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Abstract—Force-directed approaches, also known as spring
embedders, are widely used in the context of graph drawing
and network embedding. In this paper, we study the application
of these methods to signal-strength based tracking in wireless
networks. The performance of the presented algorithms is eval-
uated based on pedestrian tracking experiments in a 60-node
wireless sensor network (WSN). Additionally, we compare the
outlined approach with implementations of Extended Kalman
Filters (EKF) and examine similarities and distinctions between
both approaches.

The algorithms are developed in a 3-step process. First, we
take a brief look at the trilateration problem, where a position is
estimated based on a set of noisy signal strength measurements.
From this we conclude how signal strengths can be translated into
adequate spring forces. Subsequently, we establish a movement
model by introducing additional forces between consecutive
position estimates. Finally, we show how step information from
a pedestrian can be used to improve the localization.

Our experimental results indicate that force-directed methods
offer an interesting and competitive approach to the tracking
problem. Especially the possibility to easily include further
information by introducing additional forces makes them very
attractive. As modeled forces are not limited to linear functions,
non-linear aspects such as distance estimates can be effortlessly
modeled. We conclude that the application of force-directed
approaches to the tracking problem offers a worthwhile direction
for future research.

I. INTRODUCTION

The localization of devices has been a topic of great interest
ever since the upcoming of wireless sensor network technology
around the end of the last century. Correlating a measured
value with its spatial position is critical to most sensing
applications [1]. Within this context, location tracking can be
described as the problem to determine the location of a mobile
subset of sensor devices in relation to others or a reference
coordinate system. This tracking can be achieved based on
various input data sources. A lot of previous work in this field
originates from the robotics community where the tracking of
mobile robots based on angles or distances in respect to (fixed)
landmarks has been evaluated thoroughly, e.g. [2]. Methods in
this field especially include Bayesian information processing
approaches that maximize the likelihood of a certain location
under the assumption of underlying probability distributions
of the available measurements [3].

In this paper, we present a force-directed approach to
the location tracking problem. Force-directed approaches are
frequently used in the areas of graph drawing and network
embedding. The idea is to represent network nodes as steel
rings and distances between these nodes as springs. The
resulting spring network is usually under tension, with some
distances being shorter or longer than intended. An embedding
is attained by iteratively moving nodes until all forces of the
network are in a state of equilibrium.

The approach to the tracking problem considered in this
paper works very similar: landmarks (devices with known
positions) in the WSN are represented by anchor nodes in
the graph-theoretic network. Measurement positions of the
mobile device in the WSN, i.e. positions at which distance
measurements to landmarks are taken, are represented by
position nodes in the graph. The (inaccurately) measured
distances are represented by springs (cf. Figure 1 right). An
estimate for the position of the mobile device is then found
by iteratively moving the position node in the graph so that
an equilibrium state of all spring forces is reached.

Fig. 1. Distance measurements are translated into springs. Position estimates
are computed by finding force-equilibria. Left: real-world sensor network.
Circles correspond to landmarks, squares to the positions of the mobile device
at which distance measurements to landmarks are taken. Right: spring graph.
Each landmark is represented by an anchor node, each measurement position
by a position node. Distance measurements are represented by springs.

As an example application, we consider the tracking of a
person carrying a mobile device. The device obtains received
signal strength (RSS) values of radio packets sent by land-
marks. From these RSS values, distance estimates are inferred.
Based on the described representation as nodes and springs in
a network, an estimation of the position of the mobile device
is computed. In this paper, we compare the performance of



force-directed tracking to a similar model in an Extended
Kalman Filter (EKF) and show similarities and distinctions
between the approaches. As most of today’s mobile devices
are equipped with an acceleration sensor, we also outline the
inclusion of acceleration-based step recognition and show how
the achievable accuracy is improved.

The performance of the developed force-directed tracking
algorithm and the EKF are evaluated on experimental data
from a 60-device wireless sensor network (WSN) deployed in
two different buildings.

