
An Efficient Solution for One-To-Many
Multi-Modal Journey Planning
Jonas Sauer
Karlsruhe Institute of Technology (KIT), Germany
jonas.sauer2@kit.edu

Dorothea Wagner
Karlsruhe Institute of Technology (KIT), Germany
dorothea.wagner@kit.edu

Tobias Zündorf
Karlsruhe Institute of Technology (KIT), Germany
zuendorf@kit.edu

Abstract
We study the one-to-many journey planning problem in multi-modal transportation networks
consisting of a public transit network and an additional, non-schedule-based mode of transport.
Given a departure time and a single source vertex, we aim to compute optimal journeys to all
vertices in a set of targets, optimizing both travel time and the number of transfers used. Solving
this problem yields a crucial component in many other problems, such as efficient point-of-interest
queries, computation of isochrones, or multi-modal traffic assignments. While many algorithms for
multi-modal journey planning exist, none of them are applicable to one-to-many scenarios. Our
solution is based on the combination of two state-of-the-art approaches: ULTRA, which enables
efficient journey planning in multi-modal networks, but only for one-to-one queries, and (R)PHAST,
which enables efficient one-to-many queries, but only in time-independent networks. Similarly to
ULTRA, our new approach can be combined with any existing public transit algorithm that allows
a search to all stops, which we demonstrate for CSA and RAPTOR. For small to moderately sized
target sets, the resulting algorithms are nearly as fast as the pure public transit algorithms they are
based on. For large target sets, we achieve a speedup of up to 7 compared to a naive one-to-many
extension of a state-of-the-art multi-modal approach.

2012 ACM Subject Classification Theory of computation → Shortest paths; Mathematics of com-
puting → Graph algorithms; Applied computing → Transportation

Keywords and phrases Algorithm Engineering, Route Planning, Public Transit, One-to-Many

Digital Object Identifier 10.4230/OASIcs.ATMOS.2020.1

Supplementary Material Source code is available at https://github.com/kit-algo/ULTRA-PHAST.

Funding This research was funded by the DFG under grant number WA 654123-2.

1 Introduction

Recent years have seen considerable advances in fast route planning algorithms for both road
and public transit networks [3]. The combination of both network types into a multi-modal
journey planning problem, however, remains challenging [9]. In this work, we consider multi-
modal networks that combine a public transit network with a transfer graph that represents
one additional mode of non-schedule-based transportation (e.g., walking or cycling). Most
existing research on multi-modal journey planning has focused on solving one-to-one queries,
which ask for journeys between a single source and target vertex. Related to this are the
one-to-many and one-to-all problems, where multiple or all vertices are considered as targets.
While studied extensively for road networks, these problems have received little attention

© Jonas Sauer, Dorothea Wagner, and Tobias Zündorf;
licensed under Creative Commons License CC-BY

20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2020).
Editors: Dennis Huisman and Christos D. Zaroliagis; Article No. 1; pp. 1:1–1:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jonas.sauer2@kit.edu
mailto:dorothea.wagner@kit.edu
mailto:zuendorf@kit.edu
https://doi.org/10.4230/OASIcs.ATMOS.2020.1
https://github.com/kit-algo/ULTRA-PHAST
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


1:2 An Efficient Solution for One-To-Many Multi-Modal Route Planning

on multi-modal networks so far. In this paper, we close this gap by adapting the recently
proposed ULTRA [8] algorithm family, which solves one-to-one queries in multi-modal
networks, to one-to-many and one-to-all scenarios.

There are many potential applications of one-to-many and many-to-many search in both
road networks and multi-modal networks. These include extended query scenarios such as
building distance tables for vehicle routing and traveling salesman problems [32, 17], point-of-
interest (POI) queries (e.g., finding the k nearest stores) [17], and isochrones, which are the
set of vertices and/or edges reachable from a given point within a given distance or time limit.
Isochrones have been subject to algorithmic research on both road networks [23, 6, 7, 5]
and multi-modal networks [24, 25, 33], but so far algorithms for multi-modal isochrones
are limited to Dijkstra search on a graph representation of the network. Another area
where one-to-many algorithms can be applied are preprocessing techniques for the one-to-one
problem. On road networks, a prominent example is Arc-Flags [29], whose preprocessing
phase can be significantly sped up by using the one-to-all algorithm PHAST [13]. Examples of
public transit algorithms whose preprocessing phase involves one-to-many search are Transfer
Patterns [2] and Access Node Routing [15]. So far, no comparable speedup technique for
multi-modal networks has been developed, partly due to prohibitively high preprocessing
costs. A more efficient one-to-many search algorithm for multi-modal networks could be
a first step towards developing such a technique. Finally, many-to-many routing is used
as a component in simulation-based traffic assignment algorithms, such as the CSA-based
approach presented in [10]. A multi-modal variant based on ULTRA was proposed in [38], but
it uses a naive adaptation of ULTRA to a many-to-one setting, which is only feasible if the set
of source vertices where passenger demand is located is fairly small. A scalable multi-modal
one-to-all algorithm could enable the computation of full door-to-door assignments.

Related Work. Public transit routing algorithms can be divided into graph-based approaches
(e.g., [35, 22, 28, 30, 31]) and algorithms that exploit the structure of public transit timetables
to achieve faster query times. Prominent examples of the latter include RAPTOR [16],
CSA [18, 19], and Trip-Based Routing [40]. A technique that utilizes heavy preprocessing to
achieve very fast query times is Transfer Patterns [2, 4]. Common to these algorithms is that
they only consider non-schedule-based transport in the form of a restricted transfer graph,
which is often required to be transitively closed. However, recent experiments have shown
that the availability of unrestricted walking significantly reduces travel times [39, 37, 34].

Multi-modal algorithms lift these restrictions on the transfer graph by interleaving existing
public transit algorithms with an exploration of the unrestricted transfer graph. UCCH [20]
and MCR [11] combine graph-based techniques and RAPTOR, respectively, with Dijkstra [21]
searches on a contracted transfer graph. HLRaptor and HLCSA [34] explore the transfer
graph with two-hop searches based on Hub Labeling [1]. The most recent approach is
ULTRA [8], which utilizes the observation that the number of unique intermediate transfers,
i.e., transfers between two public transit vehicles, that occur in optimal journeys is much
lower than the number of initial and final transfers, which connect the source and target
vertex to the public transit network. This is exploited by precomputing a small set of
shortcuts representing all necessary intermediate transfers. The initial and final transfers
are computed at query time using Bucket-CH [32, 26, 27], a technique for fast one-to-many
searches on road networks. Together, this enables existing public transit algorithms, such
as RAPTOR and CSA, to handle multi-modal networks without specific adjustments or a
significant performance loss. Unfortunately, none of these multi-modal algorithms support
one-to-many queries because they all involve bidirectional search from the source and target
vertex, which is inherently a one-to-one technique.



