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Deutsche Zusammenfassung

Kürzeste-Wege-Probleme tauchen in vielen Anwendungsgebieten auf, zum Beispiel im
Kontext der Routenplanung. Die Netzwerke, die dort verwendet werden, sind typischer-
weise so groß, dass die Benutzung von Standardalgorithmen zur Berechnung des kürzesten
Weges zwischen zwei Punkten zu inakzeptablen Anfragezeiten führt.

In den letzten Jahren wurde eine Vielzahl an Techniken entwickelt, um diese Anfragezeiten
zu verringern. Viele dieser speed-up Techniken benutzen dabei Shortcuts. Shortcuts sind
zusätzliche Kanten, deren Länge der Distanz der Endknoten entspricht. Abhängig von
der konkreten Technik werden verschiedene Strategien verwendet, um eine Menge von
Shortcuts zu bestimmen, diese sind jedoch ausnahmslos heuristisch. Die Hauptaufgabe
dieser Shortcuts ist dabei, den Suchraum zu reduzieren, indem beispielsweise die Anzahl
der Kanten eines kürzesten Weges verringert wird.

Vor kurzem hat dies zu der Idee geführt, die Bestimmung einer optimalen Menge an
Shortcuts als ein eigenständiges Problem zu betrachten. Das Ziel dabei ist, die durch-
schnittliche Anzahl der Kanten auf kürzesten Wegen im Graphen zu minimieren, indem
eine feste Anzahl an Shortcuts eingefügt wird. Das entsprechende kombinatorische Pro-
blem ist das Best Shortcut Problem(BSP). Die Untersuchung dieses Problems ist
ein erster Ansatz, um die empirischen Ergebnisse, die mit Shortcuts erzielt wurden, durch
einen theoretischen Hintergrund zu bereichern. Darüber hinaus stellt das BSP eine in-
teressante algorithmische Fragestellung als ein eigenständiges Problem dar.

Wie in [BDDW09] bewiesen wurde, ist das BSP NP-hart. Dort wurde auch ein Ap-
proximationsalgorithmus vorgestellt, dessen Güte von der Anzahl der Shortcuts abhängt.
Dieser Algorithmus fügt sukzessive Shortcuts in den Graphen ein, indem er jeweils das
BSP eingeschränkt auf einen Shortcut in den modifizierten Graphen löst.

Im ersten Teil dieser Arbeit beschäftigen wir uns mit der Frage, wie die Laufzeit dieses
Teilproblems verringert werden kann. Als Hauptergebnis dieses Abschnittes geben wir
einen Algorithmus an, der das BSP eingeschränkt auf einen Shortcut mit einer Laufzeit
in Θ(n3) löst. Verglichen mit dem Brute-Force Ansatz, der in [BDDW09] verwendet wird,
ist das eine deutliche Verbesserung. Diese theoretischen Überlegungen bestätigen wir mit
einer experimentellen Auswertung unter Verwendung verschiedener Graphklassen.

Da eine Laufzeit in Θ(n3) für größere Graphen immer noch zu viel ist, betrachten wir
weiterhin Heuristiken, um einzelne Shortcuts mit hoher Qualität zu finden. Dazu geben
wir verschiedene Möglichkeiten an, die Zentralitätsindizes Betweenness und Stress für
Paare von Knoten zu generalisieren. Dadurch erzielen wir Schätzungen für die Quali-
tät einzelner Shortcuts. Falls kürzeste Wege im zugrunde liegenden Graphen eindeutig
sind, sind diese Schätzungen exakt. Des weiteren geben wir Algorithmen an, die diese
generalisierten Zentralitätsindizes mit einer Laufzeit in O(n · (n log n+m)) berechnen.

Da die Größe von Straßennetzwerken typischerweise nur Algorithmen mit fast-linearen
Laufzeiten erlaubt, kann in diesen Netzwerken nicht einmal die Qualität einer gegebenen
Lösung vollständig auswertet werden. Da die Zielsetzung dieser Arbeit ist, hochquali-
tative Heuristiken für das BSP als eigenständiges Problem zu entwickeln, beschränken



wir unsere Experimente auf kleine Graphen. Die Lösungen, die wir auf diese Weise er-
halten, bieten dabei Anhaltspunkte für die generelle Struktur optimaler Lösungen. Im
abschließenden experimentellen Teil dieser Arbeit werten wir die Ergebnisse aus, die mit
dem Greedy-Algorithmus aus [BDDW09] und verschiedenen lokalen Suchstrategien in
Verbindung mit den Algorithmen aus dem ersten Teil erzielt werden können.
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1 Introduction

One of the basic issues in graph theory is to find shortest paths in a graph. The probably
most prominent algorithm in this context is the one introduced by E. W. Dijkstra in
1959.

Shortest-paths problems occur in many fields of application. For example, if we aim to
travel from Karlsruhe to Munich as fast as possible by car or train, this corresponds
to a shortest path query. In the context of route planning or timetable information,
algorithms typically have to deal with huge networks. Unfortunately, applying Dijkstra’s
algorithm to these networks leads to unacceptably high query times.

In the last years, a variety of techniques have been developed to shorten point-to-point
query times by using data precomputed in advance. A lot of these speed-up techniques
make use of shortcuts in some manner. Shortcuts are additional edges, whose length
corresponds to the distance between the end-nodes. The strategy which shortcuts are
inserted depends on the particular speed-up technique, but always, heuristics are used to
answer this question. The overall purpose of inserting shortcuts is to reduce the search
space, for example to decrease the number of edges on a shortest path.

Recently, this gave rise to the idea of considering the question of how to find optimal
shortcut assignments as a problem of its own. Here, the aim is to minimize the aver-
age number of edges on an edge-minimal shortest path by inserting a given number of
shortcuts. Limiting the number of shortcuts is motivated by the desire to keep the mem-
ory requirement low. The corresponding combinatorial problem is the Best Shortcut
Problem(BSP) as introduced in [BDDW09]. The analysis of the BSP is a first ap-
proach to enhance the empirical results on using shortcuts by a theoretical analysis. In
addition to that, the BSP turned out to be interesting as a self-contained problem.

Related work. In connection with speed-up techniques, there is a vast amount of
publications. To get a recent overview of the results, consider [DSSW09] and [WW07].
Some results concerning the benefit of externally computed shortcuts on the speed-up
techniques arc-flags and reach can be found in [BDW08].

As the main topic of this thesis, the Best Shortcut Problem, is very new, there is
not much related work. In [BDDW09], the BSP is introduced and shown to be NP-
hard. Further, two approximation algorithms for graphs with unique shortest paths are
described and a fast way to stochastically evaluate shortcut assignments is given.

Our Contribution. In this thesis, we revisit the greedy approximation algorithm intro-
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CHAPTER 1. INTRODUCTION

duced in [BDDW09]. Basically, this algorithm successively adds shortcuts to a graph. By
developing a fast algorithm to solve the BSP restricted to one shortcut, we are able to re-
duce the asymptotical time complexity of the greedy strategy from O(c ·n3 ·(n log n+m))
to O(c · n3), where c denotes the number of shortcuts we aim to insert. As the running
time of this algorithm is still infeasible for larger graphs, we additionally study the ques-
tion of how to find single, high-quality shortcuts with less time complexity. To this end,
we develop different heuristics to estimate the quality of shortcuts. If shortest paths in
the underlying graph are unique, these estimations are exact. Moreover, we show how to
compute these estimations with a time complexity in O(n · (n log n+m)). Both of these
algorithms are easy to understand and implement in practice.

In the experimental part of this thesis, we evaluate strategies to find high-quality solutions
for the BSP as a self-contained topic. These shortcut assignments can be used to get
some clues about the structure of optimal solutions. As the size of road networks typically
only allows algorithms with slightly super-linear time complexity, this does not even
permit to evaluate a given shortcut assignment completely. Therefore, our experiments
are restricted to rather small graphs. We compare different local search strategies in
combination with the algorithms of the first part and evaluate the respective shortcut
assignments found.

Overview

In the following, we briefly outline how this thesis is organized:

Chapter 2: The second chapter starts with some basic graph theoretical notation.
Additionally, we introduce some definitions in the special context of the topic of
this thesis. We then state a formal definition of the BSP and revisit some basic
results taken from [BDDW09]. Furthermore, we describe how Dijkstra’s algorithm
can be modified to compute some extra information and conclude with two basic
algorithms to sum up values in shortest-paths dags.

Chapter 3: This chapter is devoted to algorithms that solve the BSP restricted to
one shortcut. We start with describing our first approaches to speed up the brute-
force algorithm by pruning the search space and conclude with an algorithm that
evaluates all shortcuts simultaneously with a time complexity in Θ(n3).

Chapter 4: Here, we examine the question which heuristics can be used to find single
shortcuts with high quality. To this end, we use the centrality measures stress and
betweenness and show how they can be adapted to suit the BSP in a straightforward
way. Using these centrality measures, we get an O(n · (n log n+m))-algorithm that
finds optimal shortcuts if shortest paths are unique. Furthermore, in the general
case, this algorithm can be used to estimate the quality of shortcuts under different
aspects.

Chapter 5: In this chapter, we evaluate the algorithms developed to this point.
We start with a quick overview of our test instances and evaluate the respective

12



CHAPTER 1. INTRODUCTION

running times. Further, we compare the solutions found by using the shortcut
ratings introduced in Chapter 4 among each other and with other simple heuristics.

Chapter 6: This chapter gives a brief overview of fundamental local search strategies
and specifies how these can be adapted to the BSP. Moreover, we describe a mea-
sure that we will use to examine the structure of the search space of local search
algorithms for the BSP.

Chapter 7: This chapter provides the results of the experiments taken in context with
our local search algorithms. Furthermore, we examine basic properties of the search
space and take a look at the assignments found by using local search.

Chapter 8: We summarize the results of this thesis and conclude with a brief outlook.
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2 Fundamentals

2.1 Preliminaries

2.1.1 Common notation

Here and in the following, let G = (V,E, len) be a weighted, directed graph with n = |V |
vertices, m = |E| edges and length function len : E → R

+. For two nodes v and w,
we say that w is an inneighbour of v, if (w, v) ∈ E. Analogously, an outneighbour of v
is a node w with (v, w) ∈ E. We call w a neighbour of v if it is an inneighbour or an
outneighbour of v, or both. If v has no outneighbours, we call it a sink.

A walk with source s and target t (or shorter an s-t-walk) in G is a k-tuple of vertices
P = (s = u0, u1, . . . , uk−1 = t) , k ≥ 1, with the property that for every i between 1 and
k − 1, the edge (ui−1, ui) exists. P is called a path, if the nodes ui are pairwise distinct.
An undirected walk in G is a walk in the underlying undirected graph; more precisely,
it is a sequence P = (s = u0, u1, . . . , uk−1 = t) , k ≥ 1, where for each i between 1 and
k − 1 at least one of the edges (ui−1, ui) or (ui, ui−1) exists in the graph. The length
of P is defined as len(P ) :=

∑k−1
i=1 len(ui−1, ui) , whereas the hop-length |P | of P is the

number of edges on P . An s-t-path is called a shortest path if its length is minimal among
the lengths of all s-t-paths. Consequently, a shortest path P is called hop-minimal, if
|P | is minimal among all shortest s-t-paths. Given two vertices s and t, the distance
dist(s, t) from s to t is the length of a shortest s-t-path. Analogously, we denote by the
hop-distance h(s, t) from s to t the hop-length of a hop-minimal shortest path between
s and t. Furthermore, let σst be the number of shortest s-t-paths and ηst the number of
hop-minimal shortest s-t-paths.

A walk P = (u0, . . . , uk−1) is said to be a circuit, if u0 = uk−1, k ≥ 2 and v1, . . . , vk
as well as the edges (u0, u1), . . . , (uk−2, uk−1) are distinct. A graph without circuits is
called acyclic. For directed, acyclic graphs, we use the abbreviation dag. For s ∈ V ,
the shortest-paths dag Ds grown from s is a subgraph that is obtained in the following
way: We reduce the set of edges to those that are on at least one shortest path from s to
another node in V and delete isolated nodes. It is easy to see that, as we assume edge
lengths to be positive, these subgraphs are always acyclic.

A directed graph is called strongly connected if there exists an s-t-path for each (s, t) in
V × V . Consequently, we call it weakly connected if the underlying undirected graph is
connected; that is, for each two nodes u and v there is an undirected path connecting
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Fig. 2.1: Illustration of the sets P−(x, y) and P+(x, y)

u and v. Fuzzily, we call a simple graph dense if the number of its edges is close to the
maximal number of edges whereas we characterize it as sparse if it has only few edges in
relation to the number of nodes. The reverse graph Ḡ = (V, Ē, len) is the one obtained
from G by substituting each (u, v) ∈ E by (v, u) and by defining len(v, u) := len(u, v).
An undirected graph is a tree, if it is weakly connected and has no undirected circuits.
Further, a directed graph G is called a directed tree if the underlying undirected graph
is a tree.

2.1.2 Topic-related definitions

We define a shortcut (u, v) as an (additional) edge with the property that len(u, v) equals
the distance between u and v in G. If we add a set of shortcuts E′ to the graph (we
call E′ a shortcut assignment), we get a supergraph G′ = (V,E ∪ E′, len′) of G. In
this notation, len′ : E ∪ E′ → R

+ is given by len′(u, v) = dist(u, v) for (u, v) ∈ E′ and
len′(u, v) = len(u, v) otherwise.

Moreover, we have to give some further notation related to shortest-paths dags that we
will use throughout this thesis. For arbitrary x, y and z ∈ V , a shortest x-y-z-path is a
shortest path from x to z with y on it. Analogously, a shortest w-x-y-z-path is a shortest
path from w to z passing first x and then y. We denote by σxz(y) the number of shortest
x-y-z-paths and by ηxz(y) the number of hop-minimal shortest x-y-z-paths. Similarly,
σwz(x, y) represents the number of shortest w-x-y-z-paths and ηwz(x, y) the number of
hop-minimal shortest w-x-y-z-paths.

Further, let P−(x, y) := {s ∈ V | ∃ shortest s-x-y-path} and P+(x, y) := {t ∈ V |
∃ shortest x-y-t-path} denote the sets of start- or end-nodes of shortest paths through x
and y. It is easy to see that the nodes in P−(x, y) lie in a sub-dag of the shortest-paths
dag grown from y in Ḡ, whereas the nodes in P+(x, y) lie in a sub-dag of the shortest-
paths dag grown from x in G. The nodes in these sub-dags can be found by performing
depth-first or breadth-first search from x or y in the respective dags. This is illustrated
in Figure 2.1.
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s1

s2

(a)

s3

s4

(b)

Fig. 2.2: Examples for shortcut assignments with two shortcuts (we assume the edge
lengths in the original graph to be uniform): The one illustrated in (b) is better (with
respect to the decrease in overall hop lengths), as a simple calculation shows.

Finally, we denote by Ins(v) the set of inneighbours of v in the shortest-paths dag Ds

grown from s and similarly by Outs(v) the set of outneighbours of v in Ds. We call w a
successor of v in Ds, if w 6= v and there exists a shortest s-w-v-path.

2.2 The Best Shortcut Problem

In this section, we describe the topic of this thesis, the Best Shortcut Problem as
introduced in [BDDW09]. Moreover, we give a review on some elementary properties of
the problem and outline a greedy, suboptimal algorithm for finding shortcut assignments.

2.2.1 Problem Definition and Complexity

Roughly speaking, the Best Shortcut Problem consists of adding a number of
shortcuts to a graph, such that the expected number of edges that are contained in
an edge-minimal shortest-path from a random node s to a random node t is minimal.
Formally, the problem is defined as follows.

Definition 1 (Best Shortcut Problem (BSP)) Given a graph G = (V,E, len)
and a positive integer c ∈ N, find a graph G′ = (V,E ∪ E′, len′) such that |E′| ≤ c and

w(E′) :=
∑
s,t∈V

h(s, t)−
∑
s,t∈V

h′(s, t)

is maximal, whereas len′ : E ∪ E′ → R+ equals dist(u, v) if (u, v) ∈ E′, equals len(u, v)
otherwise, h(s, t) denotes the hop distance in (V,E) and h′(s, t) denotes the hop distance
in (V,E ∪ E′).

We call w(E′) the decrease in overall hop-lengths we get by inserting E′ in G. Figure 2.2
shows a simple example for two shortcut assignments in the same graph. Taking a closer
look at the shortcut assignment in Figure 2.2a, we see that it is not optimal; w(s1, s2)
is 66, whereas w(s3, s4) is 72. The example could suggest that there exists always an
optimal solution with shortcuts that do not overlap in the sense that the shortest paths
they represent are disjoint. This is clearly not the case, as, if we just set the number
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of shortcuts c we want to insert high enough, an optimal solution contains all possible
shortcuts.

In [BDDW09], Bauer et al. show that the Best Shortcut Problem is NP -hard by
using a reduction from the Min Set Cover problem. Furthermore, they prove that,
unless P = NP , there exists no polynomial-time algorithm that approximates BSP up
to an additive constant.

2.2.2 The Basic Greedy Strategy

We now describe a greedy algorithm for finding shortcut assignments, that successively
adds locally optimal shortcuts to the graph. More formally, we consider a sequence
s1, . . . , sc of shortcuts and a family of graphs Gi, where Gi+1 is the result of adding the
shortcut si+1 to Gi. G0 corresponds to the original graph G. We determine the si and
Gi recursively by setting si to be a shortcut which maximizes w(s) in Gi. Pseudocode
for this approach is given in Algorithm 1.

Algorithm 1: GREEDY
Input: graph G = (V,E, len), number of shortcuts c
Output: graph G′ = (V,E ∪ E′, len′) with shortcuts added
G0 = G := (V,E0, len0);1

forall i = 1, 2, . . . , c do2

si := argmax{w(s) in Gi | s ∈ V × V };3

Ei := Ei−1 ∪ {si};4

leni : Ei → R+, leni(si) := dist(si) and leni(u, v) := leni−1(u, v) for each5

(u, v) ∈ Ei−1, (u, v) 6= si;
Gi := (V,Ei, leni)6

7

Output G′ = Gc.8

Bauer et al. show that, if G has the property that shortest paths between arbitrary nodes
are unique, the output of the GREEDY-strategy is in fact a factor c-approximation of
the BSP. Using no optimization, we can trivially determine the value of w(s) in Gi by
performing an all-pairs shortest paths computation in G. As we will see in Section 2.3.1,
this can be accomplished in O(n ·(n log n+m)) time. If we simply repeat this to evaluate
all possible shortcuts in Gi, we get an overall time complexity in O(c ·n3 · (n log n+m)).
The first part of this thesis shows ways to decrease the costs for finding one optimal
shortcut in arbitrary graphs, which can be used in a straightforward way to get lower
time bounds for the GREEDY-algorithm.

Note that we cannot count on the uniqueness of shortest paths after several steps of
the GREEDY-algorithm, even if the underlying unmodified graph has this property.
Inserting an arbitrary shortcut in the graph results in an alternative shortest path for
at least the end-nodes of the shortcut. Furthermore, one could ask the question if hop-
minimal shortest paths are always unique after the insertion of shortcuts, if this is the
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v0 v1

Fig. 2.3: This simple graph shows that the insertion of shortcuts destroys the property
that hop-minimal shortest paths are unique (we assume the edge lengths in the underlying
graph to be uniform)

case in the underlying graph. This does not hold, as a simple example given in Figure
2.3 illustrates.

