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Abstract—We describe a dynamic graph generator with over-
lapping communities that is capable of simulating community
scale events while at the same time maintaining crucial graph
properties. Such a benchmark generator is useful to measure and
compare the responsiveness and efficiency of dynamic community
detection algorithms. Since the generator allows the user to
tune multiple parameters, it can also be used to test the
robustness of a community detection algorithm across a spectrum
of inputs. In an experimental evaluation, we demonstrate the
generator’s performance and show that graph properties are
indeed maintained over time. Further, we show that standard
community detection algorithms are able to find the generated
community structure.

To the best of our knowledge, this is the first time that
all of the above have been combined into one benchmark
generator, and this work constitutes an important building block
for the development of efficient and reliable dynamic, overlapping
community detection algorithms.

Index Terms—Clustering; Social networks;

I. INTRODUCTION

Many graph based applications require identifying densely

linked subsets of nodes in the network, commonly known as

communities. There has been a large and diverse amount of

work in the area of community detection on graphs [1], [2],

[3], [4]. However, a large portion of the existing literature

overlooks at least one of two key aspects of a multitude of real

world graphs, (a) their dynamic nature, i.e. edges and nodes

keep getting added and deleted and (b) the often observed

highly overlapping and complex structure of such networks

[5], [6].

Recently proposed approaches have identified the above

problems and provide solutions for detecting overlapping

communities in temporal graphs [7], [8], [9]. However, it is

difficult to empirically evaluate and compare these methods

due to the lack of a realistic and fast benchmark network

data generator or real-world data sets with reliably labeled,

dynamic ground truth communities. While real-world data sets

might provide important insights, most of the time such data is

either unavailable e.g. for privacy reasons, or does not contain

reliable ground truth data to compare the found communities

against. Benchmark graph generators allow to evaluate the

behavior of community detection algorithms on graphs with

different, predefined properties and thus test the robustness

of the algorithm against a well-defined set of ground truth

communities.

The requirements of a benchmark graph generator in such a

scenario are diverse. Existing generators for static benchmark

graphs such as LFR [10] and CKB [11] replicate properties

of real-world networks like that node degrees and community

sizes follow power law distributions. CKB additionally ensures

that the number of communities a node belongs to follows a

power law distribution and has a positive correlation with the

node degrees. Our goal is to extend the CKB model with a

dynamic component that simulates changes in the community

structure while maintaining these graph properties.

It is commonly agreed on [12], [13], [14], [5], that the

evolution of communities can be characterized by the fun-

damental events birth, death, merge, split, expansion and

contraction. The challenge is that such community scale events

also affect the properties of the graph. For example when a new

community appears, many edges need to be added to the nodes

of the community which might distort the degree distribution.

An analogous problem comes up when communities cease to

exist, two communities merge into a single community or

one community splits into two individual communities [5].

Moreover, since nodes leave or join communities, it also

has the potential to affect the community size distribution.

Further, we want to allow fine-grained control over the rapidity

with which events take place in the generated graph as most

communities in a real-world setting evolve gradually over

time [15]. A community detection algorithm must thus be able

to follow smaller changes in order to detect large-scale changes

in the community structure. This can be used to evaluate the

sensitivity of different community detection algorithms. It has

been shown that all of these events can also be observed in

real-world networks [5]. Therefore, any dynamic community

detection algorithm that is supposed to work on non-trivial

real-world graphs needs to be able to detect at least these

basic events.

A. Our Contribution

In this work we extend the CKB benchmark graph generator

for overlapping community structures to generate commu-

nities that are evolving over time. Our generator simulates

community events like birth, merge, split, death, expansion,
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and contraction which result in node and edge insertions and

deletions that gradually change the graph. A set of parameters

allows to control various properties of the graph as well as the

speed of the dynamic process. In our model, at every time step,

each community event can occur with a certain probability.

However, our generator can also be easily adapted to follow

a different pattern of events.

We show using empirical analysis that the graph generator is

fast and produces graphs that actually maintain the properties

of the CKB model over time, i.e., the node degrees, the

number of communities per node and the community sizes

follow power law distributions. Further, we show that we

achieve a realistic average local clustering coefficient over

time. Also, we show using standard, existing community

detection algorithms that our generator produces graphs whose

link structure reflects its ground truth community assignment

over time and that it is capable of differentiating between

different community detection algorithms.

Section II describes the prior work, while Section III

summarizes the notations used in this paper. Section IV

describes the algorithm in detail and Section V presents the

experimental evaluation of the generation. The code for the

benchmark generator is publicly available at https://github.

com/senguptaneha/DynamicBenchmarkGenerator.

II. RELATED WORK

Studying random graph models has a long tradition starting

with the simplest model introduced by Gilbert [16] where

every edge is present with the same uniform probability,

commonly known as Erdős-Rényi graphs. Closely related to

this model is the planted partition model [17], where addition-

ally a disjoint ground truth community structure is generated

and edges within communities are present with a higher

probability than the remaining edges. These simple models

lack many properties of real-world networks like a power law

degree distribution, though. As an attempt to overcome these

limitations, the LFR generator has been introduced [10], [18].