J. Sauer, D. Wagner, and T. Zündorf 1:3

By contrast, several algorithms have been proposed for one-to-many, one-to-all or many-
to-many search on road networks: A popular solution for adapting speedup techniques
that were originally developed for one-to-one queries is a bucket-based approach, which has
been applied to Highway Hierarchies [32], Contraction Hierarchies (CH) [26, 27] and Hub
Labeling [1, 14]. The Customizable Route Planning [12] technique has also been adapted
to one-to-many search, resulting in the GRASP algorithm [23], and to the closely related
setting of POI queries [17]. For one-to-all search, PHAST [13] employs vertex reordering and
GPU parallelization to create a fast, memory-efficient sweeping algorithm. RPHAST [14]
extends this approach to one-to-many search by adding a target selection phase.

Our Contribution. We combine ULTRA with ideas adapted from RPHAST to create an
algorithm scheme called ULTRA-PHAST, which is the first efficient approach for one-to-many
queries in multi-modal networks. Like ULTRA, ULTRA-PHAST uses precomputed shortcuts
for intermediate transfers. Our main contribution is adapting RPHAST to efficiently explore
the final transfers to the target vertices, which is more challenging than a normal one-to-many
shortest path problem as every stop reached via the public transit network may be a potential
source vertex. As with ULTRA, ULTRA-PHAST is an algorithmic framework that can be
combined with any public transit algorithm that supports one-to-all search. We combine
ULTRA-PHAST with two state-of-the-art public transit algorithms, CSA and RAPTOR.
We evaluate the performance of the resulting algorithms, UP-CSA and UP-RAPTOR, on
the networks of Switzerland and Germany.

2 Preliminaries

In this section we introduce the basic definitions used throughout the paper, the routing
problems we consider, and the algorithms upon which our work is based.

Public Transit Network. A public transit network is a 3-tuple (S, T,G) consisting of a set
of stops S, a timetable T , and a directed, weighted transfer graph G = (V, E). A stop is a
location where passengers can enter or exit a public transit vehicle (e.g., bus, train, ferry).
The timetable T defines how the vehicles move between the stops. Since different algorithms
model the timetable in different ways, and ULTRA can be combined with any public transit
algorithm, we treat the timetable as a black box. The only terminology we require is that of
the trip, which represents a vehicle traveling along a sequence of stops at a specific point in
time. The transfer graph G = (V, E) consists of a set of vertices V with S ⊆ V, and a set of
edges E ⊆ V × V . It may represent any non-schedule-based mode of transportation. For each
edge e = (u, v) ∈ E , the transfer time w(e) is the time required to transfer from u to v.

Problem Statement. Given source and target vertices s, t ∈ V , an s-t-journey J represents
the movement of a passenger from s to t through the public transit network. The modeling of
the journey’s components depends on the modeling used for the timetable, so again we view it
as a black box. The attributes we use for evaluating a journey are the departure time τdep(J)
at s, the arrival time τarr(J) at t, and the number of trips used by the passenger during
the journey. We say that a journey J dominates another journey J ′ if τdep(J) ≥ τdep(J ′),
τarr(J) ≤ τarr(J ′) and J does not use more trips than J ′. A journey is Pareto-optimal if it is
not dominated by another journey. A Pareto set is a minimal set of journeys such that every
possible journey from s to t is dominated by a journey in the Pareto set.

ATMOS 2020



1:4 An Efficient Solution for One-To-Many Multi-Modal Route Planning

We consider two variants of the one-to-many routing problem: the earliest arrival
problem and the Pareto optimization problem. In both cases, we are given a public transit
network (S, T,G = (V, E)), a source vertex s ∈ V, a set of target vertices T ⊆ V, and
a departure time τdep. The objective of the earliest arrival problem is to find, for each
target t ∈ T , an s-t-journey that departs no earlier than τdep and minimizes the arrival time
at t. The Pareto optimization problem instead asks for a Pareto set of s-t-journeys departing
no earlier than τdep, using arrival time and number of trips as the optimization criteria.

Algorithms. We now give an overview of the algorithms our work is based on, namely
(R)PHAST and ULTRA. PHAST is itself an extension of Contraction Hierarchies (CH).
The basic operation of the CH preprocessing phase is vertex contraction, which removes a
vertex from the graph and inserts shortcut edges between its neighbors to preserve distances.
This is done iteratively until all vertices are contracted. The order in which the vertices
are contracted is called the contraction order. The rank of a vertex is its position in the
contraction order. This iterative contraction yields two graphs: The upward graph G↑ consists
of all original edges and shortcuts whose head vertex has a higher rank than the tail vertex
(i.e., was contracted later). Conversely, the downward graph G↓ contains the edges whose
head vertex has a lower rank than the tail vertex.

A PHAST query begins with an upward search from s in G↑. This is followed by a
downward sweep that scans the vertices of G↓ in some topological order (i.e., the tail vertex
of each edge is scanned before its head vertex). An example of a topological order is the
contraction order, but any other topological order is valid as well. For each scanned vertex v
and each incoming downward edge e = (u, v), the distance dist(v) of v is set to the minimum
of dist(u) +w(e) and dist(v). To make the downward sweep cache-efficient, the vertices of G↓

are stored in memory in the same order in which they are scanned. In a many-to-all scenario,
where more than one source vertex is given, the memory locality of PHAST can be further
improved by combining k one-to-all searches into a single sweep (for a fixed k). Instead of a
single distance value per vertex, the algorithm then stores an array of k distance values, one
for each of the k sources, which are updated consecutively during each edge relaxation.

If we are only interested in distances to a subset T ⊆ V of vertices, and T does not
change between queries, RPHAST (restricted PHAST) improves on PHAST by performing a
target selection phase before queries are run. This involves running a backward breadth-first
search (BFS) on G↓, initializing the queue with all target vertices at once. The downward
sweep is then run on G↓[T ], the subgraph of G↓ induced by the vertices visited by the BFS.