In the previous section, we already saw that the shortcut assignment in Figure 2.2a is
not optimal. A closer look at this assignment reveals that it is an assignment that could
be found by the GREEDY-strategy. In the original graph, we see that w(s1) = 48 is
optimal among all possibilities. If we consider the graph we obtain, if we insert s1 into
G, w(s2) = 18 is the highest value we get by considering all potential shortcuts. This
illustrates that it is rather easy to construct graphs in which we get non-optimal results
by the GREEDY-strategy, even if we add only few shortcuts to the graph.

2.3 The All-Pairs Shortest Paths Problem

As the shortcut problem is closely related to the problem of finding shortest paths in
a graph, we give a brief overview of some fundamental algorithms for solving this task.
The algorithms presented for finding one optimal shortcut require the computation of the
distances and hop-distances of all pairs of nodes as a preprocessing step. This corresponds
to the all-pairs shortest paths problem.

2.3.1 Dijkstra’s algorithm

The presumably most prominent approach for solving shortest paths problems is the
algorithm presented by E. W. Dijkstra in 1959 (see [Dij59]). Dijkstra’s algorithm solves
the single-source all-targets shortest paths problem, which is the problem of finding the
distance from one arbitrarily chosen node s to all other nodes t ∈ V . As already men-
tioned, we assume the edge lengths to be nonnegative, which is crucial for the correctness
and termination of the algorithm.

It is easy to see that we can solve the all-pairs shortest paths problem in G by sim-
ply solving the single-source-all-targets problem for all s ∈ V . Thus, we can trivially
determine the distances between all nodes in V by n runs of Dijkstra’s algorithm.

The base algorithm proceeds as follows. We store for each node in the graph a status
marker indicating exactly one of the states unvisited, visited and finished. Additionally,
we use a priority queue Q for storing the set of visited, but not yet finished nodes during
the algorithm. The nodes in Q are keyed by the current distance label. The lower this
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Algorithm 2: Dijkstra
Input: Graph G = (V,E, len), node s ∈ V
Data Structure: Priority Queue Q for nodes, keyed by the current distance labels
Output: d(s, t) for all t ∈ V
forall t ∈ V \ {s} do1

d(s, t) :=∞ ;2

d(s, s) := 0 ;3

Insert s in Q ;4

while Q 6= ∅ do5

Remove minimal element v from Q ;6

Mark v as finished ;7

forall e := (v, w) ∈ E do8

if w is not marked as finished then9

Mark w as visited ;10

if d(s, v) + len(e) < d(s, w) then11

d(s, w) := d(s, v) + len(e) ;12

if w /∈ Q then13

Insert w in Q ;14

15

16

17

18
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key is for a node, the higher is its priority in the queue.

In the beginning, all status markers are set to unvisited and the distances d(s, v) for
all nodes v ∈ V are set to infinity. Then we begin the actual computation by setting
d(s, s) to zero, marking s as visited and inserting s in the priority queue. While there
are visited nodes, the algorithm removes one of the nodes with minimal distance label
from the queue, marks it as finished and then considers all outgoing edges e from this
node. If the end-node w of e is not marked as finished, we test if we get a shorter path
from s to w via e. If this is the case, we update the distance label of w with respect to
s and insert w into Q if w was unvisited before. Pseudocode for Dijkstra’s algorithm is
given as Algorithm 2.

The correctness of Dijkstra’s algorithm relies on the invariant that all nodes marked as
finished already have their correct distance label assigned. A complete proof can be
found in [Sch03].

Using no special data structures, Dijkstra’s algorithm has a running time in O(n2).
Fredman and Tarjan showed that Dijkstra’s algorithm can be speeded up to O(m +
n log n) by using a Fibonacci heap for the implementation of the priority queue (see
[FT87]).

We should not forget to mention that Dijkstra’s algorithm is not the only way to solve the
all-pairs shortest paths problem. Another possibility is to use fast matrix multiplication,
yielding lower computational complexity for dense graphs (see for example [CLRS01]).
As most of the graph classes that we consider in the experiments are rather sparse, and
as in the algorithms we use, the asymptotical time complexity is dominated by Θ(n3) or
Θ(n ·m) subroutines, we solve the problem of finding all distances and hop-distances in
a graph by n applications of Dijkstra’s algorithm throughout this thesis.

2.3.2 Modifying Dijkstra’s algorithm to determine hop-distances and to
count shortest s-t-paths

Later on, we will need some extra information about shortest paths beyond the distances
in the graph. First, we will need a fast way to compute hop-distances between all pair
(s, t) of nodes. Second, we are interested in the number of shortest and hop-minimal
shortest paths, σst and ηst between arbitrary nodes s and t. In this section, we show
how to adapt Dijkstra’s algorithm to additionally compute these values. We just need
some minor changes that do not increase the asymptotical time behaviour or the general
proceeding of the algorithm. Algorithm 3 shows the pseudocode of these modifications.

To compute the hop-distances, we initialize the hop-distance labels to infinity for all t
in V \ {s} and to 0 for s. Next, if we find a shorter path to a node v, we additionally
have to change the hop-distance for v to be the number of hops on the new (temporarily)
shortest path. This is done in line 21. Finally, if we find an alternative shortest path to
v, we have to test if it has fewer hops than the shortest s-v-paths found up to now. If
this is true, we decrease the hop-distance of v, which we do in line 25.

In order to compute σst, we use the following lemma taken from [Bra01] to justify the
correctness of our modifications.
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Algorithm 3: HopAndPathCountingDijkstra
Input: Graph G = (V,E, len), node s ∈ V
Data Structure: Priority Queue Q for nodes, keyed by the current distance labels
Output: dist(s, t), h(s, t), σst and ηst for all t ∈ V
forall t ∈ V do1

dist(s, t) :=∞ ;2

h(s, t) :=∞ ;3

σst := 0 ;4

ηst := 0 ;5

dist(s, s) := 0 ;6

h(s, s) := 0 ;7

σss := 1 ;8

ηss := 1 ;9

Insert s in Q ;10

while Q 6= ∅ do11

Remove minimal element v from Q ;12

Mark v as finished ;13

forall e := (v, w) ∈ E do14

if w is not marked as finished then15

Mark w as visited ;16

if dist(s, v) + len(e) < dist(s, w) then17

σsw := σsv ;18

ηsw := ηsv ;19

dist(s, w) := dist(s, v) + len(e) ;20

h(s, w) := h(s, v) + 1 ;21

if dist(s, v) + len(e) = dist(s, w) then22

σsw := σsw + σsv ;23

if h(s, v) + 1 < h(s, w) then24

h(s, w) := h(s, v) + 1 ;25

ηsw := ηsv ;26

if h(s, v) + 1 = h(s, w) then27

ηsw := ηsw + ηsv ;28

29

if w /∈ Q then30

Insert w in Q ;31

32

33

34

35
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Lemma 1 (Combinatorial shortest-paths counting) For s 6= v ∈ V :

σsv =
∑

u∈Ins(v)

σsu

This holds because sub-paths of shortest paths are also shortest paths. Therefore, re-
moving the last edge on a shortest s-t-path, we get a shortest s-w-path for some w in
Ins(v). For a complete proof, see [Bra01].

For the number of hop-minimal shortest paths, we get a similar result; the proof is
analogous.

Lemma 2 (Combinatorial hop-minimal shortest-paths counting) For s 6= v ∈
V :

ηsv =
∑

u∈Ins(v)
h(s,u)+1=h(s,v)

ηsu

We proceed as follows: If, during the execution of Dijkstra’s algorithm, a shorter path
to a node v is found, all shortest paths found so far are not valid any more. Thus, we
have to (re-)set the values for σsv and ηsv to the number of shortest or hop-minimal
shortest paths to the start-node of the current edge. In line 22, we test, if we have found
alternative shortest paths to v. If this is the case, we have to adjust σsv according to
Lemma 1. Also, we have to check whether ηsv is consistent with Lemma 2, if we consider
the new hop-distance between s and v. The correctness of the algorithm follows from
Lemma 1 and Lemma 2.

2.4 Summing up values in shortest-paths dags

In the algorithms to solve the BSP with exactly one shortcut, we will frequently come
across the same sub-problem. In short, we consider a shortest-paths dag Ds grown from
a node s. Every node v in Ds has a value f(v) assigned. We now want to add f(v) to
each predecessor of v in Ds. More precisely, as result, we aim to compute the values
fsum(v) =

∑
w∈P+(s,v) f(w) for each v in Ds. The values f(v) correspond to different

measures. In the most simple setting, we initialize all values to 1, thus as result, we
just get the exact cardinality of P+(s, v) for each v in Ds. If we have precomputed all
distances and hop-distances in the graph, we can decide in O(1) whether a node t is
in P+(s, v). For this, we just have to test if dist(s, v) + dist(v, t) = dist(s, t). Thus,
considering all pairs of nodes, we get a trivial O(n2)-algorithm.

In this section, we will describe some variants of depth-first-search(DFS) that sum up
intermediate results along the paths of shortest-paths dags. As result, we get upper and
lower bounds for fsum with a time complexity in O(m).

We first consider the simple case that shortest paths in the underlying graph are unique,
implying that all shortest-paths dags form trees. We show that under these assumptions,
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s v

w1

w2

w3

P+(s, w1)

P+(s, w2)

P+(s, w3)

Fig. 2.4: Illustration to Lemma 3: In this case, the shortest-paths dag grown from s is a
tree; the sets P+(s, wi) are disjoint.

it is possible to determine the exact values of fsum(v) for one shortest-paths dag in O(m)
using DFS.

The first observation we make, is that fsum(v) obeys the following recursive equation, if
we consider shortest-paths trees. Figure 2.4 illustrates the preconditions of the lemma.

Lemma 3 Let Ds denote the shortest-paths dag grown from a node s in V . If Ds is a
tree, then fsum(v) for any node v in Ds satisfies

fsum(v) = f(v) +
∑

w∈Outs(v)

fsum(w)

Proof
As the sets P+(s, wi) are disjoint, we get

fsum(v) =
∑

w∈P+(s,v)

f(w)

= f(v) +
∑

w∈Outs(v)

∑
x∈P+(s,w)

f(x)

= f(v) +
∑

w∈Outs(v)

fsum(w)

�

Algorithm 4 exploits this relationship to compute all values for fsum(v) by essentially
performing one DFS.

Corollary 1 If there is exactly one shortest path from s to each t in the shortest-paths
dag Ds grown from s, then Algorithm 4 computes the exact values of fsum(v) for any
node v in Ds.

24



CHAPTER 2. FUNDAMENTALS

Algorithm 4: SumValuesSuccessorsUpperBound
Data: shortest-paths dag Ds = (V,E), start-node s ∈ V , f(v) for all v ∈ Ds

Result: Upper bounds fsum,up(v) for the values of fsum(v)
Init stack ;1

forall v ∈ Ds do2

fsum,up(v) := f(v) ;3

mark(s) ;4

push
(
(NULL, s)

)
;5

while stack is not empty do6

(p, v) := topmost element in the stack ;7

if there is an unmarked outgoing edge (v, w) then8

mark
(
(v, w)

)
;9

if w is unmarked then10

mark(w) ;11

push
(
(v, w)

)
;12

else13

Increase fsum,up(v) by fsum,up(w) ;14

15

else16

if p 6= NULL then17

Increase fsum,up(p) by fsum,up(v) ;18

pop() ;19

20

21
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Fig. 2.5: Illustrates the problem that we get if the shortest-paths dag is not a tree: The
left side shows an example of a dag with the corresponding values of f(v) for each v,
whereas on the right side the values fsum, up(v) are displayed

s v

w1

w2

w3

P+(s, w1)

P+(s, w2)

P+(s, w3)

Fig. 2.6: Illustrates the general situation that we have in a shortest-paths dag: the sets
P+(s, wi) are not necessarily disjoint

Unfortunately, if we apply the same algorithm to general shortest-paths dags, the values
of fsum, up(v) we compute are not equal to fsum(v). This is illustrated in Figure 2.5,
where f(t) is added to fsum(s) twice. Nevertheless, it is rather easy to see that we get
upper bounds for fsum(v), if we apply Algorithm 4.

More precisely, we get the connection of the following lemma (for illustration, see Figure
2.6).

Lemma 4 For the values fsum, up(v) computed by Algorithm 4, we obtain:

fsum, up(v) =
∑

x∈P+(s,v)

σvx · f(x)

Proof
Let Ds denote the shortest-paths dag grown from s. As

∑
w∈P+(s,v) σvw ·f(w) equals f(v)

if v is a sink, the values for the sinks are already correctly initialized in the beginning.
Thus, it remains to show that we get the correct results for the other nodes in Ds under
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the assumption that all outneighbours in Ds get their proper values assigned. We get

fsum, up(v) = f(v) +
∑

w∈Outs(v)

fsum, up(w)

= f(v) +
∑

w∈Outs(v)

∑
x∈P+(s,w)

σwx · f(x)

= f(v) +
∑

x∈P+(s,v)\{v}

∑
w∈Outs(v):
x∈P+(s,w)

σwx · f(x)

= f(v) +
∑

x∈P+(s,v)\{v}

f(x) ·
∑

w∈Outs(v):
x∈P+(s,w)

σwx

= f(v) +
∑

x∈P+(s,v)\{v}

f(x) ·
∑

w∈Outs(v)

σvx(w)

= f(v) +
∑

x∈P+(s,v)\{v}

f(x) · σvx

=
∑

x∈P+(s,v)

σvx · f(x)

�

Therefore, the values fsum, up(v) are clearly upper bounds for fsum(v), as σvx is always
greater or equal to 1 for each x in P+(s, v).

Conversely, if we want to determine lower bounds for fsum(v), we can use a very simular
algorithm. Its pseudocode is given in Algorithm 5. Note that this algorithm is almost
completely identical to the one we use for the upper bounds; we just changed two lines
because we want to sum up just parts of the values for fsum, low(w) to its inneighbours.
Additionally, we need as input the number of shortest paths from s to every other node in
the dag, which can be determined with little overhead while building the shortest-paths
dag (see Section 3).

Lemma 5 For the values fsum, low(v) computed by Algorithm 5, we obtain:

fsum, low(v) =
∑

x∈P+(s,v)

σsx(v)
σsx

· f(x)

Proof
Analogous to the proof of Lemma 4, we get:

fsum, low(v) = f(v) +
∑

w∈Outs(v)

σsv
σsw
· fsum, low(w)
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Algorithm 5: SumValuesSuccessorsLowerBound
Input: shortest-paths dag Ds = (V,E), start-node s ∈ V , f(v) and σsv for all v ∈ V
Output: Lower bounds fsum,low(v) for the values of fsum(v)
Init stack ;1

forall v ∈ V do2

fsum,low(v) := f(v) ;3

mark(s) ;4

push
(
(NULL, s)

)
;5

while stack is not empty do6

(p, v) := topmost element in the stack ;7

if there is an unmarked outgoing edge (v, w) then8

mark
(
(v, w)

)
;9

if w is unmarked then10

mark(w) ;11

push
(
(v, w)

)
;12

else13

Increase fsum,low(v) by σsv
σsw
· fsum,low(w) ;14

15

else16

if p 6= NULL then17

Increase fsum,low(p) by σsv
σsw
· fsum,low(v) ;18

pop() ;19

20

21
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Furthermore, we initialize fsum, low(v) to f(v), which is already the correct value for the
sinks. So, we only need to show that fsum, low(v) equals the desired value under the
assumption that we have already computed the correct values for the outneighbours of
v in Ds. This is true, as

fsum, low(v) = f(v) +
∑

w∈Outs(v)

σsv
σsw
· fsum, low(w)

= f(v) +
∑

w∈Outs(v)

σsv
σsw
·

∑
x∈P+(s,w)

σsx(w)
σsx

· f(x)

= f(v) +
∑

w∈Outs(v)

σsv
σsw
·

∑
x∈P+(s,w)

σsw · σwx
σsx

· f(x)

= f(v) +
∑

x∈P+(s,v)\{v}

σsv
σsx
· f(x) ·

∑
w∈Outs(v):
x∈P+(s,w)

σwx

= f(v) +
∑

x∈P+(s,v)\{v}

σsv
σsx
· f(x) ·

∑
w∈Outs(v)

σvx(w)

= f(v) +
∑

x∈P+(s,v)\{v}

σsv · σvx
σsx

· f(x)

=
∑

x∈P+(s,v)

σsx(v)
σsx

· f(x)

�

As σsx(v)
σsx

is always less or equal 1, the values fsum, low(v) are clearly lower bounds for
fsum(v). Furthermore, we see that, just as with the upper bounds, we get the correct
values for fsum(v) if we assume shortest paths to be unique. In this case, σsx(v)

σsx
is either

1, if x is in P+(s, v), or 0 otherwise.

Note that this last algorithm for the lower bound is closely related to the fast algorithm
for betweenness centrality proposed by Brandes (see [Bra01]). This is no coincidence, as
we will need this variant of DFS to compute the (generalized) betweenness centrality for
pairs of nodes.

If we consider not all shortest paths from a given start-node s but only shortest paths
that are hop-minimal, we can proceed analogously by just considering the edges in Ds

that are on at least one hop-minimal shortest path from s to another node in V . Figure
2.7 shows an example of a shortest-paths dag and highlights the edges that lie on hop-
minimal shortest paths (these form a sub-dag of Ds). The algorithms for the upper and
lower bounds can be modified using just the edges that are in this reduced shortest-paths
dag in a straightforward way. Furthermore, the values for σst have to be replaced by ηst
to reflect that we only consider hop-minimal shortest paths. The results we get are the
same as with the whole shortest-paths dag, if we replace σst by ηst again.
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Fig. 2.7: Example for a shortest-paths dag: solid edges are the ones that lie on at least
one hop-minimal path starting at s

Note that all results could as easily be obtained by a breadth-first-traversal or by exploit-
ing the topological order in the dag. As the complexity is independent from the method
chosen, we focus exclusively on depth-first-traversal, as this is the way we chose in the
implementation of some subroutines of our algorithms.
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3 Algorithms to Determine One Optimal
Shortcut

In this chapter, we will examine the question of how to find exactly one optimal shortcut
efficiently without evaluating each possible shortcut using Dijkstra’s algorithm.

The contribution of this section is twofold. First, we improve the brute-force algorithm
heuristically by reducing the search space, both with and without additional space over-
head. Second, we describe a Θ(n3) algorithm for finding one optimal shortcut using
shared intermediate results.

3.1 Preliminaries

Before we present our algorithms, we have to introduce some further notation. First, let
P (a, b) := {(s, t) ∈ V × V | ∃ shortest s-a-b-t-path} be the set of pairs of nodes such
that there exists a shortest s-t-path that could benefit from the insertion of a shortcut
between a and b. Note that P (a, b) is a subset of P−(a, b)×P+(a, b), but in general, the
two sets are not equal. Figure 3.1 illustrates this case.

From here on, let G = (V,E) always denote a strongly connected, directed graph. Fur-
ther, let a and b be arbitrary but fixed nodes in V and G′ = (V,E ∪ {(a, b)}) the
supergraph of G that we get by inserting a shortcut from a to b. In this context, the
notation h′(s, t) indicates the hop-distance between s and t in G′.

s

a b

t
1

1

1

1
1

1

111

1

Fig. 3.1: In this example, s is clearly in P−(a, b) and t in P+(a, b), but (s, t) is not in
P (a, b)
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Finally, we recall the following crucial observation concerning shortest paths that we will
use heavily during the rest of this thesis.

