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Abstract—In this paper a new concept for an infrastructure
independent approach to indoor person localization is outlined.
It is proposed to deploy an ad-hoc wireless sensor network
(WSN) by means of a pedestrian dead reckoning (PDR) unit. The
deployed nodes are initialized with a PDR-determined position
estimation. Furthermore, a subset of the nodes has a GPS
connection and thus an accurate estimation of the own position.
Within this infrastructure, persons that carry on-body sensor
nodes can then be localized based on received signal strength
(RSS) evaluation and extended Kalman filter (EKF) data fusion.

An experimental setup with a 65 node ZigBee sensor network
is described and the collected data are evaluated off-line. It
is analyzed how an RSS person localization performs under
experimental real-world conditions. The proposed approach re-
sults in a localization accuracy on the order of a couple of
meters for realistic parameter settings. Initial experiments on
node deployment and a simulative evaluation of the influence
of biased anchor node position estimations are presented. It is
concluded that the proposed system can obtain an accuracy on
the order of 3 meters without necessitating map knowledge or
previously deployed infrastructure. This accuracy is sufficient for
a range of person localization applications.

Index Terms—WSN, localization, RSS, pedestrian dead reck-
oning.

I. INTRODUCTION

Ad-hoc localization of persons in unknown surroundings
has been a topic of increasing interest in the past few years
[1], [2]. A simple person localization system (PLS) that can
be set up ad-hoc and that allows to track persons or objects
in a previously unknown area/place could be used in a range
of applications: firefighters that enter a burning building [3],
police men that operate in between and within buildings or also
medical personnel that manages a disaster site with hundreds
of injured persons [4], are all in need of a system that can
be set up fast and easily. Such a system could enable them
to logistically coordinate large scale operations in unknown
environments by providing localization information on the
participants in the network [5], [3].

For this purpose a PLS does not only need to work in a
lab environment under known conditions but it also has to
deliver sufficiently accurate results under realistic conditions.
The PLS has to work in both in- and outdoor environments
and map knowledge about the deployment area or previously
deployed infrastructure cannot be assumed.

Existing systems often do not fulfill these requirements:
the Global Positioning System (GPS) has the fundamental

problem of not working within buildings, WSN localization
systems mostly require pre-deployed infrastructure to work
properly and pedestrian dead reckoning (PDR) systems cannot
provide long term stability. Although the upcoming ultra-
wideband (UWB) real time location systems (RTLS) are
expected to be a well-suited technology for indoor localization,
current systems mostly require an extensive previous calibra-
tion, lack real-world evaluations and are still too expensive for
a disposable usage [6], [7].

In this paper an approach to person localization in unknown
environments is proposed where an ad-hoc infrastructure is
deployed by means of a PDR unit. Within this infrastructure
it is then possible to localize persons that carry sensor nodes.

A prototype implementation of a 65-node WSN is evaluated
in an indoor field. The resulting localization accuracy if a
PDR node deployment is assumed is assessed off-line for the
collected data.

The remainder of this paper is organized as follows: In
Section II the relevant state of the art in the fields of sensor
network localization and PDR localization is outlined. In
Section III the intended applications are analyzed and the
resulting requirements are deduced. Based on these require-
ments the proposed solution concept is outlined. In Section
IV the implemented experimental system that is used for the
experimental evaluation of the proposed concept is described.
In Section V the setup and results are presented. These results
are then interpreted and a conclusion and an overview of the
next development steps are given in Section VI and VII.

II. STATE OF THE ART

Indoor localization and location based services have been
topics of great interest for several years now. Various works
present the state of the art in the area and give insight into the
different relevant research fields [1], [2], [8]. For the purpose
of this paper the state of the art is categorized into the fields
of sensor network localization with a focus on RSS, PDR, and
hybrid approaches that combine the two fields.

The focus of this overview lies on systems that have
been implemented for experimental evaluations and not only
evaluated in simulations.