Finally, we recapitulate the algorithmic framework of ULTRA: A preprocessing phase
computes shortcuts for all intermediate transfers (i.e, transfers between two trips) that occur
in an optimal journey. The initial and final transfers are handled via a Bucket-CH query.
Bucket-CH is an extension of CH for one-to-many queries that stores a bucket of distances
to the target vertices at each vertex. The buckets are computed via a backward search
in G↓ for each target t ∈ T . For each vertex v reached by this search, an entry storing
the distance to t is added to the bucket of v. A Bucket-CH query consists of an upward
search from s in G↑, followed by scanning the bucket of each reached vertex to compute the
distances to the targets. ULTRA runs a forward Bucket-CH query from s to all stops and
a backward Bucket-CH query from all stops to t. Afterwards, a public transit algorithm,
such as RAPTOR and CSA, is run from the stops reached by the forward Bucket-CH search,
using the precomputed shortcuts to explore intermediate transfers. Whenever it reaches a
vertex v that was reached by the backward Bucket-CH search, the resulting arrival time at t
is computed as the sum of the arrival time at v and the distance between v and t.



J. Sauer, D. Wagner, and T. Zündorf 1:5

3 Algorithm

Before we propose our one-to-many adaptation of ULTRA, we examine why the original
ULTRA algorithm cannot answer one-to-many queries. The ULTRA query algorithm uses
a bidirectional Bucket-CH search to explore the initial and final transfers. This requires a
single target vertex to run the backward search from. A naive solution [38] to this problem
is to perform multiple backward searches, one from each target vertex. However, this is only
viable for very small target sets, as the running time is proportional to the number of targets.
We therefore replace the backward search for the final transfers with a forward search inspired
by PHAST. We first outline our approach in detail for the arrival time problem. Afterwards,
we show how it can be generalized for the Pareto optimization problem.

3.1 Earliest Arrival Queries
The naive approach of performing one Bucket-CH search per target solves a many-to-many
problem, computing the distances between all stops and all targets. This is more information
than is required in our case: For each target t, we only require the distance from a single
stop, namely the stop where the last used trip is exited in the optimal journey to t. The
difficulty lies in the fact that we do not know this stop in advance. However, we can
reformulate the final transfer search as a one-to-many problem and solve it using PHAST
in the following manner: First, we compute the earliest arrival time at each stop v ∈ S
using a standard ULTRA query without the backward Bucket-CH search and without target
pruning. Afterwards, we insert a temporary edge (s, v) with weight τarr(v)− τdep into the
PHAST upward graph G↑. We can then find the earliest arrival time at every target with
a single PHAST search that uses our augmented graph G↑. If we are also interested in
the corresponding journey, we can simply substitute the temporary edge (s, v) with the
journey to v found by the ULTRA query. In practice, we do not actually insert temporary
edges into G↑. Instead, we initialize the priority queue used for the search in G↑ by directly
inserting each stop v with τarr(v) as its distance.

As presented thus far, our approach still has a performance issue: The efficiency of the
upward search in G↑, which comprises the first phase of PHAST, relies on the fact that the
upward search space of a single source vertex is small. However, we perform an upward
search from all reached stops simultaneously. Hence, the search space of our upward search
will be the union of the search spaces of all stops, which is a large portion of the graph.

Efficient Upward Search. In order to improve the efficiency of the upward search, we optim-
ize its memory and cache usage. First, we note that only vertices in the upward search space
of a stop are relevant for our algorithm. Since the set of stops does not change between
queries and is known beforehand, we can perform a stop selection analogous to the target
selection in RPHAST: We run a forward BFS on G↑ from all stops simultaneously, and
remove all vertices that are not visited. The resulting stop-selected upward graph is denoted
as G↑[S]. Furthermore, we observe that if the transfer graph is strongly connected, every
query will reach every stop, regardless of the source vertex. Thus, every vertex in the
stop-selected upward graph will be visited during the upward search. We can therefore
replace the Dijkstra search in G↑[S], which requires a priority queue, with a more efficient
upward sweep that is done analogously to the downward sweep of PHAST. If the transfer
graph is not strongly connected, such a sweep might scan many unreachable stops. Thus,
we modify the ULTRA query to keep track of the stop with the lowest rank that has been
reached and start the upward sweep at this stop.

ATMOS 2020



1:6 An Efficient Solution for One-To-Many Multi-Modal Route Planning

Algorithm 1 ULTRA-PHAST query algorithm.

1 Dijkstra search from s in G↑ // initialize the arrival time at s as τdep
2 Downward sweep in G↓[S]
3 Initialize stops for the public transit query // using the arrival times found in line 2
4 Run the public transit query //without target pruning
5 Upward sweep in G↑[S] // initialized with arrival times found in line 4
6 Downward sweep in G↓[T ]

Algorithm Overview. The algorithmic framework for our one-to-many approach, which we
call ULTRA-PHAST, is outlined in Algorithm 1. The original ULTRA query explored initial
transfers with a Bucket-CH search from s, using the results of a backward Bucket-CH search
from the target vertex to prune the search space. Since this pruning technique is no longer
applicable in a scenario with multiple target vertices, the initial transfer search will reach
all stops that are reachable from s. In this case, it is more efficient to explore the initial
transfers with an RPHAST search to S instead of Bucket-CH. The RPHAST search consists
of an upward search from s in the CH upward graph G↑ (line 1), and a downward sweep
on the stop-selected downward graph G↓[S] (line 2). The public transit part of the network
is then explored using a black-box public transit algorithm without target pruning. The
public transit query is initialized with the arrival times at the stops found by the RPHAST
search in line 3 and then run in line 4. It yields minimal arrival times for all stops in the
network, which we then propagate to the target set using a final upward and downward
sweep in lines 5 and 6. Since the upward sweep is equivalent to an RPHAST downward
sweep in reverse, its running time should be comparable. Thus, the total running time of an
ULTRA-PHAST query is roughly equal to the combined running time of a public transit
query without target pruning, two RPHAST queries to S, and one RPHAST query to T .