Lemma 6 (Bellman criterion) A node v ∈ V lies on a shortest path between vertices
s, t ∈ V , if and only if dist(s, t) = dist(s, v) + dist(v, t).

3.2 Heuristic speed-up with linear space complexity

This section describes our first approach to speed up the brute-force algorithm for finding
one optimal shortcut. The idea is to find upper bounds for w(a, b) that are easier to
compute than w(a, b) itself.

3.2.1 General proceeding

The first algorithm that we use to heuristically improve the running time for finding one
optimal shortcut is outlined as follows. As already mentioned, we will use upper bounds
for w(a, b) to exclude shortcuts from being completely evaluated if they are provably
non-optimal. Pseudocode for this general approach is given in Algorithm 6. We modify
the brute-force algorithm from Section 2.2.2 in two ways. First, we determine for each
pair of nodes, if w(a, b) can be greater than the overall decrease in hop-length of the best
shortcut found so far using upper bounds. Second, we consider the pairs of nodes in a
special order that causes shortcuts that are likely to have high values for w(a, b) to be
evaluated in the beginning. The idea behind this is obvious: If we find good shortcuts
early, more pairs of nodes can be excluded using the upper bounds.

Of course, this approach makes only sense, if we are able to compute reasonably close
upper bounds with less time complexity than is needed to compute the exact value of
w(a, b) by solving APSP. Similarly, we have to determine the order in which we consider
shortcuts without causing considerable time and space overhead. How this can be done
is subject of the next sections.

Algorithm 6: BestShortcutHeuristically
Input: Strongly connected graph G = (V,E, len)
Output: argmax{w(s) | s ∈ V × V }
DecreaseWithBestSolution := 0 ;1

forall (a, b) ∈ {(a, b) ∈ V × V } with decreasing importance do2

if upperbound(a, b) > DecreaseWithBestSolution then3

Determine w(a, b) solving APSP ;4

if w(a, b) > DecreaseWithBestSolution then5

DecreaseWithBestSolution := w(a, b) ;6

s := (a, b) ;7

8

9

return s ;10
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3.2.2 Upper bounds for the decrease in overall hop length

Our first approach uses the sets P−(a, b) and P+(a, b) to determine an upper bound
for w(a, b). As w(a, b) =

∑
s,t∈V h(s, t) − h′(s, t), we have to consider only the pairs

(s, t) ∈ V × V for which h(s, t) and h′(s, t) differ. The following lemma states that
if there is no shortest s-a-b-t-path, then the hop-distance between s and t cannot be
decreased by inserting a shortcut between a and b. This result is rather trivial, but as
we can reuse the lemma later on, we give a detailed proof.

Lemma 7 Let a and b denote arbitrary but fixed nodes. Let G′ = (V,E ∪{(a, b)}len′) be
the graph that results from the addition of a shortcut from a to b and h′ the hop-distance
in G′. For all s, t ∈ V , for which no shortest s-a-b-t path exists, we have

h(s, t) = h′(s, t)

Proof
Let p denote a hop-minimal shortest s-t-path in G′. Assume that p contains the edge
e = (a, b). Then, as e is a shortcut in G, there is a shortest s-a-b-t path in G, which
leads to a contradiction. Therefore, as G and G′ differ only in the existence of e, p is
also a path in G. Thus, as h(s, t) is always greater or equal to h′(s, t), it follows that
h(s, t) = h′(s, t). �

Additionally, h(s, t)− h′(s, t) is bounded by h(a, b)− 1. If we put all these observations
together, we can estimate w(a, b) as in the following lemma. Figure 3.2 illustrates the
idea.

Lemma 8
w(a, b) ≤ |P−(a, b)| · |P+(a, b)| · (h(a, b)− 1)

Proof

w(a, b) =
∑
s,t∈V

(
h(s, t)− h′(s, t)

)
=

∑
s,t∈P (a,b)

(
h(s, t)− h′(s, t)

)
+

∑
s,t/∈P (a,b)

(
h(s, t)− h′(s, t)

)︸ ︷︷ ︸
=0 (Lemma 7)

≤
∑

s,t∈P (a,b)

(
h(a, b)− 1

)
)

= |P (a, b)| ·
(
h(a, b)− 1

)
≤ |P+(a, b)| · |P−(a, b)| ·

(
h(a, b)− 1

)

�
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P−(a, b) P+(a, b)

a
b

Fig. 3.2: Illustration to Lemma 8

Of course, upper bounds are only valuable if they can be determined faster than the
exact values for w(a, b). If we use a simple way to compute w(a, b) like solving APSP
with n runs of Dijkstra’s algorithm, we need O(n(n log n + m)) time. In contrast to
that, the cardinalities of P+(a, b) and P−(a, b) can be determined easily by a depth-first
search from b in Da or from a in Db, respectively. Thus, we have to solve the single-
source shortest paths problem two times, followed by two depth-first traversals, yielding
an overall time complexity in O(n log n+m), whereas the space requirement stays linear
in the size of the graph. The value for h(a, b) is a “side product” of solving the single-
source shortest paths problem for a, if we use a modified Dijkstra that also determines
the hop-distances as described in Section 2.3.2.

Therefore, if we get an upper bound for w(a, b) that is worse than the exact decrease
in overall hop length of the best shortcut found so far, we can omit the evaluation of
the current shortcut, saving a factor of n by considering this shortcut. On the other
hand, if this is not the case, the additional time complexity for computing the bound
is clearly dominated by the time needed to solve APSP. Thus, in the worst case, the
running time should not be much higher than without using these bounds, while we have
a good chance to decrease the overall running time considerably, if the bounds prove to
be able to exclude a large percentage of the shortcuts without solving APSP.

3.2.3 Centrality measures for nodes

Centrality indices have been introduced to quantify the “importance” or centrality of
nodes in a given graph or network. This is a rather fuzzy definition and there are a
lot of different ways to measure the importance of nodes suited for certain applications.
The research on this topic dates back to the 1950s, where simple measures as the degree
centrality were first introduced.

In this section, we will give a brief description of the centrality measures we use to
preselect start- and end-nodes of shortcuts heuristically with the purpose of determining
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shortcuts (a, b) that are likely to have high values for w(a, b).

The most simple centrality is the degree centrality CD(v). As we deal with directed
graphs, we have to specify which kind of degree we are using. We choose the sum of the
out- and indegree and get the following definition:

CD(v) = d+(v) + d−(v)

This is a local measure, as the degree centrality of a node is only determined by its
neighbours. It is nonetheless interesting whether such a simple and easy to compute
centrality index is suitable to additionally decrease the time to compute one optimal
shortcut.

As the values w(a, b) are determined by the shortest paths through a and b, we now focus
on two simple centrality measures based on the set of shortest paths in G. The first one
is the betweenness centrality CB(v) introduced by Anthonisse in 1971 (see [Ant71]) and
Freeman in 1977 (see [Fre77]). Let δst denote the fraction of shortest paths between s
and t that contain a node v:

δst(v) =
σst(v)
σst

The ratios δst(v) can be interpreted as the probability that v is on a shortest path between
s and t chosen uniformly at random among all shortest s-t-paths. With this at hand, we
can define the betweenness centrality of a node v as

CB(v) =
∑

s 6=v∈V

∑
t6=v∈V

δst(v)

In 2001, Brandes proposed an algorithm to compute the betweenness centrality for all
nodes in a weighted graph with a time complexity in O(n · (n log n+m)) and with linear
space requirement (see [Bra01]).

The third centrality index that we use is also based on shortest paths. It was introduced
by Gutman in 2004 (see [Gut04]) and is called the reach centrality r(v). To define this
measure, we first have to introduce the notion of the reach r(v, P ) of a node v on a path
P = (s = u1, . . . , v = ui, . . . , t = ul) containing v. We define

r(v, P ) := min{len(P1 = (s = u1, . . . , v = ui), len(P2 = (v = ui, . . . , t = ul)}

as the minimum of the distances between s and v and v and t following P . Now we can
define the reach of v in G by

r(v) = max{r(v,Q) | Q is a shortest path containing v}

As mentioned in [Gut04], reach centralities for all nodes in a graph can be computed
using an APSP-algorithm with an overall time complexity in O(n · (n log n+m)).
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3.2.4 Notes on the complexity of using node centrality to preselect short-
cuts

Computing the centrality indices betweenness or reach can be accomplished in O(n ·
(n log n+m)) time and linear space. If we use the degree criterion to measure the impor-
tance of nodes, we need O(m) time. The most natural way to exploit node centralities
would be to use a generalized centrality measure for pairs of nodes, for example the sum
of the node centrality indices. Using this, we could build a list of all possible shortcuts
and sort them according to decreasing pair centrality. This would take O(n2 log n) time
with an arbitrary, efficient sorting algorithm, being dominated by the computation of the
bounds for all n2 shortcuts. But storing the list of all possible shortcuts would cause a
space complexity in O(n2). To avoid this, we use a much simpler approach: We sort the
nodes according to decreasing centrality and assign an index to them that corresponds to
the position in the sorted list. Then, we enumerate all pairs of nodes (s, t) in increasing
order of the sums of the indices of s and t in the list. That means, we consider the
shortcuts in the order

(L[0], L[0]), (L[0], L[1]), (L[1], L[0]), (L[0], L[2]), . . . .

This can be done in linear time and with linear space. Thus, the additional overhead
caused by using the mentioned preselection criteria is dominated by the computation
of the upper bounds. So, all in all, in the worst case, we cannot exclude any shortcuts
in advance, but we do not add considerable time consumption to the base algorithm,
whereas we save a factor of n in the evaluation of each shortcut s that can be dismissed
according to its upper bound for w(s). Detailed pseudocode of the whole algorithm is
given in the appendix as Algorithm 14.

3.3 Heuristic speed-up with additional space consumption

In this section, we will study the question of how to reduce the time complexity for
pruning by allowing an increased memory consumption in O(n2). We get an algorithm
that is very similar to the one in the previous section. The difference is that we compute
the upper bounds for all w(a, b) in advance, with a time complexity in O(n·(n log n+m)).
Unfortunately, the upper bounds that we get are not as tight as the ones in the previous
section, because we cannot compute the correct cardinalities of P+(a, b) and P−(a, b) but
have to use upper bounds instead. To do this, we use Algorithm 4 from Page 25. For each
possible start-node a of a shortcut we build the shortest-paths dag Da. Then, we assign
to every node b in the dag the value f(b) = 1. According to Lemma 4, the values fsum,up
that the algorithm computes with this initialization equal

∑
x∈P+(a,b) σbx. Therefore, we

get upper bounds |P+(a, b)| for |P+(a, b)| for all (a, b) in V × V . The upper bounds for
|P−(a, b)| can be determined analogously. The pseudocode of the whole algorithm can
be found in the appendix as Algorithm 15.

If we compare this algorithm to the one in the previous section, it is not easy to say,
which one performs better with respect to computation time. Algorithm 15 is able to
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compute the upper bounds with an overall time complexity in O(n·(n log n+m)), whereas
Algorithm 14 needs O(n2 · (n log n + m) time to compute the bounds all in all. On the
other hand, the bounds used in Algorithm 14 are tighter and potentially able to exclude
more shortcuts in advance.

In general, we could guess that Algorithm 15 is better suited, if shortest paths are “nearly
unique”, as in this case, the values for |P+(a, b)| and |P+(a, b)| (as well as |P−(a, b)| and
|P−(a, b)|) almost coincide. The question which algorithm to use also heavily depends
on the question, which ratio of the shortcuts can be excluded using the upper bounds
and on the size of the considered graph. This has to be evaluated experimentally, which
is done in Section 5.

3.4 A Θ(n3)-Algorithm for Finding one Optimal Shortcut

In this section, we describe a fast algorithm for solving the BSP with exactly one shortcut.
To this end, we first consider the special case that shortest paths in the underlying graph
are unique. Then we outline a simple algorithm for finding one optimal shortcut in this
case and point out the problems we get when we try to apply the same algorithm to
general graphs. To overcome these problems, we take a closer look at how the insertion
of a shortcut can decrease the hop-distance between two nodes. Using these results, we
describe an algorithm that computes the values w(a, b) for all nodes a and b in the graph
with a running time in Θ(n3).

3.4.1 Special case: Unique shortest paths

For graphs with unique shortest paths, we observe that every shortest path is already
a hop-minimal shortest path. Hence, in this case, for every pair of nodes for which a
shortest s-a-b-t-path exists, the following equation holds:

h(s, t)− h′(s, t) = h(a, b)− 1.

This simplifies our problem a lot. For the remainder of this section, we assume all
distances in the graph to be precomputed using n runs of Dijkstra’s algorithm. Our aim
is to compute w(a, b) for each pair of nodes (a, b). Exploiting the above equation, we get
w(a, b) = (h(a, b)− 1) · |P (a, b)|. If we would consider all pairs of nodes and test if

dist(s, a) + dist(a, b) + dist(b, t) = dist(s, t),

we could determine |P (a, b)| in O(n2) running time for fixed a and b. Thus, altogether,
we would stay in time O(n4).

Instead of that, we consider all shortest-paths dags one by one. In the shortest-paths
dag Ds grown from s, we determine for every a and b the number of nodes t for which
there exists a shortest s-a-b-t-path. For this, we exploit the fact that the existence of
a shortest s-a-b-t-path is equivalent to the existence of a shortest s-a-b- and a shortest
s-b-t-path.
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Lemma 9 If shortest paths are unique, then for each choice of nodes a and b in the
graph, the following equation holds:

w(a, b) =
∑

s∈P−(a,b)

(h(a, b)− 1) · |P+(s, b)|

Proof

w(a, b) =
∑
s,t∈V

h(s, t)− h′(s, t) =
∑

(s,t)∈P (a,b)

h(a, b)− 1

=
∑

s∈P−(a,b)

∑
t∈P+(s,b)

h(a, b)− 1 =
∑

s∈P−(a,b)

(h(a, b)− 1) · |P+(s, b)|

�

In the first step, we determine |P+(s, b)| for each b in the dag. As we assume shortest
paths to be unique, we can either apply one of the algorithms from Section 2.4 or use the
precomputed distances. This yields a time complexity in O(m) or O(n2), respectively.
The latter approach is also feasible in the case of non-unique shortest paths.

In the second step, we test for each possible start-node of a shortcut a and each b, if
there exists a shortest s-a-b-path using the Bellman criterion. If this is the case, we add
(h(a, b)− 1) · |P+(s, b)| to w(a, b). The values w(a, b) have to be initialized to zero in the
beginning.

We repeat this process for every shortest-paths dag. The correctness of this algorithm
follows from Lemma 9. Precomputing the distances and hop-distances in the graph can
be done in O(n · (n log n + m)) time, while the overall time complexity for evaluating
each dag is in Θ(n3). In summary, for the special case that shortest paths are unique,
we can easily compute the values w(a, b) for all a and b in Θ(n3).

3.4.2 Additional notation

If we try to generalize this approach to work with arbitrary graphs, we encounter several
problems. First, in the general case, the existence of a shortest s-a-b-t-path does not force
h(s, t) to decrease by h(a, b) − 1 if we insert a shortcut between a and b. As illustrated
in Figure 3.3, it is possible that the insertion of a shortcut decreases the hop-distance
between s and t by less than h(a, b)− 1 or not at all.

We now introduce two terms that reflect this observation. The first one is the offset of
b with respect to s and t, which we define as

ob(s, t) := h(s, b) + h(b, t)− h(s, t).

Informally, the offset is a measure for the increase of the hop-distance between s and t,
if we restrict ourselves to shortest paths via b (see Figure 3.3 for an example).
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Fig. 3.3: An example for the case that the number of hops on the (sole) s-a-b-t-path is
greater than h(s, t), but inserting a shortcut between a and b decreases h(s, t). The offset
of b with respect to s and t equals 1 and the offset of b with respect to s and b equals 0.
Thus, the values for ∆0(s, b) and ∆1(s, b) are both 1.

s

3 0 0

2 2 0 1 2 0

2 0 0

3 3

2

2

2

1
6 0 0
∆0 ∆1 ∆2

∆0 ∆1 ∆2

∆0 ∆1 ∆2

∆0 ∆1 ∆2

1 0 0
∆0 ∆1 ∆2

∆0 ∆1 ∆2

Fig. 3.4: A shortest-path dag in G grown from node s : for every node b in the dag, the
corresponding values for ∆i(s, b) for i ∈ {0, 1, 2} are shown

Further, we divide the nodes t in P+(s, b) in equivalence classes with respect to ob. As
we will see later on, the number of nodes in these equivalence classes is of particular
interest. Accordingly, we define

∆i(s, b) := |{t ∈ P+(s, b) | ob(s, t) = i}|.

To get the idea behind this definition, we have a second look at the graph in Figure 3.3.
If we insert a shortcut from a to b, this decreases the overall hop length restricted to the
shortest paths starting at s by (h(a, b) − 1) · ∆0(s, b) + (h(a, b) − 2) · ∆1(s, b) = 3. As
another example, Figure 3.4 shows a shortest-path dag grown from a node s and for every
node b in the dag the corresponding values for ∆i(s, b). If we consider general graphs,
the ∆i(s, b) will play a similar role as |P+(s, b)| did in the algorithm that we used for
the case of unique shortest paths.

As we can see later on, the algorithm we propose makes use of partial (weighted) sums
of the ∆i(s, b) for fixed s and b in V . So, for convenience, we introduce two further
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. . .
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1
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Fig. 3.5: An example for the case that a is a predecessor of b inDs, but on no hop-minimal
shortest s-a-b-path

abbreviations

Cr(s, b) :=
r∑
i=0

∆i(s, b)

and

Dr(s, b) :=
r∑
i=0

i ·∆i(s, b).

The second problem we possibly come across is, that no hop-minimal shortest s-b-path
containing a has to exist, even if there is a shortest s-a-b-path. As with the offset, this
means that the insertion of a shortcut between a and b can decrease the hop-distance
between s and some t in P+(s, b), but by less than h(a, b) − 1. We define the potential
gain gs(a, b) of a shortcut from a to b with respect to s as

gs(a, b) := h(s, b)− h(s, a)− 1

This is an upper bound for the decrease of the hop-distance between s and any t in the
graph. Note that gs(a, b) equals h(s, b)− h′(s, b), if there exists a shortest s-a-b-path in
G and if gs(a, b) is nonnegative.

3.4.3 Expressing the decrease in hop-distance in terms of gain and offset

Here, we will state the accurate relationship between gain, offset and the decrease in
hop-distance for arbitrary pairs of nodes.

As before, we denote by a and b two arbitrary but fixed nodes in the graph, that will
represent the start- and end-node of a shortcut. We then consider two arbitrary nodes
s and t and observe, how the hop-distance between s and t changes due to the insertion
of a shortcut between a and b. To this end, we examine three different cases: First,
we consider the case that there exists a shortest s-a-b-t-path and gs(a, b) is greater than
ob(s, t) (Lemma 10). Then, we continue with the case that there is a shortest s-a-b-t-path,
but gs(a, b) is less than or equal to ob(s, t) (Lemma 11). For the sake of completeness,
we terminate with the case that there is no shortest s-a-b-t-path.

If there is a shortest s-a-b-t-path, we can easily compute the decrease in h(s, t) using
precomputed hop-distances by determining the maximum of h(s, t)−h(s, a)− 1−h(b, t)
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and zero. Finding an alternative equation for h(s, t)−h′(s, t) using gain and offset might
seem unintuitial. The overall idea behind this is to use intermediary results depending
on three nodes that shortcuts with the same end-node have in common.

