Network Expansion Planning

In terms of expansions a basic version of the Transmission Net-
work Expansion Planning problem can be formulated as follows.

Definition 2.2 (Transmission Network Expansion Planning

(TNEP)). Given an instance N , find an expansion H admitting a
power flow at all times t ∈ T and that has minimum cost cost(H )
among all such expansions.

In order to formulate this problem as a mixed-integer linear pro-
gram, we introduce the binary variables z(e) for all e ∈ E1. We inter-
pret z(e) = 1 as “the candidate e is selected in the expansion”, and
z(e) = 0 as “it is not selected in the expansion”. Further, we have the
continuous variables ft (e) for all t ∈ T and all e ∈ E representing
the power flows and θt (v) for all t ∈ T and all v ∈ V representing
the power angles. The conservation of flow is described by the
linear equations for all v ∈ V and t ∈ T∑

(x,v)∈EH
ft (x ,v) −

∑
(v,x )∈EH

ft (v,x) = lt (v) − дt (v). (1)

For the existing edges the capacity constraints and Kirchhoff’s
Voltage Law are described as in Definition 2.1. That is, we have for
all (u,v) ∈ E0 and all t ∈ T

| ft (u,v)| ≤ cap(u,v), (2)
ft (u,v) = b(u,v) · (θt (v) − θt (u)). (3)

The flow on a candidate edge (u,v) has to obey the conditions of
Definition 2.1 if the edge is selected in the expansion (z(u,v) = 1),
and it must be 0 if (u,v) is not selected. We therefore have for all
(u,v) ∈ E1 and all t ∈ T

| ft (u,v)| ≤ cap(u,v) · z(u,v), (4)
ft (u,v) = z(u,v) · b(u,v) · (θt (v) − θt (u)). (5)

Equation (4) ensures that the flow on the edges does not exceed
the capacity. Equation (5) requires Kichhoff’s Voltage Law to be
satisfied if z(u,v) = 1, and places no restriction on the power
angles if z(u,v) = 0. The latter equation is non-linear, but it can be
linearized using big-M-constraints.

| ft (u,v) − b(u,v) · (θt (v) − θt (u))| ≤ M(u,v) · (1 − z(u,v)). (6)

The minimal values for M(u,v) can be determined by computing
shortest paths in G equipped with a suitable metric [3].

Now, Equations (1) to (4) and (6) represent the basic constraints
for the Transmission Network Expansion Planning problem.
The objective is to minimize∑

(u,v)∈E1
z(u,v) · cost(u,v).

This basic version can be extended in various ways, e.g., by
additionally minimizing the operation costs (e.g., [1, 2, 6]), or by
considering that lines may be added over a longer time horizon [1,
2, 12]. Mahdavi et al. [15] present an overview over the various
modeling possibilities for TNEP. However, such extensions are out
of scope in this paper.We focus on the effect of including a criticality
measure into expansion planning problems.

s t7 5

(a) The graph G.

3/6

s t

(b) N res(f, s, u), 3
5
≤ h.

(c) N res(f, s, v), 4
3
> h.

2

2/3

1/4

4/9 3/5 5/5

5

5

3/3

2/5

2/2

u

v

u

v

s t

u

v

s t

v

3/3

3 3/5

0/1

0/8

3

u

5

5

(d) N res(f, v, u), 1
5
≤ h.

3/3 2/5

2/23/13

Figure 1: An example graph and three residual networks.

The edges are marked by f (e)/cap(e). The susceptance of

all edges is 1. Vertices acting as generators/consumers are

marked by arrows into/out of the vertices. In the residual

networks only the direction of the edges carrying flow is

shown, and we assume h = 1. (a) The graph with its power

flow. (b) The residual graph N res(f , s,u) admits a maximum

flow of F res(f , s,u) = 5 ≥ 3 = h · f (s,u). Thus, (s,u) is not criti-
cal. (c) F res(f , s,v) = 3 < 4 = h · f (s,v). The criticality of (s,v)
is 1. (d) F res(f ,v,u) = 5 ≥ 1. The edge (v,u) is not critical.

3 CRITICALITY

Witthaut et al. [21] propose and evaluate simple classifiers for de-
termining whether the failure of a line in a power grid causes the
grid to desynchronize. In this work we consider a classifier based
on maximal (graph-theoretic) flows in the residual networks. In the
following sections we reformulate this classifier in graph theoretic
terms (Section 3.1) and compare it to theN −1 criterion (Section 3.2).
We formulate it as a set of linear constraints (Section 3.3), which
we then include in a mixed-integer linear program formulation for
extensions of TNEP (Section 3.4).

3.1 Formulation of the Criticality Criterion

Given an expansion H = (V ,EH ) let ft be the power flow in H at
time t ∈ T and let (u,v) ∈ EH be an edge. The residual network
N res(ft ,u,v) consists of a directed graph with vertex set V res B V
and edge set Eres. For each edge (x ,y) ∈ EH \ {(u,v)} the residual
network contains the edges (x ,y) and (y,x). The residual capac-

ity capres(x ,y) of an edge (x ,y) ∈ Eres is cap(x ,y) − ft (x ,y) if
(x ,y) ∈ EH and cap(y,x) + ft (y,x) if (y,x) ∈ EH . We further re-
quire that the flow on each directed residual edge is at least 0. That
is, flow on the residual edges is only allowed in the direction of the
edges. We denote the value of the maximum (graph-theoretic) flow
in N res(ft ,u,v) from u to v by F rest (u,v). Similarly, F rest (v,u) is the
maximum flow in N res(ft ,u,v) from v to u.