It features a power law degree distribution and power law

community sizes and has variants for generating overlapping

communities as well as directed and weighted graphs. Today,

the LFR benchmark is widely used to evaluate the performance

of community detection algorithms.

Concerning overlapping communities, the model of LFR has

been criticized though that overlaps between communities are

sparser than non-overlapping parts as for real word networks

it has been shown overlaps are dense and that the number of

communities per node follows a power law distribution [4],

[6]. The proposed AGM model [4], [6] reflects this by

modeling each community as an Erdős-Rényi random graph

which naturally leads to dense overlaps between communi-

ties. They show that from such an overlapping community

structure naturally many properties like clustering coefficients

are similar to real-world networks. The CKB generator [11]

is based on the AGM model, however instead of assuming

a given community structure it presents a random model for

generating them such that the number of communities per node

as well as the community sizes follow power law distributions.

Moreover, the observation in [6] of larger communities being

less tightly knit than smaller communities is accounted for in

the graphs generated by this algorithm. As a result, we selected

this approach for our static graph generation module.

For evolving networks, there is no widely used model

available and those available are limited to non-overlapping

communities. It is widely agreed on [12], [13], [14], [5]

though, that the evolution of dynamic communities can be

characterized by the following fundamental events: birth,
death, merging, splitting, expansion, and contraction. In [5],

they describe an algorithm for tracking the evolution of a given

community in a dynamic graph. For the empirical evaluation,

they generate synthetic LFR graphs [18] along with embedded

community events of each of the above types that are applied

in rapid changes of the graph. In [19], a different model is

used for the evaluation of a dynamic community detection

algorithm where nodes are initially randomly assigned to a set

of k communities and some nodes change their membership

in each time step. Based on the planted partition model,

[20] describes an algorithm for generating a dynamic graph

with non-overlapping clusters that also features the above-

mentioned event types, they are slowly applied using random

changes over several time steps. In a more recent work,

[21] introduces another benchmark model again based on the

planted partition model but only considering grow-shrink and

merge-split operations. They propose three benchmarks that

feature either one or both of the operations.

III. NOTATIONS

The dynamic graph generator generates a dynamic graph G
over T +1 time steps, G0 . . . GT . Each entity in the graph G,

i.e. nodes, edges, and communities store the period during

which it is active in G. CommunityList(Gt) is the set of

communities in graph Gt. We use C to denote the set of

communities in graph G over all time steps. For community

c ∈ C, nc is the number of nodes in community c. The

set of nodes and edges in c are c.nodeList and c.edgeList
respectively. Each community c stores its nodes in a certain

(possibly random) order. For a node u belonging in c, pos(u, c)
determines the position of u in the list of nodes in c. A

community can die only once due to a death, merge, or split

event. 0 ≤ join(u, c) ≤ T and 0 ≤ leave(u, c) ≤ T signify

the time steps at which a node u joins and leaves c respectively.

V (Gt) is the set of nodes in G at time t. For u ∈ V (G), xu

is the number of communities that node u belongs to. u.start
and u.end are the start and end times of node u. The set of

edges incident to u is adj(u), while comm(u) is the set of

communities that u belongs to. Similar to communities, nodes

may not re-appear after being deleted in G.

An edge in the undirected graph G between nodes u
and v is denoted as (u, v). In a graph with overlapping

communities, a pair of nodes u and v may be part of many

different communities, and may therefore be deleted and re-

inserted multiple times due to different community events.

The operation Insert(u, v, c, t) generates the edge event that
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inserts edge (u, v) in G at time t as a part of community c
only if the edge (u, v) doesn’t already exist in Gt. Similarly,

the operation Delete(u, v, c, t) generates an edge event that

deletes (u, v) from Gt if it is a part of community c.

PL(x1, x2, β) is the power law distribution with minimum

value x1, maximum value x2, and exponent β. For a random

variable X , E(X) denotes the expected value of X , and

X ∼ PL(x1, x2, β) signifies that X is instantiated by drawing

a value at random from the corresponding power law distribu-

tion. f(z;λ) denotes an instantiation of the random variable

z from the exponential distribution with coeffecient λ.

IV. ALGORITHM

We generate a simple, unweighted graph with an over-

lapping, evolving reference community structure following

the model of the CKB generator [11] with parameters as

summarized in Table I. In each of the T discrete time steps

we maintain its properties:

The number of overlapping communities a node is part of

follows a power law distribution PL(x1, x2, β1). Community

sizes also follow a power law distribution PL(nmin, nmax, β2).
Every community is modeled as an Erdős-Renyi graph, i.e.,

every edge has the same probability of existence [22]. The

edge probability is decreasing with increasing community size

according to the parameters α and γ. To add noise to the graph,

a so-called Epsilon Community containing all nodes with edge

probability ε is added.

