Computing Large Matchings Fast*

Ignaz Rutter'

Abstract

In this paper we present algorithms for computing large
matchings in 3-regular graphs, graphs with maximum
degree 3, and 3-connected planar graphs. The algo-
rithms give a guarantee on the size of the computed
matching and take linear or slightly superlinear time.
Thus they are faster than the best-known algorithm
for computing maximum matchings in general graphs,
which runs in O(y/nm) time, where n denotes the num-
ber of vertices and m the number of edges of the given
graph. For the classes of 3-regular graphs and graphs
with maximum degree 3 the bounds we achieve are
known to be best possible.

We also investigate graphs with block trees of
bounded degree, where the d-block tree is the adjacency
graph of the d-connected components of the given graph.
In 3-regular graphs and 3-connected planar graphs with
bounded-degree 2- and 4-block trees, respectively, we
show how to compute mazimum matchings in slightly
superlinear time.

1 Introduction

Recall that a matching is a set of independent (i.e.,
pairwise non-incident) edges in a graph. A mazimum
matching is one of maximum cardinality, and a maxi-
mal matching cannot be enlarged by adding edges. The
problem of finding maximum matchings in graphs has
a long history dating back to Petersen’s theorem [22],
which states that every biconnected 3-regular graph has
a perfect matching, i.e., a matching that matches every
vertex. Finding maximum matchings, or large match-
ings in general, has many applications, see for exam-
ple the book on matching theory of Lovédsz and Plum-
mer [I7]. To-date the asymptotically fastest (but rather
complicated) algorithm for finding maximum matchings
in general graphs runs in O(y/nm) time [I§], where n
and m are the numbers of vertices and edges of the

*Work supported by grant WO 758/4-3 of the German Re-
search Foundation (DFG).

fFakultit fiir Informatik, Universitit Karlsruhe, Germany.
http://illwww.iti.uni-karlsruhe.de/people/rutter

fFaculteit Wiskunde en Informatica, Technische Universiteit
Eindhoven, the Netherlands. http://www.win.tue.nl/~awolff

Alexander Wolff*

given graph, respectively. Only recently faster algo-
rithms for dense graphs and for planar graphs have been
suggested. They are based on fast matrix multiplication
(which, as a tool, is not very practical) and run in O(n*)
time for dense graphs [[9 and O(n*/?) time for pla-
nar graphs [20], where w < 2.38 is the exponent in the
running time of the best-known matrix-multiplication
algorithm [§]. However, for practical purposes often
slower, but less complicated algorithms are used: both
LEDA [1] and the Boost Graph Library [26] provide
maximum-matching algorithms with a running time of
O(nma(n,m)) that are based on repeatedly finding aug-
menting paths [[29].

There has been a sequence of more and more general
characterizations of graphs with perfect matchings [22]
1l B3], which are special maximum matchings. This
has also led to algorithms that test the existence of
or compute perfect matchings in o(y/nm) time in, e.g.,
bipartite k-regular graphs [25] [7], 3-regular biconnected
graphs [E], and subgraphs of regular grids [32] 2] [I6].
The last four algorithms all work in linear time for
the corresponding subclasses of planar graphs. There
is also a fast algorithm for finding unique maximum
matchings [I0]. It takes O(mlog"n) time in general
and O(nlogn) time in planar graphs.

However, although the theory of matchings is a
very well-researched area, there has not been a compre-
hensive investigation of graph classes where maximum
matchings or matchings of guaranteed size can be com-
puted faster than matchings in general graphs, i.e., in
o(y/nm) time. This paper is a first step into this direc-
tion. Our work was inspired by and addresses some open
questions of a recent paper of Biedl et al. [5] that gives
tight bounds on the sizes of maximal and maximum
matchings in certain graph classes. Note that, in order
to establish bounds on the size of matchings that depend
on n, one has to forbid isolated vertices. In this paper
we assume that graphs are connected since matchings
can be computed for each connected component sepa-
rately. The analysis of Biedl et al. uses the d-block tree
T4, 1.e., the adjacency graph of the d-(vertex-)connected
components of the given graph. The parameter of inter-
est is ¢4, the number of leaves of this tree. The bounds
of Biedl et al. fall in two categories, those that use ¢4
(type-2 bound) and those where £, has been replaced by

upper bounds on {4 for the corresponding graph class
(type-1 bound). For example, Biedl et al. show that
every 3-regular graph has a matching of size at least
(3n — 203)/6. Using that ¢ < (n + 2)/6 for 3-regular
graphs leads to a bound of (4n — 1)/9 for the matching
size in this graph class. The work of Biedl et al. improves
some of the earlier results of Nishizeki and Baybars [21]
who investigated lower bounds on the size of maximum
matchings in planar graphs depending on the minimum
degree (3-5), the connectivity (1-4), and the number of
vertices of the graph.

