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Abstract
Although being a very fundamental problem in the field of wireless networks, the complexity

of transmission scheduling with power control in the Geometric SINR model is still unknown.
In this article, we show that the joint problem of finding transmission powers and scheduling
the transmissions is NP-hard if the available powers are bounded, independent of the actual
bounds. This also implies that scheduling with a finite number of power levels is NP-hard.

1 Introduction
One of the most fundamental problems in the field of wireless networks is the so-called scheduling
problem. Given a set of transmission requests, the task is to distribute the wireless transmissions to
time slots such that all transmission in the same slot can be active simultaneously without failures.
Thus, one has to consider the interferences between the different transmissions. There have been
many models proposed for modeling interference between concurrent transmissions. One of them
is the Signal-To-Interference-Plus-Noise-Ratio model (SINR model). The SINR model is physically
motivated and is believed to be reasonably realistic. A transmission is assumed to be successful
if the ratio of the received signal strength and the sum of the interferences plus background noise
is sufficiently high. Often, it is assumed that the signal strength is determined by the distance
between sender and receiver. In this case, one speaks of the Geometric SINR (SINRG) model.

The complexity of scheduling in the Geometric SINR model was first studied in [3]. The authors
proved that the Scheduling problem and the One-Shot Scheduling problem, the problem to
fit as many transmissions as possible to the same time slot, are NP-hard if all senders use uniform
transmission powers. Moreover, approximation algorithms for both problems were given. However,
the complexity of scheduling with non-uniform transmission powers stayed unresolved and analyzing
the complexity of the joint problem of power control and scheduling was proposed as an exciting
research direction. In [5], the complexity of scheduling with power control was mentioned as one
of five very essential problems to understanding sensor networks. Despite the attention that this
problem recently received in the community, the complexity is still unresolved.

As main contribution, we prove the NP-hardness of scheduling with power control (SchedPC)
and one-shot scheduling with power control (OneShotSchedPC), for the case that the available
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transmission powers are bounded. In particular, we show hardness for the case that among the
available transmission powers there is a minimum power Pmin > 0 and a maximum power Pmax <∞.
This encloses all problems of practical relevance such as the problem where the transmission powers
can be chosen from a finite set {Pmin = P1, P2, . . . , Pj = Pmax} ⊂ [Pmin, Pmax] of power levels. From
a practical point of view, the limitation on arbitrary power bounds is not restricting, as wireless
hardware usually has a maximum transmission power, and due to ambient noise every successful
transmission has to exceed some minimum transmission power. Our proofs extend the NP-hardness
proofs given in [3] for scheduling with uniform powers to the problem of scheduling with power
control. The main idea is to construct the problem instances such that some senders are forced to
transmit with minimum power Pmin, while the remaining senders are forced to use the maximum
power Pmax. Thus, we know all transmission powers in advance and can use a construction similar
to the one in [3].

2 Models and Notations
Our models and notations are similar to those used in [3] for the NP-hardness proof of scheduling
without power control. The main distinction is that we allow arbitrary transmission powers for all
senders.

In scheduling problems, we are given a set L = {l1, . . . , ln} of links, where each link li = (si, ri)
represents a communication request from a sender si to a receiver ri. The senders and receivers
are distributed in the Euclidean plane and the distance between two nodes si, rj is denoted by
dij = d(si, rj). Thus, dii denotes the distance between a sender si and its corresponding receiver
ri.

Unlike [3], we do not assume that the senders use uniform transmission powers, but consider
the choice of transmission powers Psi to be part of the addressed optimization problems.

The signal power Srj (si) received at rj from sender si depends on the transmission power Psi of
si and the distance dij between nodes si and rj . This article is based on the Geometric Signal-to-
Interference-plus-Noise-Ratio model (SINRG model). In the SINRG model, it is assumed that the
signal strength falls off with d−αij , i.e., Srj (si) = Psi/d

α
ij . The path-loss exponent α defines how fast

the signal strength decreases with increasing distance and depends on external conditions of the
medium. As usual, it is assumed that α > 2. Every sender sj that sends concurrently with si causes
an interference Iri(sj) = Sri(sj) at the receiver ri of link li. The notation Iri(sj) is used in order
to highlight that we talk about interference and not about a useful signal. It is assumed that all
interferences accumulate. The total interference Iri experienced by receiver ri is given as the sum
of all interferences caused by concurrently sending nodes, i.e., Iri :=