Figure 1 shows an example power flow and three residual net-
works. In Figure 1 (a) the power flow in the graph is shown. The
generation and load at the vertices is indicated by arrows point-
ing into and coming from the vertices, respectively. Figures 1 (b),
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(c), and (d) show the residual networks for the edges (s,u), (s,v),
and (v,u), respectively. Note that even though only one direction of
each edge is shown, the residual networks actually contain edges in
both directions; showing both directions and their capacities would
clutter the illustration.

Definition 3.1. The criticality of an edge (u,v) ∈ E at time t ∈ T
is defined by

critt (u,v) =
{
max{0, ft (u,v) − h · F rest (u,v)}, ft (u,v) ≥ 0,
max{0,−ft (u,v) − h · F rest (v,u)}, ft (u,v) < 0,

where ft is the power flow inH at time t andh ∈ R≥0 is a parameter.

The edge (u,v) is critical if critt (u,v) > 0. If ft (u,v) is non-
negative, being critical is equivalent to ft (u,v)/F rest (u,v) > h. In
that sense, the parameter h represents a threshold when we classify
an edge as critical.

In the example in Figure 1, we assume h = 1 for simplicity.
For the edge (s,u) (Figure 1 (b)) we see that f (s,u) = 3 ≤ 5 =
h ·F res(f , s,u). Hence, (s,u) is not critical. In contrast, the edge (s,v)
is critical (Figure 1 (c)). The maximum residual flow F res(f , s,v) is
only 3, which is not sufficient as f (s,v) = 4. Hence, its criticality is
crit(s,v) = max{0, 4 − 1 · 3} = 1.

Note that the criticality of an edge does not directly depend on
the capacity of the edge but rather on the residual capacities of the
other edges. Hence, criticality is different to the line congestion
level, which relates the flow on an edge to the capacity of the edge.

The criticality is measured in MW and can be interpreted as the
amount by which the flow on (x ,y) shall be reduced until the edge is
not critical anymore. From a different point of view, critt (x ,y)/h can
be interpreted as by how much the maximum flow in the residual
network needs to be increased until (x ,y) is not critical anymore.
In the example of Figure 1 (c) this means that we would need to
increase the maximum flow in the residual network N res(f , s,v)
by at least crit(s,v)/h = 1 in order to make (s,v) non-critical.

The total criticality of the expansion H = (V ,EH ) is defined as
the sum of the criticalities over all edges and all time stamps,

crit(H ) B
∑
t ∈T

∑
(u,v)∈EH

critt (u,v).

The equation above directly gives a way to compute the total
criticality of an expansion H . Note that for each timestamp the
power flow in H only needs to be computed once.

Lemma 3.2. The total criticality of an expansion (V ,EH ) can be

computed in O(|T | · (TPF + |EH | · TMF)) time, where TPF and TMF

are the times for computing one power flow and one maximum flow,

respectively.

We observe that the value of the maximum flow in the residual
graph is at least 0. If ft (u,v) < 0, we therefore havemax{0, ft (u,v)−
h · F rest (u,v)} = 0. Similarly, we obtain max{0,−ft (u,v) − h ·
F rest (v,u)} = 0 if ft (u,v) ≥ 0. Hence, we can equivalently com-
pute the criticality of an edge (u,v) as follows

Lemma 3.3.

critt (u,v) = max


0,
ft (u,v) − h · F rest (u,v),
− ft (u,v) − h · F rest (v,u)

 .
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(a) The graph G.
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s t24 24
4/4

20/20

(b) N res(f, e1), 12
24
≤ h.

s t8 8
4/4

4/4

(c) N res(f, e2), 4
8
≤ h.

s t28 28

(d) No power flow in G−e1.

21/16, b=1

7/24, b= 1
3

E

Figure 2: An example network without critical edges for

h ≥ 0.5, but removing any edge prevents a powerflow. (a) The

power flow f in the grid. The vertex s acts as a generator

with д(s) = 28, and t acts as a load with l(t) = 28. The edges

are marked by f (e)/cap(e),b(e). (b) The maximum residual

flow in N res(f , e1) has value 24 ≥ f (e1)/h = 12/h. (c) The max-

imum residual flow in N res(f , e1) has value 8 ≥ f (e3)/h = 4/h.
(d) If e1 fails there is no power flow in the resulting network

because the edge e2 is overloaded.

This equation lends itself more easily to be formulated as a linear
program than the original formulation. We therefore base our linear
constraints on this formulation; see Section 3.3.

3.2 Relation to the N-1 Criterion

An expansion H satisfies the N − 1 criterion under edge failures if
and only if removing one edge still yields a network that admits a
power flow [22]. As the criticality criterion considers edge failures
(and not vertex or other equipment failures), we restrict ourselves
to the N − 1 criterion under edge failures. In the remainder of this
work, we simply call this the N − 1 criterion without explicitly
mentioning edge failures.

It is similar in to the criticality criterion by Witthaut et al. [21]
in the sense that both consider the failure of one edge. Both criteria
aim to establish whether such an edge failure causes the network
to fail. However, in the N − 1 criterion only the static behavior is
considered. The network after one edge failure must still admit a
(static) power flow. The dynamics of the failing edge are ignored.
In contrast, the criticality criterion tries to capture whether one
failing edge causes the network to desynchronize.

In general, if a network satisfies one of the two criteria, it does
not need to satisfy the other. Figures 2 and 3 show networks that
satisfy one criterion but not the other. However, we shall see in
Section 5.4 that the two criteria are related empirically.

The network in Figure 2 has no critical edge for h ≥ 0.5. If either
of the edges is removed, themaximum residual flow is twice the flow
on the removed edge. The maximum residual flows in N res(f , e1)
and N res(f , e3) are shown in Figures 2 (b) and (c); the case of re-
moving e2 is symmetric to the case of removing e1. But if any of the
edges fails, the remaining network does not admit a power flow. For
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(c) N res(f, u, v).