Our first and main result is that we “implement”
in O(n polylog n) time all of the bounds of Biedl et
al. except for the type-2 bound for 3-connected planar
graphs, see Table Their bound of (2n + 4 — ¢3)/4
is without the bold 6. Our most urgent open question
is how to close this gap. Our general approach is as
follows. We use block trees to grasp the coarse structure
of the graph. They help us to quickly decompose
the graph into pieces with desirable properties (such
as higher connectivity). We then compute matchings
locally and put these local results together to form a
(near-) maximum matching in the whole graph. We
treat trees is Section [2} turn to maxdeg-3 graphs (i.e.,
graphs of maximum degree 3) in Section and deal with
3-connected planar graphs in Section [4]

As an example, one of these algorithms finds match-
ings of size at least (3n—ny—2¢5)/6 in maxdeg-3 graphs,
where ny denotes the number of degree-2 vertices, see
Section |3} Such graphs arise naturally when converting
triangulations into quadrangulations [23]. Biedl et al. [5]
have shown that this bound is tight, but their original
construction has no degree-2 vertices, i.e., no = 0. They
give another construction with ny = 3n/5, but that
graph has a matching of size 2n/5, which is larger than
(n — 1)/3, the corresponding type-1 bound. Therefore
Biedl et al. pose the question whether there are graphs
with a significant number of degree-2 vertices for which
the bound (3n — ny — 265)/6 is actually sharp. We an-
swer this question in the affirmative. Our construction
uses roughly n/3 degree-2 vertices. This is our second
result.

Our third and final result concerns the fast com-
putation of maximum matchings in special 3-regular
and special 3-connected planar graphs. Note that Pe-
tersen’s theorem is actually slightly stronger than stated
above. It says that every 3-regular graph whose 2-
block tree has maximum degree 2 (i.e., is a path) con-
tains a perfect matching. Biedl et al. [4] have shown
how to compute perfect matchings in such a graph in
O(nlog*n) time and in O(n) time is the graph is ad-
ditionally planar. We extend the findings of Biedl et
al. by showing how to compute a maximum matching

in 3-regular graphs with 2-block tree of constant max-
imum degree. Our algorithm takes O(nlog® n) time in
the general case and O(n) time in the planar case. It is
based on dynamic programming and on administrating
which and how many vertices are matched in the inter-
faces between the 2-connected components. Note that
for maxdeg-3 graphs 2-vertex connectivity (biconnec-
tivity) and 2-edge connectivity (bridge-connectivity) are
equivalent. We apply a similar technique to 3-connected
planar graphs with bounded-degree 4-block tree. This
yields maximum matchings in such graphs in O(na(n))
time, see Section [5]

For the 3-regular case we actually use the algo-
rithm of Biedl et al. as a subroutine. The bottleneck
of that algorithm is the dynamic maintenance of the 2-
connected components of a graph. Using a data struc-
ture of Holm et al. [I3] yields a query time of O(log* n).
Thorup [31] has claimed to have a data structure with
O(log® nloglog n) query time. This and any further im-
provements would immediately improve the O(log* n)-
factors in the running time of the algorithm of Biedl et
al. and of our algorithms, see Table

Although our fast maximum matching algorithms
can only handle special cases of 3-connected planar and
3-regular graphs, these results are of general interest
since Biedl [3] showed that there exists a linear-time re-
duction from maximum matching in arbitrary graphs to
maximum matching in 3-regular graphs and from maxi-
mum matching in planar graphs to maximum matching
in triangulated (i.e., 3-connected) planar graphs of max-
imum degree 9. Biedl’s results make it unlikely that
there are near-linear-time algorithms for much wider
subclasses of 3-regular graphs and 3-connected planar
graphs.

For full proofs we refer the reader to the long
version [24] of this article.

2 Trees

We first compute maximum matchings in trees and
then use this result to find matchings in more complex
graph classes: maxdeg-3 graphs and 3-connected planar
graphs. Although the techniques in this section are
quite simple, they suffice to reach some of the bounds
given by Biedl et al. [].

Consider the following simple algorithm PICK-
LEAFEDGES that takes an arbitrary graph G as input
and outputs a set M of edges in GG, which is computed
as follows. Initially M is empty. As long as G has
a leaf (i.e., a degree-1 vertex), the unique edge e inci-
dent to the leaf is put in M and both endpoints of e
are removed from G with all their incident edges. The
algorithm yields the following well-known theorem [2].

graph class bound on matching size runtime
type-1 | type-2 o(")
3-regular (4n—1)/9] (3n—265)/6 |nlog*n
maxdeg-3 (n—1)/3 |(3n — ny — 265)/6| n|nlog*n
3-connected, planar, n > 10 (n+4)/3| (2n+4—6£44)/4 | n|na(n)
triangulated, planar (2n+4—244)/4 n
maxdeg-k (n—1)/k n
3-regular, bounded-deg 2-block tree maximum nlog*n
3-regular, planar, bounded-deg 2-block tree maximum n
3-connected, planar, bounded-deg 4-block tree maximum na(n)

Table 1: Our results. The partition in type-1 and type-2 bounds follows the work of Biedl et al. [5]. Our fast
algorithms achieve all of theirs bounds (first three rows) except the type-2 bound for 3-connected planar graphs.
Their bound is without the bold 6. The function a(n) := «(n,n) denotes the slowly growing inverse of the

Ackermann function.