Initially, in time step 0, such a graph with N nodes is

generated (see section IV-A). In each time step t ∈ [1, . . . , T ],
a community event, where a community is born, dies, is

merged or split, happens with probability p. Further, with

probability p′, a node event, where individual nodes are added

to or removed from the graph, happens. Each community

event triggers several edge events that are spread over teffect
discrete time steps. Further, random edge events change the

global epsilon community over time. At each time step, one

community event and one node event as well as several edge

events may take place (Note that it is straight-forward to

extend the generator described here for multiple community

events per time step. We impose the limit of one community

event per time step only for simplicity of analyses and eval-

uation). Communities participating in a community event at

time t may not be part of another community event until time

t+ teffect, i.e., till all triggered edge events have taken place.

As output, the algorithm produces an initial graph G0, a

stream of node and edge updates and a ground truth commu-

nity assignment for each time step. From these events, a full

graph Gt can be obtained for every time step t ∈ [1, . . . , T ].

A. Static Graph Generation

Our static graph generation algorithm adapts the algorithm

described in [11]. Table I is also an extended version of the

list of parameters used in their work. The first part of this

table lists the set of parameters along with their recommended

values used for the static graph generation. Except for the

Param. Meaning Recomm.
Value

N Number of nodes in G0 -
T Number of time steps -
xmin Minimum node membership 1
xmax Maximum node membership N/10
β1 Community Membership Exponent 2.5
nmin Minimum size of community min(N/100, 20)
nmax Maximum size of community N/10
β2 Community Size Exponent 2.5
α Intra Community Edge Prob. = α

nγ 2
γ Intra Community Edge Prob. = α

nγ 0.5
ε Inter Community Edge Probability 2N−1

p Community Event Probability 0.1
p′ Node Event Probability 10−2

λ Community event sharpness 0.2
teffect Time steps for community events to take

effect
-

TABLE I: Parameters used in the Graph Generator

value of nmin, the recommendation for all other parameters

is the same as that in [11].

The value of nmin is the size of a majority of the com-

munities in the graph (since community sizes follow the

power law distribution). Note that the probability of an intra-

community edge is α/nγ , where n is the number of nodes

in the community. For the recommended values for α and γ,

the intra-community edge probability evaluates to 2/
√
n. For

n ≤ 4, this amounts to a clique. Therefore, nmin must be

large enough to avoid the presence of a large number of small

cliques in the graph qualifying as communities.

a) Node-Community Bigraph: The node-community bi-

graph is a bipartite graph with vertices corresponding to the

nodes and communities in G0. An edge between vertices u and

c in the node-community bigraph indicates that the node u is

a member of community c in G0. The static graph generator

begins by generating the node community bigraph. For each

node u, we draw xu, the number of communities that u
is a part of, from PL(xmin, xmax, β1). Let M0 = E(M),
where M ∈ PL(nmin, nmax, β2), and X0 = E(X), where

X ∈ PL(xmin, xmax, β1), then the number of communi-

ties Nc = N∗X0

M0
. Nc community sizes are generated using

PL(nmin, nmax, β2). However, the community sizes and node

memberships thus generated must satisfy
∑

u xu =
∑

c nc.

We decrement or increment the size of randomly selected

communities (without violating the constraints of nmin, nmax)

to satisfy the above. The bi-graph is generated using the

configuration model.

b) Intra-Community Edge Generation: The methodology

described in [11] for generating the edges within a community

involves drawing the number of edges per node to insert from

a binomial distribution with success probability pc = α
nc

γ

where nc is the size of the community c, and thereafter using

the configuration model. We use the Batagelj Brandes model

to more efficiently generate an Erdős-Renyi graph for each

community and erase multiple edges.

c) Epsilon Community: The final step in the static graph

generator is the generation of global edges. The global edge
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density is given by the parameter ε. Therefore, we generate
NC2× ε random node pairs, and insert a global edge between

them (if not already existing).

B. Dynamic Graph Generation

Once the static graph (G0) has been created, for every

timestep t in 1 ≤ t ≤ T , a community event is generated with

probability p. Effectively, a coin toss with probability of head

= p decides if any community event is generated at t, which

in turn may result in many different edge addition or deletion

events. The community event generated at t is said to start at

t. The edge events resulting from it are spread over timesteps t
to t+teffect. There may be other community events generated

until t + teffect. As a result, at every timestep, edge events

corresponding to different community events can take place.

However, at any given timestep, at most one community event

is generated.

Dynamic Graph Generation Parameters: The second part

of Table I denotes the parameters used in the generation of

dynamic events in G. As described above, p denotes the

probability with which any community event happens at a

given timestep. p′ denotes the probability with which any

node in the graph is added or deleted at any given timestep.

λ and teffect are the parameters that control how sharply

communities rise and fall. For example, consider what happens

when a community is born. In keeping with our intuition that

a community can appear slowly, we simulate nodes gradually

joining the community. Therefore, if a community is spawned

at time t, then the last node to join it does so at time t+teffect.
For a node u joining a community c at time t + t′, where

t′ < teffect, edges joining u with nodes already in c appear

slowly starting from t+ t′.
1) Community Events: We consider 4 types of community

events - birth, death, merge, and split. Other events considered

in the literature such as community expansion and contraction

are subsumed in the events birth and death as described in the

following sections. Nevertheless, it is straightforward to add

these as separate community events in our model.