Figure 3: An example grid, in which all edges are critical

but which still admits a power flow even if one edge is re-

moved. (a) The power flow f in the grid. The vertex s acts as
a generator with д(s) = 2, and t acts as a load with l(t) = 2.
The edges are marked by f (e)/cap(e). All edges have sus-

ceptance 1. (b) The power flow after the edge (s,u) fails.

(c) The maximum flow in the residual network N res(f , s,u)
has value 1. For h < 1, the edge (s,u) is critical.

example, if e1 fails (see Figure 2 (d)), any flow satisfying Kirchhoff’s
Voltage Law violates the capacity constraint of the edge e2.

The network in Figure 3 satisfies the N − 1 criterion because if
either of the four edges fails, the other path is sufficient to transport
the required 2 units of power from s to t ; see Figure 3 b. However,
for h < 1 all edges are critical. For example, if the edge (s,u) is
removed, the maximum residual flow from s to u is 1, but the
required residual flow is f (s,u)/h = 1/h > 1.

However, in the case that we choose h ≥ 1, then any network
that satisfies the N − 1 criterion also satisfies the criticality cri-
terion. To see this consider the power flows f and f ′ before and
after an edge (u,v) is removed. As the network satisfies the N − 1
criterion both flows exist. We may assume without loss of gener-
ality that f (u,v) ≥ 0. Then, the difference f ′′ B f ′ − f is a flow
in the residual network N res(f ,u,v) with value f (u,v). Hence,
f (u,v) ≤ F res(u,v) ≤ h · F res(u,v) and thus (u,v) is not critical.

Note, however, that Witthaut et al. [21] empirically determined a
value of h = 0.614 in their case study. While the optimal choice of h
may depend on the graph topology, their value is far less than 1.
Hence, we expect that one should choose h < 1 in realistic grids.
This means that we are in the regime where neither the criticality
criterion implies the N − 1 criterion nor vice versa. Hence, it may
make sense to consider both criteria together.

3.3 Criticality as Linear Program

In this section we present how the criticality can be incorporated as
part of a (mixed-integer) linear program. In Section 3.4 we describe
how to actually incorporate these constraints in Transmission
Network Expansion Planning models. The formulation of the
criticality constraints is not limited to expansion planning problems.
It may also be incorporated in other transmission network design
problems, for example Optimal Transmission Switching [8].

The criticality of an edge (u,v) at time t ∈ T depends on the
maximum flow in the residual flow N res(ft ,u,v), where ft is the
power flow in the original network at time t . In Nres(ft ,u,v) the
vertices u and v act as unbounded generators and consumers. That
is, the net flow at u and v is unrestricted. At all other vertices the
amount of flow entering the vertex equals the flow leaving it. Note
that in our model we do not explicitly set one of the vertices u and

v as a consumer and the other as a load. Their roles are implicitly
determined when optimizing the model. This is different to the
original formulation of the criticality condition. In this formula-
tion u acts as a generator if there is positive flow from u to v (i.e.,
ft (u,v) > 0) and v acts as a generator if there is positive flow from
v to u (i.e., ft (u,v) < 0).

Suppose ft : E → R is a power flow in the original network.
We model the criticality of an edge e ∈ E as follows. We have one
continuous variable f rese,t (e ′) for each edge e ′ = (u,v) ∈ E, which
models the residual flow on e ′. As for the power flow, we interpret
positive values of f rese,t (u,v) as flow from u to v and negative val-
ues as −f rese,t (u,v) units flowing from v to u. There further is one
continuous variable ct (e) representing the criticality of the edge e .1

For the ease of presentation, we consider the edge e and the
time t as fixed, and drop the subscripts e and t . That is, we write
f res(e ′) and c(e) instead of f rese,t (e ′) and ct (e). In our models, all
constraints below are repeated for all edges e and all time stamps t .
We first model the capacity constraints for the residual flow.

f res(e) = 0, (7)
f res(e ′) ≤ cap(e ′) − f (e ′) ∀e ′ ∈ E0, (8)
f res(e ′) ≥ − cap(e ′) − f (e ′) ∀e ′ ∈ E0, (9)
f res(e ′) ≤ (cap(e ′) − f (e ′)) · z(e ′) ∀e ′ ∈ E1, (10)
f res(e ′) ≥ (− cap(e ′) − f (e ′)) · z(e ′) ∀e ′ ∈ E1. (11)

Equation (7) ensures that there is no residual flow on e since we con-
sider the residual flow network where e is removed. Equations (8)
and (9) restrict the flow on existing edges to the residual capacities.
The residual capacity constraints for the candidate edges are mod-
eled by Equations (10) and (11). This includes requiring a flow of 0
on candidate edges that are not included in the resulting expansion
(z(e ′) = 0). The last two equations are non-linear, but they can be
linearized in the following way.

f res(e ′) ≤ 2 cap(e ′) · z(e ′) ∀e ′ ∈ E1, (12)
f res(e ′) ≥ −2 cap(e ′) · z(e ′) ∀e ′ ∈ E1, (13)
f res(e ′) ≤ cap(e ′) − f (e ′) ∀e ′ ∈ E1, (14)
f res(e ′) ≥ −2 cap(e ′) − f (e ′) ∀e ′ ∈ E1. (15)

The first two inequalities ensure that if the edge e ′ ∈ E1 is not in the
final solution (z(e ′) = 0), then f res(e ′) = 0. If z(e ′) = 1, the last two
inequalities ensure that the residual capacity of e ′ is not exceeded.
Note that in this case the first two equations do not restrict f res(e ′)
any further since | f (e ′)| ≤ cap(e ′).