The key contribution of this work is to outline and ex-
perimentally evaluate the possibilities of using force-directed
approaches for tracking. In comparing resulting tracking ac-
curacies to the EKF, a qualitative assessment is provided. The
experimental evaluation also studies the influence of algorithm
parameters and number of used landmarks.

II. RELATED WORK

Most outdoor location discovery and tracking problems have
been solved with the upcoming of global navigation satellite
systems (GNSS) such as GPS or others. However, especially
in indoor scenarios, these problems still pose a considerable
challenge. In this section of the paper, we outline some
relevant approaches to tracking in wireless sensor networks
(WSN) and lead over to related graph-embedding problems.

A. RSS-based location tracking in sensor networks

Various approaches to track mobile sensor devices in WSN
have been proposed. In the Motetrack system, locations are
correlated with landmarks within range (RF-fingerprinting) by
means of a calibration procedure. Based on a probabilistic
approach, the mobile device can then estimate its position from
these reference positions given the set of landmarks within its
range. For this, it is assumed that the landmarks periodically
broadcast their location [4]. Different other techniques to
determine a location from such fingerprint databases as well
as different application scenarios have been presented [5], [6].

However, the common disadvantage of these systems is
the required survey procedure to obtain this database initially.
Although crowd-sourcing is a possible solution to this [6], the
presence of such a database can usually not be assumed.

An alternative approach is to infer distances from RSS
values and then use trilateration to obtain a position esti-
mate [7]. The distance estimates obtained from this method
are however subject to strong fluctuations, especially in indoor
scenarios [8]. As smoothing over time can usually not be
applied if the receiver is moving, other methods to cope
with this have been presented. One possibility are Bayesian
information processing methods like Kalman filters [9], [10] .
Also the inclusion of inertial data from gyro- or acceleration
sensors can help to solve this issue [11].

B. Force-directed approaches for localization

Using force-directed methods to find embeddings for net-
works in the 2-dimensional Euclidean space is a fairly com-
mon approach. Usually, the first step is to find an initial

embedding from multidimensional scaling techniques [12].
This initial solution is then locally refined by modeling attract-
ing or dispersing forces between the nodes of the network.
One application of a comparable method to the localization
problem in WSN has been proposed in [13]. In this work the
authors use such a force-based approach in a refinement step
after an initial cluster localization. Another evaluation with
a particular focus on larger networks is presented in [14].
The authors compare several force-directed approaches to find
embeddings of sensor networks based on signal strengths
and angular information. In [15], a distributed force-directed
algorithm that computes a network embedding based on local
distance and angular information is introduced.

However, most previous work is mainly evaluated in simu-
lations and with a focus on theoretical aspects. An application
to the tracking problem has not yet been studied.

III. FORCE-DIRECTED TRACKING

A. Basic Approach

Basically, all applications of force-directed methods to
compute embeddings of graphs and networks rely on the same
model: distance estimates between graph nodes are modeled as
virtual springs, and an embedding is found by moving nodes
until an equilibrium of forces is established [16], [17].

As outlined, we introduce two types of nodes: anchor nodes
corresponding to landmarks with known positions and position
nodes corresponding to the position of the mobile device at the
time of measurements. The positions of the anchor nodes in
the spring network are fixed, position nodes are moved based
on applied spring forces that can result from underlying model
assumptions or various kinds of measurements.

The lengths of the springs are defined such that either
an attracting force is exerted if the position node is farther
away from the anchor node than expected or a repelling force
otherwise. The position estimate for the mobile device can
be inferred from the most recent position node as soon as
an equilibrium of forces is reached. In comparison to the
graph embedding problem where an embedding for the whole
network is to be found, the situation is thus simpler, as in
each time step only a single node is embedded. An important
aspect of the force-directed approach is that it makes almost no
restrictions on the mathematical representation of the modeled
forces. This allows designing forces that are highly adjusted
to the characteristics of the underlying measurements.