A. Sensor Network Localization

Applications of indoor real-time location systems (RTLS)
can be found in various areas from industrial asset tracking to978-1-4244-5864-6/10$26.00 c© IEEE



patient tracking in hospitals [9]. Evaluated techniques include
the measurement of angle, time or strength of a received signal,
or the time difference between the arrival times of physically
different signals. It is usually assumed that at least some of
the nodes of a network have known positions (anchor nodes).

After this measurement step it is then possible to estimate
the positions of nodes with unknown positions (blind nodes)
and/or to track mobile nodes.

As application fields for RTLS are omnipresent, some
commercially available solutions have come up in the last
years that make use of different measurement techniques and
position estimation algorithms. In the research community, one
of the best investigated localization principles is the evaluation
of the signal strength of received radio packets (RSS). This is
due to its availability on most modern radio chips.

Quite a few papers have been published that investigate
localization based on RSS measurements. In [10] the authors
propose to implement a system that allows to estimate the
position of a mobile node upon comparison of recorded RSS
values with reference values. These reference values have to be
recorded in a precedent training phase. A comparable approach
is presented in [11], where additionally information about
the RSS history is evaluated. The authors claim to achieve
an average localization accuracy of 1.3 m. In [12] a WiFi
network positioning system for mobile nodes is presented that
compares RSS values to an RSS database and also provides
quite an accurate position estimation. All the presented sys-
tems manage to achieve good accuracy after a training phase
for a specific environment of interest. Some more of these so-
called fingerprinting techniques have been presented in other
publications. However, the common shortcomings of such
approaches is that they require a pre-installed infrastructure
and a training phase and thus cannot be used in an ad-hoc
manner.

Other approaches that try to calculate the corresponding
distances from RSS values and then to localize with geometric
or other techniques have been investigated. But they tend to be
much more complicated and less accurate for indoor scenarios.
In [13] the authors describe an outdoor experiment with 45
sensor nodes and achieve an accuracy of 4.1 m. The authors of
[14] claim to achieve an accuracy of 50 cm by using a particle
filter approach. Both of the described approaches however
have not been evaluated for indoor scenarios. Also the user is
required to know the positions of anchor nodes before being
able to localize nodes.

For all of the cited approaches it is difficult to compare the
published total accuracies as this is commonly a function of
the number of used nodes per area and thus not on the same
scale for different experiments.

There are a few publications about indoor RSS node lo-
calization but the experimental evaluation of the systems is
mostly limited to single rooms or few rooms. To the knowledge
of the authors there has not been done much work on practical
evaluation of larger scale indoor localization systems based on
RSS measurements. Also most of the published experiments
are conducted under optimal circumstances, i.e., the node that

is to be localized is usually carried in a way to allow for
optimal omnidirectional communication (line of sight). It is
the goal of this work to evaluate indoor person localization
under real-world conditions, i.e., for a node that is carried in
a trouser pocket for example or for anchor nodes that have a
bias in their position estimation.

B. Pedestrian Dead Reckoning

With the recent technical improvements and price decline
in the area of microelectromechanical systems-based inertial
measurement units (MEMS-IMU), pedestrian dead reckoning
has received more and more research interest in the last few
years. The approach to estimate the current position based on a
previously determined position by evaluating acceleration and
gyro data from an IMU is implemented in a variety of inertial
navigation systems, e.g., [15] - [24].

As the accuracy of common MEMS sensors is still too
low to allow for reasonable accurate results through double
integration of a 3-axis acceleration sensor and gyro evaluation
for attitude estimation, most state of the art approaches make
use of additional system knowledge to improve localization
accuracy. This knowledge usually comes from analyzing recur-
ring patterns in the human course of motion while walking. A
popular approach is to mount the IMU on the foot of a person
and to perform so-called zero velocity updates, i.e., recalibrate
the velocity estimation from the acceleration integration to
zero whenever the foot comes to rest on the ground [15],
[16], [17], [18]. By using two IMUs, one on each foot of
the pedestrian and thereby adding redundant sensor inputs,
the results can be further improved [19].