Optimized Contraction Order. The three sweeps can be further sped up by delaying the
contraction of stops and targets during the CH computation. Specifically, delaying the
contraction of stops will reduce the number of vertices in G↓[S] and G↑[S], while delaying
the contraction of targets will reduce the number of vertices in G↓[T ]. However, this is only
useful up to a certain point, since eventually the quality of the contraction order will degrade.
This will either lead to an unreasonable preprocessing time or cause too many shortcuts to be
inserted, which will in turn slow down the sweeps. We take this into account by introducing
tuning parameters fs and ft that determine how much the contraction of stops and targets
is delayed, respectively. Initially, only vertices that are neither a stop or a target may be
contracted. Once fewer than ft|S ∪ T | uncontracted vertices remain, we also allow targets to
be contracted. Stops remain uncontractable until fewer than fs|S| vertices remain.

Vertex Reordering. As demonstrated in [36] and [13], the order in which the vertices of a
graph are stored in memory can have a significant impact on the performance of a routing
algorithm. In particular, the order in which vertices are settled by a DFS has been shown
to lead to good memory locality for Dijkstra-like searches. For the sweeps on the upward
graph G↑[S] as well as the downward graphs G↓[S] and G↓[T ], the vertices must be scanned
in a topological order, to ensure that the tail vertex of each edge is scanned before its head
vertex. We obtain a topological order via DFS on G↑ and reorder the vertices according to
it. Preliminary experiments have shown that this order performs at least as well as the level
order used by PHAST, which was chosen primarily because it allows for easy parallelization.



J. Sauer, D. Wagner, and T. Zündorf 1:7

Algorithm 2 Downward sweep to targets.

1 timestamp++

2 for i← 0, . . . , |V↓[T ]| − 1 do
3 v ← ID of the vertex in V that corresponds to i
4 if timestamp[v] 6= timestamp then
5 timestamp[v]← timestamp
6 τarr[v]←∞
7 foreach e← (j, i) ∈ E↓[T ] do
8 u← ID of the vertex in V that corresponds to j
9 τnewarr ← τarr[u] + w[e]

10 update← τnewarr < τarr[v]
11 τarr[v]← τnewarr if update // conditional move
12 parent[v]← parent[u] if update // conditional move

Implementation Details. While the topological ordering of the vertices improves the per-
formance of the sweeps, it is inefficient for the public transit part of the query. Many public
transit algorithms, such as RAPTOR or CSA, achieve a large part of their efficiency by
keeping stop data consecutive in memory. One way to achieve this in multi-modal scenarios
is to assign vertex IDs between 0 and |S| − 1 to the stops, and IDs between |S| and |V| − 1
to the remaining vertices. However, this conflicts with the topological order used for the
RPHAST-like sweeps. Thus, we use different vertex orderings and IDs for the public transit
data structures and the RPHAST data structures, translating between them whenever we
switch between RPHAST and public transit searches. For the public transit data structures,
we assign IDs from 0 to |S| − 1 to the stops, such that the relative ordering of the stops in
the topological order is preserved. This ensures that the two orders are as similar as possible,
and that sweeping over one ID range still requires only a single sweep over the other.

Detailed pseudocode for one of the three sweeps (line 6 from Algorithm 1) is given in
Algorithm 2. The translation between vertex IDs used within the target-selected downward
graph G↓[T ] and general vertex IDs can be seen in lines 3 and 8. Another important
observation is that parent pointers (required for journey unpacking) and arrival times are
updated frequently in the inner loop, but only if an earlier arrival time has been found. It is
crucial for the performance of the sweep to avoid branching operations within this inner loop.
We therefore use conditional move operations to update the arrival time and parent pointer
branchlessly in lines 11 and 12. Finally, we use timestamping in order to avoid initializing
the arrival times for all vertices before each sweep. Since vertices are processed in topological
order during the sweep, the timestamps of tail vertices of incoming edges do not need to be
checked in the inner loop. Thus, timestamps are only checked in line 4.

3.2 Optimizing Number of Trips

We proceed with describing how our approach for computing one-to-many journeys can be
extended to find a Pareto set of journeys (optimizing arrival time and number of trips) for
every target. Since the maximum number of trips required by any Pareto-optimal journey
is usually quite low, it is feasible to simply perform the final upward and downward sweep
of our algorithm once for every possible number of trips. Furthermore, we can apply an
optimization that was originally proposed for speeding up multiple PHAST searches from
different source vertices [13]: Given a fixed parameter k, we no longer explore the final

ATMOS 2020



1:8 An Efficient Solution for One-To-Many Multi-Modal Route Planning

Table 1 Sizes of the used public transit networks and the number of ULTRA shortcuts.

Network Stops Routes Trips Stop events Vertices Edges Shortcuts

Switzerland 25 125 13 785 350 006 4 686 865 603 691 1 853 260 135 655
Germany 244 055 231 089 2 387 297 48 495 169 6 872 105 21 372 360 2 077 374

transfer for journeys using between 0 and k − 1 trips with k separate upward and downward
sweeps, but instead perform one upward and downward sweep which update all k arrival
time values at once. Note that k must be a fixed value, since the sweeps are only efficient if
the arrival times are stored consecutively in arrays of fixed size k. Journeys using k or more
trips are not handled by this grouped sweep. However, we observe that only a few stops are
reached by Pareto-optimal journeys that require a high number of trips. Propagating such
journeys via a PHAST sweep, which always explores the entire graph, will be wasteful, since
the arrival times of most vertices will not be improved by such vertices. Thus, for journeys
using k or more trips, we switch to Dijkstra searches on a contracted transfer graph which
contains all stops and targets, in a similar manner to MCR [11]. Similarly to the sweeps, the
Dijkstra searches use timestamps to initialize only the labels of visited vertices. However,
when the label of a vertex is initialized, we do not set its arrival time to ∞, but to the best
arrival time found during the grouped sweeps. This ensures that journeys that are dominated
by journeys with fewer trips get pruned early on.

4 Experiments

All algorithms were implemented in C++17 compiled with GCC version 8.2.1 and optimization
flag -O3. All experiments were conducted on a machine with two 8-core Intel Xeon Skylake
SP Gold 6144 CPUs clocked at 3.5 GHz, 192 GiB of DDR4-2666 RAM, and 24.75 MiB of L3
cache. Unless otherwise noted, all experiments were performed on a single core.