B. Forces from Distance Measurements

The most obvious spring forces are inferred from (inac-
curate) distance measurements. These distance measurements
can, e.g., result from a conversion of RSS values from received
radio packets as outlined in Section VI-B. Each measured
distance is compared to the corresponding distance between
the current position node and the respective anchor node and
results in a spring. This spring either exerts a repelling force
if the measured distance is bigger then the distance between
the two nodes, or an attracting force otherwise. If multiple
measurements are available, multiple springs exert forces in



different directions. To reach equilibrium, the position node
now has to be moved in the direction of the vector resulting
from adding up all force vectors. In the following, we discuss
three different possibilities for the definition of forces.

Let da,k be the distance estimate to anchor node a at time k,
~va = (xa−xk, ya−yk)T the vector pointing from the current
position estimate (xk, yk) to position (xa, ya) of anchor a, and
|~va| the Euclidean length of ~va. The first force ~F1 considered
in our study is defined as follows:

~F1 =
~va
|~va|
· da,k − ~va (1)

This definition corresponds to the desired behavior: if the
estimated distance is larger than the current distance, then
F1 points in the direction of the anchor node, otherwise it
points in the opposite direction. The length of the force vector
is proportional to the absolute difference between the current
distance and the estimated distance.

The second force, ~F2, uses an additional factor of d−1
a,k to

weaken the influence of measurements over long distances:

~F2 =
~F1

da,k
(2)

This definition takes into account that the average distance
estimation error increases more or less linearly with the
sender-receiver distance. By dividing through the estimated
distance, more inaccurate measurements from longer distances
are weakened so that they do not worsen the position estimate.

The third force definition is motivated by the graph drawing
algorithm of Fruchterman and Reingold [17], which is known
to work very well for the computation of graph embeddings,
and which has also been used to compute embeddings of
wireless sensor networks [14]. For each range measurement an
attractive force ~Fattr and a repulsive force ~Frep are introduced
as follows:

~Fattr = −|~va|
2

da,k
· ~va|~va|

, ~Frep =
d2a,k
|~va|
· ~va|~va|

. (3)

The acting force ~F3 is then given by ~F3 = ~Fattr + ~Frep.
Each of the three described force definitions could be used

to model RSS-based distance estimates in a force-directed
approach. In Section VI-C we compare the three possibilities.
According to the experimental study, ~F2 has been found to be
the most promising force for representing RSS measurements.

C. Forces from Movement Model Assumptions

Due to the high fluctuations in RSS-based distance es-
timations, the position estimate can jump in the range of
meters, even for a stationary receiver. To avoid this, we
use the fact that the time difference between consecutive
measurements depends on the measurement update rate. This
is used as additional system knowledge (in our experiments:
4 measurements per second for each landmark). Assuming a
maximum velocity vmax of the tracked object, a maximum
distance ∆t·vmax is assumed for the movement of the receiver
during one time period ∆t. To model this, we introduce

additional spring forces between consecutive position nodes
(cf. Figure 2). For example, a pedestrian usually does not

{ { {

∆t

∆t

≤ ∆t · vmax

∆t

Fig. 2. Time differences are translated into distance estimates.

move faster than vmax = 5 km/h. From this we can infer that
consecutive measurement positions should be no further apart
than dmax = ∆t · vmax, with ∆t being the time difference
between two measurements.

Let (xk−1, yk−1) be the final position estimate for time step
k − 1 and ~w = (xk−1 − xk, yk−1 − yk)T the vector pointing
from the current position estimate at time k to the position
estimate at time k − 1. By introducing the force

~Fmove =

{
~0 if |~w| ≤ dmax

(|~w| − dmax) · ~w/|~w| if |~w| > dmax
, (4)

we model an attracting force that acts on the position node
as soon as it is located more than distance dmax away from
the previous position node. This force is proportional to the
amount distance dmax is exceeded. If the position nodes are
closer than dmax, no force is introduced. This example shows
how easily non-trivial forces can be represented.

Note that there is no need to store more than two position
nodes at the same time, the current position node and the
position node representing the last position estimate.