The additional assumption that human trajectories are usu-
ally either straight or incorporate more or less distinct turns can
be used to compensate the drift of gyro sensors and thus further
improve the results of such approaches [20], [21]. Other IMU
positions on a helmet [22] or on the hip [23] or also approaches
with multiple other sensors [24] have been investigated as well
but positioning the IMU on the foot seems to be the method
of choice in most of the published research on this topic in
the last few years.

Published PDR accuracies are usually indicated in a percent
value representing the mean deviation of the covered distance
over time. The accuracies strongly depend on the used hard-
ware and methodology. The published values range from under
one percent [18] to a few percent [15], [16].

To cope with the PDR-inherent adding-up of errors over
time, almost all of the existing approaches need to be com-
bined with other localization technologies like GPS, RFID,
map matching or others to achieve long-term accuracy. The
prevalent technology for this is GPS and it is commonly
assumed that a position update is performed whenever a
reliable satellite signal is available, i.e., whenever the tracked
pedestrian walks through a courtyard or close to a window
[16], [17].

However, it is a fundamental problem of PDR that long term
accuracy is difficult to achieve without the use of additional
data input.



C. Hybrid WSN IMU Localization Systems

Combining the advantages of PDR with WSN localization
techniques can allow to compensate for the shortcomings of
the two technologies. A WSN localization approach can be
used for long-term stability and the PDR can help to navigate
through areas with poor coverage or to compensate for vari-
ances in the position estimation that result from RSS fluctua-
tions. In [25] the authors combine wireless LAN fingerprinting
localization with a foot mounted IMU and magnetometer and
improve the localization accuracy by using extended Kalman
filter (EKF) data fusion. Another approach is proposed in [26]
where the authors improve the localization accuracy in a sensor
network by fusing IMU data and experimentally demonstrate
their setup.

However, assuming that every mobile node, i.e., every
person that is to be localized is equipped with an IMU makes
the system costly and complex.

III. SOLUTION CONCEPT AND SYSTEM DESIGN

As of now, there is still a lack of systems in the field
of ad-hoc localization for applications in which it is not
possible to deploy an infrastructure before the localization
is needed. This could for example be the case if firefighters
enter a burning building and the officer in charge needs real
time information about the approximate location of his men
in the burning building [3]. Other examples could be found
in mass casualty events where the logistical coordination
of the operation depends on on-line information about the
whereabouts of doctors and patients [4].

For such applications, it cannot be assumed that previous
knowledge like a floor plan of the building or a map of
the surroundings (map knowledge) is available. Moreover, a
training phase is usually not possible.

A. Requirements Analysis

In these intended applications, the challenge is thus to
provide a system that does not require a complex setup but can
be installed in a self-organizing ad-hoc manner. The simpler
the setup and the cheaper the required hardware, the better
are the chances of success. A subset of the nodes can be
assumed to be static, but the bigger part will be attached to
moving persons and thus mobile. This makes a self-organizing
architecture necessary that allows to cope with mobile nodes.
This architecture has to be scalable in terms of communica-
tion bandwidth and computational limitations on each node
for larger networks with ≥ 100 nodes (decentral position
estimation). Concerning the required accuracy, it is normally
sufficient for the intended applications to get approximate
information on the position of a person (accuracy in the range
of several meters). It is rarely needed to provide location
information in the range of several centimeters as it is assumed
for some RTLS (Section II-A). As measured RSS values have
large deviations, the performed localization algorithm needs to
be able to cope with these deviations and to be robust against
single or multiple measurement outliers.

For the intended system the requirements can be summa-
rized:

• Simplicity and self-organization: easy setup
• Scalability: networks with ≥ 100 nodes
• Accuracy: several meters
• Robustness: measurement outliers
To solve these requirements, a system concept is proposed

where an ad-hoc infrastructure of anchor nodes is deployed
and initial positions are estimated by means of PDR. These
anchor nodes then broadcast their positions in regular intervals
and mobile nodes (on-body nodes) calculate their approximate
positions. The position estimation is done by evaluating RSS
values of received broadcast messages via an EKF localization
algorithm.