• Community Birth: When a community is born, a set of

nodes become part of the new community, and the density

of edges among these nodes significantly increases. Edges

newly inserted due to the birth event are said to be present

due to the existence of this community.

• Community Death: When a community ‘dies’ or dis-

solves, edges in the graph present due to the existence

of only this community are deleted and the edge density

among the nodes of this community decreases.

• Community Merge: Two communities (possibly overlap-

ping) may merge at a given timestep. This implies that the

density of edges across the two communities increases,

until the two communities are not distinguishable indi-

vidually, but form one larger community.

• Community Split: Analogously to merge, the nodes of a

single community may split into two separate ones. The

edges in the community that cut across the split boundary

are deleted until the original community does not have

Fig. 1: Slot System for maintaining Node Community Mem-

bership distribution

the required overall edge density to be considered a

community.

2) Maintaining the Node Membership Distribution: To

maintain the power law distribution of node memberships, we

employ a slot system. Each node u has an associated value

Xu, which is the number of communities it may belong to,

or the number of slots alloted to node u. In general, we use

Xu = l × xu where 1 < l < 2. Over all nodes, the values

of Xu follow a power law distribution. Therefore, with each

node u, we have Xu slots, of which xu are filled, where

xu is the number of communities node u actually belongs

to. When a node joins a community, an additional slot is

occupied, and when a node leaves a community, one of its

slots is freed (Figure 1). The number of free slots for u
is Xu − xu, which influences the likelihood with which u
joins new communities. In subsequent sections, we describe

how these slots are used to maintain the desired power law

distribution of node community memberships for individual

community event types.

After generating the bigraph in the static generator described

in IV-A, for each node u we set Xu = 1.2×xu. This ensures

that at t = 1, many nodes are eligible to join at least one

community and such new communities may be born while the

values of xu still follow a power law distribution.

A side-effect of using the slot system is that as the number

of community events grow, many nodes may emerge that are

‘orphaned’, in that they are not a part of any community. If n1

is the number of single-community nodes in G0, then to ensure

that the number of orphaned nodes does not grow with time,

one possibility is to over-sample such nodes as in [23], i.e. we

allocate l ∗ n1 nodes with Xu = l in the slot data structure.

In expectation, at each timestep t, there would be n1 nodes

that belong to 1 community, while all nodes orphaned at t
would not be a part of Gt. Note that we do not implement

this scheme in the experiments for this paper.

3) Community Birth: To spawn a new community c at time

t with desired size nc ∼ PL(nmin, nmax, β2), nc nodes are

sampled from the set of nodes V (Gt), where each node u
is sampled with probability proportional to max(0, Xu − xu)
(over the course of time, due to merge and split events, it is
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possible that xu > Xu). For each node u thus sampled, xu is

incremented. The intra-community edges are generated using

the Batagelj Brandes model with edge probability pc = α
nc

γ

[24]. The community birth event is immediately followed by

a community expansion phase in this generator where nodes

gradually join the initial core.

The first k × nc of the nodes forms the core of the

community (in our experiments, k = 0.1). All nodes other

than the core nodes join c after time t. For a node i not

belonging to the core of the community, the join time of

i in c ranges from t to t + teffect. While edges within

the core are inserted at time t, all other edges (u, v) are

inserted depending on the join times of u and v. We compute

m(u, v) = max(join(u, c), join(v, c)), the time by which

both u and v have joined c and insert the edge at timestep

(m, v)−f(z;λ). A formal description of the community birth

event is in Algorithm 1.

Parameters λ and teffect can be used to test the sensitivity

of a community detection algorithm. For instance, setting

teffect = 1 would mean that a community birth event causes

a large number of edges to be inserted within a single time

step. However, if the value of teffect is large, then a sensitive

community detection algorithm would be able to detect the

community expansion phase in response to the addition of

corresponding edges.

Algorithm 1: Community Birth

1 Algorithm BirthCommunity(t)
2 c← newCommunity();
3 nc ← draw(PL(nmin, nmax, β2));
4 for u ∈ V (Gt) do
5 p(u)← max(0, Xu − xu);

6 Normalize p(.);
7 c.nodeList← Sample nc nodes with p(.);
8 c.edgeList← Generate edges with prob.

pc = α/nc
γ ;

9 for u ∈ c.nodeList do
10 if pos(u, c) ≤ k ∗ nc then
11 join(u, c) = t;
12 else
13 join(u, c) = t+ pos(u)

nc
teffect;

14 for (u, v) ∈ c.edgeList do
15 if join(u, c) = t and join(v, c) = t then
16 Insert(u, v, c, t);
17 else
18 m(u, v)← max(join(u, c), join(v, c);
19 Insert(u, v, c,m(u, v)− f(z;λ));

4) Community Death: Symmetrical to the birth event, the

community death event is preceded by a contraction phase,

where nodes gradually leave the community due to edge

deletions until only a core of the community remains.