Lemma 10 For all s, t ∈ V with the properties that there is a shortest s-a-b-t-path in
G and ob(s, t) < gs(a, b):

h(s, t)− h′(s, t) = gs(a, b)− ob(s, t)

Proof
Let p denote a hop-minimal shortest path between s and t in G′. Assume that p does
not contain the edge e = (a, b).

⇒ h′(s, t) = h(s, t)
⇒ ob(s, t) = h(s, b) + h(b, t)− h(s, t)

= h(s, b) + h(b, t)− h′(s, t)
= h(s, b)− h(s, a)− 1 + 1 + h(s, a) + h(b, t)− h′(s, t)
= h(s, b)− h(s, a)− 1︸ ︷︷ ︸

=gs(a,b)

+h(s, a) + 1 + h(b, t)− h′(s, t)︸ ︷︷ ︸
≥0, ∃sh. s-a-b-t-path

≥ gs(a, b)

This is contradicts our assumptions. Therefore, without loss of generality, we can assume
that e is on p.

⇒ h′(s, t) = h′(s, a) + 1 + h′(b, t)
= h(s, a) + 1 + h(b, t)

⇒ h(s, t)− h′(s, t) = h(s, t)− h(s, a)− 1− h(b, t) + h(s, b)− h(s, b)
= h(s, b)− h(s, a)− 1 + h(s, t)− h(b, t)− h(s, b)
= h(s, b)− h(s, a)− 1︸ ︷︷ ︸

gs(a,b)

− (h(s, b) + h(b, t)− h(s, t))︸ ︷︷ ︸
=ob(s,t)

= gs(a, b)− ob(s, t)

�

The next lemma deals with the case that gs(a, b) is less or equal than ob(s, t) and states
that under this condition, the hop-distance between s and t does not decrease if we insert
a shortcut between a and b.
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Lemma 11 For all s and t ∈ V with ob(s, t) ≥ gs(a, b):

h(s, t) = h′(s, t)

Proof

ob(s, t) ≥ gs(a, b)
⇐⇒ h(s, b) + h(b, t)− h(s, t) ≥ h(s, b)− h(s, a)− 1
⇐⇒ h(s, a) + 1 + h(b, t) ≥ h(s, t)

From this, it follows that every hop-minimal shortest s-t-path in G′ using e = (a, b)
has more or the same number of hops than a hop-minimal shortest s-t-path in G. As
G is a subgraph of G′ and h′(s, t) is always less or equal to h(s, t), we conclude that
h(s, t) = h′(s, t).

�

The last case is somewhat trivial, we just have have to recall that if there is no shortest
s-a-b-t-path, then the hop-distance between s and t can not be decreased by inserting a
shortcut between a and b. This is exactly what Lemma 7 from Section 3.2.2 states.

3.4.4 The main algorithm

As we have dealt with all the relevant possible ways a, b and t can be located with respect
to each other in the shortest-path dag grown from s by now, we are ready to present an
alternative equation for w(a, b) using partial sums of the ∆i(s, b).

Lemma 12

w(a, b) =
∑

s∈P−(a,b)
gs(a,b)>0

(
gs(a, b) · Cgs(a,b)−1(s, b)−Dgs(a,b)−1(s, b)

)
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Proof

w(a, b) =
∑
s,t∈V

(
h(s, t)− h′(s, t)

)
=

∑
(s,t)∈P (a,b)

(
h(s, t)− h′(s, t)

)
+

∑
(s,t)/∈P (a,b)

(
h(s, t)− h′(s, t)

)︸ ︷︷ ︸
=0 (Lemma 7)

=
∑

(s,t)∈P (a,b)
ob(s,t)<gs(a,b)

(
h(s, t)− h′(s, t)

)
+

∑
(s,t)∈P (a,b)
ob(s,t)≥gs(a,b)

(
h(s, t)− h′(s, t)

)︸ ︷︷ ︸
=0 (Lemma 11)

Lemma 10=
∑

(s,t)∈P (a,b)
ob(s,t)<gs(a,b)

h(s, b)− h(s, a)− 1− ob(s, t)

ob(s,t)≥0
=

∑
s∈P−(a,b)
gs(a,b)>0

gs(a,b)−1∑
i=0

∑
t∈P+(s,b)
ob(s,t)=i

h(s, b)− h(s, a)− 1︸ ︷︷ ︸
=gs(a,b)

−i

=
∑

s∈P−(a,b)
gs(a,b)>0

gs(a,b)−1∑
i=0

∆i(s, b) ·
(
gs(a, b)− i

)

=
∑

s∈P−(a,b)
gs(a,b)>0

(
gs(a, b) ·

gs(a,b)−1∑
i=0

∆i(s, b)−
gs(a,b)−1∑

i=0

(
i ·∆i(s, b)

))

=
∑

s∈P−(a,b)
gs(a,b)>0

(
gs(a, b) · Cgs(a,b)−1(s, b)−Dgs(a,b)−1(s, b)

)

�

Lemma 12 gives us a possibility to evaluate all potential shortcuts together by considering
the shortest-path dags in the graph one by one. For each s ∈ V we determine the set of
shortcuts (a, b) with the property that s is in P−(a, b). Subsequently, for each shortcut
with start-node a and end-node b in this set, we determine the overall decrease in hop
lengths that we would get by inserting it, restricted to the shortest-path dag grown from
s. If we sum up these decreases for all shortest-path dags, we get the correct value for
w(a, b). Using this approach, we can share intermediary results that shortcuts with the
same end-node have in common, which considerably reduces computational complexity.

The algorithm we propose is outlined as follows. First, we precompute all distances and
hop-distances in the graph using n runs of Dijkstra’s algorithm. From this point on, we
consider all shortest-path dags successively. Let us denote the respective root-node be
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s. In a first step, we compute all relevant ∆i(s, b). The pseudocode for this is given in
Algorithm 7.

Algorithm 7: ComputeDeltas
Input: Strongly connected graph G = (V,E), node s ∈ V , precomputed distances

and hop-distances in G
Output: ∆i(s, b) for all b ∈ V , i ∈ [0, . . . , n− 1]
forall t ∈ V do1

for i ∈ [0, . . . , n− 1] do2

Set ∆i(s, b) := 0 ;3

4

5

forall b, t ∈ V do6

if there exists a shortest s-b-t-path in G then7

Compute j := ob(s, t) ;8

Increment ∆j(s, b) by one ;9

10

11

Lemma 13 Algorithm 7 computes the correct values of ∆i(s, b) for all b ∈ V and i ∈
[0, . . . , n− 1] and has a time complexity in Θ(n2) while consuming Θ(n2) space.

Proof
Recall that ∆i(s, b) = |{t ∈ P+(s, b) | ob(s, t) = i}|. The correctness of the results follows
directly from this definition.

As we have precomputed all distances in the graph, the condition in line 7 can be tested
in constant time using the Bellman criterion. Similarly, as all hop-distances are given,
computing ob(s, t) takes constant time. For fixed s, we just have to to store n2 values
∆j(s, b), thus, altogether, the time and space complexity is in Θ(n2). �

In the second step we determine partial sums of the ∆i(s, b); we proceed as in Algorithm
8.

Lemma 14 Algorithm 8 computes the correct values for Cr(s, b) and Dr(s, b) for all
b ∈ V and r ∈ [0, . . . , n− 1] and has a time complexity in Θ(n2) while consuming Θ(n2)
space.

Proof
Recall that Cr(s, b) =

∑r
i=0 ∆i(s, b). This is the same as

∑r−1
i=0 ∆i(s, b) + ∆r(s, b) =

Cr−1(s, b) + ∆r(s, b) for r > 0. So we can easily compute the partial sums recursively,
which is exactly how the algorithm works. The same holds for the computation of the
Dr(s, b).

As we have precomputed all relevant values, it is easy to see that the assertions concerning
time and space complexity are correct. �
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Algorithm 8: ComputePartialSums
Input: Strongly connected graph G = (V,E), node s ∈ V , the values ∆i(s, b) for all

b ∈ V , i ∈ [0, . . . , n− 1]
Output: Cr(s, b) and Dr(s, b) for all b ∈ V , r ∈ [0, . . . , n− 1]
forall b ∈ V do1

Set C0(s, b) = ∆0(s, b) and D0(s, b) = 0 ;2

for r ∈ [1, . . . , n− 1] do3

Set Cr(s, b) = Cr−1(s, b) + ∆r(s, b) ;4

Set Dr(s, b) = Dr−1(s, b) + r ·∆r(s, b) ;5

6

7

With these sub-algorithms, we are finally able to formulate the main result of this chapter,
a Θ(n3)-algorithm for computing w(a, b) for all a, b ∈ V . The pseudocode for this is
given as Algorithm 9.

Algorithm 9: DecreaseInOverallHopLengths
Input: Strongly connected graph G = (V,E)
Output: The values w(a, b) for all a, b ∈ V
forall v ∈ V do1

Distances(v), HopDistances(v) = HopcountingDijkstra(G, v) ;2

forall a, b ∈ V do3

Set w(a, b) := 0 ;4

forall s ∈ V do5

∆i(s, b) := ComputeDeltas(G, s, Distances, HopDistances) ;6

Cr(s, b), Dr(s, b) := ComputePartialSums(G, s, ∆i(s, b)) ;7

forall a, b ∈ V do8

if there exists a shortest s-a-b-path then9

if gs(a, b) > 0 then10

Increment w(a, b) by gs(a, b) · Cgs(a,b)−1(s, b)−Dgs(a,b)−1(s, b) ;11

12

13

14

15

Proposition 1 Algorithm 9 is correct and has a time complexity in Θ(n3) while con-
suming Θ(n2) space.

Proof
The correctness of the algorithm follows directy from Lemma 12. Using Lemma 13 and
Lemma 14, we know that computing the relevant values ∆i(s, b), Cr(s, b) and Dr(s, b)
for all nodes s and b in the graph is in Θ(n3), if we use the algorithms introduced above.
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Again, evaluating the condition in Line 9 takes constant time if we use the Bellman
criterium. As we have precomputed all hop-distances and the values for the partial
sums, incrementing w(a, b) by the respective amount is in O(1). Thus, altogether, we
get a time complexity in Θ(n3).

To get along with O(n2) memory, we have to be a little bit more careful. If we memorize
all the values for ∆i(s, b), Cr(s, b) and Dr(s, b) we compute during the algorithm, we
need Θ(n3) space. But note that in each execution of the loop starting at line 5, we only
need the respective values for the current node s. Thus, at the end of the loop, we can
free the memory needed by these intermediary results; so all in all, we need only Θ(n2)
space. �
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4 Pair Centrality Indices

Until now, we tried to reduce computational complexity for finding one optimal shortcut.
Our main result was an algorithm that evaluates all potential shortcuts together with a
time complexity in Θ(n3). Compared with the time to solve this task with a brute-force
algorithm, this is a major improvement.

Nonetheless, if we consider larger graphs, a time complexity in Θ(n3) can be prohibitive.
From this arises the question, whether there are heuristics for finding one reasonably
good shortcut with less time complexity. The idea is to rate shortcuts using centrality
indices and to pick the shortcut rated best as heuristic for the BSP restricted to one
shortcut.

4.1 Betweenness and stress for nodes and edges

In Section 3.2.3 we already described node betweenness and gave a brief justification why
this measure can be useful to estimate the quality of shortcuts. There, we rated shortcuts
best if the betweenness values of the (non-adjacent) end-nodes were maximal. Another
centrality index related to shortest paths is the stress centrality CS(v) of a node v:

CS(v) =
∑
s,t∈V

σst(v) (stress centrality of a node v)

Betweenness and stress can be applied to edges in the following way:

CS(e) =
∑
s,t∈V

σst(e) (stress centrality of an edge e)

CB(e) =
∑
s,t∈V

σst(e)
σst

(betweenness centrality of an edge e)

Here, σst(e) denotes the number of shortest s-t-paths that use an edge e. To compute
edge betweenness, some minor changes to Brandes’ algorithm suffice.

In many cases, node betweenness performs tolerably well as heuristic for the BSP re-
stricted to few shortcuts. On the other hand, Figure 4.1 shows an extreme example of
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Kn Kn

v0

v1

v2

Fig. 4.1: An example for a case, where node betweenness is inappropriate: The shortcut
from v0 to v1 is clearly not even close to optimal, as the comparison with a shortcut from
v0 to v2 reveals. As CB(v1) is slightly greater than CB(v2) (due to the node between
v0 and v2), we would prefer the shortcut from v0 to v1 if using node betweenness of the
end-nodes as heuristic. The same holds for the stress indices.

e1 e2

v0 v1 v2v3

Fig. 4.2: An example for a case, where edge betweenness is inappropriate: The shortcut
displayed as dashed is clearly and considerably suboptimal, as the comparison with a
shortcut from v3 to v2 reveals. Nonetheless, e1 and e2 are the edges with the highest
edge betweenness indices in the graph. The same holds for the stress indices.

a shortcut that would be considerably overestimated if using node betweenness or node
stress.

Taking a closer look at this graph, we see why this happens. There are in fact a lot of
shortest paths through v0 and a lot of shortest paths through v1. But very few of them
use both nodes. Thus, barely no shortest path exists that could profit from a shortcut
between v0 and v1.

In this graph, the use of the betweenness of the edges between v0 and v1 would be
much more appropriate to estimate the usefulness of a shortcut between v0 and v1. But
this does not really solve the problem. Consider for example the graph in Figure 4.2,
which is an example for a situation where edge betweenness fails to give proper ratings.
The problem with edge betweenness is, that shortest paths can “bend off” between the
end-nodes of a shortcut.
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4.2 Generalization of centrality indices to pairs of nodes

From this arises the question whether there is a way to generalize the aforementioned
centrality indices to avoid these problems. The following definitions of pair betweenness
and pair stress are the straightforward result of these considerations.

CS(a, b) =
∑
s,t∈V

σst(a, b) (pair stress centrality of nodes a and b)

CB(a, b) =
∑
s,t∈V

σst(a, b)
σst

(pair betweenness centrality of nodes a and b)

One might think of these centrality measures as a kind of “path betweenness” or “path
stress” of the shortest paths between a and b.

The difference of our centrality indices for pairs of nodes to the ones defined for edges is
that we do not restrict ourselves to pairs of adjacent nodes. Returning to the problem of
finding good shortcuts, the idea behind these centrality indices is obvious: the usefulness
of a shortcut s between a and b is closely related to the number of shortest paths that
can be shortened (in terms of the number of edges on it) by s. For fixed a and b, this
equals the number of shortest s-a-b-t-paths CS(a, b).

On the other hand the betweenness centrality takes into account that the hop-distance
between two nodes s and t does not automatically decrease, if there is a shortest s-t-path
that can benefit from a shortcut. But, if every shortest s-t-path is a shortest s-a-b-t-path,
this is guaranteed. In this case, σst(a, b)/σst takes the maximum value 1. If there are
other shortest s-t-paths, we add only smaller values to the betweenness of (a, b), as the
probability of a decrease of h(s, t) by less than h(a, b)− 1 increases.

Note that if a and b are adjacent and the edge between a and b forms a unique shortest
a-b-path, the pair betweenness of (a, b) equals the edge betweenness of e = (a, b). The
same holds for the stress indices. Another interesting property of CB(a, b) and CS(a, b)
is the fact, that we can convert these measures to w(a, b) by multiplying with h(a, b)−1,
if shortest paths in the underlying graph are unique.

Lemma 15 If shortest paths in G are unique, then:

w(a, b) = (h(a, b)− 1) · CS(a, b) = (h(a, b)− 1) · CB(a, b)

Proof
As there is exactly one shortest s-t-path, σst(a, b) is 1, if there is a shortest s-a-b-t-path,
and 0 otherwise. Thus, CS(a, b) equals |P (a, b)|. The same holds for CB(a, b). Hence, it
remains to show that w(a, b) equals |P (a, b)| · (h(a, b)− 1).

As we assume shortest paths to be unique, every shortest s-t-path is a hop-minimal
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shortest s-t-path as well. It follows, that

w(a, b) =
∑
s,t∈V

h(s, t)− h′(s, t) =
∑

(s,t)∈P (a,b)

h(s, t)− h′(s, t)

=
∑

(s,t)∈P (a,b)

h(a, b)− 1 = (h(a, b)− 1) · |P (a, b)|

�

Thus, we can expect to get a rather good estimation for w(a, b) by multiplying the
centrality measures with h(a, b)− 1, if shortest paths in the underlying graph are “nearly
unique”. Moreover, we get upper bounds for w(a, b) that are tighter than the ones we
used in Algorithm 15, if we use the stress centrality.

Lemma 16

w(a, b) ≤ (h(a, b)− 1) · 1
σab
· CS(a, b) ≤ (h(a, b)− 1) ·

 ∑
t∈P+(a,b)

σbt

 ·
 ∑
s∈P−(a,b)

σsa


Proof

w(a, b) =
∑
s,t∈V

h(s, t)− h′(s, t) =
∑

(s,t)∈P (a,b)

h(s, t)− h′(s, t)

≤
∑

(s,t)∈P (a,b)

h(a, b)− 1 = (h(a, b)− 1) · |P (a, b)|

As for every tuple of nodes (s, t) in P (a, b), there exist at least σab shortest s-a-b-t-paths,
we get

w(a, b) ≤ (h(a, b)− 1) · 1
σab
· CS(a, b)

Furthermore, we get

(h(a, b)− 1) · 1
σab
· CS(a, b) = (h(a, b)− 1) ·

∑
(s,t)∈P (a,b)

σsa · σbt

≤ (h(a, b)− 1) ·
∑

s∈P−(a,b)

∑
t∈P+(a,b)

σsa · σbt

= (h(a, b)− 1) ·

 ∑
s∈P−(a,b)

σsa

 ·
 ∑
t∈P+(a,b)

σbt


�
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One problem with the two introduced pair centralities is that they tend to be rather stable
under the insertion of shortcuts, which might be unwanted if we use the centralities to
measure the usefulness of shortcuts. Therefore, we consider two further pair centralities,
that are closely related to pair betweenness and pair stress but restricted to hop-minimal
shortest paths. We call them hop-minimal pair betweenness CHB(a, b) and hop-minimal
pair stress CHS(a, b):

CHS(a, b) =
∑
s,t∈V

ηst(a, b) (hop-minimal pair stress of nodes a and b)

CHB(a, b) =
∑
s,t∈V

ηst(a, b)
ηst

(hop-minimal pair betweenness of nodes a and b)

It is easy to see that the hop-minimal variants do not differ from the original pair cen-
tralities, if shortest paths are unique. Thus, using Lemma 15, we can easily convert the
hop-minimal pair centralities to w(a, b) in this case.