Networks. We evaluated our algorithms on the networks of Switzerland and Germany,
which were previously used to evaluate ULTRA [8]. An overview of the networks is given
in Table 1. The Switzerland network represents the timetable of two successive business
days (May 30–31, 2017) and was extracted from a publicly available GTFS feed1. The
Germany network is based on data from bahn.de and comprises two successive identical
days taken from the Winter 2011/2012 timetable. In both cases, parts of the network that
lie outside of the country borders were removed. The transfer graphs represent the road
networks of Switzerland and Germany, including pedestrian zones and stairs. The data was
obtained from OpenStreetMap2. Vertices with degree one and two were contracted unless
they coincided with stops. We chose walking as a transfer mode, assuming a constant speed
of 4.5 km/h. The ULTRA shortcuts were computed using the same settings as in the original
ULTRA publication. The transfer graph was contracted up to an average vertex degree of 14
for Switzerland and 20 for Germany. The shortcut computation was performed in parallel on
all 16 cores with a witness limit of 15 minutes. Together, the transfer graph contraction and
the shortcut computation took 9:52 minutes for Switzerland and 9:00:12 hours for Germany.
The number of shortcuts is reported in Table 1.

1 http://gtfs.geops.ch/
2 http://download.geofabrik.de/

http://gtfs.geops.ch/
http://download.geofabrik.de/


J. Sauer, D. Wagner, and T. Zündorf 1:9

Baseline Algorithms. Since no multi-modal algorithms which support one-to-many queries
have yet been proposed, we created baseline algorithms for comparison by adapting the
ideas of MCR to a scenario with multiple target vertices. MCR alternates between the
route scanning phases of RAPTOR and Dijkstra searches on a partially contracted core
graph, which is obtained via a CH computation on G that is not allowed to contract stops.
Once the average vertex degree of the remaining graph reaches a certain threshold, the
computation is stopped and the remaining graph is used as the core graph. Initial and final
transfers are handled by running forward and backward searches on the partially constructed
upward and downward graph, followed by Dijkstra searches in the core graph. An analogous
multi-modal variant of CSA called MCSA, which alternates between connection scans and
Dijkstra searches, was introduced in [8] to evaluate ULTRA.

When adapting MCR and MCSA to a one-to-many scenario, the forward search can
be run unchanged, but the backward search is no longer feasible. Instead, we modify the
computation of the core graph such that vertices in S ∪ T may not be contracted, rather
than just stops. The backward search then becomes unnecessary, since the Dijkstra searches
in the core graph already reach all targets. For our experiments, we contracted up to an
average vertex degree of 14, except for very large target sets with |T | ≥ 4|V|, where we used
a vertex degree of 10 instead.

Target Sets. For our experiments, we considered three types of target sets: all vertices,
all stops, and randomly generated target sets. For the randomly generated target sets, we
followed the approach from [14]: We randomly picked a center vertex c ∈ V and then ran
a Dijkstra search from c to find a ball B ⊆ V consisting of the |B| nearest neighbors of c.
From that ball, we then picked target vertices at random. We evaluated our algorithms for
different combinations of ball size |B| and target set size |T |, to study the impact of both
the number of targets and the distribution of the targets in the graph.

4.1 UP-CSA
For the earliest arrival problem, we implemented UP-CSA, a combination of ULTRA-PHAST
and CSA, and compared it to our one-to-many adaptation of MCSA.

Contraction Order. In Figure 1 (left), we evaluate the impact of the tuning parameters ft
and fs on the performance of the three sweeps performed by ULTRA-PHAST: the downward
sweeps in G↓[S] and G↓[T ], and the upward sweep in G↑[S]. The contraction of stops
and targets was prohibited until ft|S ∪ T | vertices were left, while stops were further left
uncontracted until fs|S| vertices remained. We observe that delaying the target contraction
can improve the target-related sweep by up to a factor of 2, without significantly impacting
the stop-related sweeps. The decrease in stop-related sweep times for fs = 10.0 and ft < 3.0
is explained by the fact that ft|S ∪ T | becomes smaller than fs|S|, and thus stops remain
uncontracted for longer than indicated by fs. Delaying the contraction of stops slightly
increases the running time of the sweep in G↓[T ], but this is offset by the significant
performance gains for the stop-related sweeps. While the sweeps performed best overall
for ft = 1.5 and fs = 1.5, we observed that very low values for ft negatively impacted the
performance of the connection scanning phase due to an unfavorable stop order. Hence, we
used ft = 2.0 and fs = 1.5 for all following experiments involving ball target sets. The CH
computation time for this configuration was 2:53 minutes, approximately twice as long as a
CH computation without delayed contraction.

ATMOS 2020



1:10 An Efficient Solution for One-To-Many Multi-Modal Route Planning

1.52 3 4 5 6 7 8 9
1

2

3

4

5

6

ft

Q
ue

ry
tim

e
[m

s]

fs 1.5 5.0 10.0
Stop sweeps

Target sweeps

10 40 90 160 250
0

30

60

90

120

150

180

Number of targets |T | [k]

Q
ue

ry
tim

e
[m

s]

|B|/|T | 1 4 16
MCSA

UP-CSA

Figure 1 Impact of delayed contraction (left) and number of targets (right), measured on the
Switzerland network. All running times are averaged over 1 000 queries each on 10 randomly chosen
ball target sets. Left: Performance of the three ULTRA-PHAST sweeps depending on ft and fs,
for ball target sets with |T | = 216 and |B| = 218. Right: Performance of MCSA and UP-CSA for
different values of |T | and |B|. Configurations with |B| > |V| were omitted.

Target Set Size. The impact of target set size and distribution on the performance of
MCSA and UP-CSA is measured in Figure 1 (right). For both algorithms, the exploration
of transfers becomes more costly as the target set, and thus the size of the search graphs,
increases. However, the effect is much more pronounced for MCSA, where the Dijkstra
searches eventually take up a majority of the running time. By contrast, UP-CSA scales
much better, with only a 30% increase in running time between the fastest and slowest
configuration. This is because the portion of the overall running time spent on exploring
transfers is much smaller than in MCSA. Increasing the ball size causes the stop and target
selection to become less effective, as the targets are spread over a wider area of the graph.
However, this only has a small effect on the overall performance of UP-CSA.