D. Forces from Step Recognition

Today, most mobile devices have a built-in accelerometer,
which can be used to identify steps by recognizing peaks
in the acceleration pattern. As an example of how to extend
the system model with additional information, we study the
possibility of incorporating such step information. As we do
not want to go into the details of step detection, we just assume
knowledge of occurring steps for the purpose of this paper.

So far we assumed that the position is re-estimated every
time when new measurements arrive. With each new set of
measurements, a new position node was introduced and the
old position node was removed from the network. If step infor-
mation is available, we use a slightly different approach. Now
new position nodes are only introduced if steps are detected.
If new distance measurements are obtained, the corresponding
forces are simply attached to the current position node. Again,
a connection of the current step node with the previous step
node is incorporated by an additional force similar to ~Fmove

from the last paragraph (cf. Figure 3)
There are two differences to the model without step recog-

nition: dmax is now set to an average step distance and, as we
now know that the person actually moved, one can also make
the force repelling if the distance between the position nodes
is shorter than a usual step.
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Fig. 3. Step detection is used to detect and combine co-located measurements.

Of course, if the person does not move for a while, it
can happen that many measurements accumulate between two
steps. In this case, it is usually sufficient to use only the k
latest measurements, with k being chosen appropriately for
the considered application.

E. Approximating the State of Equilibrium

After determining all forces that are exerted by the intro-
duced springs, a state of equilibrium, i.e. a local optimum, has
to be found. In this paper, all forces are considered to be 2-
dimensional vectors. For each kind of force, we define an addi-
tional weighting that allows controlling the importance of the
forces relative to each other. By adding the vectors multiplied
by the corresponding weight, we get the direction to which to
move the position estimate. The movement is done in small
increments of 5 cm to 10 cm. After each movement, the acting
forces are recomputed to get the new movement direction. The
number of necessary iterations depends on the scenario. For
tracking without step detection we use 7 iterations with 10 cm
movements, followed by 3 iterations with 5 cm movements. In
the model with step detection, we recompute the position only
once per step. Accordingly, we use a slightly higher number
of iterations: 12 iterations with 10 cm movements followed
by 3 iterations with 5 cm movements. More dynamic position
changes could be enabled by greater displacement distances or
a higher number of iterations. Of course, iterations could also
be done as long as an improvement is achieved and interrupted
otherwise.

F. Time and Space Complexity

Both time and space demand of the force-directed approach
are very low. For landmarks and position nodes, only coordi-
nates have to be stored. At no point in time more than two
position nodes have to be kept in memory—one for the current
position estimate and one for the last position estimate, to
allow the usage of movement forces. In each iteration of a
measurement update, the movement direction is determined
by simply adding up some 2-dimensional force vectors. This
can be done very efficiently in time O(f), with f being the
number of forces. As the number of iterations is fixed (10-15 in
our experiments), the complexity of the whole measurement
update also is in O(f). Summarizing, both time and space
complexity of measurement updates are linear in the number
of involved forces. This makes the force-directed approach
very attractive even for application on devices with very low
computational power or little memory.

IV. EXTENDED KALMAN FILTER (EKF)
As Kalman filters are often considered for the location

tracking problem, we use an EKF as reference approach to
the force-directed tracking and highlight similarities and dis-
tinctions between both. For the EKF, we keep the description
to a minimum and refer to the standard literature, e.g., [18].
The descriptions and implementations of our EKFs are based
on the tutorial on Kalman filters by Welsh and Bishop [19].