∑
sj 6=si Iri(sj). Furthermore, it

is assumed that every receiver is exposed to an ambient noise with power N . In the SINRG model,
a transmission (si, ri) is successful if and only if the ratio of the received signal strength Sri(si) and
the total interference Iri plus background noise N exceeds some minimum SINR β, i. e.,

SINR(ri) = Sri(si)
Iri +N

=
Psi
dαii∑

j 6=i
Psj
dαji

+N
≥ β, (1)

with β > 1. In the following, we ignore the influence of background noise (N = 0) without loss of
generality.
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Figure 1: Reduction of Partition to SchedPC

3 Scheduling with Power Control (SchedPC)
In the problem of scheduling with power control (SchedPC), we are given a set L = {l1, . . . , ln}
of transmission requests, as well as lower and upper bounds Pmin and Pmax, Pmin 6= Pmax, on
the available transmission powers. The aim is to assign every sender si a transmission power
Psi ∈ [Pmin, Pmax], and to distribute all requests of L to time slots such that all transmissions in
the same slot can be executed simultaneously with the designated transmission powers. At this,
a transmission li = (si, ri) is successful if and only if SINR inequality (1) is fulfilled. A schedule
S = (S1,S2, . . . ,ST ) is a partition of L, where St denotes the set of links assigned to time slot
t. T denotes the length of the schedule. Every sender is only active in the assigned time slot. A
power assignment P is a function P : {si|(si, ri) ∈ L} → [Pmin, Pmax] that assigns to every sender
si a valid transmission power Psi := P(si). A schedule S is said to be valid with respect to a
power assignment P if all transmissions are successful in their corresponding time slots, using the
designated powers. The SchedPC problem for (L,Pmin, Pmax) is to find a power assignment P
and a valid schedule S, such that S has minimal length among all valid power assignments and
schedules.

In the following, we extend the NP-hardness proof for scheduling without power control, given
in [3], to the more general SchedPC problem. In particular, we show that SchedPC is NP-hard
for arbitrary Pmin, Pmax.

To this extent, we will give a polynomial time reduction of an NP-complete problem to SchedPC,
the Partition problem, which has been shown to be NP-complete in [4]: Given a set I =
{i1, . . . , in} of integers, find I1, I2 ⊂ I such that I1 ∩ I2 = ∅ and

∑
ij∈I1

ij =
∑
ij∈I2

ij = 1
2
∑
ij∈I

ij .

Let I = {i1, . . . , in} be an instance of Partition. Without loss of generality, we assume that
all elements are distinct and positive and we set

∑n
j=1 ij = σ. In order to solve the Partition

problem for I, we construct an instance LI = {l1, . . . , ln+2} of SchedPC with n + 2 links for
arbitrary Pmin and Pmax as follows. We will prove that there exists a schedule of length 2 if and
only if the Partition instance I has a solution.

What makes it hard to find an NP-hardness proof for SchedPC is that every sender can
arbitrarily choose its transmission power from an interval of possible powers. In order to handle
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this, we construct our SchedPC instance such that some of the senders have to use transmission
power Pmax, and the remaining senders have to use power Pmin. Thus, we know all the transmission
powers in advance. This construction is shown in Figure 1.

For every integer ij ∈ I we introduce a link lj = (sj , rj). Every sender sj is placed at position

pos(sj) =

(Pmin
ij

)1/α

, 0

 , ∀1 ≤ j ≤ n .

The position is chosen such that the interference caused at the origin (0, 0) of the coordinate system
equals ij when sj sends with power Pmin. Next, we place the receivers such that every transmission
lj can be executed successfully, even if sj sends with power Pmin and every other sender sends with
power Pmax. For this, every sender-receiver-pair has to be placed sufficiently close together. As we
will show later, a distance

dmin = P
1/α
min ·

1
(imax−1)1/α − 1

i
1/α
max

1 + (Pmax
Pmin

nβ)
1
α

,

where imax is the maximum value in I, is sufficient. Thus, we place every receiver ri, 1 ≤ i ≤ n, at
position

pos(ri) = pos(si) + (dmin, 0) .