B. PDR Node Deployment

For the deployment of the nodes, a PDR concept is proposed
to be integrated into the localization WSN. For the purpose
of this paper and the described experiments in Section V,
the influence of this deployment procedure on the resulting
accuracy is investigated off-line. As the position errors that
result from the PDR are non-deterministic, a deployment and
position initialization of anchor nodes would result in the
limitation to one specific problem instance and thus make a
reproducible analysis difficult. To avoid this issue, the anchor
nodes were brought out and RSS data were collected. The
calculation of the influence of the error caused by PDR
node deployment can then be evaluated off-line by simulating
various PDR error settings for the experimentally collected
RSS dataset.

In this simulation, the error introduced by the PDR node
deployment is modeled based on an experimental study on the
resulting accuracy and an analysis of other systems accuracies.
With state of the art PDR systems and with comparable IMUs
an error in the range of a few percent can be achieved [15],
[16]. If more expensive IMU hardware is available, this figure
can be brought down to under one percent [18]. These figures
in combination with initial experiments on an XSens MTI-G
IMU are used as input for the simulation.

C. Node Localization with Noisy Range Measurements

The power-loss of electromagnetic waves over the traveled
distance in indoor environments can be approximated with the
log-distance path-loss model:

PL = P + 10n · log10
(
d

d0

)
+NG (1)

This model is based on the Friis’ transmission formula
and permits to approximate the path-loss over the distance of
electromagnetic waves in indoor environments. The path-loss
PL [dBm] for a given distance d is expressed as a function of
the path-loss coefficient n, a reference measurement P of the
received power at distance d0, and a normally distributed noise
term NG. If d0 is assumed to be 1 m, the parameters P and
n can be experimentally determined. To invert this function
is then a simple way to approximate a distance estimation



between a sender and a receiver for a given RSS measurement
on given hardware.

Other approaches for an on-line estimation of the path-loss
coefficient without need for calibration have been proposed
and will be a future research topic for the considered applica-
tion [27].

For the estimation of the location of a sensor node based
upon noisy range measurements an extended Kalman filter
(EKF) is used. If a time discrete system model for each node
is assumed, the state of this node (i.e. the position) at time step
k is represented by ~xk and the state transition (~xk−1 → ~xk)
can be modeled as follows:

~xk = Ak−1~xk−1 +Bk−1~uk−1 +Gk−1~ωk−1 (2)

Ak−1 is the system matrix, Bk−1~uk−1 represents the system
input and Gk−1~ωk−1 is a noise term that is assumed to
be normally distributed with mean zero. In this model, a
measurement ~yk at time step k is assumed to depend linearly
on the (true) system state ~xk:

~yk = Hk~xk + ~νk (3)

For the considered system, the errors of the distance measure-
ments are assumed to be normally distributed with mean zero
and standard deviation ~νk as no further knowledge is available.

However, the available measurements of the distance d to an
anchor node at position ~xL have a nonlinear relation with the
position of the on-body node. A linear transformation matrix
Hk cannot be found. For this purpose the EKF makes use of
a linearization in the current operating point to calculate Hk:
the measurement of the distance h(~x) =

√∑
(xi − xLi )2 is

linearized by calculating the Jacobian matrix for the current
incremental values:

Hk =
∂h(~x)

∂~x
(4)

The error caused by this linearization does not have a strong
effect as long as the update rate of the system is sufficiently
high.