Detailed Performance. Table 2 gives a detailed overview of the performance of MCSA and
UP-CSA for three types of target sets: all stops, all vertices, and a ball target set of moderate
size. For the ball target sets, we used contraction delay factors of ft = 2.0 and fs = 1.5.
For the other two sets, where delaying the contraction of targets is pointless, we achieved
the best performance with ft = 1.5. The preprocessing time for UP-CSA is naturally much
larger than for MCSA, which only requires a contracted transfer graph. The vast majority
(around 90%) of the preprocessing time for ULTRA-PHAST is due to the computation of
ULTRA shortcuts. Most of the remainder is taken up by the computation of the stop- and
target-delayed CH (between 30 and 50 minutes on Germany), while reordering the vertices
and performing the stop and target selection only takes about 30 seconds on Germany. In
terms of space consumption, both algorithms are lightweight: MCSA requires a core graph
and a CH, which are similar in size to the original graph. ULTRA-PHAST requires the set of
shortcuts and the three sweep graphs G↓[S], G↑[S] and G↓[T ]. The size of the latter is listed
in Table 2, while the size of the former two can be inferred from the T = S configuration, in
which case all three graphs are of nearly identical size. On the smaller target sets, UP-CSA



J. Sauer, D. Wagner, and T. Zündorf 1:11

Table 2 Detailed performance of MCSA and UP-CSA for three types of target sets: all vertices,
all stops, and vertices randomly chosen from a ball. For the ball configuration, 10 target sets were
randomly generated with |T | = 214 for Switzerland, |T | = 217 for Germany, and |B|/|T | = 2 for both
networks. Running times are averaged over 10 000 random queries, which were distributed evenly
among the 10 target sets for the ball configuration. Due to time constraints, only 1 000 queries were
performed on Germany for T = V. Query times are divided into phases: initialization (including
initial transfers), connection scan, final upward sweep, and final downward sweep.

Net-
work Targets Algorithm Preprocessing Query time [ms]

Time [h] |V↓[T ]| |E↓[T ]| Init Scan Up Down Total

Sw
itz

er
la
nd

Vertices MCSA 00:01:19 – – 74.7 133.5 – – 208.2
UP-CSA 00:11:27 603 691 2 360 885 0.9 18.3 0.9 9.1 29.2

Stops MCSA – – – 8.1 34.2 – – 42.3
UP-CSA 00:11:27 37 669 284 328 0.8 18.0 0.9 0.7 20.4

Ball MCSA 00:01:54 – – 11.0 36.5 – – 47.5
UP-CSA 00:12:24 20 031 153 867 1.0 20.6 1.0 0.5 23.2

G
er
m
an

y

Vertices MCSA – – – 1 500.7 2 831.1 – – 4 331.8
UP-CSA 09:30:31 6 872 105 27 716 664 10.8 407.5 13.4 174.0 605.8

Stops MCSA 00:22:54 – – 115.4 655.7 – – 771.1
UP-CSA 09:30:25 365 987 3 546 112 10.3 389.6 14.3 7.9 422.0

Ball MCSA 00:19:20 – – 139.3 667.7 – – 807.0
UP-CSA 09:50:12 148 398 1 228 965 11.8 380.0 14.5 4.8 411.1

is about twice as fast as MCSA. Roughly 90% of the overall running time is taken up by the
connection scanning phase, indicating that the performance is close to the optimum that can
be achieved with CSA. For the more challenging scenario where all vertices are targets, we
achieve a speedup of slightly more than 7. Here, the main optimization of MCSA, which is
to contract the transfer graph, is no longer applicable. By substituting the Dijkstra searches
with memory-efficient sweeps, UP-CSA reduces the time that is spent exploring transfers by
more than a factor of 20, bringing it down to about a third of the overall running time.

We also evaluated how the RPHAST downward sweep for the initial transfers compares
to a Bucket-CH search, which is used by the original ULTRA algorithm: On Switzerland, a
Bucket-CH search takes 1.6 ms compared to 0.8 ms for a sweep. On Germany, it takes 36.7
ms compared to 8.9 ms. This is more than both Bucket-CH searches performed by ULTRA
combined, which demonstrates that the efficiency of Bucket-CH for ULTRA is only due to
effective target pruning. In a one-to-many scenario, RPHAST is clearly preferable.

4.2 UP-RAPTOR
For the Pareto optimization problem, we implemented UP-RAPTOR, a combination of
ULTRA-PHAST and RAPTOR, and compared it to one-to-many MCR.

Sweep Grouping. To determine the best choice for the number of grouped sweeps k, we
evaluated random queries on Switzerland and Germany, using S as the target set. On
Switzerland, we achieved the best performance for k = 6, with 5.0 ms for the grouped
sweeps and 0.6 ms for the remaining Dijkstra searches, yielding 5.6 ms for the final transfers
altogether. For k = 8, the time for the Dijkstra searches became negligible, but at the cost
of increasing the sweep time to 6.4 ms. Conversely, choosing k = 4 increased the Dijkstra

ATMOS 2020



1:12 An Efficient Solution for One-To-Many Multi-Modal Route Planning

Table 3 Detailed performance of MCR and UP-RAPTOR, using the same configurations as
in Table 2. Query times are divided into phases: initialization (including initial transfers), route
collection, route scan, relaxing intermediate transfers, and final transfers (upward and downward
sweep for grouped rounds, Dijkstra search for the remainder).

Net-
work Targets Algorithm Time [ms]

Init Collect Scan Inter Final Total

Sw
itz

er
la
nd Vertices MCR 94.3 24.5 15.7 354.6 – 492.9

UP-RAPTOR 1.6 10.1 16.1 4.9 42.2 74.9

Stops MCR 37.0 18.6 20.9 31.6 – 109.7
UP-RAPTOR 1.5 7.5 13.0 4.3 5.5 31.7

G
er
m
an

y Vertices MCR 1 959.4 690.0 298.4 8 099.3 – 11 177.7
UP-RAPTOR 18.9 321.3 270.1 90.1 812.9 1 513.4

Stops MCR 480.4 350.8 529.7 552.7 – 1 919.4
UP-RAPTOR 18.9 300.5 267.7 96.1 101.2 784.5

search time to 6.0 ms. On the Germany network, k = 8 performed slightly better than k = 6,
with 102.8 ms and 109.5 ms for the final transfers, respectively. The different results for the
two networks can be explained by the fact that journeys are more likely to require a high
number of trips on larger networks.