Finally, we have to place ln+1 and ln+2. We positioned the senders s1, . . . , sn such that the
interference which they cause at the origin is proportional to i1, . . . , in. In order to take advantage
of this property, we place rn+1 and rn+2 at the origin.

pos(rn+1) = pos(rn+2) = (0, 0) ,

Last, we place their senders sn+1 and sn+2 perpendicular to the x-axis at distance (2Pmax/βσ)1/α,
i.e.,

pos(sn+1) =
(

0,
(2Pmax
β · σ

)1/α
)

,

pos(sn+2) =
(

0,−
(2Pmax
β · σ

)1/α
)

.

In the following, we show that

• in every 2-slot solution of the SchedPC problem, the senders s1, . . . , sn have to use trans-
mission power Pmin,

• in every 2-slot solution of the SchedPC problem, the senders sn+1 and sn+2 have to use
transmission power Pmax,

• there exists a 2-slot solution to the constructed SchedPC instance if and only if the Parti-
tion problem has a solution, and

• every 2-slot solution of the SchedPC instance implies a solution to the corresponding Par-
tition problem.
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Let us start with some observations: As rn+1 and rn+2 share the same position, ln+1 and ln+2
cannot be scheduled simultaneously. Thus, every schedule needs at least two slots. Moreover, sn+1
and sn+2 have the same distance to every receiver.

Lemma 1 Every transmission li, 1 ≤ i ≤ n, is successful with transmission power Pmin, no matter
how many other links are active concurrently and no matter which transmission powers they use.

Proof. Obviously, the worst thing that can happen is that all senders sj , 1 ≤ j ≤ n ∧ j 6= i, and one
of the senders sn+1, sn+2, transmit concurrently with power Pmax. Let Li = {lj |1 ≤ j ≤ n+1, i 6= j}.
Since the positions of the sender nodes s1, . . . , sn depend on the values of i1, . . . , in, we can determine
the minimum distance between two senders sj and sk, j 6= k,

d(sj , sk) = |d(sj , rn+1)− d(sk, rn+1)| (2)

=

∣∣∣∣∣∣
(
Pmin
ij

) 1
α

−
(
Pmin
ik

) 1
α

∣∣∣∣∣∣ (3)

≥ P
1
α

min

(
1

(imax − 1)1/α −
1

i
1/α
max

)
(4)

Thus, the sender sj closest to ri, i 6= j, is located at least at distance d(sj , si) − dmin from ri.
All other senders (including sn+1 and sn+2) are farther away. Now, we can show a lower bound for
SINR(ri):

SINR(ri) =
Psi
dαii∑

lj∈Li
Psj
dαji

(5)

≥
Pmin
dαii∑

lj∈Li
Pmax
dαji

(6)

≥
Pmin
dαmin
nPmax

(d(sj ,si)−dmin)α
(7)

≥ 1
n

Pmin
Pmax

((
1 +

(
Pmax
Pmin

nβ

) 1
α

)
− 1

)α
(8)

= β (9)

�

Lemma 2 There exists a solution to a Partition problem I if and only if there exists a 2-slot
schedule for LI . In the corresponding schedule, the senders s1, . . . , sn have to use transmission
power Pmin and the senders sn+1 and sn+2 have to use transmission power Pmax.

Proof. We start with showing that every solution to the Partition problem implies a valid 2-
slot schedule with corresponding power assignment P. Let us assume that we know two subsets
I1, I2 ⊂ I, whose elements sum up to σ/2. For every ij ∈ I1, we assign the link lj to the first
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time slot. Moreover, we assign ln+1 to the first time slot. The remaining links are assigned to the
second time slot. We set Ps1 = Ps2 = · · · = Psn = Pmin and Psn+1 = Psn+2 = Pmax. We know from
Lemma 1 that transmissions l1, . . . , ln are always successful, so let us focus on the receivers rn+1
and rn+2. The situation is the same for both receivers, so it suffices to examine rn+1. The signal
power rn+1 receives from its sender node sn+1 is

Srn+1(sn+1) = Pmax((
2Pmax
βσ

) 1
α

)α = βσ

2 .

Besides, rn+1 experiences from each sender sj the interference

Irn+1(sj) = Pmin((
Pmin
ij

) 1
α

)α = ij .

This results in a total interference of

Irn+1 =
∑
ij∈I1

ij = σ

2 .

For the SINR at rn+1 we get

SINR(rn+1) =
Srn+1(sn+1)

Irn+1
= βσ/2

σ/2 = β.