As stated above we ensure that the flow is conserved at all ver-
tices except at the endpoints u and v of e . For those two vertices
we impose no restriction on their net flow.∑

(x,w )∈E
f res(x ,w) −

∑
(w,x )∈E

f res(w,x) = 0 ∀w ∈ V \ {u,v}.

(16)
Equations (8), (9) and (12) to (16) model a flow from u to v (or

vice versa) in the residual network Nres(f ,u,v). So far, however, we
1Actually, the constraints only ensure that ct (e) is an upper bound for the criticality
of e . As we minimize over ct (e), we may think of it as representing the criticality of e .
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do not require any minimum flow between u and v . In particular,
setting all variables f res(e ′) to 0 satisfies all constraints.

We base the constraints for the criticality of the edge e , repre-
sented by c(e), on the criticality formulation in Lemma 3.3.

c(e) ≥ 0, (17)

c(e) ≥ f (e) − h · ©­«
∑

(x,v)∈E
f res(x ,v) −

∑
(v,x )∈E

f res(v,x)ª®¬ , (18)

c(e) ≥ −f (e) − h · ©­«
∑

(x,u)∈E
f res(x ,u) −

∑
(u,x )∈E

f res(u,x)ª®¬ . (19)

Here, h is the threshold used to classify an edge as critical (see
Definition 3.1). These constraints ensure that c(e) is at least the
criticality of the edge e in the resulting expansion.

3.4 Criticality in Transmission Network

Expansion Planning

Having seen how to formulate the criticality criterion as a set of
linear constraints, we show how to include them in a TNEP model.
There are two direct ways to modify the TNEP problem. The first
way is to require that the resulting expansion does not exceed a
given maximum total criticality Critmax.

Definition 3.4 (Criticality Constrained Transmission Network

Expansion Planning (CC-TNEP)). Given an instanceN and a max-
imum total criticality Critmax ∈ R≥0, find an expansion H with
crit(H ) ≤ Critmax that admits a feasible power flow and has mini-
mum costs.

Alternatively, we can directly consider the total criticality of the
expansion as our objective.

Definition 3.5 (Criticality Minimial Expansion (CME)). Given
an instance N and a budget Costmax ∈ R≥0, find an expansion H
with cost(H ) ≤ Costmax that admits a feasible power flow and has
minimum total criticality.

Adding Equations (7) to (19) to the basic TNEP problem and
requiring that the resulting total criticality is at most Critmax ∈ R≥0,
i.e., ∑

t ∈T

∑
e ∈E

ct (e) ≤ Critmax, (20)

we obtain an MILP-formulation of the Criticality Constrained
Transmission Network Expansion Planning (CC-TNEP) prob-
lem; see Appendix A for a presentation of all constraints together.
Recall that in any solutions the values of the variables ct (e) are just
an upper bound for critt (e). But with Equation (20) this implies that
the total criticality of the resulting expansion is at most Critmax.

Similarly, we can model Criticality Minimal Expansion as an
MILP, taking the basic TNEP-constraints as well as the criticality
constraints (Equations (7) to (19)). Different to CC-TNEP, we require
the total cost of the expansion to be bounded by Costmax, i.e.,∑

e ∈E1
z(e) · cost(e) ≤ Costmax, (21)

and we minimize the total criticality, which is∑
t ∈T

∑
e ∈E

ct (e). (22)

A full presentation of the model is given in Appendix B. Note that
as we minimize over the sum of the variables ct (e), we have ct (e) =
critt (e) in any optimal solution. Hence, the objective value of an
optimal solution can directly be interpreted as the criticality of the
resulting expansion.

4 A GREEDY HEURISTIC FOR CRITICALITY

MINIMAL EXPANSION

In addition to the MILP formulation for Criticality Minimal
Expansion we develop a simple greedy heuristic. We start with
the network N0 = (V ,E0), which contains all existing edges but
no candidate edges. The initial remaining budget r0 is Costmax. At
each step i , we have an expansion Ni = (V ,E ′i ) and budget ri . We
then determine which candidate reduces the total criticality the
most if it is added to Ni . To this end, we consider each candidate
edge e ∈ E1 that has not been selected in the expansion Ni , i.e.,
e < E ′i . If cost(e) > ri , the candidate edge is too expensive, and
we ignore it. Otherwise, we compute the total criticality of the
expansion (V ,Ei ∪ {e}).

Afterwards, if there is a candidate that reduces the total criticality,
we choose the edge e for which the total criticality crit(V ,Ei ∪ {e})
is minimal. We then setNi+1 B (V ,E ′i ∪{e}) and ri+1 B ri −cost(e).
If all candidates are either too expensive or do not reduce the total
criticality, we stop and return Ni as the resulting expansion. In
particular, if we have reached an expansion without critical edges,
we stop since no expansion further reduces the total criticality.

Note that it may happen that an expansion does not admit a
power flow because the power flow would violate some capacity
constraints. If this happens during the check whether added an
edge is worthwhile, we simply ignore this expansion. However,
if the initial network N0 already does not admit a feasible power
flow, we proceed differently. We define the total capacity violation

viol(V ,E ′) of an expansion (V ,E ′) by

viol(V ,E ′) B
∑
t ∈T

∑
e ∈E′

max{0, | f ′t (e)| − cap(e)}, (23)

where f ′t is a power flow in N ′ at time t except that it may violate
some edge capacity constraints. We now proceed similar to the
main part of the algorithm. But instead of minimizing the total
criticality, we greedily minimize the total capacity violation. If we
reach a point where the resulting expansion admits a feasible power
flow, we switch to greedily minimizing the total criticality.