Algorithm 2: Community Death

1 Algorithm DeathCommunity(c,t)
2 for u ∈ c.nodeList do
3 if pos(u, c) ≤ k ∗ nc then
4 leave(u, c) = t;
5 else
6 leave(u, c) = t+ pos(u,c)

nc
teffect;

7 for (u, v) ∈ c.edgeList do
8 if leave(u, c) = t and leave(v, c) = t then
9 Delete(u, v, c, t);

10 else
11 m(u, v)← min(leave(u, c), leave(v, c));
12 Delete(u, v, c,m(u, v) + f(z;λ));

For a node i not belonging to the core of c, the leave
time of i from c is ranges from t to t + teffect. The node i
leaving community c is manifested by deleting edges that are

incident on i and other nodes in c. Given time at which either

u or v leaves c, m(u, v) = min(leave(u, c), leave(v, c)), the

edge (u, v) is deleted z time steps after m(u, v), where z is

determined similarly as in community birth. Edges within the

core are all deleted at time t.

5) Community Split: The Community Split event is sim-

ulated as the consequence of a gradually vanishing overlap

between two communities. Given an existing community c to

split into communities c1 and c2 at time t, the split algorithm

starts by randomly choosing a split point s (Figure 2), such

that both resulting communities have at least nmin nodes.

When the split event begins at time t, both c1 and c2 include

all nodes that were in c and overlap entirely. Until t+ teffect,
nodes to the left of s leave c2, and nodes to the right of s leave

c1, thereby simulating a vanishing overlap. In Figure 2, x1 is

the first node and y1 the last node to leave c2. Converting the

vanishing overlap to edge events, if the edge (x1, y2) exists, it

must be deleted first since they are the first nodes to ‘leave’ the

overlap between c1 and c2, while an edge (y1, x2) if existing,

must be deleted last. In the case that node u ends up in c1 and

v in c2, we define m(u, v) as (leave(u, c2) + leave(v, c1))/2
and the edge (u, v) is deleted at time m(u, v) + f(z;λ).

While the above procedure suffices to split the nodes of

the community c into c1 and c2, there remains the difference

in the intra-community edge probabilities. In particular, since

nc1 < nc and nc2 < nc, pc1 > pc and pc2 > pc.

For community c1, p1 = α/nγ
1 . Let p0 = |E(c1)|/n1C2,

where E(c1) is the set of edges in c1 after the split. We must

generate edges in c1 such that edge probability in c1 is p1. To

account for already existing edges, we generate edges in c1
with edge probability pnew = (p1 − p0)(1 + p0).

6) Community Merge: The merge event follows an almost

reverse process to that of the split event, whereby it is

simulated as a consequence of a growing overlap between two

communities. Given communities c1 and c2 to merge at time t,
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Algorithm 3: Community Split

1 Algorithm SplitCommunity(c,t)
2 Generate split point s;

3 for u ∈ c.nodeList do
4 c1.nodeList.add(u);
5 c2.nodeList.add(u);
6 join(u, c1) = join(u, c2) = leave(u, c) = t;
7 if pos(u, c) ≤ s then
8 leave(u, c2) = t+

(
pos(u,c)

nc

)
∗ teffect;

9 else
10 leave(u, c1) = t+

(
nc−pos(u,c)

nc

)
∗ teffect;

11 for (u, v) ∈ c.edgeList do
12 if (pos(u, c) ≤ s and

pos(v, c) > s)or(pos(u, c) > s and
pos(v, c) ≤ s) then

13 m(u, v)← (leave(u, c) + leave(v, c))/2;

14 Delete(u, v, c,m(u, v)− f(z;λ));

15 Generate extra edges for c1 and c2;

Fig. 2: Splitting community c into c1 and c2

the nodes of c1 start joining c2, while the nodes of c2 join c1.

The community c is born at time t+ teffect, when the overlap

between c1 and c2 has grown to its full extent. To generate

the corresponding edge events, for each pair of nodes (u, v)
such that before time t u existed only in c1 and v only in c2,

we insert an edge with probability p′, where p′ is the edge

probability required to achieve an internal edge probability of

α/nγ in c, where n = nc1 + nc2 . Each newly generated edge

(u, v) is inserted according to the join times of the nodes in the

other community. Figure 3 contrasts the process of growing

and shrinking overlap for the Split and the Merge events.

7) Dynamics in the Epsilon Community: The epsilon com-

munity edges, also called the global edges in the graph undergo

some deletions and additions in our model. Our goal is thereby

to keep the overall number of global edges in the graph the

same while also generating deletion and insertion events of

these edges at randomly selected points in time. For this,

we double the amount of edges generated for the epsilon

community in G0 (see section IV-A). We split these edges

into two parts and pair every edge of the first part with a

unique edge of the second part. Of each such pair (e1, e2),
we sample a random switch time ts ∈ 1, . . . , T at which e1 is

deleted and e2 is inserted.