Altogether, the constructed 2-slot schedule is valid for the given power assignment P. It is easy to
see that P is the only possible power assignment for the given schedule. If sn+1 or sn+2 would send
with less power than Pmax, the corresponding SINR would fall below β. The same thing would
happen if one of the other senders would use a transmission power above Pmin.

Finally, we have to show that we cannot find a 2-slot schedule for LI if there does not exist a
solution to the Partition problem. No solution to the Partition problem implies that for every
partition of I into two subsets, the sum of one set is greater than σ/2. This means that, even
if all senders other than sn+1 and sn+2 use Pmin, the minimum transmission power possible, the
interference at rn+1 in slot 1 or the interference at rn+2 in slot 2 exceeds σ/2. Even if sn+1 and
sn+2 send with the maximum transmission power Pmax, the signal only arrives at the receivers with
power βσ/2. Thus, the SINR of either ln+1 or ln+2 is below β and the transmission fails. �

From the above construction and observations, we can conclude the main theorem of this section:

Theorem 1 The SchedPC problem in SINRG is NP-hard.

4 One-Shot Scheduling with Power Control (OneShotSchedPC)
Instead of asking for a shortest schedule for a given set of links, one can ask for a maximum number
of transmissions to be carried out in a single time slot. This problem is named OneShotSchedPC
problem, and like in the SchedPC problem, we are given a set L = {l1, . . . ln} of links and upper
and lower bounds Pmax and Pmin on the available transmission powers. Additionally, all links are
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Figure 2: Reduction of Knapsack to OneShotSchedPC

weighted, i. e., we are given a weight wi for every link li. Now, in the OneShotSchedPC problem,
we try to fill one single slot as good as possible. Thus, the objective is to find a subset S ⊆ L as well
as a power assignment P such that all links in S can be scheduled concurrently and S maximizes
the total weight

∑
lj∈S wj .

The One-Shot Scheduling problem without power control was proved to be NP-hard in the
SINRG model in [3]. In the following, we extend this proof to the decision problem of One-Shot
Scheduling with Power Control (OneShotSchedPC).

Again, we give a polynomial time reduction from an NP-complete problem. As in [3], we
give a reduction from the well-known Knapsack problem [2], where we are given a set of items,
X = {x1, . . . , xn}, with values pj and weights wj . The goal is to pick the most valuable set of items
that does not exceed a given overall weight W . Formally, we aim at finding a set X ′ ⊆ X, with∑
xi∈X′ wi ≤W , that maximizes

∑
xi∈X′ pi

We give a polynomial time reduction from Knapsack to OneShotSchedPC similar to the one
from Partition to SchedPC. It is depicted in Figure 2. Given an instance I of Knapsack, we
use n+1 links LI = {l1, . . . , ln+1} and arbitrary but fixed Pmin and Pmax. The first n links l1, . . . , ln
represent the items of the Knapsack problem. Link ln+1 enforces the connection between optimal
solutions of OneShotSchedPC and optimal solutions of Knapsack. Without loss of generality,
we assume that all items have distinct integer weights. This time, we place the senders s1, . . . , sn
such that the received power from si at the origin (0, 0) equals wi if si transmits with power Pmin,
i.e.,

pos(si) =
((

Pmin
wi

)1/α
, 0
)
, ∀1 ≤ j ≤ n .

Again, we make sure that l1, . . . , ln can be scheduled with power Pmin, regardless of all other links.
Thus, we have to put ri close enough to si. As in Section 3, the sender-receiver distance

dmin = P
1
α

min ·
1

(wmax−1)1/α − 1
w

1/α
max

1 + (Pmax
Pmin

nβ)
1
α

,

where wmax is the largest weight in the Knapsack instance, is sufficient. This gives

pos(ri) = pos(si) + (dmin, 0) .

Thereafter, we have to place the additional link ln+1. The receiver rn+1 is placed at (0, 0)

pos(rn+1) = (0, 0)
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and we place the sender sn+1 such that the received power at (0, 0) is βW if sn+1 sends with
maximum power Pmax:

pos(sn+1) =
(

0,
(
Pmax
βW

)1/α
)

Finally, we have to assign the links appropriate weights. The links l1, . . . , ln are assigned the value
of the corresponding item:

weight(li) = pi, ∀1 ≤ i ≤ n (10)

The weight of our special link ln+1 is set to twice the value of all items

weight(ln+1 ) = 2 ·
n∑
j=1

pj ,

in order to make sure that ln+1 is part of every optimal solution of the OneShotSchedPC instance.