Lemma 4.1. The greedy algorithm runs in O(|E1 |2 · Tcrit) time,

where Tcrit is the time needed for computing the total criticality of an

expansion.

Proof. As in each iteration one candidate edge is added, there
are at most |E1 | iterations. In each iteration we compute the total
criticalities of at most |E1 | expansions, which each takes time Tcrit.

□
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Table 1: The properties of the networks in the evaluation.

The candidate edges are parallel to the existing edges.

Country |V | |E0 | Country |V | |E0 |
AT 23 29 IE 8 12
BE 27 32 NL 33 40
BG 12 17 NO 41 65
CH 15 23 PT 16 22
CZ 21 35 RO 17 27
DK 11 11 SE 46 72
HR 6 6 SI 4 4
HU 13 21 SK 9 13

5 EVALUATION

Based on the theoretical analysis of the models we formulate hy-
potheses that guide our evaluation. These hypotheses are then
verified or falsified empirically on 16 sample networks that are
extracted from the data available in PyPSA [5]. Each network is a
clustered version of the transmission grid of one European country.
The networks have between 4 and 46 vertices, and between 4 and
72 edges; see Table 1 for details. There is a candidate edge parallel
to each existing edge, i.e., the total number of edges in the graph
is twice the number of existing edges. The data for the maximum
generation and load at each vertex are available in hourly resolution
over the course of one year. We restricted our evaluation to four
days. To alleviate the impact of seasonal and weekly variation, we
chose one Tuesday in winter (22 January 2013) and the following
Sunday (27 January) and the same in summer (16 July, 21 July).

In the data, however, only the maximum generation is available
and not the actual generation. But different generation distributions
induce different power flows and thus different criticality values. To
exclude the impact of different generation distributions, we fixed
the generations based on a merit order principle. We assigned the
required power to the cheapest generators. While an optimal power
flow [9] may be more desirable from an optimization point of view,
it has the disadvantage that it depends on the network topology.
Since the topology changes when adding edges, one would have to
re-calculate the optimal power flow. This makes the optimization
more complex. Moreover, using the merit order is realistic in the
sense that it is used to decide which generators are active, e.g., in
the European Union [10].

The models and the heuristic presented above are able to deal
with multiple timestamps. We were interested how the number of
timestamps considered together affects the solution. Therefore, we
split the 96 timestamps in total in groups of k timestamps each,
with k ∈ {1, 2, 3, 4, 6, 12, 24}. That is, for each network we had 96/k
groups. For the criticality threshold parameter h, we use h = 0.614,
which is the value Witthaut et al. [21] determined as optimal in
their case study.

We implemented our algorithms in C++17, compiled with GCC
8.2.1, and used Gurobi 9.0.0 to solve the mixed-integer linear pro-
grams. The algorithms were executed on a server with 64-bit ar-
chitecture, four 12-core AMD CPUs running at 2.1 GHz, 256 GB of
RAM under openSUSE Leap 15.1. We ran tests on 40 instances in
parallel, but each algorithm was only allowed to use a single thread.
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The latter was done to ensure a fair comparison between Gurobi
and our heuristic, which is unable to utilize multiple threads.

We gave the Gurobi one hour time to solve the models. In cases
where this was not sufficient to prove optimality or that the instance
is infeasible, we report the best solution found within this time
frame.

5.1 TNEP vs. CC-TNEP

In a first step we assess the effect of including the criticality con-
straints in the TNEP model. To this end we compare solving the
plain TNEP model to solving the CC-TNEP model. For CC-TNEP,
we choose Critmax = 0, which means that we require the resulting
expansions to have not critical edges. We expect the solver to obtain
the optimal results faster for the TNEPmodel than for the CC-TNEP
model as the CC-TNEP model in more complex.

Hypothesis 1. Optimal solutions for TNEP can be obtained faster

than optimal solutions for CC-TNEP.

The number of constraints grows quadratically in the number of
edges for CC-TNEP but only linearly for TNEP. Hence, we expect
the ratio between the solution times for CC-TNEP and TNEP to
grow with increasing graph sizes.

Hypothesis 2. The ratio between the solution times for CC-TNEP

and TNEP increases with increasing number of edges.

To verify or falsify these hypotheses, we compare solving TNEP
and CC-TNEP on the instances with one timestamp. There are
96 timestamps for each of the 16 countries. Hence, we have 1536 in-
stances in total. Out of these, there are 336 instances where no
expansion admits a power flow. That is, TNEP (and consequently
CC-TNEP) has no feasible solution. For one other instance Gurobi
was not able to find any solution in one hour. Ignoring these in-
stances, we have 1199 instances left. For all these instances, Gurobi
was able to find optimal solutions for TNEP. Out of these 1199 in-
stances, 209 instances do not admit an expansion without any crit-
ical edges. Additionally, there is one instance for which Gurobi
was unable to find any feasible solution of CC-TNEP in one hour.
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This leaves us with 989 instances for which Gurobi found optimal
solutions of both TNEP and CC-TNEP.

In the following analysis, we focus on how long it takes until
the optimal solution is found by Gurobi and not until Gurobi can
actually prove optimality. We therefore use the solution time, which
we define as the time when Gurobi found the optimal solution.

Figure 4 shows the ratio of solution times for CC-TNEP and for
TNEP. The instances are sorted by increasing ratio. The minimum
solution time ratio is about 2.5, which means that Gurobi takes more
than twice as long on all instances. Themedian andmaximum ratios
are 111.5, and 25940. Plots for more than one timestamp have a
similar shape; see Appendix C. These findings confirmHypothesis 1.