For the intended person localization, a movement model
is integrated by making use of the system equation. The
prediction of the system state at time step k is ~x−k . This
prediction depends on the previous state estimation and the
input Bk−1~uk−1 from a movement model:

~x−k = Ak−1~xk−1 +Bk−1~uk−1 (5)

The covariance for this estimation at each time step k can then
be estimated with:

C−
k = Ak−1Ck−1A

T
k−1 +Qk−1 (6)

based on the previous covariance Ck−1 and the total noise
input Qk−1 introduced by the movement model Bk−1~uk−1

and the process noise Gk−1~ωk−1. If now a new measurement
~yk is available, the resulting covariance for the next time step
can be minimized by fusing the prediction for the next state
~x−k from the system model and the measurement into a new
state estimate ~xk:

~xk = ~x−k +K(~yk − hk~x−k ) (7)

The Kalman gain factor K in this equation is a function of the
predicted measurement covariance Rk and the current position
estimation covariance C−

k .

K = C−
k H

T
k (HkC

−
k H

T
k +Rk)

−1 (8)

The resulting new covariance Ck then becomes:

Ck = C−
k −KHkC

−
k (9)

The EKF provides a good estimate of the state of a system,
if the errors are normally distributed with mean zero. The
movement model has to be chosen with care to allow for a
smoothening input into the filter.

For the implemented system, no further knowledge about
the error distribution is assumed and the EKF is used with
experimentally determined parameter settings.

IV. IMPLEMENTATION

For the practical evaluation of the proposed concept a
system is implemented based on low-power sensor nodes and
a ZigBee standard-conform network implementation.

A. Hardware

1) LocNode sensor node: The two implemented versions
of the LocNode each consist of a Texas Instruments MSP430
MCU and a 2.4 GHz IEEE 802.15.4 compliant CC2520 radio
chip. In the simple version of the LocNode a 3-axis MEMS
acceleration sensor is included on the PCB (for movement
detection) and the node is designed to fit into a robust 5.5 x
2 x 2.5 cm3 casing, whereas the extended version allows for
the connection of extension boards via two 20 pin connectors
(Fig. 1).

Fig. 1. LocNode: extended version with attached GPS module and simple
version in casing

The designed extension modules include an SD-card inter-
face to be able to record RSS data during experiments for
off-line processing and evaluation.

2) GPS module: To allow for an integration of GPS signals
as proposed in Section III, a GPS module has been designed
that connects to the extended version of the LocNode (Fig. 1,
left).



3) Pedestrian dead reckoning unit: For the implementation
of the PDR, a connection board has been designed that
allows for the integration of an XSens MTI-G IMU with
an extended LocNode. Experiments show that it is possible
to reproduce state of the art PDR accuracies if the IMU is
attached to the foot and the data processing is done off-
line. Fig. 2 shows an example of a reconstructed trajectory
of a pedestrian moving through the institute premises if zero-
velocity updates are performed. An experimental evaluation
revealed that accuracies in the range of 5 % of the walking
distance can be achieved. These first results and the state of
the art figures (Section III-B) are taken as an input into the
deployment path simulation (Section V).

Fig. 2. PDR trajectory of test person (experimental data, off-line calculated)
and positions of anchor nodes in our experiments

The improvement of the PDR accuracy and the implemen-
tation of an algorithm that can be computed on the used low-
power MCU are topics of future research. Alternatively, an
additional signal processing unit can be added to pre-process
the IMU data.

B. Software

On the software side, a ZigBee application has been devel-
oped to allow for the formation and reliable operation of a
larger scale sensor network without needing to develop on
network layer level. The implemented modular application
consists of a simple operating system as interface to the
hardware, the communication layers of the ZigBee stack
and a position calculation module on application level. The
parameters of this module can be set via over-the-air download
through the network. The stack is configured to automatically
form a mesh network upon deployment and to allow for
a multi-hop communication with up to 20 hops. All nodes
incorporate the same application layer software and provide
the functionalities as described in Section III.

At the current development state, ZigBee End Devices
cannot be configured to receive and process broadcast mes-
sages which makes an implementation of an all-router network
necessary.

V. EXPERIMENTAL EVALUATION

To evaluate the presented concept, an experiment has been
conducted with 65 LocNodes in the premises of the institute.
On one floor of the office building, approximately 70 m long

and 20 m wide, 60 anchor nodes were deployed as shown in
Fig. 2.