Lemma 3 Let (SOPT,POPT) with schedule SOPT and power assignment POPT be an optimum
solution of OneShotSchedPC instance (LI , Pmin, Pmax). Then, (SOPT,P∗) with Ps1 = Ps2 =
· · · = Psn = Pmin and Pn+1 = Pmax is also an optimum solution of I.

Proof. If we set the transmission powers of s1, . . . , sn to Pmin then we do not lose anything, as we
defined dmin such that l1, . . . , ln are successful with power Pmin, no matter which other senders are
active simultaneously and no matter which transmission powers they use. Moreover, we also can
set Pn+1 = Pmax, as this does not influence the links l1, . . . , ln and it only increases SINR(rn+1).
So the schedule SOPT is also valid with respect to P∗.

This means that we can assume without loss of generality that every optimum schedule has
to be valid with power assignment P∗. Now we use this property to show that every optimum
schedule implies a valid solution to the Knapsack problem. In particular, we have to show that∑

lj∈SOPT

wj ≤W.

This follows from the SINR constraint of ln+1:

SINR(rn+1) =
Srn+1(sn+1)

Irn+1
(11)

=
Pmax/

((
Pmax
βW

) 1
α

)α
∑
lj∈SOPT Pmin/

((
Pmin
wj

) 1
α

)α (12)

= β · W∑
lj∈SOPT wj

(13)

So, in order for ln+1 to be transmitted successfully, which means that SINR(rn+1) ≥ β, it must
hold that

∑
lj∈SOPT

wj ≤W . Moreover, it is easy to verify that every solution X ′ of the Knapsack
problem with value V implies a solution (S,P∗) of the corresponding OneShotSchedPC problem
with value V ′ = V + 2 ·

∑n
j=1 pj . Thus, thanks to the choice of weights in (10), every solution that

maximizes the overall weight of our OneShotSchedPC instance at the same time maximizes the
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value of the corresponding solution to the underlying Knapsack problem. Altogether, we have
shown that Knapsack is polynomial time reducible to OneShotSchedPC. �

Again, we conclude with the main theorem:

Theorem 2 OneShotSchedPC in SINRG is NP-hard.

5 Power Control with a Finite Set of Power Levels
In modern hardware, the transmitters usually can choose their transmission power from a finite set
of powers. Thus, the complexity of scheduling in this scenario has high practical relevance. The
NP-hardness proofs given in the previous sections do not use the fact that available transmission
powers formed a continous interval [Pmin, Pmax] and easily extend to any case where the available
transmission powers have a minimum Pmin > 0 and a maximum Pmax. This includes the case of a
finite set {Pmin = P1, . . . , Pk = Pmax} of available power levels.

6 Proving NP-completeness
In [3], the authors claim to prove the problems Scheduling and OneShotScheduling to be in
NP. They argue that a solution to these problems—which did not include the problem of finding
power levels—, can be checked in polynomial time by comparing all signal-to-noise ratios to the
given threshold β. What might hold true for a model of computation featuring real-valued arith-
metics, links to a long-standing open problem in complexity theory: Even in the presumably easy
case of α = 3 and β ∈ N and all si and ri placed on an integer grid, comparing signal-to-noise
ratios to the threshold β boils down to the comparison of a sum of square roots of integers to an
integer. Unfortunately, it is an open problem whether or not this can be done in polynomial time
on a Turing machine, which is necessary to prove the above problems to be in NP [1]. At the
time being, even the decision problem whether a set of nodes on the integer grid have a euclidean
minimum spanning tree with a length bounded by a given integer cannot be claimed to be in P.

Since the problems considered in this paper are generalizations of the problems in [3], proving
NP-completeness for SchedPC and OneShotSchedPC also calls for this gap in complexity theory
to be closed.

7 Conclusion
We have shown that scheduling with power control and one-shot scheduling with power control are
NP-hard, as long as we are given a maximum and minimum on the possible transmission powers.
This also encloses the practically relevant cases where the senders are allowed to choose their power
from a finite set of powers. The complexity of the more general problem with completely arbitrary
transmission powers is still unresolved. However, this problem has no real practical relevance as the
hardware usually sets an upper limit on the transmission power and the omnipresent background
noise defines a lower limit on any reasonable transmission power.
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