In absolute terms, however, both models could be solved quite
fast. The solution times for TNEP are all below one second (with a
maximum of 670 ms). For CC-TNEP slightly more than half of the
instances (528, 53.4 %) could be solved within one second, and only
49 instances (5.0 %) needed more than one minute.

When we plot the solution time ratio in comparison to the num-
ber of edges (Figure 5), we can clearly see a trend that this ratio
becomes larger the more edges there are. This observation confirms
Hypothesis 2.

5.2 CC-TNEP vs. CME

Criticality Minimal Expansion has a budget as an additional
parameter. For our tests, we set the budget to certain fractions (5 %,
10 %, 15 %, 20 %, 25 %, 50 %) of the total costs of all candidate edges.

The mixed-integer linear programs for CC-TNEP and CME are
similar as the objective for one problem has a hard bound in the
other problem and vice versa. We therefore expect the running
times to be similar.

Hypothesis 3. On the same instances the running times for CME

and CC-TNEP are the same.

To evaluate this hypothesis, we analyze those instances for which
Gurobi found a feasible solution within one hour for both problems.
These are between 958 instances for a 5 %-budget and 984 instaces
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for both 10%- and 15%-budgets. We plot the ratio of the solution
times of Gurobi for CME vs. CC-TNEP in Figure 6. Each line shows
the solution time ratio for one the budgets; the instances are sorted
by these ratios individually for each line. We can see that except
for the 5% budget, CME can be solved faster than CC-TNEP on
slightly less than 25 % of the instances. But on most instances solv-
ing CC-TNEP is faster. On 40 % of the instances the ratio exceeds 2,
compared to only 8.0 % of the instances with a ratio below 0.5. We
therefore conclude that solving CME is on average slower than
solving CC-TNEP and therefore reject Hypothesis 3

5.3 Evalution of the Greedy Heuristic for CME

We now compare solving the CME model with Gurobi to running
the greedy heuristic presented in Section 4. When Gurobi is given
enough time, we are guaranteed to find the optimal solution if
the instance is feasible. The greedy algorithm, however, does not
have this guarantee. It may even fail to find any feasible solution if
the existing graph does not admit a power flow. But as the greedy
heuristic tries to deal with this case, we nevertheless expect it to
usually find feasible solutions.

Hypothesis 4. There are instances where Gurobi finds a solution
but the greedy algorithm does not.

Moreover, we expect the greedy algorithm to find good solutions
in much less time than Gurobi.

Hypothesis 5. The greedy algorithm finds optimal solutions on

the majority of instances.

Hypothesis 6. The greedy algorithm is faster than Gurobi.

The running time of the greedy algorithm only linearly depends
on the number of timestamps. We therefore expect the time advan-
tage of the greedy heuristic compared to Gurobi to increase if the
number of timestamps increases.

Hypothesis 7. The time advantage of the greedy algorithm com-

pared to Gurobi increases with the number of timestamps.

Similarly, the running time of the greedy algorithm only in-
directly depends on the budget. If it finds a solution with total
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criticality 0 early, it stops independent on the budget available.
However, if more budget is available the space of feasible solutions
becomes larger. This may impede Gurobi in finding good solutions.

Hypothesis 8. The time advantage of the greedy algorithm com-

pared to Gurobi increases with the budget.

Among the 9216 instances with one timestamp (over all six bud-
get choices) there are 2221 infeasible instances and 9 instances
where neither Gurobi nor the greedy algorithm found any solu-
tion. We use the remaining 6986 instances in the following analysis.
Gurobi solved 6914 instances (99.0%) optimally within one hour.
There are 7 instances (0.1 %) where Gurobi found a solution (the op-
timal solution in all cases) but the greedy algorithm was unable to
find any feasible solution. Conversely, there are 43 instances (0.6 %),
where the greedy algorithm found a feasible solution but Gurobi
did not. On most instances both Gurobi and the greedy algorithm
found a solution. In fact, on 86.6 % of the instances they computed
expansions with the same criticality. This observation is also visible
in Figure 7, where the ratio of the total criticalities for the expan-
sions computed by the greedy algorithm and Gurobi are plotted.
Each line corresponds to one budget. For each budget choice, the
instances are sorted by decreasing ratios. Values below 1 mean that
the expansion computed by Gurobi has a smaller total criticality
than the one by the greedy algorithm. It is clearly visible that for
most instances the ratio is 1. This observation confirms Hypothe-
ses 4 and 5. That is, the greedy algorithm is competitive to the MILP
solver Gurobi in terms of resulting total criticality.

To assess the running time, we plot the ratio of the solution times
of the greedy algorithm to the solution times of Gurobi. As being
fast but providingmuchworse results is not useful, we consider only
those instances where Gurobi and the greedy algorithm provide
expansions with the same total criticality; see Figure 8. As before,
each line in the plot corresponds to one budget choice. We observe
that the greedy algorithm is faster on 91.0 % of the instances over all
budget choices, but for small budgets this portion is notably smaller:
81.4% for a 5%-budget and 78.2% for a 10%-budget. On slightly
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more than half of the instances (51.0%) the greedy algorithm is
faster by a factor of at least 4; and on 28.4% of the instances it is
faster by a factor of at least 10. These results confirm Hypothesis 6.
Regarding the dependence on the budget, however, our results only
support Hypothesis 8 insofar as there are more instances for smaller
budgets where the greedy algorithm is slower. For well over 75 % of
the instances, the budget does not make any significant difference.

For a larger number of timestamps, the time advantage of the
greedy algorithm increases. For three timestamps, it is faster by
a factor of 10 on already more than half of the instances (59.4%).
This portion raises to 66.7 % for instances with six timestamps; see
also Appendix D. Hence, we confirm Hypothesis 7.