Each of the introduced pair centralities has advantages and disadvantages if used to
measure the quality of shortcuts. Before we take a closer look at these, we will specify
how exactly we plan to use pair centralities to rate shortcuts. To exploit the property to
get exact estimations for w(a, b), if shortest paths are unique, we multiply pair centralities
with the hop-distance between the two nodes. Further, as there seems to be no reason to
prefer shortcuts (a, b) with multiple shortest paths between a and b, we divide our pair
stress centralities by σab or ηab, respectively. Thus, we get the following shortcut ratings:

rateB(a, b) =(h(a, b)− 1) · CB(a, b)

rateS(a, b) =(h(a, b)− 1) · 1
σab
· CS(a, b)

rateHB(a, b)=(h(a, b)− 1) · CHB(a, b)

rateHS(a, b)=(h(a, b)− 1) · 1
ηab
· CHS(a, b)

Figure 4.3 shows some simple examples of how shortcuts can be located with respect to
each other. To get an idea of how the different shortcut ratings work, we take a look at
the following table. Here, we compare the values that are added to the different shortcut
ratings concerning the paths between s and t. More precisely, we give

σst(a, b)/σab · (h(a, b)− 1) for pair stress,
σst(a, b)/σst · (h(a, b)− 1) for pair betweenness,
ηst(a, b)/ηab · (h(a, b)− 1) for hop-minimal pair stress and
ηst(a, b)/ηst · (h(a, b)− 1) for hop-minimal pair betweenness.
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s t

s1

s2

a b

(a) New shortcut covers old shortcut

s t
a b

s1

s2

(b) New shortcut is covered by old shortcut

s t
a

b

s1

s2

(c) New shortcut is partially covered by old shortcut

s t
a b

s1

s3
s2

(d) Several hop-minimal shortest s-t-paths

Fig. 4.3: Example situations to illustrate the advantages and disadvantages of different
pair centrality measures. In the underlying graph, there is exactly one shortest s-t-path.
The shortcut displayed in red is the one to be evaluated heuristically using centrality
measures. Black shortcuts have been already inserted. Edges displayed as dotted are on
no hop-minimal shortest s-t-path.

The closer these values are to h(s, t)− h′(s, t) (for all (s, t) in V × V ), the better we can
use the respective centrality measure to estimate w(a, b).

h(s, t)− h′(s, t) CB(a, b) CS(a, b) CHB(a, b) CHS(a, b)
Fig. 4.3a) 2 2 2 2 2
Fig. 4.3b) 0 1/2 1 0 0
Fig. 4.3c) 3 2 4 0 0
Fig. 4.3d) 2 4/3 4 1 2

In the first example, all measures are equal to the decrease in hop-distance between s
and t. In the second case, we overestimate this decrease if we use the original variants of
pair betweennes, while in the third case, we underestimate it if we use the hop-minimal
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variants. Using the variants of pair betweenness, we tend to get underestimations, while
with pair stress, we frequently observe overestimations. This illustrates that it is not easy
to say in advance, which variant of pair betweenness is best suited to provide shortcut
ratings. We will examine this question experimentally in Section 5.3.2.

Finally, analogous to the upper bounds for w(a, b) that we get using CS(a, b), CHB(a, b)
gives us a tool to determine lower bounds for w(a, b).

Lemma 17
w(a, b) ≥ (h(a, b)− 1) · CHB(a, b)

Proof

w(a, b) =
∑
s,t∈V

h(s, t)− h′(s, t)

=
∑

(s,t)∈P (a,b):
h(s,a)+h(a,b)+h(b,t)=h(s,t)

(h(s, t)− h′(s, t))︸ ︷︷ ︸
=h(a,b)−1

+
∑

(s,t)∈P (a,b):
h(s,a)+h(a,b)+h(b,t)>h(s,t)

(h(s, t)− h′(s, t))

≥
∑

(s,t)∈P (a,b):
h(s,a)+h(a,b)+h(b,t)=h(s,t)

(h(a, b)− 1)

≥
∑

(s,t)∈P (a,b):
h(s,a)+h(a,b)+h(b,t)=h(s,t)

(h(a, b)− 1) · ηst(a, b)
ηst

= (h(a, b)− 1) ·
∑
s,t∈V

ηst(a, b)
ηst

= (h(a, b)− 1) · CHB(a, b)

�

4.3 Fast algorithms to determine pair centrality indices

In the previous section, we saw how the proposed centrality indices for shortcuts can
be used to estimate the decrease in overall hop-length. This is of course only relevant,
if there is a way to compute the centrality indices faster than our Θ(n3)-algorithm to
determine one optimal shortcut. For sparse graphs, this is the case, as we can use the
ideas of Brandes’ fast algorithm for node betweenness to compute betweenness for pairs
of nodes as well. In contrast to the base algorithm, our algorithm works in two phases:
In the first phase, we consider all shortest-paths dags in G to compute intermediary
results. This corresponds to Brandes’ algorithm. In the second phase, we consider the
shortest-paths dags in Ḡ to sum up the intermediary results from the first phase.

Before we take a closer look at the details, we give an alternative characterization of
CB(a, b), which we will need to justify the correctness of our algorithm.
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Lemma 18
CB(a, b) =

∑
s∈P−(a,b)

σsb(a)
σsb

·
∑

t∈P+(s,b)

σst(b)
σst

Proof
Clearly, σst(a, b) = 0, if there is no shortest s-a-b-t-path. On the other hand, if there is
a shortest s-a-b-t-path, then the length of each concatenation of shortest s-a-, a-b- and
b-t-paths equals the distance between s and t in the graph. Hence, in this case σst(a, b)
equals σsa · σab · σbt. It follows, that

CB(a, b) =
∑
s,t∈V

σst(a, b)
σst

=
∑

s,t∈P (a,b)

σsa · σab · σbt
σst

Recall that the existence of a shortest s-a-b-t-path is equivalent to the question whether
dist(s, a) + dist(a, b) + dist(b, t) equals dist(s, t). This is true if and only if dist(s, b) +
dist(b, t) = dist(s, t) and dist(s, a) + dist(a, b) = dist(s, b), which is equivalent to the
condition that s is in P−(a, b) and t is in P+(s, b). Hence, we get∑

s,t∈P (a,b)

σsa · σab · σbt
σst

=
∑

s∈P−(a,b)
t∈P+(s,b)

σsa · σab · σbt
σst

=
∑

s∈P−(a,b)
t∈P+(s,b)

σsa · σab · σsb · σbt
σsb · σst

Like before, we know that if s is in P−(a, b) and t in P+(s, b), σsb(a) equals σsa ·σab and
σst(b) equals σsb · σbt. Thus,∑

s∈P−(a,b)
t∈P+(s,b)

σsa · σab · σsb · σbt
σsb · σst

=
∑

s∈P−(a,b)
t∈P+(s,b)

σsb(a)
σsb

· σst(b)
σst

=
∑

s∈P−(a,b)

σsb(a)
σsb

·
∑

t∈P+(s,b)

σst(b)
σst

�

With this result and the algorithms for summing up values in shortest-paths dags intro-
duced in Section 2.4, it is easy to develop an algorithm that computes betweenness for
all pairs of nodes efficiently.

In the first phase, for fixed s and arbitrary t, we compute
∑

t∈P+(s,b) σst(b)/σst. These
values correspond directly to the dependencies in Brandes’ algorithm. In the second
phase, we use the algorithm SumValuesDecessorsLowerBound to sum up fractions of the
results from the first phase along the paths in Db. Pseudocode for this approach is given
as Algorithm 10.
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Algorithm 10: PairBetweenness
Input: Strongly connected graph G = (V,E)
Output: CB(a, b) for each (a, b) ∈ V × V
forall s ∈ V do1

Build Ds and compute σsb for all b ∈ V using HopAndPathCountingDijkstra2

Compute
∑

t∈P+(s,b)
σst(b)
σst

for all b ∈ V using SumValuesDecessorsLowerBound3

4

forall b ∈ V do5

Build Db and compute σab for all a ∈ V using HopAndPathCountingDijkstra6

Compute CB(a, b) =
∑

s∈P−(a,b)
σsb(a)
σsb
·
∑

t∈P+(s,b)
σst(b)
σst

using7
SumValuesDecessorsLowerBound

8

The correctness of the algorithm follows directly from Lemma 5 and Lemma 18. For
each node, we have to build two shortest-paths dags, one in the original and one in the
reverse graph. Using Dijkstra’s algorithm, this causes an overall time consumption in
O(n · (n log n+m)). Further, we call the algorithm SumValuesDecessorsLowerBound two
times for each node. As this corresponds essentially to two depth-first-traversals, this does
not increase the asymptotical time complexity, so all in all, we stay in O(n·(n log n+m)).
Unfortunately, in contrast to Brandes’ algorithm, we cannot restrict ourselves to linear
space complexity, as all intermediary results of the first phase have to be stored to be
available during the second phase.

Considering the stress centrality for pairs of nodes, we get a very similar result:

Lemma 19
CS(a, b) = σab ·

∑
s∈P−(a,b)

σsa ·
∑

t∈P+(s,b)

σbt

Proof

CS(a, b) =
∑
s,t∈V

σst(a, b)

=
∑

s,t∈P (a,b)

σsa · σab · σbt

= σab ·
∑

s∈P−(a,b)
t∈P+(s,b)

σsa · σbt

= σab ·
∑

s∈P−(a,b)

σsa ·
∑

t∈P+(s,b)

σbt

�
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With this result, it is straightforward to adapt the algorithm we used to compute be-
tweenness for pairs of nodes to compute our generalized stress centrality. We just have
to use SumValuesDecessorsUpperBound instead of SumValuesDecessorsLowerBound and
multiply the output CS(a, b) of the algorithm with the number of shortest paths between
a and b for each pair of nodes (a, b).

Further, it is easy to see that these algorithms can be used to compute CHB and CHS
as well, if we restrict ourselves to hop-minimal shortest paths as described in Section
2.4. Finally, it remains to mention that, like with node betweenness, the computational
complexity reduces to O(nm), if we consider unweighted graphs. In this case, we can
replace Dijkstra’s algorithm by a simple breadth-first-search.
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5 First Experiments

In this chapter, we will evaluate the algorithms developed to this point with respect to
computation time and solution quality.

Experimental Setup. All of the algorithms evaluated in this thesis are implemented
in C++ and compiled with GCC 4.3, using optimization level 4 and unrolling of loops
as compiler flags. The experiments in this chapter are performed on one core of an Intel
Xeon E5430 clocked at 2.66 GHz. The machine has 6144 kB L2 Cache and 32 GB RAM.

5.1 Graph classes used

5.1.1 Road graphs

The first graph class we consider are graphs modelling road networks centered at Karl-
sruhe with varying size, provided by the PTV AG. We use graphs ranging from 100 to
5000 nodes and extract the biggest strongly connected component, respectively. Our
overall aim is to add several shortcuts to the graph using the algorithms to determine
one optimal shortcut as subroutines. Thus, we are also interested in the performance of
these algorithms after several shortcuts already have been added to the original graphs.
Therefore, in addition to the original test set, we consider graphs that are generated by
adding approximately

√
n and n shortcuts to the original graphs greedily.

Table 5.1 shows the number of edges and the average number of hop-minimal shortest
paths (HMSP) and all shortest paths(SP) between two arbitrary nodes in the graph. The
latter two properties are of interest, as they give a rough indicator for the hardness of
the test instances for our heuristic algorithms. Note that here and in the following, only
a subset of the graphs are listed; the corresponding values for the graphs omitted did not
differ substantially to the results given.

As the time complexity of adding n shortcuts greedily is unacceptably high for larger
graphs, we generate these modified graphs only for graphs with up to 1000 nodes.

5.1.2 Grid graphs

The second graph class we consider are rectangular grid graphs. By this, we denote graphs
with a mapping of the nodes to lattice points of a rectangular grid with the property that
there exists an edge between two nodes if and only if the corresponding lattice points are
adjacent.
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original graphs
√
n shortcuts added n shortcuts added

|V | |E| HMSP SP |E| HMSP SP |E| HMSP SP
102 241 1.00 1.00 251 1.00 1.72 341 1.02 13.10
171 403 1.00 1.00 417 1.00 2.03 603 1.10 58.75
491 1129 1.00 1.00 1151 1.00 3.57 1629 1.15 6735.24
970 2287 1.00 1.01 2318 1.00 3.05 3287 1.13 23968.00
1969 4609 1.00 1.00 4653 1.00 5.09 - - -
4894 11484 1.00 1.01 - - - - - -

Table 5.1: Road graphs

Grid graphs are often used to evaluate algorithms and are interesting out of several
reasons. They are easy to imagine and analyze and, in the unweighted case, the average
number of (hop-minimal) shortest paths between two nodes is very high. To tune the
average number of shortest paths, we choose integer valued edge weights uniformly at
random out of a given interval with varying size. Moreover, the edge weights len are
symmetric, that means len(x, y) = len(y, x) for all pairs of adjacent nodes x and y in the
graph. Furthermore, we choose the corresponding grids to be close to squares. Table 5.2
illustrate the impact of the range of edge weights on the average number of (hop-minimal)
shortest paths.

uniform weights weights in [1,2]
|V | |E| HMSP SP HMSP SP
100 360 281.91 281.91 6.16 6.21
196 728 16151.20 16151.20 6.82 7.13
506 1934 31074800.00 31074800.00 21.76 22.92
992 3842 236549000.00 236549000.00 116.34 131.42
1980 7742 610058000.00 610058000.00 1536.80 1619.08
4970 19598 1115270000.00 1115270000.00 6185490.00 6293160.00

weights in [1,5] weights in [1,100] weights in [1,1000]
|V | |E| HMSP SP HMSP SP HMSP SP
100 360 1.34 1.43 1.00 1.01 1.00 1.00
196 728 1.52 1.81 1.02 1.03 1.00 1.00
506 1934 2.11 2.59 1.01 1.02 1.00 1.00
992 3842 5.62 7.11 1.05 1.07 1.00 1.00
1980 7742 4.49 7.52 1.04 1.09 1.00 1.01
4970 19598 23.24 37.08 1.15 1.20 1.01 1.02

Table 5.2: Grid Graphs
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5.1.3 G(n, p)-graphs

The third graph class we use are random G(n, p)-graphs according to the Erdõs-Rényi
model. This means, we generate random graphs with n nodes and the property that an
edge (x, y) between two arbitrary nodes x and y exists with probability p. As all the
other graph classes considered are rather sparse, we use dense G(n, p)-graphs to illustrate
how the running times of our algorithms depend on the density of the underlying graph.
To avoid the effect that most of the edges are longer than the shortest path between the
end-nodes, we consider unweighted graphs. Table 5.3 shows properties of the generated
graphs. A density of k percent means that we set the parameter p to k/100.

appr. 5% density appr. 40% density
|V | |E| HMSP SP |E| HMSP SP
100 466 2.23 2.23 3952 9.72 9.72
200 1970 3.51 3.51 15848 19.24 19.24
500 12204 8.81 8.81 99760 48.08 48.08
1000 49640 11.36 11.36 397888 95.56 95.56
2000 199444 7.76 7.76 1598600 192.02 192.02
5000 1250692 11.94 11.94 9994926 479.92 479.92

Table 5.3: G(n, p)-graphs

5.1.4 Unit Disk graphs

The last class of graphs considered are unit disk graphs. Given n and m, a unit disk
graph is generated by randomly assigning each of the n nodes to a point in the unit
square of the Euclidean plain. Two nodes are connected by an edge in case their Euclidean
distance is below a given radius. This radius is adjusted such that the resulting graph has
approximately m edges. Unit disk graphs are commonly used to model the topology of
ad-hoc wireless communication networks. According to this context, we set edge weights
to the square of the distances between the end-nodes in the plane. As we choose the
location of the points randomly, shortest paths in these graphs are nearly unique. Few
exceptions occur due to discretization effects. We use graphs of average node degree 10
and 20. Elementary properties of the generated graphs can be found in Table 5.4.
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av. Deg. 10 av. Deg. 20
|V | |E| HMSP SP |V | |E| HMSP SP
100 1000 1 1.00 100 2000 1 1.00
198 1998 1 1.00 200 4000 1 1.00
499 4998 1 1.00 500 10000 1 1.00
1000 10010 1 1.00 1000 20008 1 1.00
1998 20012 1 1.00 2000 39988 1 1.00
4997 49990 1 1.00 5000 99974 1 1.00

Table 5.4: Unit Disk graphs

5.2 Running times for Finding One Optimal Shortcut

5.2.1 Comparison of preselection criteria

In this section, we will compare the running time of our heuristic improved versions of the
brute-force algorithm that use bounds under different preselection criteria (see Section
3.2.3). As an example, Table 5.5 shows the results for our road graphs with degree, reach
and betweenness as strategies to preselect promising shortcuts. For comparison reasons,
we also give the running times of the versions without preselection criteria (called None).
Both with precomputed and non-precomputed bounds, we see that the running times

non-precomputed bounds precomputed bounds
|V | N D R B N D R B
102 0.46 0.44 0.45 0.44 0.07 0.05 0.06 0.05
171 2.18 2.05 2.09 2.04 0.41 0.28 0.30 0.26
278 11.59 10.57 11.29 10.66 3.97 2.97 3.40 2.89
392 27.63 27.32 28.33 27.38 6.20 5.81 6.55 5.79
491 47.93 46.89 49.11 46.58 5.10 4.53 6.28 4.55
591 82.43 81.75 86.46 81.97 7.62 6.29 9.93 6.63
684 167.78 163.08 168.09 162.60 51.56 46.30 49.92 46.61
781 265.21 268.49 270.09 256.76 91.33 94.04 94.07 84.23
876 353.89 359.24 361.55 345.29 110.19 114.47 114.21 99.56
970 423.52 441.84 448.58 420.00 92.23 109.33 111.11 86.91

Table 5.5: Running times (in seconds) of heuristic algorithms to determine one optimal
shortcut using bounds on road graphs centered at Karlsruhe. Preselection criteria used
are: None(N), Degree(D), Reach(R) and Betweenness(B)

differ only slightly. Altogether, with reach and degree, there seems to be no improvement
compared to the version without preselection. In contrast to that, using betweenness, we
could reduce the running times for finding one optimal shortcut with every test instance.
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The running times for the other graph classes show similar behaviour.

All in all, the running times do not differ much due to different preselection criteria and
for the majority of graphs, betweenness yields the best results. Therefore, to compare
our heuristic algorithms to the unoptimized version and our Θ(n3)-algorithm, we always
regard solely the results for preselection using betweenness.

5.2.2 Running times for exact algorithms

In this section, we will examine the running times of our algorithms to solve the BSP re-
stricted to one shortcut. Figure 5.1 shows the results the particular strategies achieved
in road graphs centered at Karlsruhe with and without added shortcuts. Running times
over 2000 seconds remained unconsidered. The first observation is that the bounds we
used to prune the search space for the brute-force algorithm proved to be valuable. Using
these, we were able to evaluate graphs with up to 2500 nodes, while for the unoptimized
brute-force algorithm, even graphs with only 400 nodes led to inacceptably long running
times. We achieve the best results with the original graphs without shortcuts. This coin-
cides with the fact that in these graphs, shortest paths are nearly unique. Intuitively, our
bounds should be tighter in this case. If we compare the (rough) precomputed bounds
to the (tighter) non-precomputed bounds, we see that the former lead to better perfor-
mance in the original graphs and the latter to better performance in the graphs with
shortcuts. Recalling the fact that the bounds are equal if shortest paths are unique, this
confirms our theoretical results. Compared to the other algorithms, our Θ(n3)-algorithm
is unbeatable fast. With this algorithm, we are able to evaluate graphs with up to 2500
nodes in under 260 seconds.

The experiments with grid graphs confirmed these results (see Figure 5.2). The lower the
average number of shortest paths, the better is the performance of our algorithms using
bounds. As with the road graphs, if shortest paths are nearly unique (edge weights in
[1, . . . , 1000]), the precomputed bounds achieve better results than the non-precomputed
bounds.