Detailed Performance. A detailed overview of the performance of MCR and UP-RAPTOR
is given in Table 3. The experimental setup and the preprocessing phase are identical to
Table 2. For the number of grouped sweeps, we chose k = 6 for Switzerland and k = 8 for
Germany, as suggested by the experiments reported above. RAPTOR operates in rounds,
with round i computing all optimal journeys using i trips. Each round consists of three
phases: collecting routes reached in the previous round, scanning those routes, and relaxing
intermediate transfers. Additionally, there is an initialization phase before the first round
that includes the exploration of initial transfers. UP-RAPTOR adds a fourth phase to each
round which explores the final transfers. This phase is skipped until round k − 1, where
a grouped upward and downward sweep are performed for rounds 0 to k − 1. In all later
rounds, final transfers are explored with a Dijkstra search on the same core graph that is
also used by MCSA, MCR and the ULTRA shortcut computation.

We observe speedups between 2.4 and 3.5 for T = S and between 6.6 and 7.4 for T = V.
The share of the transfer exploration in the overall running time is larger than for UP-CSA,
as RAPTOR explores more transfers in general due to optimizing two criteria. Exploring the
final transfers takes 3-4 times as long as for UP-CSA, but is here done across the 8 or more
rounds of a typical RAPTOR query. On the set of stops, UP-RAPTOR achieves a better
speedup than UP-CSA. This is mainly for two reasons: At the start of each new round, MCR
copies the arrival times of all vertices from the previous round. By contrast, UP-RAPTOR
only copies arrival times from previous rounds during the Dijkstra searches, and only when a
vertex is actually visited. The other reason is that UP-RAPTOR explores fewer intermediate
transfers due to using ULTRA shortcuts. As a result, fewer stops are visited in the transfer
phases and therefore fewer routes are collected and scanned in the following phases. This
reduction in the search space has a stronger effect on RAPTOR than on CSA, which always
iterates across all connections, regardless of whether they are reachable.



J. Sauer, D. Wagner, and T. Zündorf 1:13

5 Conclusion

In this work, we adapted ULTRA for one-to-many and one-to-all query scenarios. Since
ULTRA explores initial and final transfer with a bidirectional search, which is not feasible for
a large number of target vertices, we developed a new final transfer search that adapts ideas
from RPHAST. We replaced the upward CH search of RPHAST with an efficient upward
sweep, since all stops that are reachable via a trip act as potential source vertices for the final
transfer search. We also extended our approach to solve the Pareto optimization problem,
where multiple final transfer searches are required. The resulting algorithmic framework,
ULTRA-PHAST, yields the first algorithms specifically designed for one-to-all and one-to-
many searches in multi-modal networks. We evaluated ULTRA-PHAST versions of CSA and
RAPTOR on the networks of Switzerland and Germany. For small and moderately sized
target sets, the share of the transfer exploration in the overall running time could be reduced
to 10-20%, with the rest being equivalent to an uni-modal public transit query. For large
target sets, we achieved a speedup of 7 compared to naive adaptations of MCR and MCSA.

For future work, we would like to adapt our approach to extended one-to-many scenarios,
such as point-of-interest queries, isochrones and traffic assignments. Some of these scenarios
require ULTRA-PHAST to be combined with profile search. For the Pareto optimization
problem, the combined sweeps could be sped up further by using vector instructions, such
as SSE or AVX. Finally, ULTRA-PHAST could serve as an ingredient in a preprocessing
technique that enables even faster multi-modal one-to-one queries than ULTRA.

References
1 Ittai Abraham, Daniel Delling, Andrew V Goldberg, and Renato F Werneck. A Hub-Based

Labeling Algorithm for Shortest Paths in Road Networks. In International Symposium on
Experimental Algorithms, pages 230–241. Springer, 2011.

2 Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger, Chris Harrelson, Veselin
Raychev, and Fabien Viger. Fast Routing in Very Large Public Transportation Networks using
Transfer Patterns. In European Symposium on Algorithms, pages 290–301. Springer, 2010.

3 Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann, Thomas Pajor,
Peter Sanders, Dorothea Wagner, and Renato F Werneck. Route Planning in Transportation
Networks. In Algorithm Engineering, pages 19–80. Springer, 2016.

4 Hannah Bast, Matthias Hertel, and Sabine Storandt. Scalable Transfer Patterns. In 2016
Proceedings of the Eighteenth Workshop on Algorithm Engineering and Experiments (ALENEX),
pages 15–29, 2016.

5 Moritz Baum, Thomas Bläsius, Andreas Gemsa, Ignaz Rutter, and Franziska Wegner. Scalable
Exact Visualization of Isocontours in Road Networks via Minimum-Link Paths. In Proceedings
of the 24th Annual European Symposium on Algorithms (ESA’16), pages 7:1–7:18, 2016.

6 Moritz Baum, Valentin Buchhold, Julian Dibbelt, and Dorothea Wagner. Fast Exact Computa-
tion of Isochrones in Road Networks. In International Symposium on Experimental Algorithms,
pages 17–32. Springer, 2016.

7 Moritz Baum, Valentin Buchhold, Julian Dibbelt, and Dorothea Wagner. Fast Exact Compu-
tation of Isocontours in Road Networks. ACM Journal of Experimental Algorithmics, 24(1),
2019.

8 Moritz Baum, Valentin Buchhold, Jonas Sauer, Dorothea Wagner, and Tobias Zündorf.
UnLimited TRAnsfers for Multi-Modal Route Planning: An Efficient Solution. In 27th Annual
European Symposium on Algorithms (ESA 2019), pages 14:1–14:16, 2019.

9 Annabell Berger, Daniel Delling, Andreas Gebhardt, and Matthias Müller-Hannemann. Ac-
celerating Time-Dependent Multi-Criteria Timetable Information is Harder Than Expected.

ATMOS 2020



1:14 An Efficient Solution for One-To-Many Multi-Modal Route Planning

In 9th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and
Systems (ATMOS’09), 2009.

10 Lars Briem, H. Sebastian Buck, Holger Ebhart, Nicolai Mallig, Ben Strasser, Peter Vortisch,
Dorothea Wagner, and Tobias Zündorf. Efficient Traffic Assignment for Public Transit
Networks. In 16th Symposium on Experimental Algorithms (SEA 2017), 2017.