THEOREM 2.1. Let G be a graph, let M = PICKLEAF-
EDGES(G), let G' = G — U, eps{u, v}, and let M’ be a
mazimum matching in G'. Then MUM’' is a mazimum
matching in G.

Note that if we apply PICKLEAFEDGES to a tree, edges
are picked until the remaining graph G’ is empty. This
shows that the following corollary holds.

COROLLARY 2.1. Applying PICKLEAFEDGES to a tree
yields a maximum matching in linear time.

THEOREM 2.2. Let T be a tree with n wvertices and

mazxdeg k. Then a mazimum matching of T has size
at least (n —1)/k.

Proof. When PICKLEAFEDGES matches a leaf u to its
parent v and removes both vertices, at most k edges are
removed and the matching is enlarged by 1. There are
n—1 edges, so this can be done at least (n—1)/k times.
O

This thereom yields interesting results for maxdeg-3
graphs and 3-connected planar graphs: we first find a
spanning tree of bounded degree and then a maximum
matching in the spanning tree. Clearly this is a
matching in the original graph.

COROLLARY 2.2. Let G be a maxdeg-3 graph. Then G
has a matching of size at least (n — 1)/3, and such a
matching can be found in linear time.

Proof. First we find a spanning tree 7" of G in linear
time, e.g., by breadth-first search. Then T also has
maximum degree at most 3. By Corollary we can
find a maximum matching in 7T in linear time, and by
Theorem [2.2]it has size at least (n — 1)/3. O

This is one of the type-1 bounds of Biedl et al. [0, see
Table |1} The same technique can be used for maxdeg-k
graphs, leading to a matching of size at least (n —1)/k.
However, this is a rather weak bound. We can achieve
better bounds by guaranteeing a good upper bound on
the maximum degree of our spanning tree.

COROLLARY 2.3. Let G be a 3-connected planar graph.
Then we can find in G a matching of size at least
(n —1)/3 in linear time and, if n > 10, a matching
of size (n+4)/3 in linear time.

Proof. A maxdeg-3 spanning tree T' of G can be com-
puted in linear time [27]. Then Corollary yields in
linear time a matching of size at least (n —1)/3 in T
Note that this bound is only by 5/3 smaller than the
type-1 bound (n+4)/3 of Biedl et al. [3] for 3-connected
planar graphs with n > 10, see Table [1] Hence we can
reach their bound by finding at most two augmenting
paths, which takes O(n) time [29]. O

3 Graphs with Maximum Degree 3

In this section we consider matchings in maxdeg-3
graphs. We first consider 3-regular graphs and give an
algorithm that achieves the tight bounds of Biedl et
al. [B] (see Table . Then we show how to extend this
algorithm to arbitrary maxdeg-3 graphs. We also give a
family of maxdeg-3 graphs for which the bound of Biedl
et al. is tight. The novelty is that each graph of the
family contains a large fraction of degree-2 vertices.

3.1 3-regular graphs. Biedl et al. [§] have shown
that every 3-regular graph has a matching of size at
least (4n — 1)/9, or more generally of size (3n — 2¢5)/6,
where /5 denotes the number of leaves of the 2-block tree
75. We will show how to find such matchings in o(y/nm)
time. This has been known only for a special case: Biedl

et al. [4] have “implemented” Petersen’s theorem. Given
a 3-regular graph with ¢, < 2 they can find a perfect
matching in that graph in O(nlog* n) time.

We present a constructive proof of the bound (3n —
205)/6 that yields an algorithm with running time
O(nlog*n) for finding such a matching. The basic
idea is to cut off leaves in the 2-block tree such that
a small number of free, i.e. unmatched, vertices can
be guaranteed. Recall that a bridge is an edge whose
removal disconnects the graph.

We use a slightly simpler definition of the 2-block
tree than Biedl et al. [5]. Their 2-block tree has a vertex
for each biconnected component of G and a vertex for
each cut vertex of G, i.e., for each vertex whose removal
decomposes G. (The definition of the tree edges is
obvious.) Since our graphs have maximum degree 3,
each cut vertex must be incident to a bridge. (This
observation yields the equivalence of 2-edge and 2-vertex
connectivity in maxdeg-3 graphs.) Thus our simplified
2-block tree only has a node for each biconnected
component of G and an edge for each bridge in G. Note
that the number of leaves in both trees is the same.
From now on we will refer to vertices of the d-block
tree 7y as nodes (as opposed to the vertices of the given
graph). We have the following result.

THEOREM 3.1. Let G be a 3-regular graph whose 2-
block tree has £y leaves. Then G has a matching of size
at least (3n—203)/6. This matching can be chosen such
that every free vertex is incident to a bridge.