We get similar results evaluating unit disk graphs (see Figure 5.3). The hardness of
G(n, p)-graphs for our algorithms with bounds is not this closely related to the average
number of shortest paths. First, we see that the unoptimized brute-force algorithm has
a worse performance than with the other graph classes. This coincides with theoretical
considerations, as the running time of APSP increases with the number of edges in the
graph. The fact that our bounds work astonishingly well in the graphs with density 0.4
has a very simple reason: In these graphs, there are no shortest paths that contain more
than two edges. Thus, both bounds are trivially tight.

As a last remark concerning the algorithms using bounds, we take a closer look at the
performance in road graphs with shortcuts added in advance and grid graphs with uni-
form edge weights. Interestingly, the performance is equally poor, although the average
number of shortest paths in the road graphs is much lower than with the grid graphs.
This could indicate that graphs with shortcuts pose an especially hard challenge to these
algorithms.
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Fig. 5.1: Running times for different algorithms to solve the BSP restricted to one
shortcut in road graphs centered at Karlsruhe: brute-force(BF), brute-force using (non-
precomputed) bounds and preselection according to betweenness(BB), brute-force us-
ing precomputed bounds and preselection according to betweenness(BBP) and Θ(n3)-
algorithm(N3)
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Fig. 5.2: Running times for different algorithms to solve the BSP restricted to one
shortcut in grid graph with varying scope of edge weights: brute-force(BF), brute-force
using (non-precomputed) bounds and preselection according to betweenness(BB), brute-
force using precomputed bounds and preselection according to betweenness(BBP) and
Θ(n3)-algorithm(N3)
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Fig. 5.3: Running times for different algorithms to solve the BSP restricted to one short-
cut in unit disk graphs and G(n, p)-graphs: brute-force(BF), brute-force using (non-
precomputed) bounds and preselection according to betweenness(BB), brute-force us-
ing precomputed bounds and preselection according to betweenness(BBP) and Θ(n3)-
algorithm(N3)
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Fig. 5.4: Running time of Θ(n3)-algorithm on different graph classes: On the left, we
see the results of all graphs considered, on the right, we compare unit disk graphs with
average degree 10 to G(n, p)-graphs with appr. 5% density

We now take a closer look at the performance of our Θ(n3)-algorithm that clearly out-
performs the other strategies. In the left part of Figure 5.4, we see all results of this
algorithms for different graph classes depending on the number of nodes in the graph.
The first observation is that there seems to be no fundamental differences between the
particular classes considered. Closer analysis shows that the curves we get if we restrict
ourselves to one graph class are rather smooth while the running times for different
classes and comparable number of nodes differ to a constant factor. The largest differ-
ences arise when comparing unit disk graphs with average degree 10 to G(n, p)-graphs
with 5% density (the running times for the latter are approximately 26% lower). This
might seem unintuitial at first glance, as the only obvious influence of the particular
graph structure on the performance of our Θ(n3)-algorithm arises in the preprocessing
step, when we solve APSP using Dijkstra’s algorithm. But this should be harder for
dense graphs. Closer analysis showed that another effect has a much greater influence on
the performance. If we take a look at the pseudocode again, we see that there are some
calculations that are only executed if one particular node is on a shortest path between
two other nodes. As shortest paths in unit disk graphs are rather long, the probability for
this is a lot higher than in the G(n, p)-graphs considered. This outweighs the additional
overhead for solving APSP in the latter by far.

Conclusion. In summary, by pruning the search space using bounds, we were able to get
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considerable improvements concerning computation time. Depending on the structure of
the graph, especially the average number of (hop-minimal) shortest paths, either of the
two kinds of bounds is preferable. Nonetheless, our Θ(n3)-algorithm clearly outperforms
the other algorithms, especially in the case of non-unique shortest paths.

5.3 Heuristics for finding single shortcuts

In this section, we evaluate the quality of single shortcuts found by different heuristics.
We will focus on our pair centrality indices and compare the results obtained with these
with shortcuts ranked best according to our preselection criteria and with the optimum.
As we consider single shortcuts, this optimum can be found using our Θ(n3)-algorithm.

5.3.1 Running times

In a first step, we will compare the running times of the different heuristics among one
another and to the running time of our Θ(n3)-algorithm. Table 5.6 shows the results
we obtain if we use the heuristics in road graphs centered at Karlsruhe. Clearly, all
algorithms aside from degree and computing the optimum have running times in the same
complexity class. Among these, the algorithms to compute bounds and pair centralities
are to a constant factor slower than reach and betweenness. If we consider the graph
with 4894 nodes, all heuristics find solutions with less than 2% of the time needed to
compute an optimal shortcut. These results were confirmed by the other sparse graph
classes, namely grid graphs and unit disk graphs.

|N | Deg Reach Bet Bound PB HMPB PS HMPS Opt
102 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.02
171 0.00 0.01 0.01 0.02 0.02 0.03 0.02 0.03 0.07
491 0.00 0.05 0.05 0.21 0.22 0.22 0.21 0.21 1.64
970 0.00 0.20 0.22 0.87 0.89 0.90 0.88 0.89 15.81
1969 0.00 0.88 0.95 3.66 3.75 3.75 3.75 3.80 127.07
4894 0.00 5.83 6.12 23.44 24.10 23.90 24.11 23.92 1946.13

Table 5.6: Running times (in secondes) of different heuristics in road graphs centered
at Karlsruhe. From left to right: degree, reach, node betweenness, upper bounds, pair
betweenness, hop-minimal pair betweenness, pair stress, hop-minimal pair stress, Θ(n3)-
algorithm (for comparison)

If we consider very dense graphs, we do not obtain any improvements in the running time
using heuristics instead of computing the optimum. The only exception is the degree
criterium. This is illustrated in Table 5.7 and coincides with theoretical considerations
concerning asymptotical running times.
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|N | Deg Reach Bet Bound PB HMPB PS HMPS Opt
100 0.00 0.01 0.01 0.04 0.04 0.04 0.04 0.04 0.02
500 0.00 1.34 1.63 3.31 3.68 3.69 3.50 3.53 1.98
1000 0.02 12.67 18.45 26.17 29.95 30.91 29.94 29.16 18.86
3000 0.13 373.57 1255.40 723.68 832.70 834.55 799.14 797.04 513.65

Table 5.7: Running times of different heuristics on G(n, p)-graphs with 40% density.
From left to right: degree, reach, node betweenness, upper bounds, pair betweenness,
hop-minimal pair betweenness, pair stress, hop-minimal pair stress, Θ(n3)-algorithm (for
comparison)

5.3.2 Quality

Concerning the quality of single shortcuts found by different heuristics, the first graphs
we consider are road graphs. Figure 5.5 shows the results for the unmodified graphs.
First, we see that the algorithm using hop-minimal pair betweenness always found an
optimal solution. The same holds for the other pair centralities. As for these shortcut
ratings, we get provably optimal results if shortest paths are unique, this confirms our
theoretical results. The other heuristics yield worse solutions. Thereby, except for two
graphs, the results obtained by using node betweenness are (in most instances by far)
the best among these.

Figure 5.5 also illustrates the results for the same graphs and approximately
√
n short-

cuts added in advance. A comparison of the solution quality obtained by different pair
centralities can be found in Figure 5.6. For these graphs, the hop-minimal variants of
the pair centrality indices yield by far the best results, while the “conventional” variants
have much lower performance. A striking observation is that the quality of the short-
cuts found by using degree is astonishingly high. This can be explained by properties of
high-quality shortcut assignments, which we will discuss in Section 7.4.

Unfortunately, if we add n shortcuts to the graph, the quality of the shortcuts found
using hop-minimal pair centralities decreases. In this setting, the performance of the pair
centrality indices is approximately the same as with betweenness, bounds and degree.
Anyhow, on the whole, the quality of the shortcuts found with these heuristics seems to
be better than with just random picking or reach.

The experiments in grid graphs confirmed these observations. The performance of node
betweenness, pair betweenness and pair stress decreases with increasing average number
of shortest paths in the graph. As an example, Figure 5.6 shows the results obtained
by different pair centralities in grid graphs with edge weights in [1, 5]. Again, using pair
centralities, we get optimal and nearly optimal solutions. Interestingly, for these graphs,
pair betweenness seems to work a lot better than pair stress. As shortest paths are
nearly unique in our unit disk graphs, using pair centralities, we get optimal results for
all instances.
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Fig. 5.5: Solution qualitiy of single shortcuts in road graphs with and without shortcuts
inserted in advance, different heuristics
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Fig. 5.6: Solution quality of single shortcuts in grid graphs and road graphs with shortcuts
inserted in advance, pair centralities
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Conclusion. Summarizing the results, on the whole, hop-minimal pair betweenness
seems to be the best choice for rating shortcuts, especially if we aim to add a set of
shortcuts to a graph.
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6 Local Search

In this chapter, we give a brief introduction to local search and show how the concept
of local search can be applied to the BSP. We then introduce four basic local search
strategies and describe in detail, how to use them to develop heuristic algorithms for the
BSP. The last section is devoted to a measure that is an indicator for the suitability
of local search to solve a given combinatorial problem under a given modeling of search
space and evaluation function.

6.1 General concept and application to the BSP

For an introduction to the idea of local search and basic local search strategies, see
[HS05]. Local search algorithms play an important role in the context of combinatorial
problems. For a combinatorial problem, a potential solution can typically be partitioned
into solution components. For example, if we consider the BSP, every combination of
c distinct shortcuts is a potential solution to our problem. Formally, a stochastic local
search algorithm is defined as follows (see [HS05]):

Definition 2 (Stochastic Local Search Algorithm) Given a (combinatorial) prob-
lem Π, a stochastic local search algorithm for solving an arbitrary problem instance π ∈ Π
is defined by the following components:

• the search space S(π) of the instance π, which is a finite set of candidate solutions

• a set of (feasible) solutions S′(π) ⊆ S(π)

• a neighbourhood relation on S(π), N(π) ⊆ S(π)× S(π)

• a finite set of memory states M(π), which, in the case of SLS algorithms that do
not use memory, may consist of a single state only

• an initialization function init(π) : {∅} → D(S(π)×M(π)), which specifies a prob-
ability distribution over initial search positions and memory states

• a step function step(π) : S(π) ×M(π) → D(S(π) ×M(π)) mapping each search
position and memory state onto a probability distribution over its neighbouring
search positions and memory states

• a termination predicate terminate(π) : S(π) ×M(π) → D({T, F}) mapping each
search position and memory state to a probability distribution over truth values
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(T = true, F = false), which indicates the probability with which the search is to
be terminated upon reaching a specific point in the search space and memory state

In the above, D(S) denotes the set of probability distributions over a given set S, where
formally, a probability distribution D ∈ D(S) is a function D : S → R+

0 that maps
elements of S to their respective probabilities.

Further, we use an evaluation function g(π)(s) : S(π) → R to rate candidate solutions.
This is used as guidance towards good solutions and it will always coincide with the
objective function characterizing the BSP, that is g(π)(s) = w(s), the decrease in overall
hop-lengths we aim to maximize. Typically, the step function used heavily relies on the
value of the evaluation function of the current candidate solution and its neighbours.

In the context of the local search strategies we use, the concept of local maxima is of
great importance.

Definition 3 (Local Maximum) Given a search space S, a neighbourhood relation
N ⊆ S × S and an evaluation function g : S 7→ R, a local maximum is a candidate
solution s ∈ S such that for all s′ ∈ N(s), we have g(s) ≥ g(s′).

Given an instance π = (G, c) of the BSP, we map the corresponding components of local
search to the following objects:

• Search space S(π): The set of all possible shortcut assignments with c shortcuts in
G.

• (Feasible) solutions S′(π): The same as S(π); every assignment with c shortcuts is
considered feasible.

• Neighbourhood relation: Depending on the local search strategy; except for Vari-
able Neighbourhood Descent, the standard 1-exchange neighbourhood is used: two
shortcut assignments are considered as neighbours if they differ in at most one
shortcut

• Set of memory states M(π): Depending on the local search strategy

• Initialization function init(π): Two possibilities can be combined with every local
search strategy:

– Random initialization: To determine an initial candidate solution, we choose
c shortcuts uniformly at random. To avoid unnecessary multiple edges, we
sample without replacement and discard loops and shortcuts between nodes
that are already connected by an edge that forms a shortest path. It is easy
to see that these shortcuts do not contribute to decreasing the hop-distances
in G.

– Greedy initialization: As initial candidate solution, we use the output of the
GREEDY-algorithm with c shortcuts in G.

• Step function step(π): Depending on the local search strategy; roughly, we use the
following two variants (called pivoting rules) as components:
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– Best Improvement : we select a neighbour that achieves maximal improvement
in the evaluation function among all neighbours of the current candidate so-
lution

– Random Order First Improvement : in each search step we determine a random
order in which we evaluate the neighbours of our current candidate solution s;
the first neighbour s′ with g(s′) > g(s) becomes our new candidate solution.

• termination predicate terminate(π): We use two very simple termination criteria:

– cut-off time: We specify a maximal number r of runs of our Θ(n3)-algorithm
and terminate after we have reached this bound.

– local maximum: If we consider simple local search algorithms without escape
strategies, we terminate after we have reached a local maximum as candidate
solution. In this case, the step function is undefined as there is no neighbour
that improves the evaluation function.

6.2 Neighbourhood Pruning

Taking a closer look at the time needed to evaluate a complete 1-exchange-neighbourhood
without optimization, we see that this is a very expensive task. The number of assign-
ments in each neighbourhood is c · (n2 − c+ 1), as each of the c shortcuts in the current
candidate solution can be replaced by n2−c+1 possible shortcuts (we consider the reflex-
ive variant of the neighbourhood relation, where each assignment is a neighbour of itself).
Thus, if we determine the evaluation function for each assignment in the neighbourhood
by solving APSP, we have an overall time complexity in Θ(c ·(n2−c+1) ·n ·(n log n+m))

Therefore, we do not explicitely evaluate all neighbours, or, more precisely, we evaluate
them in groups using our Θ(n3)-algorithm. This means, we consider just those shortcut
assignments that are the result of deleting one of the shortcuts in the current candidate
solution s and refilling greedily. Clearly, a most improving neighbour s′ of s is among
these assignments. Thus, if we use Best Improvement to determine our next candidate
solution, we can restrict ourselves to this subset of our actual neighbourhood without
changing the step function at all. Similarly, if we do not find an assignment that improves
the current solution quality among these neighbours, we know that the current search
position constitutes a local maximum. Using this idea, we are able to evaluate complete
1-exchange-neighbourhoods in Θ(c · n3) time.

If we use Random Order First Improvement, the step function changes, as we consider
only a subset of {s′ | (s, s′) ∈ N(π) and w(s′) > w(s)}. Similarly, if we evaluate larger
neighbourhoods using this idea, we consider only a subset of the neighbourhood, as
deleting k shortcuts and refilling greedily does not always lead to a most improving
neighbour of s. Nonetheless, the set of shortcut assignments that can thus be obtained
forms a subset of neighbours that is likely to achieve good solution qualities.

Another heuristic to prune the neighbourhood arises from the possibility to use the
shortcut ratings we introduced in Section 4.3 instead of our Θ(n3)-algorithm. Using this
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idea, we can evaluate 1-exchange-neighbourhoods in O(c ·n ·(n log n+m)). The downside
of this approach is that, if we consider just the neighbours of s that arise of deleting one
shortcut and refilling with the shortcut with maximum rating, there is no guarantee that
we find a most improving neighbour. As a complexity of Θ(c · n3) in each search step is
infeasible for larger graphs, we can nonetheless try to improve the solution quality using
this pruned neighbourhood.

6.3 Fundamental local search strategies

In this section, we consider four basic local search strategies. Unless specified otherwise,
we use 1-exchange neighbourhoods.

One of the simplest local search strategies used is Iterative Improvement. The general
proceeding is given as Algorithm 11. We iteratively select a neighbour of our current
candidate solution s with better solution quality until we reach a local maximum. As
remaining degrees of freedom, we can choose between random and GREEDY initialization
and between Best Improvement and Random Order First Improvement as step function.

Algorithm 11: Iterative Improvement (II)
Determine initial candidate solution s1

while s is not a local optimum do2

Choose a neighbour s′ of s such that g(s′) > g(s)3

s := s′4

5

The downside of Iterative Improvement lies in the fact that as soon as we reach a local
maximum, the search gets stuck and there is no possibility to reach better solutions. The
probably most basic escape strategy one can think of is to pick a new initial candidate
solution and apply a new run of Iterative Improvement as soon as we reach a local
maximum. We terminate the search process after a given cut-off time. We call this variant
of local search Iterative Improvement Random Restart. Theoretically, we have the same
degrees of freedom as with simple Iterative Improvement. But it is easy to see that there
should be at least some diversification in the search process. If we use the deterministic
variant of Iterative Improvement with GREEDY initialization and Best Improvement as
step function, we will always reach the same local maximum and therefore never achieve
any improvements after the first phase of Iterative Improvement.

Another strategy to avoid getting stuck in local maxima uses larger neighbourhoods. The
idea behind this is the fact that a local maximum under the standard 1-exchange neigh-
bourhood does not have to be a local maximum under k-exchange neighbourhoods with
k > 1. As an extreme example, if we consider c-exchange neighbourhoods with c repre-
senting the number of shortcuts in a candidate solution, each neighbourhood represents
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Algorithm 12: Variable Neighbourhood Descent (VND)
Determine initial candidate solution s1

i := 12

repeat3

Choose a most improving neighbour s′ of s in Ni4

if g(s′) > g(s) then5

s := s′6

i := 17

else8

i := i+ 19

10

until i > imax11

the whole search space. This leads to the idea of Variable Neighbourhood Descent, that
successively scans larger neighbourhoods until it reaches a candidate solution with higher
quality than the current local maximum (see Algorithm 12). As the size of k-exchange
neighbourhoods increases rapidly with k, we use neighbourhoods that are pruned in two
ways: First, as already mentioned, we consider just those neighbours that arise from
deleting k shortcuts and refilling greedily. Second, if the size of this pruned neighbour-
hood exceeds a parameter r, we randomly choose k shortcuts in the current candidate
solution to be replaced and repeat this until we have evaluated (at most) r neighbouring
assignments. If we do not find an improving solution among these, we increase k by 1.
Concerning initialization strategy and pivoting rule we have the same choices as with
Iterative Improvement.

The last local search strategy we apply is Tabu Search (see Algorithm 13). In contrast
to Variable Neighbourhood Descent, Tabu Search sometimes accepts worsening search
steps to escape from local maxima. To avoid cycling search behaviour, aspects of the
search history are used to restrict the current neighbourhood. In the context of the BSP,
we choose the following approach: If, during a search step, a shortcut sc is replaced by
another, sc is set tabu for the next tt search steps, with tt being a tuning parameter.
In each step, we just consider those neighbours of our current candidate solution s that
are the result of deleting one shortcut in s and replacing it with the shortcut that is
optimal among all shortcuts that are not currently set tabu. If none of these neighbouring
assignments improves the current solution quality, we jump to the assignment that is the
least worsening. Note that the tabu tenure tt can be respected without much additional
overhead, as our Θ(n3)-algorithm not only determines the shortcut sc with maximum
w(sc), but evaluates all possible shortcuts simultaneously.

Furthermore, we weaken the tabu tenures by using a criterion called aspiration. This
means that we override the tabu status of a candidate solution if it leads to an improve-
ment in the best solution found.