Algorithm 4: Community Merge

1 Algorithm MergeCommunity(c1,c2,t)
2 L = nc1 ;

3 R = nc2 ;

4 for u ∈ c1.nodeList and pos(u, c1) ≤ L do
5 c.nodeList.add(u);
6 c2.nodeList.add(u);
7 leave(u, c1) = leave(u, c2) = join(u, c) =

t+ teffect;

8 join(u, c2) = t+
(

pos(u,c1)
L

)
∗ teffect;

9 /* Repeat for u ∈ c2.nodeList */
10 pm ← Compute Merge Edge Probability(c1, c2);

11 for u ∈ c1.nodeList and pos(u, c1) ≤ L do
12 for v ∈ c2.nodeList and pos(v, c2) ≤ R do
13 Generate Edge (u, v) with probability pm;

14 if Edge (u, v) not active then
15 m(u, v)← (join(u, c2) + join(v, c1))/2;

16 Insert(u, v, c,m(u, v) + f(z;λ))

Fig. 3: Split and Merge of Communities

8) Node Events: Node events, i.e. add nodes and remove

nodes, are generated with a smaller probability p′.
a) Add Node: When a node u is added to G at time t, we

set Xu = 1.2×X , where X ∼ PL(xmin, xmax, β1) and node

u with Xu vacant slots is added to the set of slots (Section

IV-B). Finally, ε edges incident on u are generated.

b) Delete Node: When a node u is to be deleted from

G at t, we set Xu = xu = 0. u leaves each active community

it belongs to. If the number of vertices in a community c
falls below nmin due to this operation, then c dies altogether.

Finally, each active edge incident on u is deleted.

9) Conversion of GT to G0 and Graph Stream: Once the

graph GT has been generated, the algorithm must convert it

into the initial graph G0 and the associated stream of edge

and node events. G0 is the set of nodes and edges that are

active at time 0. For each node u in G, if u is not active
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in G0 (or in GT ), we must append the corresponding node

add (or delete) event to the stream. Similarly, for each edge

(u, v) in G, we collect the edge events generated for (u, v).
Since the same edge may be added or deleted due to events

pertaining to different, overlapping communities, we resolve

conflicts as follows: (i) For two edge events Delete(u, v, c, t)
and Insert(u, v, c′, t), we remove the events generated by

both, and (ii) For two edge events Insert(u, v, c, t1) and

Insert(u, v, c, t2), (t1 < t2) with no Delete event between

t1 and t2, we remove the event generated by the second insert.

Analogously, we remove events generated by consecutive

Delete operations. When each node and edge in G has been

thus processed, the stream of events is sorted by the time step.

C. Time Complexity

In this section, we analyze the cost of generating the

dynamic events in the graph. At each time step t, we generate

a random community event with probability p, and a random

node event with probability p′. With ε = 2N−1, O(N) global

edges are generated, which incurs only O(N) cost.

a) Node Events: Adding nodes incurs only constant

work, thus resulting in only O(T ) work over all time steps.

Removing nodes only removes previously added edges and we

can attribute its costs to their insertion.

b) Community Events: The time taken for generating

the birth and death events of community c is dominated by

the generation of insert and delete edge events. Using the

Batagelj-Brandes model in the birth event, the time taken to

generate edges is linear in the number of edges generated.

Since pc = α/nγ
c , the cost of the birth/ death event is

O(n2−γ
c ). Observing that nc ≤ nmax, the cost of the birth

or death events is O(n2−γ
max). The split event of community c

into c1 and c2 requires setting the end times of all edges that

cross c1 and c2, and the number of such edges ≤ αnc
2−γ . The

cost for generating the additional internal edges in both c1 and

c2 can be bounded by O(nc1
2−γ + nc2

2−γ) = O(nc
2−γ), as

nc1+nc2 = nc. On the other hand, in merging communities c1
and c2 into c, the overall cost is dominated by the cost of lines

21–33 in Algorithm 4, which is O(nc1 × nc2) = O(n2
max).

The time taken to convert GT into G0 and the event stream

is dominated by the time taken to sort the stream. Note that at

each time step, at most one community event takes place and

the number of edges affected at one time step is bounded by

the number of edges in any community. The size of the stream

is therefore at most O(Tnmax
2−γ). For large values of T , the

time to sort the stream is O(Tnmax
2−γ log(Tnmax

2−γ)).

V. EXPERIMENTS

We present the results of several experiments conducted

with the dynamic graph generator. The empirical evaluation

of the generator has been done along three main categories.

1) Running Time: We measure the efficiency of the gener-

ator itself in constructing graphs with increasing graph

size and event probability. The goal of these experiments

is to illustrate that the generator scales well when

generating large, dense, or highly dynamic graphs.

2) Graph Properties: As the dynamic graph evolves over

time due to the edges and nodes changed by the genera-

tor, properties of the graph are measured at different time

steps. This category of experiments is targeted at show-

ing that the generator is capable of maintaining graph

properties while generating community scale events.