A test person equipped with 5 on-body nodes (node 1:
mounted on a rucksack, node 2: hanging on a lanyard in front
of body, node 3: right trouser pocket, node 4: hanging on
a lanyard behind body, node 5: left trouser pocket) moved
through the building following predefined trajectories. Fig. 3
shows the trajectory of the third test run as an example. Each
of the on-body nodes was equipped with an SD-card to be able
to capture a total of 1,100,000 packets in 5 test runs through
the building. The captured packets were correlated with the
corresponding real position (ground truth) of the test person
to be able to analyze the data off-line and evaluate different
parameter settings on real data. The anchor nodes broadcast
frequency was set to 4 Hz and at each discrete 0.25-second
time step the received packets from the 16 strongest anchor
nodes were recorded.

Fig. 3. Trajectory of test person in third run (ground truth)

All nodes were connected in a ZigBee network to allow
for ad-hoc network formation and multi-hop communication.
Each mobile node’s calculated position estimation can then be
communicated to a central data sink (network coordinator) in
regular intervals. To be able to interpret the behavior of RSS
values in indoor environments another data set was recorded
in an outdoor experiment with 20 anchor nodes and 5 on-body
nodes on a football field [28].

For the purpose of comprehensibility and reproducibility
of the results, the anchor node positions and the test person’s
trajectory were exactly determined during the experiment. The
analysis in the following chapter is calculated on the data
collected during 5 experimental runs. The processing is done
off-line to enable a simulation-based analysis of the influence
of biased anchor node positions.

A. Data Analysis

Fig. 4 shows the RSS values of the recorded packets at
increasing distances on a logarithmic scale (dBm). The darker,
the more packets have been collected at a given distance for a
respective RSS value. The lines represent the RSS means for
the different nodes.

The recorded packets show the characteristic drop-off be-
havior over the distance. With regard to their RSS means,
the different node positions on the body do not cause a big



Fig. 4. Measured signal strength drop-off over distance

difference. As expected, the means of the recorded packets are
higher for node number 1 which was carried on a rucksack
and thus had a higher percentage of line of sight connection to
the anchor nodes and less damping by the test persons body.

If the data set is inverted as perceived by a mobile node it
can be seen that the standard deviation of the measurements
increases with the distance (Fig. 5).

Fig. 5. Distribution of recorded RSS packets

The measured data were used to fit the parameters of
the log-distance path-loss model (1) experimentally. As the
measurement setup (Section V) in the institute premises did
not allow to record distances higher than 65 m, measurements
for higher distances are underrepresented in the collected data
set (Fig. 4). Also, due to the fact that only packets from the
16 strongest anchor nodes were recorded, small RSS values
are underrepresented.

The optimal least squares fit of the model for the recorded
data is achieved for coefficients n = 4.881 and P = 41.35 and
is used for the distance estimation in all presented experiments.

The measured standard deviation is approximated with σ = d
2

and used as model for the measurement noise in the EKF
(Fig. 5).

Fig. 6 gives an impression of the achievable accuracy of
the distance estimations based on the recorded RSS values.
Every data point represents the mean of five captured packets.
Whenever the distance is bigger than around 30 m, the corre-
sponding anchor node is usually not among the 16 strongest
senders within range and thus no packets were recorded.

Fig. 6. Estimated and real distances for exemplary node

For the evaluation of the localization approach, range
measurements with RSS values smaller than the receiver-
sensitivity that was specified in the data sheet (−98 dBm) were
not considered to prevent errors.

B. Localization Results

The presented EKF is now applied to estimate the position
of the moving person in the sensor network. The metric for
the evaluation and tuning of the algorithm is the performance
in terms of mean and standard deviation of the difference
between estimated and real position. The parameters of the
EKF were set to provide optimal accuracy for all different
node positions (node 1 - node 5, see Section V). The move-
ment model was incorporated by linearly interpolating the
last positions to estimate the next position for every 0.25-
second time step. It is thus assumed that the tracked person
moves in a certain direction for some time and does not
move randomly. This movement model acts like a low-pass
filter and compensates for the high variations in the distance
measurements.