Again, we have the choice between random and greedy initialization and best and Ran-
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dom Order First Improvement as pivoting rule. Note that the latter only differ if there
is a admissible neighbour that improves the current solution quality.

Algorithm 13: Tabu Search (TS)
Determine initial candidate solution s1

while termination criterion is not satisfied do2

Determine set N of non-tabu neighbours of s3

Choose a best improving solution s′ in N4

Update tabu attributes based on s and s′5

s := s′6

7

Last but not least, as mentioned in the previous section, we can combine all of these search
strategies with heuristics to prune neighbourhoods that are faster than the computation
of single, optimal shortcuts. In particular, we can use hop-minimal pair betweenness
to replace each computation of single, optimal shortcuts by choosing a shortcut with
maximum rating. The results thus obtained will be discussed in Section 7.2.3.

6.4 Fitness-distance correlation

One question arising in the context of local search algorithms is how well the search
landscape under the chosen neighbourhood relation is suited for local search. In this
context, the distribution (and number) of local maxima plays an important role. On
the other hand, it is of interest if the evaluation function provides means to guide local
search algorithms towards good (or optimal) solutions. A strong correlation between the
evaluation function value of candidate solutions and their distance to the closest global
optimum is an indicator for the latter property. The existence of such a correlation is
often referred to as a big valley structure (see [Boe96]). The term big valley results from
the intuition that an optimal solution is located at the bottom of a valley and surrounded
by a large number of local minima whose quality deteriorates with increasing distance to
the optimum. In the context of maximization problems, the term massif central is more
intuitive. The fitness-distance correlation coefficient as introduced by Jones and Forest
in 1995 (see [JF95]) aims to measure this property.

Definition 4 (Fitness-Distance Correlation Coefficient) Given a candidate solu-
tion s ∈ S, let g(s) be the value of the evaluation function of s, and let d(s) be the
distance of s to the closest global optimum. Given fitness-distance pairs (g(s), d(s)) for
all s ∈ S, the fitness-distance correlation coefficient (FDC coefficient) is defined as

ρfdc(g, d) :=
Cov(g, d)
σ(g) · σ(d)

=
〈g(s) · d(s)〉 − 〈g(s)〉 · 〈d(s)〉√

〈g2(s)〉 − 〈g(s)〉2 ·
√
〈d2(s)〉 − 〈d(s)〉2

,
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where Cov(g, d) denotes the covariance of fitness-distance pairs (g(s), d(s)) over all s ∈ S;
σ(g) and σ(d) are the respective standard deviations of the evaluation function and the
distance values for all s ∈ S; and 〈g(s)〉, 〈g2(s)〉, 〈d2(s)〉, 〈g(s) ·d(s)〉 denote the averages
of g(s), g2(s), d2(s) and g(s) · d(s), respectively, over all candidate solutions s ∈ S.

By definition, the minimum and maximum values of the FDC-coefficient are −1 and 1.
These extreme values indicate a perfect linear correlation between fitness and distance.
If we consider maximization problems, a value of ρfdc(g, d) close to −1 suggests that the
evaluation function provides sufficient guidance towards globally optimal solutions.

As the complete evaluation of the FDC coefficient would require to evaluate all candidate
solutions in the search space, this is obviously infeasible for all but the smallest instance
sizes. Thus, instead of computing the exact value of ρFDC(g, d), we give an estimation
based on a sample of m candidate solutions {s1, . . . , sm} with an associated set of fitness-
distance pairs {(g1, d1), . . . , (gm, dm)}. The estimate rFDC of ρFDC is then computed as

rFDC :=
Ĉov(g, d)
σ̂(g) · σ̂(d)

,

where ĈOV(g, d) denotes the sample covariance of the pairs (gi, di) and σ̂(g) and σ̂(d) the
sample standard deviations of G := {g1, . . . , gm} and D := {d1, . . . , dm}, respectively.
Instead of taking random samples that are uniformly distributed over the search space,
it is typically more interesting to evaluate samples of local maxima (see for example
[Boe96]). The idea behind this is the observation that efficient SLS methods consider
mainly rather good candidate solutions. For instance, such samples can be obtained
using multiple runs of (a randomized version of) Iterative Improvement.

In the context of the BSP, there is a second reason for us to choose this approach: As
there are typically a lot more potential shortcuts than the number c of shortcuts in each
candidate solution, the probability that two arbitrarily chosen assignments have some
shortcuts in common is rather low. As this corresponds to maximum distance between
the assignments, samples of local maxima seem to be more interesting.

Finally, as we do not know globally optimal solutions for our test instances, we use
the distance to solutions that are best among all solutions found by our local search
algorithms instead of the distance to global maxima. In Section 7.3, we will use fitness-
distance correlation coefficients to analyze the search space of instances of the BSP using
1-exchange-neighbourhoods.
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7 Experimental Results Concerning
Local Search

This chapter provides the results of the experiments taken in context with local search
algorithms. The experiments in this chapter are performed on one core of an Intel Xeon
E5430 clocked at 2.66 GHz, equipped with 12 MB L2 Cache and 16 GB RAM.

7.1 Preliminaries

7.1.1 Test instances

As most of our algorithms are randomized, we will have to run single algorithms on
the same test instances rather often to get significant results regarding performance
and solution quality. Similarly, as there are a lot of variants of particular local search
algorithms, this increases the time needed for a profound evaluation. Therefore, we
restrict ourselves to few, rather small graphs. We consider four classes of graphs:

• road graphs centered at Karlsruhe with 171 and 491 nodes, respectively: ka171,
ka491

• grid graphs with edge weights chosen uniformly in [1, . . . , 1000] and 196 and 506
nodes: grid196, grid506
• unit disk graphs with average degree 10 and 198 and 499 nodes: uDisk10_198,
uDisk10_499

• unit disk graphs with average degree 20 and 200 and 500 nodes: uDisk20_200,
uDisk20_500

These graphs form a subset of the graphs considered in the evaluation of the algorithms
for finding one optimal shortcut. To get a rough idea of the quality of solutions found
by our heuristics, the following table lists the sum of all hop-distances in the respective
graphs:

instance sum of hop-distances instance sum of hop-distances
ka171 336.065 ka491 4.854.990

grid196 387.872 grid506 4.349.470
uDisk10_198 497.860 uDisk10_499 5.104.758
uDisk20_200 481.782 uDisk20_500 4.961.860
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Fig. 7.1: Overall running time after gSteps executions of Θ(n3)-algorithm (gSteps) for
different local search strategies on uDisk10_198 with 200 shortcuts. In the left, we
compare Iterative Improvement Random Restart(IIRR), Tabu Search with tabu tenure
50 (TABU50) and Variable Neighbourhood Descent with a maximum of 1000 neighbours
to be considered in each neighbourhood (VND). All variants use Random Order First
Improvement and random initialization. The right side shows the corresponding values
for Iterative Improvement Random Restart with Best Improvement (Best) and Random
Order First Improvement (First).

7.1.2 Running time versus number of computations of single, optimal short-
cuts

In this section, we will examine the correlation between running times of our different
local search algorithm and the number of times our Θ(n3)-algorithm is called during
the search process (we call this number of calls the number of gSteps. In Figure 7.1,
corresponding runtime/gSteps-pairs are illustrated. Clearly, there seems to be a linear
correlation between these two measures. Further, the average runtime per gStep does not
vary substantially if we compare different local search strategies (left side of Figure.7.1).
Interestingly, if we compare the running times of the versions with Best Improvement
to the ones with Random Order First Improvement, the average running time per gStep
is lower in the latter case. On the other hand, if we compare Iterative Improvement,
Tabu Search and Variable Neighbourhood Descent with Best Improvement, again, there
seems to be no substantial differences among these. Closer analysis shows that this
effect has nothing to do with the particular implementation of the respective local search
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steps. Instead, the running time of our Θ(n3)-algorithm decreases under the insertion
of shortcut assignments with high quality. This can be explained by the fact that the
probability that for arbitrary nodes s, a, b in the graph, gs(a, b) is greater than zero
decreases, which saves some calculations. With Random Order First Improvement, we
find good solutions a lot quicker. This will be discussed in detail in the next section.

Altogether, there seems to be a close relationship between running time and number of
gSteps. Therefore, motivated by [AO96], for the comparison of our local search algo-
rithms that use the Θ(n3)-algorithm, we measure running times in gSteps. The idea is to
get results that are reproducible, independent from implementation and runtime environ-
ments and to gain deeper insights in the behaviour of the respective algorithms. However,
for the comparison of these algorithms with other heuristics, we will use concrete running
times.

Concerning our test instances with about 200 nodes, roughly, we get the following cor-
respondence between running time and number of gSteps:

instance running time per gStep instance running time per gStep
ka171 ≈ 72.7 ms uDisk10_198 ≈ 114.4 ms

grid196 ≈ 104.9 ms uDisk20_200 ≈ 122.7 ms

7.2 Performance of local search algorithms

7.2.1 Finding good solutions fast

In this section, we compare different variants of Iterative Improvement with respect to
the time needed to reach a local maximum, the quality of the local maxima found and
the diversification of the search process. The latter is of especial importance if we use
Iterative Improvement as part of higher-level local search algorithms that depend on
reinitialization mechanisms.

Figure 7.2 shows how the average solution quality evolves over time using different kinds
of Iterative Improvement. Here, we use the test instances ka200 and grid200 with 200
shortcuts each.

The most striking observation is, that the variant of Iterative Improvement using Best
Improvement and random initialization takes a lot more time to converge than the other
strategies. If we take a closer look at how the solution assignments of the particular
test runs develop over time, we see that the variants with random initialization have one
property in common. We start with a random assignment of shortcuts that are commonly
far from optimal. Roughly, in the first phase of Iterative Improvement, we replace most
of these shortcuts greedily, while in the second phase we improve this solution by further
local search steps. With Best Improvement, each search step takes 200 gSteps, while with
Random Order First Improvement, in the beginning, the probability that an arbitrarily
chosen shortcut to replace increases the solution quality by a significant amount is rather
high.
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Fig. 7.2: Running times and average solution qualities (over 200 runs) for different vari-
ants of Iterative Improvement and different scales: Random initialization and Random
Order First Improvement(RIIFirst), Random initialization and Best Improvement (RI-
IBest), Greedy initialization and Random Order First Improvement(GIIFirst), Greedy
initialization and Best Improvement(GIIBest)
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Fig. 7.3: Distribution of solution qualities for different variants of Iterative Improvement
(over 200 runs each): random initialization and Random Order First Improvement (RF),
random initialization and Best Improvement (RB), greedy initialization and Random
Order First Improvement(GF), greedy initialization and Best Improvement(GB)

Considering the average solution qualities the algorithms converge to (visible in the
graphs at the right side), we see that the algorithms seem to differ slightly. But if we
compare the results for ka171 and grid196, this seems to depend on the test instances
rather than the algorithms itself. To compare the particular solution qualities of the local
maxima found, we take a closer look at Figure 7.3.

First, we see that both random initialization and Random Order First Improvement cre-
ate some diversification in the search process that leads to different local maxima. Second,
there seems to be no general way to predict which variant of Iterative Improvement leads
to the best local maxima without considering specific test instances. The variant with
random initialization and Best Improvement seems to perform slightly worse than the
variant with Random Order First Improvement. This can be explained by the use of
a cut-off time of 50000 gSteps. Test runs that didn’t reach a local optimum after this
time (between 12% and 27% of the runs with random initialization and Best Improve-
ment) stay unconsidered. Intuitively, one could expect that these test runs lead to better
solution qualities, which would explain the slightly worse performance.

Conclusion. Summarizing, the question of which variant of Iterative Improvement
to use depends on the application. If we just want to find a good solution as fast as
possible, we should use the variant with greedy initialization and Random Order First
Improvement, as this version is likely to reach a local minimum after comparatively little
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time. If we want to use Iterative Improvement as part of Iterative Improvement Random
Restart, the variant with random initialization and Random Order First Improvement
seems to be the best choice, as this version provides sufficient diversification and finds
local maxima adequately fast.

7.2.2 Using escape strategies

In this section, we will compare the performance of Tabu Search, Variable Neighbourhood
Descent and simple Iterative Improvement Random Restart.

Reasonable Configurations. If we consider all degrees of freedom, there are a lot of
possible combinations between pivoting rule, initialization strategy and algorithm-specific
parameters (as tabu tenure and maximal size of the neighbourhood to be considered).

Thus, we restrict ourselves to some of these combinations. First, as already mentioned,
for Iterative Improvement Random Restart, the variant with random initialization and
Random Order First Improvement seems to be by far the best choice. Preliminary
experiments showed that concerning the performance of the other local search strategies,
the initial search position or rather the first local maximum found is of great importance.
Therefore, if we choose greedy initialization, this influences the solution quality of the
best found assignment in a way that is very specific to the test instance. As our goal
is to compare the mean behaviour of the particular search strategies (independent from
the initial search position), we choose random initialization instead and perform a set of
sample runs. Recalling the results of the previous section, in this case, Best Improvement
would lead to unacceptably long running times until we reach rather good solutions.
Hence, we consider only the variants with random initialization and Random Order First
Improvement in our experiments.

Note that if we just aim to use Tabu Search or Variable Neighbourhood Descent to reach
a good solution once, we can use greedy initialization as well, as this reduces the time to
find the first local maximum. Compared to the cut-off times we used in our experiments,
this is negligible.

For Tabu Search, we have to tune the tabu tenure tt (in terms of search steps). As
comparing the long-time behaviour of Tabu Search with 200 shortcuts under different
values for tt is a very expensive task – we have to perform a multitude of test runs to get
significant results – in the first step we consider only 14 shortcuts. Figure 7.4 shows the
resulting performance with tabu tenures 5, 10 and 50. Using a tabu tenure of 50, we get
the best results (even for test instance uDisk20_20, the average solution quality in the
end is slightly better than with the other choices of tt). Analyzing some particular runs
with lower tabu tenure, we frequently observe cyclic behaviour. Some test runs with 200
shortcuts and different tabu tenures confirmed that a tabu tenure of 50 seems to be a
sensible choice for this case as well. Therefore, for the experiments with Tabu Search
and 200 shortcuts, we use a tabu tenure of 50.

Similarly, for our variant of Variable Neighbourhood Descent, we have to specify the
maximum number of neighbours r in each neighbourhood that will be evaluated. After
some preliminary considerations and test runs, we set r to 1000.
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Fig. 7.4: Average long-time behaviour (over 200 runs) of tabu search on different test
instances with 200 nodes and 14 Shortcuts depending on tabu tenure tt – random ini-
tialization and next improving neighbour strategy were used
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Fig. 7.5: Average long-time behaviour (over 100 runs) of different local search strategies
on test instances with 200 nodes and 200 shortcuts : Iterative Improvement Random
Restart (IIRR), Variable Neighbourhood Descent with maximum 1000 neighbour samples
(VND), Tabu Search with tabu tenure 50 (TABU50) and Combine Search with tabu
tenure 50 – each algorithm in the variant that uses the next-improving neighbour strategy
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Fig. 7.6: Distribution of solution qualities for different local search strategies (over 100
runs each) on test instances with 200 shortcuts: Iterative Improvement Random Restart
(IIRR), Tabu Search with tabu tenure 50 (TB50), Variable Neighbourhood Descent
(VND) and Combine Search with tabu tenure 50 (C50)

Results. Figure 7.5 shows the development of the average solution quality of Iterative
Improvement Random Restart, Tabu Search and Variable Neighbourhood Descent under
the parameters specified above. The first observation we make is, that none of the
search strategies seems to stagnate over the considered time interval. If we compare the
different search strategies, simple Iterative Improvement Random Restart achieves the
best results, which might be surprising at first glance. But if we have a closer look at
the number of gSteps we need to find a local maximum from an arbitrary search position
(typically between 800 and 2000 for the instance ka171), we see that this corresponds to
comparatively little computational time. In contrast to that, if we use for example Tabu
Search, one single search step typically already corresponds to 200 gSteps. Thus, Tabu
Search seems to need too much time to find better solutions to compete with simply
sampling local maxima in the considered time interval.

Figure 7.6 shows the distribution of the corresponding solution qualities of the particular
runs after 50000 search steps. Interestingly, the solution qualities of Tabu Search and
Variable Neighbourhood Descent scatter over a much wider range. Despite the worse
mean behaviour of Tabu Search and Variable Neighbourhood Descent, the best solutions
were found by some runs of these local search strategies. This can be explained by the
fact that the performance of Tabu Search and Variable Neighbourhood Descent depends
a lot on the initial search position.

87



CHAPTER 7. EXPERIMENTAL RESULTS CONCERNING LOCAL SEARCH

Enhancements. This leads to the idea of Combine Search. Combine Search is a com-
bination between Iterative Improvement Random Restart and Tabu Search. Thereby,
we spend one third of the overall time on searching a local maximum with reasonably
high solution quality using Iterative Improvement and use this optimum as initial search
position for Tabu Search. Figure 7.5 and 7.6 show the mean behaviour and distribution
of the resulting solution qualities for Combine Search with tabu tenure 50. Regarding
our test instances, Combine Search shows the best behaviour among all search strategies
considered.

7.2.3 Using maximum pair betweenness instead of Θ(n3)-algorithm

Here, we will compare the results we obtain if we replace each computation of single,
optimal shortcuts by determinining a shortcut that is rated best according to hop-minimal
pair betweenness. We consider the greedy strategy, Iterative Improvement and the local
search strategies evaluated in the previous section. In particular, we take a look at the
development of solution qualities of our different local search strategies in combination
with shortcut ratings.

Approximately 200 nodes

In the first step, we consider Iterative Improvement with random initialization and Ran-
dom Order First Improvement. The following table illustrates the results for our test
instances with approximately 200 nodes and 14 and 200 shortcuts, respectively. We
give the average running time (in seconds) of Iterative Improvement using our Θ(n3)-
algorithm (II) and using shortcut ratings according to hop-minimal pair betweenness
(II-APPROX). Moreover, we compare the average quality of the assignments thus ob-
tained. In the context of II, these assignments constitute true local maxima, whereas
with II-APPROX, this is not guaranteed. The results were sampled over 200 runs of
Iterative Improvement each.

For comparison, we also list the quality of the best assignments found by our local search
algorithms (BEST). As we optimized the implementation of Iterative Improvement after
the experiments, the respective running times for II are obtained using the results of
Section 7.1.2 and the number of gSteps.

instance shortcuts BEST II II-APPROX
qual ∅ time ∅ qual ∅ time ∅ qual

ka171 14 83508 3.11 83301 1.08 82471
200 216547 105.38 215137 51.46 214125

grid196 14 65744 3.84 64260 1.65 64304
200 214442 150.69 212715 74.58 211579

uDisk10_198 14 125555 4.51 125139 1.98 125096
200 318801 167.17 316201 75.47 314440

uDisk20_200 14 98400 5.30 98200 2.17 98181
200 288964 176.31 286158 78.13 284918
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The first observation we make, is that the mean quality of the assignments does not differ
substantially. In particular, the results obtained by using shortcut ratings are always less
than one percent worse than the assignments found using single, optimal shortcuts. For
instance grid196 and 14 shortcuts, we even get a better result in combination with hop-
minimal pair betweenness. Using shortcut ratings, we can decrease running times by
more than 50 percent compared to the version that depends on our Θ(n3)-algorithm.