A. EKF with Movement Model

Similar to the model established in Section III-C, we use
the knowledge that a person can only move a limited distance
between two consecutive measurements. The process state
at time step k consists of the two-dimensional coordinates
(xk, yk) and movement is introduce in form of process noise.
This results in the following process model:

~xk =

(
xk
yk

)
=

(
xk−1 + w1

yk−1 + w2

)
(5)

The noise terms w1 and w2 are assumed to be normally
distributed and zero-mean. The measurement ~zk at time step
k is given by

~zk =


√

(xk − xa1)2 + (yk − ya1
)2 + v1

...√
(xk − xam

)2 + (yk − yam
)2 + vm

 , (6)

where (xai
, yai

) is the position of the i-th landmark used
at time k and vi is the measurement noise for the distance
estimation to this landmark. If not stated otherwise, we use the
m = 10 measurements with highest RSS, as this offers a good
compromise between computational effort and achievable ac-
curacy. The variance of vi depends on the RSS, as distance
estimations based on weak signals involve higher uncertainties
than distance estimations based on strong signals. We inferred
the uncertainties of the distance estimations directly from a
set of training data. The parameters used for the evaluation
are stated in the experimental section VI.

B. EKF with Step Detection

Like in Section III-D for the force-directed approach, the
EKF can also be extended with step information in the system
model. We now separate process updates and measurement
updates. While measurement updates still occur every time
when new RSS measurements arrive, process updates are only
performed when a new step has been detected. Additionally,
the variance of the process noise in equation (5) is adjusted
to reflect the expected position change during a step.

Another possibility to improve the EKF would be to use a
more complex system model, e.g. a position-velocity model,
by including additional variables (e.g. heading) in the state
vector. However, we know from previous work that the out-
come only changes marginally if high update rates are used
but that the computational effort increases drastically. Given
the high update rate of 4 Hz for the undergone experimental
study we thus decided to refrain from using a more complex
model.



V. COMPARISON OF FORCE-DIRECTED TRACKING
AND EKF TRACKING

Overall, the modeling of the force-directed approach and
the described EKF is done in a similar way. However, there
are several distinctions: Concerning the measurements, the
EKF uses a linearization around the current position estimate,
whereas the force-directed approach can model the distances
directly, using non-linear terms.

Both the force-directed approach and the EKF combine
a measurement with a prediction from a movement model.
In the EKF, prediction and measurement update are initially
computed separately and then fused based on the covariance
estimates that describe the uncertainties of prediction and mea-
surement. In contrast, in the force-directed approach both mea-
surement and movement forces are considered concurrently.
The position estimate is computed by finding an equilibrium
of forces for all kinds of forces at the same time.

As there is no directional information available, the EKF
uses a normal distribution with mean at the last position as
prediction for the next time step. This means that the last
position is the most likely one and the likelihood that the
mobile device is in a certain position decreases with distance
to the last position estimate. In the force-directed approach,
the movement force only acts if the distance to the previous
position estimate exceeds some distance dmax. This means
that all positions within distance dmax are equally likely
with respect to the movement model. If step information is
used, the EKF still assumes the last estimate to be the most
likely position at the current time step, but with an increased
uncertainty. In the force-directed approach, an attractive force
is acting if the positions are too far apart and an additional
repulsive force if they are too close together.

VI. EXPERIMENTS

A. Experimental Setup

We deployed a WSN with 60 nodes in two different office
buildings (cf. Figures 4 and 9). The devices were programmed

0 m 10 m 20 m 30 m

Fig. 4. Building 2: floor plan with positions of the 60 landmark devices
(disks) and one sample trajectory (dashed line).

to broadcast their positions at 4 Hz (landmarks with known
positions). Data were collected by a person walking through
the network on varying predefined trajectories and carrying
one sensor in front of the chest attached to a lanyard. Addi-
tionally, we recorded acceleration data in a belt bag on the
hip of the user simultaneously. This data was used to perform

step recognition in the presented localization approaches. A
corresponding reference trajectory was established by manu-
ally determining timestamps and corresponding positions on
the trajectory. Based on these points, a linear interpolation
was applied to retrospectively determine the position of the
pedestrian at every time step. Table I gives some statistical
information on the nine experimental runs used in this paper.