5.4 N-1 Criterion and Criticality

In Section 3.2 we observe that in general the N − 1 criterion and the
criticality criterion do not imply each other. However, both criteria
require redundancy in the resulting expansion. Hence, we expect
expansions without critical edges to often satisfy the N −1 criterion
as well. In an expansion H , we call an edge e vital if H − e does
not admit a power flow. Hence, an expansion satisfies the N − 1
criterion if and only if it has no vital edges. The fraction of vital

edges of an expansion H is the number of vital edges divided by the
total number of edges in H .

Hypothesis 9. An optimal solution to CC-TNEP with Critmax = 0
tends to satisfy the N − 1 criterion, i.e., its fraction of vital edges is

close to 0.
Compared to the cost-minimal expansions (i.e., optimal solutions

of TNEP), we expect cost-minimal expansions with total criticality 0
to have fewer vital edges.

Hypothesis 10. If HTNEP and HCC-TNEP are optimal solutions for

TNEP and CC-TNEP, then the fraction of vital edges in HCC-TNEP is

at most the fraction of vital edges in HTNEP.

To verify or falsify these hypotheses, we consider the expansions
that result from CC-TNEP and compare them to cost-minimal ex-
pansions, which result from solving TNEP. Expansions for instances
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with multiple timestamps at once tend to include more candidate
edges than the expansions for the individual timestamps. Hence,
they should be more likely to have few vital edges. In this sense,
the instances with only one timestamp are the hardest instances.
We therefore focus on those. As in Section 5.1, we only consider
the 989 instances solved by Gurobi for both TNEP and CC-TNEP.

We find that there is no instance for which the fraction of vital
edges is larger in the expansion computed by CC-TNEP than in
the cost-minimal expansion. Hence, we maintain Hypothesis 10.
In Figure 9 each line corresponds to the expansions computed by
solving either TNEP or CC-TNEP. For each line the instances are
sorted by their fraction of vital edges. Note, however, that the values
shown at the same x-coordinate do not necessarily correspond to
the same instance as the instances are sorted per curve. We observe
that for 76.9% of the instances, the expansion computed by CC-
TNEP has no vital edge. That is, the expansion satisfies the N − 1
criterion. For TNEP, this holds only for 17.1% of the instances.
Hence, we conclude that requiring no critical edges tends to result
in expansions that satisfy the N − 1 criterion. We thus confirm
Hypothesis 9.

6 CONCLUSION

In this paper we present how to extend any (mixed-integer) linear
program formulation of any transmission network design prob-
lem by the criticality criterion introduced by Witthaut et al. [21].
To this end we formulate the criticality criterion as a set of lin-
ear constraints. These may then be used as a building block when
formulating transmission network optimization problems. To intro-
duce those constraints only variables (or constants) representing
the power flow on each edge and at each timestamp are needed.

As an example we analyzed the effects of adding the criticality
criterion to a basic version of the Transmission Network Ex-
pansion Planning (TNEP) problem. We formulated two problems:
Criticality-Constrained Transmission Network Expansion
Planning (CC-TNEP), where the total criticality is bounded by
a hard constraint, and Criticality Minimal Expansion (CME),
where the criticality is minimized. We further present a greedy

heuristic for CME, which is both fast and produces optimal solu-
tions in more than 75 % of the instances. We further observed that
minimizing the criticality subject to a budget constraint subject to
a budget constraint (CME) seems to be harder than minimizing the
cost subject to a maximum criticality (CC-TNEP).

While models including the criticality criterion take longer to
solve, the resulting networks are much more reliable. In particular,
they tend to satisfy the N − 1 criterion as evidenced by our simula-
tions. Hence, one may also consider using the criticality criterion
instead of (or in addition to) the N − 1 criterion in transmission
network design problems.

It would be interesting to include the criticality constraints in
more comprehensive variants of TNEP; for example, by including
the operation costs in the optimization criterion or by consider-
ing expansions over a longer time scale. Moreover, the criticality
constraints can be incorporated in other transmission network op-
timization problems, e.g., Optimal Power Flow [9] or Optimal
Transmission Switching [8]. One may analyze the applicability
of the criticality criterion in online settings such as transmission
grid operation. One could also investigate larger networks or an-
alyze the relation to other reliability criteria such as the N − k
criterion [17].
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A MILP-FORMULATION OF CC-TNEP

Minimize ∑
e ∈E1

cost(e) · z(e)

such that
lt (v) − дt (v) =

∑
(x,v)∈E

ft (x ,v) −
∑

(v,x )∈E
ft (v,x) ∀v ∈ V , t ∈ T ,

ft (u,v) = b(u,v) · (θt (v) − θt (u)) ∀(u,v) ∈ E0, t ∈ T ,

| ft (e)| ≤ cap(e) ∀e ∈ E0, t ∈ T ,

| ft (u,v) − b(u,v) · (θt (v) − θt (u))| ≤ M(u,v) · (1 − z(u,v)) ∀(u,v) ∈ E1, t ∈ T ,