Furthermore, Figure 7.7 illustrates the long-time behaviour of our local search strategies
in combination with shortcut ratings. Like before, we use a cut-off time of 50000 calcula-
tions of shortcut ratings, which corresponds to approximately 35-50 minutes, depending
on the particular test instance. The development of average solution qualities is very
similar to the results of the previous section. In particular, none of the search strategies
seems to stagnate over the considered time interval. The solution qualities are worse than
using our Θ(n3)-algorithm, but not significantly. As the calculation of shortcut ratings
is possible for larger graphs, this offers an opportunity to use local search strategies in
these instances as well.

Approximately 500 nodes

The following table lists the solution quality of assignments found using the greedy strat-
egy in our test instances with approximately 500 nodes and 500 shortcuts. We show the
running times and solution quality of greedy in combination with our Θ(n3)-algorithm
(GREEDY) and in combination with shortcut ratings according to hop-minimal pair
betweenness (GREEDY-APPROX).

instance shortcuts GREEDY GREEDY-APPROX
time qual time qual

ka491 22 33.12 1682223 4.66 1682223
500 726.41 3663346 123.16 3640261

grid506 22 34.21 927160 5.75 927160
500 792.86 2921768 148.51 2906936

uDisk10_499 22 39.85 1144576 5.99 1144576
500 865.73 3632104 145.41 3615623

uDisk20_500 22 39.51 1146318 5.96 1146318
500 851.56 3493348 150.17 3486303

Again, the quality of the results obtained does not differ much. Considering shortcut
assignments with approximately

√
n shortcuts, we even get the same quality if we replace

the computation of single, optimal shortcuts by shortcut ratings. For the experiments
with 500 shortcuts, despite the partially discouraging results in Section 5.3.2, the quality
decreases by less than one percent if we consistently add shortcuts with maximum rating.

Summarizing, we do not get significantly worse results when using shortcut ratings in-
stead of optimal shortcuts, while saving over 80 percent running time in all of the test
instances considered in this section.
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Fig. 7.7: Average long-time behaviour (over 50 runs) of different local search strategies on
test instances with 200 nodes and 200 shortcuts using shortcut ratings according to hop-
minimal pair betweenness : Iterative Improvement Random Restart (IIRR), Variable
Neighbourhood Descent with maximum 1000 neighbour samples (VND), Tabu Search
with tabu tenure 50 (TABU50) and Combine Search with tabu tenure 50 – each algorithm
in the variant that uses the next-improving neighbour strategy
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7.2.4 Comparison with trivial bounds and static rating

As a last aspect concerning the solution quality obtained by the greedy strategy and by
our local search algorithms, we will try to put the results in a greater context. To this
end, we use simple upper bounds for the quality of shortcut assignments and compare
the assignments found in our experiments with assignments obtained by using simple
(static) heuristics.

The most natural way to get an idea of the quality of solutions found by heuristics would
be to compare the results with an optimal solution. As we did not find a way to compute
optimal solutions for our test instances within reasonable time bounds, we use upper
bounds instead. Let (a0, b0), . . . , (ac−1, bc−1) denote the c shortcuts with the highest
values for (h(ai, bi)− 1) · |P (ai, bi)|. Then,

B1(G) =
c−1∑
i=0

|P (ai, bi)| · (h(ai, bi)− 1)

is an upper bound for w(S) for any shortcut assignment S with c shortcuts. This is true,
as, for all shortcuts (a, b) in S, |P (a, b)| · (h(a, b)− 1) is an upper bound for the decrease
in overall hop-lengths we get by inserting a shortcut between a and b, independent from
the other shortcuts in S.

As this approach does not yield reasonably tight upper bounds for our test instances with
approximately n shortcuts, we also use another simple bound for the quality of shortcut
assignments. We determine H =

∑
s,t∈V h(s, t), which is a trivial upper bound for w(S).

This can be slightly improved by using the fact that the hop-distance between each pair
of distinct nodes that is not linked by an edge or a shortcut is at least 2. Thus, we obtain

B2(G) = H − 2(n(n− 1)− (m+ c))−m− c

as another upper bound for the decrease in overall hop-lengths. Concretely, we compare
the following bounds and algorithms:

• BOUND: The respective minimum of B1(G) and B2(G)

• BEST: The quality of the best assignment found by our local search algorithms

• GREEDY: The quality we get by using the greedy strategy

• STAT-PB: The quality we get by inserting the c (non-adjacent) shortcuts with the
highest hop-minimal pair betweenness in the underlying graph. Deviating from
the ratings we used up to now, we do not multyply the betweenness values with
the hop-distance between the end-nodes. This is motivated by the thought that
hop-distances in the graph change considerably during the insertion of shortcuts.

• STAT-B: The quality of the assignment found by inserting the c (non-adjacent)
shortcuts (ai, bi) with the highest values for the minimum of the node betweenness
of a and b

The results can be found in Table 7.1. First, we see that the qualities obtained by STAT-
PB and STAT-B are significantly lower than with the greedy strategy and local search.
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instance shortcuts BOUND BEST GREEDY STAT-PB STAT-B
ka171 14 160480 83508 82931 27085 30130

200 278528 216547 213111 118583 95164
grid196 14 101100 65744 64110 26874 23454

200 312360 214442 211686 120930 82847
uDisk10_198 14 186892 125555 121786 24222 28266

200 422046 318801 313172 150038 134354
uDisk20_200 14 160886 98400 95582 31484 28620

200 406382 288964 282856 134314 74704
ka491 22 4374961 - 1682223 390396 414700

500 4375439 - 3663346 1956094 1152926
grid506 22 1550450 - 927160 218652 199285

500 3840844 - 2921768 1418464 852536
uDisk10_499 22 2070150 - 1144576 242576 253679

500 4613252 - 3632104 1503058 1129797
uDisk20_500 22 2526782 - 1146318 183004 263096

500 4473360 - 3493348 1468832 1067382

Table 7.1: Comparison of the quality of shortcut assignments found using different heuris-
tics and simple upper bounds for the decrease in overall hop-lengths

Moreover, for our test instances with approximately n shortcuts, the results obtained
by using hop-minimal pair betweenness are better than the ones using minimal node
betweenness. The improvements obtained by using local search instead of the greedy
strategy always correspond to less than three percent of the solution quality. Compared
to the rough upper bounds we used, the solution qualities found by local search and
the greedy strategy seem to be reasonably high. In particular, for the test instances we
considered, the greedy strategy achieved much better solution qualities than guaranteed
by the theoretical analysis in [BDDW09].

7.3 Fitness-distance analysis and number of shortcuts

In this section, we will evaluate fitness-distance correlations and examine the influence
of the number of shortcuts on the quality of solutions found by the GREEDY-strategy.

Fitness-distance correlation. For the analysis of the former, we have to choose be-
tween different versions of Iterative Improvement to obtain a set of local maxima samples.
As already mentioned, the version with random initialization and Random Order First
Improvement provides the most diversification, while the mean time of reaching a local
maximum stays moderately low. Thus, to sample local maxima, we perform 500 runs
of Iterative Improvement with random initialization and Random Order First Improve-
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ment on our test instances with approximately 200 nodes. The following table lists the
resulting values for the number of different local maxima found and the fitness-distance
correlation of the sample local maxima with 14 and 200 shortcuts each.

14 shortcuts 200 shortcuts
instance l. m. FDC coeff. l. m. FDC coeff.
ka171 11 −0.7644288 476 −0.66995

grid196 18 −0.9211459 488 −0.724163
uDisk10_198 17 −0.5761276 469 −0.7133596
uDisk20_200 11 −0.5943998 492 −0.4988985

The fitness distance correlation coefficient of all configurations is rather high, indicating
a search landscape and neighbourhood relation that provides good conditions for higher-
level local search mechanisms. The experiments with 14 shortcuts yield very few local
maxima, while the experiments with 200 shortcuts confirmed the results on the great di-
versification of this variant of Iterative Improvement on test instances with approximately
n shortcuts.

Figure 7.8 shows the corresponding fitness-distance plots for the test instances with
200 shortcuts. The (linear) correlation between fitness and distance indicated by the
corresponding correlation coefficient is clearly visible. Another striking observation is,
that the quality of the local maxima found does not differ much. The quality of the local
maxima with the worst fitness is less than 2 percent away from the respective quality of
the best solution found. This coincides with the observation that the solutions found by
our higher-level local search algorithms are not substantially better than the solutions of
simple Iterative Improvement.

Taking a closer look at the range of distances of local maxima from the best solution
found, we see that the closest local maximum is approximately 40 search steps from
the best solution and the farthest local maximum almost 160 search steps. Here, the
local maxima for grid200 are substantially closer to the best solution than the ones for
uDisk20_200. Clearly, the maximum possible distance between two candidate solutions
is 200. From this arises the question if, for example for instance grid200, there exists a
kind of “core assignment” that consists of a set of shortcuts that all local maxima have
in common. Closer analysis shows that this is not the case. The first 100 local maxima
have 4 shortcuts in common, but there is no shortcut that is contained in all 488 local
maxima. The same holds for the other test instances.

Number of shortcuts. Next, we take a closer look at the solution quality of the as-
signment found by the GREEDY-strategy depending on the desired number of shortcuts
to insert. Figure 7.9 shows the development of the solution quality we get when adding
the assignment found. As might be expected, the first 500 shortcuts are responsible for a
great part of the decrease in overall hop-length while the following shortcuts improve the
solution by less and less. The red line marks the first shortcut that decreases the overall
hop-length by 1. This means that at this point, the hop-distance between arbitrary nodes
in the graph is at least 2 (as if this is not the case, a better shortcut exists). From this
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point on, the graph becomes linear until each pair of nodes is either linked by an edge or
a shortcut.

7.4 Properties of high-quality shortcut assignments

In this section, we will take a look at the assignments found by our local search algorithms.
Figure 7.10 shows the shortcut assignment S with maximum w(S) under all assignments
found in test instance ka171 with 200 shortcuts. For the sake of clarity, edges and
shortcuts are shown without direction.

The perhaps most striking observation is the existence of “super-nodes” that are incident
to a great number of shortcuts. For example, the “super-node” situated a little below the
middle of the illustration is incident to 50 shortcuts. This effect is even more obvious
in the assignment found in the grid graph shown in Figure 7.11. The astonishingly
good behaviour of the degree criterion in graphs with shortcuts added greedily that we
observed in Section 5.3.2 can be explained by this property.

Furthermore, there are only few shortcuts that link nodes with low hop-distance in the
underlying graph. This can explain the poor performance of the reach criterion in Section
5.3.2, as nodes with high reach tend to be accumulated close to each other in the center
of the graphs we considered.

To get an idea how “super-nodes” could be characterized independent from concrete
shortcut assignments, we take a look at Figure 7.12, where node betweenness values for
the test instance grid196 are illustrated. If we compare these values to the assignment in
Figure 7.11, we see that nodes that are incident to a lot of shortcuts have high between-
ness. Conversely, not all nodes with high betweenness are “super-nodes”. This could
be explained by the fact that a lot of nodes with high betweenness values are located
rather close to each other in the center of the graph. Thus, linking all nodes with high
betweenness would lead to shortcuts that correspond to paths with very few edges in the
underlying graph.

The assignments found in the other graphs considered confirm these results. Figure
7.13 shows the number of shortcuts nodes are incident to in graphs with approximately
500 nodes and 500 shortcuts. Assignments for the test instances uDisk10_198 and
uDisk20_200 can be found in the appendix.
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Fig. 7.10: Best assignment found with our local search algorithms for road graph centered
in Karlsruhe with 171 nodes and 200 shortcuts (ka171). This solution was found by a
run of Combine-Search after appr. 48 minutes.
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Fig. 7.11: Best assignment found with our local search algorithms for grid graph with
196 nodes, edge weights in [1, . . . , 1000] and 200 shortcuts (grid196). This solution was
found by a run of Tabu-Search after appr. 57 minutes.
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Fig. 7.13: Number of incidencies of nodes with respect to shortcuts for different test
instances with 500 shortcuts and assignment found by Iterative Improvement with
GREEDY-initialization and next improving neighbour strategy
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8 Final Remarks

Conclusion. This thesis concentrated on the Best Shortcut Problem(BSP), which
consists of adding a fixed number of shortcuts to a graph, such that the expected number
of edges that are contained in an edge-minimal shortest path between two nodes is
minimal. Our main aim was to develop high-quality heuristics for the BSP as a self-
contained topic, focusing on the greedy algorithm introduced in [BDDW09] and different
local search strategies.

In the first part, we developed algorithms to solve the BSP restricted to one shortcut
faster than with brute force. As a first approach, we used two kinds of upper bounds for
the quality of single shortcuts to prune the search space. Both of these bounds proved to
be able to decrease the running time for finding single, optimal shortcuts considerably.
These results could be improved by developing an algorithm that evaluates all shortcuts
simultaneously with a time complexity in Θ(n3), which is a major improvement compared
to the time complexity of the brute-force approach. To confirm this theoretical analysis,
we conducted experiments using different graph classes.

Additionally, as a time complexity in Θ(n3) is still infeasible for larger graphs, we pro-
posed heuristics to give estimations on the quality of single shortcuts that can be deter-
mined with less computational overhead. To this end, we stated different generalizations
of node betweenness and node stress to pairs of nodes that are especially suited to the
BSP. In the special case that shortest paths in the underlying graph are unique, the
estimations obtained by these pair centralities are exact. Moreover, based on the ideas
behind Brandes’ algorithm, we outlined algorithms to determine pair centralities with a
time complexity in O(n · (n log n+m)).

In the second part, we used the algorithms developed to this point in combination with the
greedy strategy and with different local search algorithms. For the former, the resulting
solution quality turned out to be far better than guaranteed by theoretical analysis.
Regarding local search, we adapted the strategies Iterative Improvement, Tabu Search
and Variable Neighbourhood to the BSP. Using extensive experimental evaluation, we
examined the question, whether these strategies could be successfully applied to the
BSP. With respect to our test instances, all of these strategies turned out to achieve
further improvements concerning solution quality. In this context, a combination between
Iterative Improvement with random restarts and Tabu Search showed the best behaviour.
We further analyzed the search space of local search under 1-exchange neighbourhoods
using a sample of local maxima, confirming the general suitability of the BSP for local
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search algorithms.

Moreover, concerning the greedy strategy and local search, we evaluated the solutions ob-
tained by using shortcuts rated best according to pair centralities instead of using single,
optimal shortcuts. Our experiments suggested that the solution quality thus obtained is
only slightly worse than with the base algorithms. This gives us an opportunity to use
these strategies in larger graphs as well.

We concluded our work with studying the impact of the number of shortcuts on the
solution quality obtained with the greedy strategy. Moreover, we took a closer look at
particular shortcut assignments with high quality and stated some observations concern-
ing the structure of these solutions, especially the existence of “super-nodes” that are
incident to a great number of shortcuts.

Outlook. From the theoretical point of view, the perhaps most interesting open question
is, if there exists a polynomial constant factor approximation algorithm for the Best
Shortcut Problem. As the BSP is proven to be NP-hard, there is little hope on
finding optimal solutions for larger graphs in general. Nonetheless, an important task
would be to compute optimal solutions for small graphs within feasible time bounds. To
assess the quality of heuristic algorithms for the BSP and in combination with branch-
and-bound approaches, the knowledge of tighter upper bounds on the quality of shortcut
assignments would also be very valuable.

All of the heuristics developed and evaluated in this thesis are restricted to rather small
graphs. Hence, we cannot use our algorithms to compute shortcut assignments for graph
sizes that are of interest in the context of speed-up techniques. Thus, another future
task is to develop heuristics that are able to deal with very large networks. Based on the
results of this thesis, it would be interesting to develop an algorithm that stochastically
evaluates our pair centralities, as these proved to be very valuable to estimate the quality
of shortcuts. Moreover, an algorithm to dynamically update pair centralities under the
insertion and deletion of shortcuts may also be future work. In combination with the
stochastic approach to estimate the measure function proposed in [BDDW09], this could
be used by local search algorithms for larger graphs. Another approach would be to
evaluate further properties of the assignments found by our heuristics for small graphs.
These properties could be used to develop heuristics to find similar assignments with less
time complexity.

Finally, concerning local search strategies, there are a lot of promising approaches that
could be adapted and evaluated. For example, a very recent local search strategy that
seems to be promising in the context of the BSP is Dialectic Search as introduced by
Kadioglu and Sellmann in [KS09].
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A Additional Material

Algorithm 14: BestShortcutUpperBounds1
Input: Strongly connected graph G = (V,E, len), Centrality measure crit
Output: argmax{w(s) | s ∈ V × V }
Compute node centralities according to crit1

DecreaseWithBestSolution := 02

s := 03

L := (v ∈ V )4

Sort L according to decreasing centrality of v5

for i ∈ [0, . . . , 2n− 2] do6

forall (a, b) ∈ {(a, b) ∈ V × V | index(L, a) + index(L, b) = i} do7

Build Da and determine h(a, b) using HopAndPathCountingDijkstra8

Determine |P+(a, b)| using DepthFirstSearch in Da9

Build Db using HopAndPathCountingDijkstra in Ḡ10

Determine |P−(a, b)| using DepthFirstSearch in Db11

upperbound := |P+(a, b)| · |P−(a, b)| · (h(a, b)− 1)12

if upperbound > DecreaseWithBestSolution then13

Determine w(a, b) solving APSP14

if w(a, b) > DecreaseWithBestSolution then15

DecreaseWithBestSolution := w(a, b)16

s := (a, b)17

18

19

20

return s21
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Algorithm 15: BestShortcutUpperBounds2
Input: Strongly connected graph G = (V,E, len), Centrality measure crit
Output: argmax{w(s) | s ∈ V × V }
Compute node centralities according to crit1

forall v ∈ V do2

f(v) := 03

forall a ∈ V do4

Build Da and determine h(a, b) using HopAndPathCountingDijkstra in G5

Determine upper bounds fsum,up(b) using SumValuesSuccessorsUpperBound in6

Da

Set |P+(a, b)| := fsum,up(b)7

forall b ∈ V do8

Build Db using HopAndPathCountingDijkstra in Ḡ9

Determine upper bounds fsum,up(a) using SumValuesSuccessorsUpperBound in10

Db

Set |P−(a, b)| := fsum,up(a)11

DecreaseWithBestSolution := 012

s := 013

L := (v ∈ V )14

Sort L according to decreasing centrality of v15

for i ∈ [0, . . . , 2n− 2] do16

forall (a, b) ∈ {(a, b) ∈ V × V | index(L, a) + index(L, b) = i} do17

upperbound := |P+(a, b)| · |P−(a, b)| · (h(a, b)− 1)18

if upperbound > DecreaseWithBestSolution then19

Determine w(a, b) solving APSP20

if w(a, b) > DecreaseWithBestSolution then21

DecreaseWithBestSolution := w(a, b)22

s := (a, b)23

24

25

26

return s27
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APPENDIX A. ADDITIONAL MATERIAL

Fig. A.1: Best assignment found with our local search algorithms for unit disk graph
with 198 nodes, average degree 10 and 200 shortcuts (uDisk10_198). This solution was
found by a run of Combine-Search after appr. 89 minutes
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APPENDIX A. ADDITIONAL MATERIAL

Fig. A.2: Best assignment found with our local search algorithms for unit disk graph
with 200 nodes, average degree 20 and 200 shortcuts (uDisk20_200). This solution was
found by a run of Combine-Search after appr. 90 minutes
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