Fig. 7 shows an exemplary reconstructed trajectory for the
data collected by the node hanging on a lanyard around the
test persons neck (node 2) in the third experiment. The 5
experimental runs were different in terms of walking speeds
and trajectories. With the outlined approach it is possible
to achieve a mean localization accuracy on the order of
2.5− 3.5 m with a standard deviation on the order of 1.7 m
for all nodes in all experiments if a single parameter setting



Fig. 7. Estimated (dotted line) and real trajectory (solid line) in experiment 5 for the RSS data of node 2 (mean deviation: 2.3 m)

is used (Tab. I). The accuracy of single nodes in some of the
experiments can reach 2.3 m. If tuning the parameters to a
single experiment, accuracies in the range of 1.3− 1.4 m are
possible. For comparison, the presented trajectory in Fig. 7
has mean deviation of 2.3 m at a standard deviation of 1.7 m.

If considering all packets received at the same time by
the five different on-body nodes, even better results can
be achieved. From an implementation point of view this is
however not desirable as it would require synchronization and
additional communication overhead. It is intended to provide
a simple PLS where it is sufficient to carry a single sensor
node in a pocket or hanging from a lanyard around the test
persons neck.

TABLE I
MEAN DEVIATIONS (IN M) FOR ALL NODES IN ALL EXPERIMENTS

exp. # node 1 node 2 node 3 node 4 node 5
1 3.86 3.01 2.93 5.65 3.29
2 3.35 2.81 3.28 5.85 3.85
3 2.99 2.42 2.74 3.80 3.96
4 2.87 2.28 2.66 3.81 2.90
5 2.87 2.29 2.47 3.72 2.72

In the following, the position estimation is always carried
out by considering the packets received by a single node. One
fixed parameter setting has to lead to sufficiently accurate
results for all different node positions, i.e., in one of the
pockets or also on a band around a person’s neck. This is
because the intended application is an easy-to-use system
where the user can carry the on-body node wherever he wants.

C. Biased Anchor Node Positions

It is now assumed that a subset of the anchor nodes has a
good position estimation, for example due to a GPS signal at
a window or due to a landmark based manual positioning.
The remaining anchors get their initial position estimation
upon deployment. The position accuracy of these nodes is thus
corresponding to the accuracy of the PDR at the given point.
To be able to quantify the impact of unknown anchor positions

on the localization accuracy, the trajectory of the PDR node
deployment was simulated for varying noise inputs in the
PDR position estimation. Fig. 8 shows an exemplary simulated
PDR trajectory and the resulting anchor node setting. In this
example, 50 % of the anchor nodes are assumed to have a
biased position estimation. The remaining nodes are accurately
positioned due to an available GPS signal or a subsequent
correction due to the placement at a landmark.

In the simulations it is assumed that the location error
introduced by the PDR deployment consists of a random
component that affects the estimated velocity and a random
component that affects the accuracy at every turn. With this
model it is possible to account for errors caused by the
acceleration sensors as well as gyro sensors.

For a realistic evaluation of the system behavior it is
assumed that the PDR deployment is carried out by a person
entering the building. The deployment path is modeled starting
at the entrance of the building and passing by every anchor
node position one after the other. Own experiments as well as
analysis of the state of the art indicate that the achievable total
accuracy of a PDR unit is on the order of a few percent of
the covered distance (Section III-B). A velocity error as well
as an angle error were modeled, the parameters result in an
error with mean of about 2 % of the covered distance.

Fig. 8. Example for 50 % biased anchor node positions



To simulate an inaccurately positioned subset of anchor
nodes allows to investigate the impact on the localization
accuracy without needing to deploy the nodes multiple times.
For the simulations the experimentally collected RSS data are
used, and the source positions are adjusted subsequently. 100
different anchor node sets for stochastic PDR trajectories are
used to achieve a significant quantity of setups to cope with
random errors.