Scenario Building 1 Building 2
1 2 3 4 1 2 3 4 5

Duration (s) 408 334 104 325 289 681 658 910 206
Walked Distance (m) 198 214 87 261 257 460 461 615 218
Received Packets 38k 31k 9k 30k 34k 75k 70k 99k 24k
Detected Steps 395 424 155 497 443 879 890 1157 346

TABLE I
PROPERTIES OF THE EXPERIMENTAL RUNS

B. Mapping Signal Strengths to Distances

Various approaches to infer distances from RSS values have
been proposed, e.g., [20], [21]. Scenarios within buildings, as
considered in this paper, are often approached by means of
the log-distance path-loss model [10]. In this paper, we use
a direct mapping from RSS values to the expected distances.
For the calibration procedure we use an additional training
data set consisting of about 300, 000 RSS-distance value pairs.
This data set was determined with the same experimental
setup as outlined in Section VI-A, but in additional runs.
The RSS-distance-mapping was computed by determining the
mean signal strength per distance. Similarly, we determined
the variance of the measurement noise from this distribution
to use it in the Kalman filter.

C. Comparison of Force Definitions: Trilateration

For both EKF and force-directed approach, the key to good
tracking results lies in the combination of movement model
and measurements. Nevertheless, in this section we are going
to reduce both approaches to their measurement part. The
reason is that we want to study the effects of different measure-
ment force definitions without having to care for interfering
effects caused by the fusion of knowledge from previous
time steps. This leads us directly to the trilateration problem,
where we are given a set of measurements which have been
received at the same position, and the goal is to compute
a good position estimate. Each measurement (consisting of
multiple RSS values from different landmarks within one time
step) defines a separate trilateration problem, thus resulting in
several thousand trilateration instances.

To adjust the force-directed approach to the trilateration
problem, we ignore the movement forces between consecutive
position nodes. Using one of the forces described in Sec-
tion III-B, the position estimate is now determined as follows:
at the beginning, the position estimate is initialized to the
position of the landmark from which the strongest signals are
received. Subsequently, we use 40 improvement steps with
displacement distance 20 cm, followed by 5 steps with distance
5 cm. The reason for the high number of iterations used for



the trilateration is that we now cannot expect that the initial
position estimate is close to the true position.

To evaluate how the measurement update of the EKF
behaves in comparison to the force-directed approach, we try
to analyze it isolated from the prediction. However, due to
the strongly intertwined prediction and measurement in the
EKF, this is not easily possible. For instance, the EKF uses a
linearization of the measurement function around the current
position estimate to approximate the non-linear system with
a linear one. We decided to initialize the EKF with the true
position (according to the reference path) as prediction and
then analyzed how the measurement update distorts this ideal
position estimate. To minimize the influence of the prediction,
we set the corresponding covariance extremely high so that in
the final result only the measurement result is weighted.

In the following study, the force-directed approaches using
~F1, ~F2, and ~F3 are denoted Force F1, Force F2, and Force F3,
respectively. The results based on the EKF measurement
update are labeled EKF (Meas.). For all approaches the
corresponding parameters are chosen such that only the effects
of the measurement are considered.

1) Influence of Number of Used Measurements: The first
study considers the influence of the number of used mea-
surements. Figure 5 shows the average distance between the
estimated position and the reference position for different
counts of used measurements. Each time, only the measure-
ments with highest signal strengths were used. Apparently,

Fig. 5. Trilateration: influence of number of used measurements.

when the forces ~F1 and ~F3 are used, the results get worse
with increasing number of used measurements. The reason is
that both approaches try to optimize the absolute deviation
from the estimated distance. As the average ranging error
grows with distance, more inaccurate measurements over long
distances have a stronger influence than better measurements
over short distances. By using force ~F2 instead, this problem is
successfully avoided. The EKF measurement update resulted
in a higher avg. error, declining with more measurements used.
Even though the true position was used for the EKF prediction,
the error for small numbers of used measurements is notable.