Proof. We use induction on £5. If 5 € {1,2}, then there
exists a perfect matching by Petersen’s theorem [22].
For the cases ¢ € {3,4} refer to the long version of this
article [24]. Now let ¢ > 5. We cut off three parts of
the graph such that we remove three leaves from the
2-block tree 75 of G at the cost of at most two free
vertices. Then the induction hypothesis takes effect.

We first show that there always exist three leaves
that are suitable for removal. Choose an arbitrary leaf
node ¢ of 75 and walk upwards until a node vy of de-
gree at least 3 is reached. The last edge of the traversal
corresponds to a bridge b, after whose removal G decom-
poses into two components: the branch containing the
leaf component £ and the main component now contain-
ing one degree-2 vertex. The 2-block tree of the branch
is a path, and the 2-block tree of the main component
has f5 — 1 leaves.

Now assume that every leaf ¢ of 75 has a pointer
to the tree node v, defined as above. If, after removing
be, the degree of vy in the tree is still at least 3, there
is nothing to do. Otherwise, there is at most one other
leaf ¢ with vy = vp. It cannot be cut off at vy anymore
since this would not reduce the number of leaves in the

2-block tree of the main component. Hence by cutting
off a leaf ¢ we make at most one other leaf ¢’ invalid.
Since f5 > 5, we can cut off three branches such that
the number of leaves in the 2-block tree of the main
component decreases by 3 in total.

After removing the three bridges G' decomposes
into four components: three branches, each with one
degree-2 vertex, and the main component with three
degree-2 vertices. The 2-block tree of the main com-
ponent has ¢ — 3 leaves. Now we restore 3-regularity
in each component. We extend each branch B by at-
taching the helper graph H depicted in Figure[Ia]to the
unique degree-2 vertex, which we denote by vg. Now
Petersen’s theorem yields a perfect matching in each of
the extended branches. Then we remove H from each
branch B. This results only in vg becoming free. Thus
so far we have three free vertices, all incident to bridges.
Now consider the main component. We add a new ver-
tex h and connect it to each of the three degree-2 ver-
tices, see Figure Now the main component is again
3-regular. Its 2-block tree still has {5 — 3 leaves. By in-
duction the main component has a matching that leaves
at most 2(¢s — 3)/3 = 205/3 — 2 vertices free, each inci-
dent to a bridge. Since the main component was already
connected the new vertex h is not incident to a bridge
and hence not free. When we remove h, one of the inci-
dent degree-2 vertices becomes free and can be matched
to the free vertex in the corresponding branch. Thus in
total we have created at most 2¢5/3 free vertices, each
incident to a bridge. O

Since the proof is constructive, we simply implement
each step of the proof. We use the algorithm of Biedl et
al. [for computing matchings in the branches and for
the base case. We only need to make a linear number of
cuts because {5 < (n+2)/6 [B]. After each cut we just
add a constant number of vertices. Since each vertex is
in exactly one component, the computation of all partial
matchings takes O(nlog? n) time in total.

The 2-block tree 75 of G can be computed in
linear time [28], but 73 changes drastically when we
link the new vertex h to the three degree-2 vertices
of the main component. The addition of h creates a
new super vertex in 75 that consists of vertices a, b,
and ¢ corresponding to the components with the three
degree-2 vertices in G and of all nodes of 75 that lie on
the unique paths between a, b, and ¢. Thus it remains to
show how to efficiently maintain the 2-block tree of the
main component and the leaf pointers. We call a branch
good if its removal decreases the number of leaves in the
main component.

LEMMA 3.1. Given a 3-regular graph G, we can in
O(na(n)) total time repeatedly determine three good

(a) in a branch

(b) in the main component

(c) at degree-1 vertices

Fig. 1: Restoring 3-regularity.

branches of G, remove the branches, link the degree-2
vertices of the main component to a new vertex, and
update the 2-block tree Ty of the main component. The
process ends when 7o has less than five leaves.

Theorem [3.1]and Lemma[3.1]together yield the following
theorem.

THEOREM 3.2. Let G be a 3-regular graph whose 2-
block tree has o leaves. Then we can find in G a
matching of size at least (3n — 203)/6 in O(nlog*n)
time.

3.2 Maxdeg-3 graphs. In this section we extend
the algorithm of the previous subsection to maxdeg-3
graphs. Let G be such a graph and let ny denote the
number of degree-2 vertices of G. For now we assume
that G has no degree-1 vertices. For every three degree-2
vertices we add a helper vertex and link it to the three
vertices. Note that this does not increase the number of
leaves of 75. If ns is a multiple of 3 this results in a 3-
regular graph. By Theorem we can find a matching
of size at least (3n — 205)/6 in O(nlog*n) time in this
graph. Removing the ns/3 added vertices results in at
most ng/3 free vertices and a matching of size at least
(3n — Ng — 262)/6

If ne is no multiple of 3, we first add helper
vertices as before until there are at most two degree-2
vertices left. If there are two degree-2 vertices left,
we connect them by an additional edge. If there is
only one degree-2 vertex left, we link it to the helper
graph H, see Figure[Ta] Using Theorem [3.2] we compute
a matching in the resulting 3-regular graph. Removing
the added vertices results in a matching M of size at
least (3n — ng — 265)/6 — 1. If M actually contains
exactly (3n —ng — 202)/6 — 1 edges, we can enlarge M
by one edge by computing an augmenting path in G in
O(n) time. This is due to the fact that we know G has a
matching of size (3n — ng — 2¢3) /6. Making G 3-regular
as above takes O(n) time, too.