3) Community Detection Algorithm: Finally, we use exist-

ing community detection algorithms, OSLOM [25] and

MOSES [3], to detect communities on the generated

datasets. The two selected community detection algo-

rithms are two of the best performing algorithms for

the CKB benchmark, as evaluated and reported in [26].

We show using these experiments that the link structure

of the generated dynamic graph follows the ground

truth even as the graph evolves. Moreover, we use the

dynamic variant of OSLOM on the datasets to show how

it reacts to changes in the community assignments.

Our primary contribution is that we add dynamic events to an

existing static graph generator for overlapping communities.

The goal of our experiments is, therefore, to show that gen-

erating community events on the initial graph (G0), generated

by the static generator, does not adversely affect the graph

properties that G0 exhibits. The static graph model used for

generating G0 in this work, CKB, has been shown to resemble

real world graphs in terms of graph properties in [11]. We

show that, in spite of the dynamic events generated on the

original static graph, the same graph properties are followed

and the link structure indicated by the community assignment

is maintained. This implies that the dynamic generator model

we propose, is able to generate a graph with evolving overlap-

ping communities, realistic graph properties, and community

events at each time step - forming a suitable input to a dynamic

community detection algorithm.

A. Setup

Our experiments were conducted on a system with 32 GB

of RAM, 4 cores with 2 threads per core. The parameters

experimented with include N , the starting number of nodes in

the graph, p, the probability of an event occurring, α, which

affects the intra cluster edge density, and ε, which affects the

density of inter-community or global edges. Other parameters

are set to their values in Table I, and the value of teffect is

set to a random number in [5, 15) for each community event.

B. Running Time

Figure 4 plots the time taken by the static graph generation

module (see Section IV-A) that generates a static graph at

time step 0 (called the starting graph), and the time taken by

the dynamic graph generator (see Section IV-B) that generates

events spanning time steps t = 1 . . . T .

Figure 4a shows the time taken for varying number of nodes

in the starting graph and T = 1000, p = 0.1, α = 2, and ε = 2.

As the value of N increases, the size of the starting graph

increases. This results in larger static graph generation time at

t = 0, as well as longer event generation times for the dynamic

module, since a greater number of nodes and edges participate
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Fig. 4: Time taken to generate initial static graph and dynamic events
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Fig. 5: Degree Distribution

in each community event. For these experiments, nmax and

xmax are set to N/10, while nmin = N/1000 and xmin = 1.

Figure 4b shows the individual running times for varying val-

ues of α and T = 1000, N = 105, p = 0.1, and ε = 2. Since α
directly influences intra-community edge probability, a larger

value of α implies a denser starting graph, and therefore more

expensive starting graph and dynamic event generation. Figure

4c shows the time taken for varying probabilities of dynamic

events and T = 1000, N = 105, α = 2, and ε = 2. As p goes

to 1, more events take place, resulting in more changes to the

graph at each time step. We note that the frequency of dynamic

events to the graph has a much smaller effect on the overall

graph generation time, implying that the running time of the

generator is dominated by the number of nodes/ edges that are

affected by each event rather than the number of events that

occur. All points reported are the mean and standard deviation

over 10 separate instances.

C. Graph Properties

In Figures 5, 6, and 7, the graph at t = 0 is generated

by the static graph generation module [11], which has been

shown to generate graphs with properties close to that of

real world graphs. The static graph generator is run with

parameters N = 10000, nmin = 10, nmax = xmax = N/10,

xmin = 1, p = 0.1, α = 2, and ε = 2. Subsequently, the

dynamic graph generation module generates events for the

time steps t = 1 . . . 1000. We plot graph properties at equal-
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Fig. 6: Community Size Distribution

sized intervals of time t = 250, t = 500, and t = 750. Clearly,

the tail of the degree distribution remains a power law, as in

real world graphs. Most importantly, we see that even as the

graph structure evolves to incorporate community scale events,

the various distributions remain mostly unchanged.

In Figure 8, the dynamic graph generator is invoked with

different values of α. For each dynamic graph thus generated,

we construct its snapshots from T = 1 to T = 1000 and mea-

sure the clustering coefficient of each, using NetworKit [27].

For α = 2 for instance, the clustering coefficient of the graph

remains stable at around 0.2, which is close to the clustering

coefficient of many real world graphs [28].

D. Community Detection Algorithm

To evaluate community detection algorithms, the most often

used quality measure is the Normalized Mutual Information,

which has been shown to suffer from the selection bias [29].

As a result, we choose to use the average weighted F1 score
[30]. Let CG and CD be the ground truth and detected set of

clusters respectively. We define the weighted F1 as

Fw(CG, CD) =
1∑

C∈CG
|C|

∑
C∈CG

|C| max
C′∈CD

F1(C,C ′)

The average weighted F1 score is the average of Fw(CG, CD)
and Fw(CD, CG).