2) Influence of Number of Landmarks: Figure 6 shows how
the trilateration precision depends on the number of landmarks.
In order to select the used landmarks, we used the following
procedure: first, we selected the two landmarks with maximum

distance from each other. Subsequently, we iteratively chose
the landmark that maximizes the minimum distance to any
already selected landmark until the intended number of land-
marks was reached. For each trilateration instance, the 10 best
RSS measurements were used. The results in Figure 6 show

Fig. 6. Trilateration: influence of number of landmarks.

that all approaches benefit from a higher number of landmarks.
In networks with less than 35 nodes, even weak signals find
their way into the top ten RSS measurements. This explains
the bad performance of forces ~F1 and ~F3 in sparse networks.
For these forces, using only the five best measurements would
actually improve the localization accuracy. Again, the force
~F2 shows the best performance.

D. Tracking

Tracking, i.e., the continuous localization of a moving
object, could in principle be achieved by applying trilateration
to each set of measurements. However, without a movement
model the position estimates jump significantly due to the
high fluctuation of RSS measurements. In this section, we
examine the effects of the movement models for the force-
directed approaches and the EKF.

1) Parameter Influence: In the considered EKF model,
movement is modeled by process noise. The higher the un-
certainty of the process state, the stronger is the influence
of measurement updates on the final position estimate. Fig-
ure 7 (left) shows how the overall localization accuracy of
our EKF implementations, averaged over all nine experiments,
depends on the assumed standard deviation σw of w1 and
w2 (cf. Equation 5). We first analyze the extreme cases.
If σw is chosen very low, measurement updates have little
influence and the position estimate cannot keep up with the
movement of the tracked object. In this case, the localization
error can become arbitrarily high. If σw is chosen too high,
the prediction loses influence and the position estimate is
mainly determined by the measurement update. This situation
is similar to the one analyzed in the trilateration section.

For our experiments, the optimum values for σw are 7.5 cm
for the model without step detection and 11.5 cm for the
model with step detection. We will use this parameters for
the following analysis. However, one has to keep in mind that
good values for σw strongly depend on factors such as walking
velocity or the uncertainties of the measurements. Under



Fig. 7. Influence of model parameters on the localization accuracy. Left:
influence of process noise in the Kalman filter. Right: influence of movement
force weighting in the force-directed approach.

realistic circumstances, these factors are not fully known, so
one will usually not be able to use optimum parameters.

In the outlined force-directed approach, the behavior of the
movement model is determined by two parameters: the ex-
pected movement distance dmax between two position estima-
tions and the weighting factor wmove for the movement force
~Fmove. Figure 7 (right) shows the influence of wmove for the
force-directed approach without step detection (dmax = 0.2 m)
and with step detection (dmax = 0.5 m). Note that normally
one would choose the values of dmax a little higher, e.g.,
dmax = 0.35 m per 0.25 seconds or dmax = 0.65 m per step.
We chose the values deliberately a little shorter to be able to
demonstrate the influence of wmove.

If wmove is chosen very low, the movement force plays
almost no role for the final movement direction. In this case,
we are back at the situation without movement forces, which
was analyzed in the trilateration section. For high values of
wmove, a very strong movement force acts as soon as the
position estimate leaves the area with radius dmax around
the last position estimate. But no matter how large wmove is
chosen, the position estimate still can move distance dmax per
step. This explains why the localization error in Figure 7 (right)
does not increase significantly for high values of wmove.

From a practical perspective, the modeling with a radius
dmax within which no movement forces act offers some
advantages. There are many scenarios for which it is easy to
define a meaningful value for dmax. For example, a single
step cannot be arbitrary wide. In contrast, in the analyzed
EKF model the actual movement distance is determined by a
combination of several complex factors, such as uncertainties
of single measurements for example. This makes it much
harder to model such kinds of knowledge. Of course, it can
happen that dmax is chosen significantly too small for the
considered application. In this case, the outlined force-directed
approach behaves very similar to the EKF.

According to the curves in Figure 7 (right), the optimum
values for wmove are wmove = 385 for the model without
step recognition and wmove = 710 for the model with step
recognition. As for the EKF, we will use these optimal
parameters in the following studies.