11 Daniel Delling, Julian Dibbelt, Thomas Pajor, Dorothea Wagner, and Renato Werneck.
Computing Multimodal Journeys in Practice. In International Symposium on Experimental
Algorithms, pages 260–271. Springer, 2013.

12 Daniel Delling, Andrew Goldberg, Thomas Pajor, and Renato Werneck. Customizable Route
Planning. In Proceedings of the 10th International Symposium on Experimental Algorithms
(SEA’11). Springer, 2011.

13 Daniel Delling, Andrew V Goldberg, Andreas Nowatzyk, and Renato F Werneck. PHAST:
Hardware-Accelerated Shortest Path Trees. Journal of Parallel and Distributed Computing,
73(7):940–952, 2013.

14 Daniel Delling, Andrew V Goldberg, and Renato F Werneck. Faster Batched Shortest Paths
in Road Networks. In 11th Workshop on Algorithmic Approaches for Transportation Modelling,
Optimization, and Systems (ATMOS 2011), pages 52–63, 2011.

15 Daniel Delling, Thomas Pajor, and Dorothea Wagner. Accelerating Multi-modal Route
Planning by Access-Nodes. In Algorithms – ESA 2009, pages 587–598, 2009.

16 Daniel Delling, Thomas Pajor, and Renato F Werneck. Round-based Public Transit Routing.
Transportation Science, 49(3):591–604, 2014.

17 Daniel Delling and Renato Werneck. Customizable Point-of-Interest Queries in Road Networks.
In IEEE Transactions on Knowledge and Data Engineering, pages 500–503, 2013.

18 Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Intriguingly Simple and
Fast Transit Routing. In International Symposium on Experimental Algorithms, pages 43–54.
Springer, 2013.

19 Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Connection Scan Al-
gorithm. ACM Journal of Experimental Algorithmics, pages 1.7:1–1.7:56, 2018.

20 Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. User-Constrained Multimodal Route
Planning. ACM Journal of Experimental Algorithmics, pages 3.2:1–3.2:19, 2015.

21 Edsger W Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1(1):269–271, 1959.

22 Yann Disser, Matthias Müller-Hannemann, and Mathias Schnee. Multi-Criteria Shortest Paths
in Time-Dependent Train Networks. In Proceedings of the 7th Workshop on Experimental
Algorithms (WEA’08), pages 347–361. Springer, 2008.

23 Alexandros Efentakis and Dieter Pfoser. GRASP. Extending Graph Separators for the Single-
Source Shortest-Path Problem. In Algorithms – ESA 2014, pages 358–370. Springer, 2014.

24 Johann Gamper, Michael Böhlen, Willi Cometti, and Markus Innerebner. Defining Isochrones
in Multimodal Spatial Networks. In Proceedings of the 20th ACM International Conference on
Information and Knowledge Management, pages 2381–2384, 2011.

25 Johann Gamper, Michael Böhlen, and Markus Innerebner. Scalable Computation of Isochrones
with Network Expiration. In Scientific and Statistical Database Management, pages 526–543.
Springer, 2012.

26 Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Contraction Hier-
archies: Faster and Simpler Hierarchical Routing in Road Networks. In Proceedings of the 7th
Workshop on Experimental Algorithms (WEA’08), pages 319–333. Springer, 2008.

27 Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. Exact Routing in
Large Road Networks Using Contraction Hierarchies. Transportation Science, 46(3):388–404,
2012.

28 Kalliopi Giannakopoulou, Andreas Paraskevopoulos, and Christos Zaroliagis. Multimodal
Dynamic Journey-Planning. Algorithms, 12(10):213, 2019.



J. Sauer, D. Wagner, and T. Zündorf 1:15

29 Moritz Hilger, Ekkehard Köhler, Rolf Möhring, and Heiko Schilling. Fast Point-to-Point
Shortest Path Computations with Arc-Flags, pages 41–72. American Mathematical Society,
2009.

30 Jan Hrnčíř and Michal Jakob. Generalised Time-Dependent Graphs for Fully Multimodal
Journey Planning. In 16th International IEEE Conference on Intelligent Transportation
Systems (ITSC 2013), pages 2138–2145. IEEE, 2013.

31 Dominik Kirchler. Efficient Routing on Multi-Modal Transportation Networks. PhD thesis,
Ecole Polytechnique X, 2013.

32 Sebastian Knopp, Peter Sanders, Dominik Schultes, Frank Schulz, and Dorothea Wagner.
Computing Many-to-Many Shortest Paths Using Highway Hierarchies. In Proceedings of the
9th Workshop on Algorithm Engineering and Experiments (ALENEX’07), pages 36–45. SIAM,
2007.

33 Nikolaus Krismer, Doris Silbernagl, Günther Specht, and Johann Gamper. Computing
Isochrones in Multimodal Spatial Networks Using Tile Regions. In Proceedings of the 29th
International Conference on Scientific and Statistical Database Management, 2017.

34 Duc-Minh Phan and Laurent Viennot. Fast Public Transit Routing with Unrestricted Walking
through Hub Labeling. In Proceedings of the Special Event on Analysis of Experimental
Algorithms (SEA2). Springer, 2019.

35 Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Efficient Models
for Timetable Information in Public Transportation Systems. ACM Journal of Experimental
Algorithmics, 12(2.4):1–39, 2008.

36 Peter Sanders, Dominik Schultes, and Christian Vetter. Mobile Route Planning. In Algorithms
– ESA 2008, pages 732–743. Springer, 2008.

37 Jonas Sauer. Faster Public Transit Routing with Unrestricted Walking. Master’s thesis,
Karlsruhe Institute of Technology, 2018.

38 Jonas Sauer, Dorothea Wagner, and Tobias Zündorf. Efficient Computation of Multi-Modal
Public Transit Traffic Assignments Using ULTRA. In Proceedings of the 27th ACM SIG-
SPATIAL International Conference on Advances in Geographic Information Systems, page
524–527, 2019.

39 Dorothea Wagner and Tobias Zündorf. Public Transit Routing with Unrestricted Walking. In
17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and
Systems (ATMOS 2017), 2017.

40 Sascha Witt. Trip-Based Public Transit Routing. In Algorithms – ESA 2015, pages 1025–1036.
Springer, 2015.

ATMOS 2020


	Introduction
	Preliminaries
	Algorithm
	Earliest Arrival Queries
	Optimizing Number of Trips

	Experiments
	UP-CSA
	UP-RAPTOR

	Conclusion