Finally we also admit degree-1 vertices. Each such
vertex is a leaf in the 2-block tree. Hence we can make
G 3-regular by linking a copy of the helper graph H’
depicted in Figure to each degree-1 vertex. This

neither changes ¢» nor the number of free vertices and
can be done in linear time. We summarize:

THEOREM 3.3. If G is a mazdeg-3 graph with no
degree-2 vertices whose 2-block tree has £ leaves, we can
find in G a matching of size at least (3n — ng — 242)/6
in O(nlog*n) time.

Now we construct a family of graphs that shows that the
bound (3n —ng — 2¢5)/6 holds even in the presence of a
large fraction of degree-2 nodes. This answers an open
question posed by Biedl et al. [B] in the affirmative.
Consider the graphs in Figure] We denote the
graph in the right gray box by Gy and call w its root.
The bound (3n — ny — 2¢2)/6 is tight for this graph.
We construct G; inductively: we attach a copy of Gy
to G;—1 by connecting their roots via two vertices (one
of degree 3 and one of degree 1) and three edges as
shown in Figure The resulting graph has 12i + 10
vertices, 41 + 2 of which have degree 2. Thus the
fraction of degree-2 vertices tends to 1/3. Note that
since G; is a tree, it is essentially its own 2-block trees.
Hence /5 equals the number of leaves of G, i.e., 4i + 5.
The algorithm PICKLEAFEDGES of Section [2] yields a
maximum matching in G; with 4743 edges. This shows
that the bound (3n —ng — 202)/6 is tight for all G;.

4 3-Connected Planar Graphs

In this section we give an algorithm for finding a
matching of size at least (2n+4 —6¢4)/4 in 3-connected
planar graphs. In graphs where every separating triplet

G;

Fig. 2: Maxdeg-3 graphs with many degree-2 vertices
and small maximum matching.

Fig. 3: Graph whose 4-block tree is a path.

is a triangle (e.g., in triangulated graphs) we can even
guarantee a size of (2n + 4 — 2¢4)/4. This is very close
to the tight bound (2n + 4 — £4)/4 that Biedl et al. [§]
gave for 3-connected planar graphs. We use an approach
similar to Section Bl We cut off leaves of the 4-block
tree until it has only two leaves left. To implement this,
we first need an algorithm for finding matchings in 3-
connected planar graphs whose 4-block tree is a path.
Biedl et al. [5] have shown that such a graph always has
a perfect or a nearly perfect matching, i.e., a matching
that matches all vertices but one.

If a graph G is 3- but not 4-connected, there exists
a separating vertex triplet T = {u,v,w} such that
G — T has more than one component. For each of
these components C' we consider the graph C' + T" and
add the dummy edges uv, vw,uw if they did not exist
already. We iterate this process until all components
are 4-connected. These are the 4-connected components
of G. The 4-block tree of G contains one node for
every 4-connected component of G. Since we consider
only 3-connected planar graphs, every separating triplet
separates only two components, otherwise G would
contain a subdivision of K3 3 (contradicting planarity).
So we simply link two nodes of the 4-block tree by an
edge if the corresponding 4-connected components share
a separating triplet. Note that the definition of Biedl et
al. [B] is more general. However, for 3-connected planar
graphs both definitions lead to the same value of /.

4.1 The 4-block tree is a path. Let G be a 3-
connected planar graph whose 4-block tree is a path.
If G is 4-connected we can find a Hamiltonian cycle and
hence a (nearly) perfect matching in linear time [6]. If G
is not 4-connected the basic idea is to find a matching in
every block separately and combine them to a matching
in G. Let Gy,...,Gy be the 4-connected components
of G and for i = 1,...,k — 1 let T; be the triplet
that separates G; and G;41, see Figure Note that
consecutive triplets do not need to be disjoint.

If n is odd, choose a face of G, that is not incident to
all vertices of T _1. Place a new vertex v* into this face
and connect it to each vertex of the face. Now G has an
even number of vertices, G is still 3-connected planar
and its 4-block tree a path, and hence has a perfect

matching. In particular it follows that it is enough to
leave a vertex free in Gy (the one matched to v*).

One idea would be to find a Hamiltonian cycle
in G; using the algorithm of Chiba and Nishizeki [6].
However, it seems difficult to extend the corresponding
matching to one of G. Therefore we go a different way.