2) Influence of Number of Landmarks: Figure 8 shows the
average error over all runs in dependance of the number of

Fig. 8. Tracking: influence of number of landmarks.

landmarks. The used landmarks were selected as described
in Section VI-C2. Again, for all approaches the 10 best RSS
measurements were used. The picture is quite similar to the
last paragraph, with the force-directed approaches showing a
slightly smaller error than the EKF. Apparently, the EKFs
with and without step detection show nearly the same average
error. We assume that as long as the person walks somewhat
steadily, it makes no big difference whether the position update
is done with every measurement or every step, as long as the
parameters are chosen accordingly. Also, it can be seen that
depending on the intended application even a small network
with only 15 to 20 landmarks might be sufficient to achieve a
mean localization accuracy below 2.5 m.

So far, all presented experimental results were averaged over
all instances. Table II shows how the algorithms behave on
single runs. The results were achieved using all 60 landmarks
and the 10 best RSS measurements per time step.

Algorithm / Scenario Building 1 Building 2
1 2 3 4 1 2 3 4 5

Kalman (RSS) 1.69 1.54 1.44 1.32 1.67 2.11 1.83 2.25 2.06
Kalman (RSS+Steps) 1.56 1.59 1.48 1.34 1.68 2.03 1.77 2.18 2.08
Force (RSS) 1.88 1.41 1.39 1.06 1.37 2.22 1.95 2.37 1.47
Force (RSS+Steps) 1.47 1.41 1.63 1.24 1.30 1.85 1.71 2.10 1.49

TABLE II
AVERAGE LOCALIZATION ERROR IN METERS (TRACKING)

E. Tracking Examples

To conclude the experimental part, two actual tracking
instances are presented in this section. The path estimate in
Figure 9 was computed using the force-directed method with-
out step detection. Figure 10 shows a localization result using

Fig. 9. Tracking results in building 1 using the force-directed approach
without step recognition. The bold path shows the reference trajectory, the
narrow path shows the computed trajectory.



the force-directed method with step detection. We refrained
from including corresponding EKF trajectories in the figures,
as they would become confusing otherwise. Overall, the EKF
trajectories look very similar.

Fig. 10. Tracking results in building 2 using the force-directed approach with
step recognition. The bold path shows the reference trajectory, the narrow path
shows the computed trajectory.

VII. CONCLUSION AND FUTURE WORK

We presented a first study on the application of force-
directed approaches to the tracking problem in wireless net-
works. To motivate design decisions and to evaluate the
achievable performance, experimental data from a 60-node
wireless sensor network was used. Additionally, variants of
extended Kalman filters were implemented as reference ap-
proaches, and similarities and distinctions between both kinds
of approaches were highlighted.

In our experiments, we considered the trilateration problem
to identify adequate force definitions for the modeling of
RSS-based distance estimations. Additionally, we analyzed the
influence of the number of landmarks and the number of used
measurements on the achievable trilateration accuracy. In our
study of the tracking problem, we examined the parameter
sensitivity of the considered approaches and the dependance
of the tracking accuracy on the number of used landmarks. Our
experimental results indicate that for the scenarios considered
in this paper, force-directed approaches offer a competitive
alternative to the widely used extended Kalman filters.

Force-directed tracking algorithms offer an immense free-
dom in building up a system model. In comparison to the EKF,
process state and measurement inputs are not limited to normal
distributions. Additionally, nonlinear measurements can be
used directly without linearization. As runtime and space
complexity of the outlined force-directed algorithm depend
linearly on the number of measurements, it is well suited even
for usage on hardware with high resource constraints.

This paper can only serve as a starting point and further
research is necessary to investigate the possibilities force-
directed approaches offer in the context of tracking in wireless
networks. For example, one could extend the model with
information from inertial sensors like step length and velocity.
Heading from an electronic compass and gyroscope readings
could be used to gain additional information on the moving
direction. Another idea is to use position estimates of force-
directed approaches as an additional input to Kalman filters,
thus combining the strengths of both approaches.
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