The dynamic graph generated by our generator is evalu-

ated against two well-known community detection algorithm
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MOSES ([3]) and OSLOM ([25]). While OSLOM has a

dynamic variant that is able to update community assignments

for a dynamic graph, MOSES can only detect communities for

a static graph. Our graph generator generates a static graph at

time step 0 along with a set of graph updates spanning time

steps 1 . . . T . The starting graph and set of graph updates are

input to the dynamic variant of OSLOM, and the weighted F1

is measured at each time step (OSLOM-D). For evaluating our

generated data against the static algorithms, the graph updates

from t = 1 . . . T are unrolled to create a graph snapshot

for each individual time step. The static community detection

algorithms (OSLOM-S and MOSES) are then run for each

individual graph snapshot and the weighted F1 score at each

time step is measured independently.

For Figures 9 and 10, the dynamic graph generator is

invoked for N = 10, 000 nodes, T = 1000 timesteps,

nmin = 10, nmax = 1000, xmin = 1, xmax = 1000, p = 0.1,

with the default values for α and ε both set to 2. Figure 9 shows

the performance of the algorithms MOSES and OSLOM

(static and dynamic) as the dynamic graph evolves. As the

value of ε is varied, the ‘global edge’ probability increases,

thereby blurring the community boundaries. MOSES is able

to distinguish the correct communities even for ε = 10, while

OSLOM-S performs slightly worse. Notably, while both static

community detection algorithms are able to distinguish the

correct communities throughout the T time steps, the dynamic

variant of OSLOM, OSLOM-D, drops in performance consid-

erably early. This shows that the link structure of the generated

graph follows the ground truth faithfully over time, and that

communities can still be distinguished by the static version of

the same algorithm. However, the dynamic variant of OSLOM

is unable to detect the communities in the same dataset,

implying that detecting overlapping communities efficiently

and reliably in a dynamic graph remains a challenge.
Similarly, Figure 10 shows the performance of the two

algorithms with time and varying values of α. As the value of

α increases, the intra-community edge probabilities increase,

implying that communities are more easily distinguishable.

Interestingly, the dynamic version of the OSLOM algorithm

does not have high error until 700 time steps for α = 4. The

reason for this is that for a high value of α, communities have

large cliques and high internal edge density, and even as com-

munity events occur, the large intra-community edge density

is maintained. Consider a merge event between communities

c1 and c2, merged into community c3. If the value of α is

small, then the required intra-community edge density of c3 is

small, and so a small number of edges are inserted between

the nodes of c1 and c2. On the contrary, if the value of α is

large, then a large number of edge insertions occur. Clearly,

the larger the number of edge insertions, the easier it is for the

dynamic algorithm to detect the merge event, and distinguish

c3 from the rest of the graph. This observation reinforces the

intuition that dynamic community detection algorithms work

better when community events are large scale (give rise to

large number of edge/ vertex events) and when communities

themselves have a higher internal edge density.

VI. CONCLUSION

We have introduced the first benchmark graph generator for

dynamic overlapping community detection. The node degrees,

the community sizes, and the number of communities per node

all follow power law distributions as commonly observed in

real-world networks. In the experimental evaluation we show

that these properties and a realistic local clustering coefficient

are not only present in the initial graph but also maintained

over time. Further, we demonstrate that our generator is

capable of generating graphs with 100,000 nodes and 1000

time steps in under a minute. Our generator is therefore the

ideal starting point for an extensive evaluation of existing

and novel dynamic community detection algorithms. Further,

we show that existing community detection algorithms are

capable of finding a community structure similar to the ground

truth structure but that maintaining it over time remains a

challenge. An obvious direction for future work is therefore

the development of novel algorithms for detecting overlapping

communities in dynamic networks.
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[22] P. Erdos and A. Rényi, “On the evolution of random graphs,” Publ.
Math. Inst. Hung. Acad. Sci, 1960.

[23] T. G. Kolda, A. Pinar, T. D. Plantenga, and C. Seshadhri, “A scal-
able generative graph model with community structure,” CoRR, vol.
abs/1302.6636, 2013.

[24] V. Batagelj and U. Brandes, “Efficient generation of large random
networks,” Physical Review E, 2005.

[25] A. Lancichinetti, F. Radicchi, J. Ramasco, and S. Fortunato, “Finding
statistically significant communities in networks,” PloS one, 2011.

[26] N. Buzun, A. Korshunov, V. Avanesov, I. Filonenko, I. Kozlov, D. Tur-
dakov, and H. Kim, “Egolp: Fast and distributed community detection in
billion-node social networks,” in 2014 IEEE International Conference
on Data Mining Workshop (ICDMW). IEEE Computer Society, 2014.

[27] C. L. Staudt, A. Sazonovs, and H. Meyerhenke, “Networkit: A tool
suite for large-scale complex network analysis,” Network Science, vol. 4,
no. 4, 2016.

[28] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, 2014.

[29] A. Amelio and C. Pizzuti, “Is normalized mutual information a fair
measure for comparing community detection methods?” in Advances
in Social Networks Analysis and Mining (ASONAM), 2015 IEEE/ACM,
2015.

[30] J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” Knowledge and Information Systems, 2015.

424

Authorized licensed use limited to: KIT Library. Downloaded on October 19,2021 at 08:29:20 UTC from IEEE Xplore.  Restrictions apply. 