Consider a perfect matching M in a 3-connected
planar graph G with ¢4, = 2. Now we restrict M
to a 4-connected component C' of G. We denote this
matching by M’. It is clear that only vertices of C that
belong to separating triplets of G are free with respect
to M’. Note that the fact that we can combine M’
with the rest of M to a perfect matching only depends
on which of these vertices are matched and which are
free. In particular the combinability is independent of
the structure of M’ with respect to the vertices of C
that do not belong to a separating triplet. The next
definition formalizes this idea.

A matching configuration of a component G; is
a pair (Ti,matchcd;,-ri,frcc) with Ti,matchcd c T‘ifl and
T; tree € T;. Such a configuration is called feasible if
both of the following conditions hold:

L4 Tli,matched N 71i,free = ®7 and

e there exists a matching M; in G; which matches
exactly the vertices of G — (T} matched U T} free) and
uses only edges in G (i.e., no dummy edges).

The first condition makes sure that vertices already
matched in G;_; are not used again in G; ;1. The second
condition makes sure that we can use this configuration
to find a perfect matching in G.

The matching graph of G is a directed acyclic graph
whose vertices correspond to the feasible matching
configurations of G. Let u = (T matched, 15 free) and
v = (T matched, L} frec) be two vertices of the matching
graph. There is an edge wv if j =i+ 1 and T; \ T} free =
T matched- Lhis is the case if and only if the matching
given by u can be extended into v such that the only free
vertices are in Tj ree. In the situation of Figure @ there
would be an edge between the two vertices representing
the first and the last configuration, but not between
the first and the second. For ease of description we
add a source node with edges to all feasible matching
configurations of G;.

The matching graph has O(n) vertices, since there
are only O(n) components and every components has
only a constant number of feasible matching configu-
rations. Every perfect matching of G corresponds to
a path of length k£ in the matching graph and vice
versa. The path describes a sequence of matching
configurations that fit together. For the configuration
(T matched, L free) Of G lying on the path there exists a
matching M; that is perfect in G; — (T matched U T free)-

Ti+1,matched

Ti,matchcd

Ti Jfree

G; Git1

Gi+l

Ti+1,matched

Ti—&-l,free Ti—&-l,free

Fig. 4: Examples of matching configurations

Then M; U---U My, is a perfect matching in G. Such a
path can be found in O(n) time by breadth-first search
from the source node of the matching graph.

Now we need a fast algorithm for finding the feasible
matching configurations of a 4-connected component
G;. Let n; denote the number of vertices of GG;. Since G;
has only a constant number of matching configurations,
it is enough to give an algorithm that can quickly
determine feasibility of a given matching configuration.
We first compute a (nearly) perfect matching M in
G; by finding a Hamiltonian cycle in O(n;) time [6].
From M we remove all edges that do not belong to
G and all edges incident to vertices we may not use
(i-e., vertices in T; matched U T} free). This results in O(1)
free vertices. Hence if there is a perfect matching in
G; — (T} matched U T free), We can find it in O(n;) time by
computing a constant number of augmenting paths [29].
If the resulting matching is perfect, the configuration is
feasible and we store the matching as M;, otherwise the
configuration is not feasible.

Thus we can compute all feasible matching config-
urations of a component G; in O(n;) time. Since every
component shares at most six vertices with other com-
ponents, we can compute the feasible matching config-
urations for all components in linear time.

Finally, if the graph originally had an odd number
of vertices, we have to remove the vertex v* added in
the beginning, which frees the vertex v** matched to v*.
This yields a perfect matching in G — v**, i.e., a nearly
perfect matching in G. We summarize our observations
as follows.

LEMMA 4.1. Let G be a 3-connected planar graph whose
4-block tree is a path. Then we can compute a (nearly)
perfect matching in G in linear time.

4.2 Cutting leaves. In this section we apply the
algorithm from the previous section to cut off leaves
of the 4-block tree 7; similarly to the way we treated
the 2-block tree in Section 3.l The 4-block tree of a 3-
connected planar graph can be computed in O(na(n))
time [I4]. The 4-block tree has at most (2n — 4)/3
leaves [B]. We pick an arbitrary one and walk upwards
in the 4-block tree until we reach a component of degree

at least 3. This is the place to cut the leaf off. The last
used edge corresponds to a separating triplet that we
can use to cut off a leaf of the 4-block tree.

We now split the graph at this separating triplet.
This results in two components, the branch containing
the leaf we want to cut off and the main component.
We add to each of these components the edges between
the vertices of the separating triplet if they did not
already exist. Now we compute matchings in the
main component and in the branch using recursion
and the algorithm of the previous section, respectively.
The following lemma states that we can combine these
matchings without getting too many free vertices.

LEMMA 4.2. Let G be a 3-connected planar graph. Let
B be a branch, let Cpain be the corresponding main com-
ponent, and let T = {u,v,w} be the triplet that separates
B and Cpaim. Let Cl iy = Cmain U {uv, vw,wu}. Let
Mnain be a matching in Cl ;. and let f be the number
of free vertices in C} ., with respect to Mmain. Then

there is a matching M of G that leaves at most f + 3
vertices free.