Fig. 9. Localization accuracies for decreasing percentage of accurately
positioned anchor nodes

In Fig. 9 the presented absolute accuracies represent the
mean of each node in all five experimental runs each for 100
different simulated anchor settings. The part of the anchor
nodes that has a biased position estimation increases from 0 %
to 100 %. If all anchor nodes are assumed to have accurately
known positions the localization accuracy is on the order of
3 m depending on the positioning of the on-body nodes (node
1 - node 5). The poorer results for node 4 could be caused
by its position on the test persons back and the resulting
constant bias of the measurements into the reverse direction.
If 50 % or 75 % of the nodes are positioned by a PDR and
thus have a biased position estimation, the accuracy decreases
(Fig. 9). However, the robustness of the outlined localization
algorithm allows for a resulting accuracy under 5 m with a
standard deviation under 2.5 m for all nodes in all setups even
if all anchor nodes have only the PDR deployment position
information available.

VI. CONCLUSION

In this paper a practical evaluation of an indoor WSN person
localization system under real-world conditions is presented.
Persons that carry on-body sensor nodes are to be localized
within an ad-hoc WSN. It is evaluated what accuracies can
be achieved under the condition that no map knowledge
is available and the infrastructure for the system is set-up
in an ad-hoc manner. Some anchor nodes in the network
are GPS-equipped or manually configured with the correct
position whereas others get their position estimations from

a PDR device upon deployment. It is proposed to deploy
the anchor nodes by means of a PDR and it is shown how
resulting biased position estimates of subsets of anchor nodes
influence the position estimation accuracy for mobile nodes.
The experimental results demonstrate that RSS localization in
indoor environments is possible and that accuracies on the
order of a couple of meters can be achieved with reasonable
numbers of nodes.

An initial experimental evaluation of the achievable accu-
racy with an X-Sens MTI-G IMU-based PDR is presented.
The simulation setup is designed based upon this experimental
evaluation and the analysis of state of the art approaches. For
the estimation of the trajectory of a person in the network,
an EKF is used to process RSS-based distance measurements.
Results with a mean accuracy in the range of 2.5− 3.5 m are
achieved if all anchor nodes have known positions. If up to
75 % of the anchor nodes have a biased position estimation
the resulting accuracies decrease but remain in an acceptable
range. Some aspects of the system need further work but the
general idea works and the presented experiments show that
ad-hoc localization can be achieved with a ZigBee WSN.

It can be concluded that the proposed system is principally
suited to provide a cheap and scalable localization for large
indoor environments where a number of persons needs to be
tracked. The system design is scalable and large numbers
of mobile nodes are not a problem. To the knowledge of
the authors this approach to ad-hoc localization by PDR
node deployment has not yet been experimentally investigated.
Applications could possibly be found in the area of firefighters
that enter a burning building or also in industrial maintenance
applications where security regulations necessitate knowledge
of the whereabouts of persons in the facility.

VII. FUTURE WORK

For the next future, it is planned to further investigate the
behavior of the outlined localization algorithm for different
scenarios. Then, the optimal parameter settings can be selected
based upon a systematic evaluation of other state of the art
localization approaches on the collected data. The goal is
to identify the optimal localization approach for the given
measurement setup and the given application.

Another opportunity is to investigate to what extend the
errors introduced by the PDR deployment can be reduced after
the network has been deployed. It is planned to update the
anchor nodes’ position estimations based on the packets they
receive from their neighbors. To evaluate this, a simulation
environment has been designed that allows to test approaches
to achieve a refinement of the position estimation at runtime.
These approaches will be the topic of a follow-up to this work.

On the side of the PDR unit development, it is at the moment
investigated how to improve the state of the art pedestrian dead
reckoning approaches and how to integrate the IMU-data with
WSN hardware. A practical evaluation of the complete system
including a real-world PDR node deployment will be possible
as soon as the different parts have been integrated.
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