| ft (e)| ≤ cap(e) · z(e) ∀e ∈ E1, t ∈ T ,∑
t ∈T

∑
e ∈E

ct (e) ≤ Critmax

f rese,t (e) = 0 ∀e ∈ E, t ∈ T ,

f rese,t (e ′) ≤ cap(e ′) − ft (e ′) ∀e ∈ E, e ′ ∈ E0, t ∈ T ,

f rese,t (e ′) ≥ − cap(e ′) − ft (e ′) ∀e ∈ E, e ′ ∈ E0, t ∈ T ,

f rese,t (e ′) ≤ 2 cap(e ′) · z(e ′) ∀e ∈ E, e ′ ∈ E1, t ∈ T ,

f rese,t (e ′) ≥ −2 cap(e ′) · z(e ′) ∀e ∈ E, e ′ ∈ E1, t ∈ T ,

f rese,t (e ′) ≤ cap(e ′) − ft (e ′) ∀e ∈ E, e ′ ∈ E1, t ∈ T ,

f rese,t (e ′) ≥ −2 cap(e ′) − ft (e ′) ∀e ∈ E, e ′ ∈ E1, t ∈ T ,

0 =
∑

(x,w )∈E
f rese,t (x ,w) −

∑
(w,x )∈E

f rese,t (w,x) ∀e = (u,v) ∈ E,w ∈ V \ {u,v}, t ∈ T ,

ct (e) ≥ 0, ∀e ∈ E, t ∈ T ,

ct (e) ≥ ft (e) − h · ©­«
∑

(x,v)∈E
f rese,t (x ,v) −

∑
(v,x )∈E

f rese,t (v,x)
ª®¬ , ∀e = (u,v) ∈ E, t ∈ T ,

ct (e) ≥ −ft (e) − h · ©­«
∑

(x,u)∈E
f rese,t (x ,u) −

∑
(u,x )∈E

f rese,t (u,x)
ª®¬ , ∀e = (u,v) ∈ E, t ∈ T ,

ft (e) ∈ R ∀e ∈ E, t ∈ T ,

θt (v) ∈ R ∀v ∈ V , t ∈ T ,

ct (e) ∈ [0,∞) ∀e ∈ E, t ∈ T ,

f rese,t (e ′) ∈ R ∀e ∈ E, e ′ ∈ E, t ∈ T ,

zt (e) ∈ {0, 1} ∀e ∈ E1, t ∈ T .
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B MILP-FORMULATION OF CME

Minimize ∑
t ∈T

∑
e ∈E

ct (e)

such that
lt (v) − дt (v) =

∑
(x,v)∈E

ft (x ,v) −
∑

(v,x )∈E
ft (v,x) ∀v ∈ V , t ∈ T ,

ft (u,v) = b(u,v) · (θt (v) − θt (u)) ∀(u,v) ∈ E0, t ∈ T ,

| ft (e)| ≤ cap(e) ∀e ∈ E0, t ∈ T ,

| ft (u,v) − b(u,v) · (θt (v) − θt (u))| ≤ M(u,v) · (1 − z(u,v)) ∀(u,v) ∈ E1, t ∈ T ,

| ft (e)| ≤ cap(e) · z(e) ∀e ∈ E1, t ∈ T ,∑
e ∈E1

cost(e) · z(e) ≤ Costmax

f rese,t (e) = 0 ∀e ∈ E, t ∈ T ,

f rese,t (e ′) ≤ cap(e ′) − ft (e ′) ∀e ∈ E, e ′ ∈ E0, t ∈ T ,

f rese,t (e ′) ≥ − cap(e ′) − ft (e ′) ∀e ∈ E, e ′ ∈ E0, t ∈ T ,

f rese,t (e ′) ≤ 2 cap(e ′) · z(e ′) ∀e ∈ E, e ′ ∈ E1, t ∈ T ,

f rese,t (e ′) ≥ −2 cap(e ′) · z(e ′) ∀e ∈ E, e ′ ∈ E1, t ∈ T ,

f rese,t (e ′) ≤ cap(e ′) − ft (e ′) ∀e ∈ E, e ′ ∈ E1, t ∈ T ,

f rese,t (e ′) ≥ −2 cap(e ′) − ft (e ′) ∀e ∈ E, e ′ ∈ E1, t ∈ T ,

0 =
∑

(x,w )∈E
f rese,t (x ,w) −

∑
(w,x )∈E

f rese,t (w,x) ∀e = (u,v) ∈ E,w ∈ V \ {u,v}, t ∈ T ,

ct (e) ≥ 0, ∀e ∈ E, t ∈ T ,

ct (e) ≥ ft (e) − h · ©­«
∑

(x,v)∈E
f rese,t (x ,v) −

∑
(v,x )∈E

f rese,t (v,x)
ª®¬ , ∀e = (u,v) ∈ E, t ∈ T ,

ct (e) ≥ −ft (e) − h · ©­«
∑

(x,u)∈E
f rese,t (x ,u) −

∑
(u,x )∈E

f rese,t (u,x)
ª®¬ , ∀e = (u,v) ∈ E, t ∈ T ,

ft (e) ∈ R ∀e ∈ E, t ∈ T ,

θt (v) ∈ R ∀v ∈ V , t ∈ T ,

ct (e) ∈ [0,∞) ∀e ∈ E, t ∈ T ,

f rese,t (e ′) ∈ R ∀e ∈ E, e ′ ∈ E, t ∈ T ,

zt (e) ∈ {0, 1} ∀e ∈ E1, t ∈ T .
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C PLOTS FOR CC-TNEP VS. TNEP
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Figure 10: The ratio of the solution times for CC-TNEP to TNEP on instances where both TNEP and CC-TNEP found solutions.

Each plot shows the results for instances with a fixed number of timestamps. The instances are sorted by increasing ratio. See

also Figure 4.
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D PLOTS FOR GREEDY VS. GUROBI FOR CME
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Figure 11: The ratio of solution times for the greedy algorithmandGurobi solvingCME.Only the instanceswhere both solution

methods found the same result are plotted. Each plot shows instances with the same number of timestamps. For each budget,

the instances are sorted by increasing ratio. See also Figure 8.
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