This results in an algorithm that produces at most three
free vertices for every leaf of the 4-block tree. Hence
the matching has size at least (2n — 644)/4. We can
reach the bound (2n + 4 — 644)/4 by finding at most
one augmenting path in linear time. Once the 4-block
tree is computed, we can find leaves to cut off in a way
similar to Section Bl In fact here it is even easier
since we can cut off the leaves one by one. Hence the
full decomposition of the graph can be done in linear
time. We do O(n) splits, and combining the matchings
in both components can be done in constant time. By
Lemma the computation of the matching in the
branch takes time linear in the size of the branch. Since
two adjacent components share only three vertices,
the total number of vertices we process is linear, and
the algorithm runs in O(na(n)) time. The following
theorem summarizes our discussion.

THEOREM 4.1. In a 3-connected planar graph whose 4-
block tree has €4 leaves we can compute a matching of
size at least (2n + 4 — 644)/4 in O(na(n)) time.

In case the graph is a planar triangulation (and hence 3-
connected) we can improve this result. This is due to the
fact that the edges between the vertices of a separating
triplet are already in the graph—every separating triplet
is a separating triangle. This means that we can always
choose the matching in the branches such that it fits
optimally with the matching in the main component.

THEOREM 4.2. In a triangulated 3-connected planar
graph whose 4-block tree has 4 leaves we can compute a
matching of size at least (2n+4 — 244)/4 in linear time.

Proof. The triangulated case is a lot easier than the
general 3-connected planar case since we now know that
the vertices of a separating triplet form a triangle. Let
G be a triangulated 3-connected planar graph. Since G
is triangulated, the 4-block tree of G can be computed
in linear time [I5].

Structurally we do the same as in the general case:
we cut off a branch B at a separating triangle T" and
process the main component recursively. Then we
extend the matching M of the main component into
the branch. We now show that, in linear time, we
can find a matching M’ D M that leaves at most one
vertex in the branch free. By induction M’ leaves at
most ¢4 — 1 vertices free. Hence M’ has size at least
(2n+2—2¢44)/4. Computing an augmenting path yields
the desired bound in linear time [29].

The branch B is a path of 4-connected components.
We go through these components sequentially starting
with the one that contains T. Let C' be the current
component. Let 77 = {u,v,w} be the triangle separat-
ing C from the previous (or the main) component. If C
is not the last component in B, let T” be the triangle
separating C from the next component and let u' be
a vertex in T\ T". Otherwise let v’ be any vertex in
C'\ T’. Note that 7" contains at most one free vertex.
We distinguish two cases. For each case we specify a
set R C {u,v,w,u'} such that C'\ R contains a perfect
matching.

Case 1: One vertex, say w, is free.

Then C —{u, v} contains a Hamiltonian circuit [30].
The circuit yields a (nearly) perfect matching in
C\{u,v}. If |C] is odd, we can choose the matching
such that v’ is free. Let R = {u,v,v'}. If |C] is
even, all vertices are matched. Let R = {u,v}.

Case 2: T’ does not contain any free vertices.

If |C| is odd, then C'\ {u} contains a Hamiltonian
circuit containing the edge vw [B0]. The circuit
hence contains a perfect matching P of C'\ {u}.
It can be chosen such that it contains vw. Now

P\ {vw} is the desired matching. Let R =T".

If |C| is even, then C \ {u,u'} contains a Hamilto-
nian circuit with the edge vw [B0]. As shown above
this circuit contains an appropriate matching. Let
R=T"U{u}.

It remains to analyze the running time. Since C' is 4-
connected and planar, we can compute some Hamilto-
nian circuit H in C' in O(|C|) time [6]. This circuit
yields a (nearly) perfect matching My in C. From Mgy
we remove all edges incident to vertices in R. This yields
a matching My, in C'\ R. By construction of R we get a
perfect matching M in C'\ R by computing a constant
number of augmenting paths in C'\ R. Clearly, M can
be computed in O(|C|) time. The linear running time
of the whole algorithm can be seen as in the proof of
Lemma 71 O

5 Graphs with Bounded-Degree Block-Trees

In this section we consider graphs with block trees of
bounded degree. Biedl et al. [] gave an algorithm
for computing a perfect matching in a 3-regular graph
whose 2-block tree is a path in O(n log® n) time. In Sec-
tion [4] we showed how to find (nearly) perfect matchings
in 3-connected planar graphs whose 4-block trees are
paths in linear time. These are special cases where the
number of leaves of the corresponding block tree is one
or two.

It is clear that if we bound the number of leaves
of the block tree by a constant, we can find maximum
matchings in maxdeg-3 graphs and 3-connected planar
graphs fast. In these cases our algorithms of the
previous sections guarantee to find a matching that
is smaller than |n/2] by only a constant. Hence we
can enlarge the computed matching to a maximum
matching by finding a constant number of augmenting
paths which is possible in linear time [29).

In this section we relax our previous requirement for
the fast computation of maximum matchings: instead
of insisting that the block tree has a constant number
of leaves, we require only that its degree is bounded.
In this way the number of leaves can still be large (i.e.,
linear in the size of the graph). This also shows which
structures make the fast computation of maximum
matchings difficult: components with a large number
of neighbors.

The technique we use in this section is similar to the
one we used in Section 1] for the case of 3-connected
planar graphs whose 4-block tree is a path. There we
could afford to check all local configurations since ev-
ery component had at most two neighbor components.
However, the arguments we used also work for a con-
stant number of neighbor components.

In the case of 3-connected planar graphs whose 4-

block tree is a path, we knew that there exists a (nearly)
perfect matching. Hence we could restrict ourselves to
considering configurations that can be reached without
leaving any vertices free. In the more general setting of
arbitrary maximum matchings this is no longer the case.
However, instead of just considering the feasibility of the
matching configurations as in Section [{.1] we keep track
of the number of vertices we must leave free to reach a
given configuration. We then use dynamic programming
to join local configurations. We now give a sketch of the
algorithm for 3-connected planar graphs. The algorithm
is exponential in the degree bound.

Let G be a 3-connected planar graph. We first
compute its 4-block tree 7y in O(na(n)) time [I4],
choose an arbitrary node of 74, and direct all edges
towards it. We call a node a a predecessor of b if there is
a directed path from a to b in 7. Then, we process the
components in topological order. In this way, whenever
we process a component, there is at most one neighbor
component that has not been processed before. Let C
be such a component and let G denote the subgraph
of G that consists of all vertices that belong to C or
to a predecessor of C. There is at most one separating
triplet T that separates C' from a component that has
not been processed already. We call T the leaving
separating triplet of C. An important observation is
that the extendability of a maximum matching in G¢
to a matching of G depends only on which vertices of T'
are free. Once we have computed all eight possibilities
we do not need to consider any vertex of Go — T again.

For every subset ' C T we check how many
vertices we have to leave free for a maximum matching
in Go¢ — F. For this check we use the fact that we
already have computed the corresponding counters of
all predecessors of C. There are only a constant number
of neighbors and each of them has a constant number
of configurations. To compute the cost of F we now
simply check the cost of every possible combination.
Since this is only a constant number (even though
exponential in the maximum degree of the 4-block tree),
this takes asymptotically the same time as checking a
single configuration.

Checking the cost of a single configuration is possi-
ble in time proportional to the size of the component C'
by using that C' is 4-connected and planar. This means
we can then find a Hamiltonian cycle in C' in linear time
and hence a (nearly) perfect matching. After comput-
ing such a matching we remove all dummy edges (e.g.,
edges only added to make the components 4-connected)
and all vertices that are already matched by predeces-
sor components in the given configuration as well as all
vertices in F. We remove only a constant number of
vertices and edges, resulting in a constant number of

free vertices. Thus we can then enlarge the matching to
a maximum matching by computing augmenting paths
in linear time. The number of free vertices of the given
configuration is then just the number of free vertices
in the considered component plus the number of free
vertices in the predecessor configurations.

By storing along with each counter also the corre-
sponding configuration and matching, we can report a
maximum matching in linear time once all components
have been processed. The next theorem summarizes this
result. Note that the asymptotic running time is dom-
inated by the initial computation of the 4-block tree,
which takes O(na(n)) time [I4].

THEOREM 5.1. In a 3-connected planar graph whose 4-
block tree has bounded degree we can compute a maxi-
mum matching in O(na(n)) time.

A similar algorithm can be used to compute a maximum
matching in a 3-regular graph with bounded-degree 2-
block tree. We first compute the 2-block tree in linear
time [28] and then work upwards from the leaves in
the same way as before. However, here we have only
two counters for each component. The vertex incident
to the leaving bridge is either matched or free. Note
that when combining matchings we can add a bridge if
both its incident vertices are free. We compute the cost
of each configuration (i.e., the number of free vertices)
according to this rule. We must make sure to not match
a vertex via two bridges at the same time. However, it
is not hard to see that a vertex is either incident to at
most one bridge or to three bridges. In the latter case
the vertex is actually a component by itself, and this
can be checked easily.

The running time for the 3-regular case depends
mainly on the running time for computing maximum
matchings locally in the 2-connected components. For
this we use the algorithm of Biedl et al. []. Their
algorithm takes O(n log® n) time for the general case
and linear time for the planar case.

THEOREM 5.2. Let G be a 3-reqular graph whose 2-
block tree has bounded degree. Then we can find a
mazimum matching in G in O(nlog*n) time. If G is
planar, the running time reduces to O(n).

As we pointed out in the introduction, our results are of
general interest due to Biedl’s linear-time reductions [3].
They make it unlikely that there are near-linear-time
algorithms for much wider subclasses of 3-regular graphs
and 3-connected planar graphs.

6 Open Questions

Our most burning question deals with 3-connected
planar graphs, where we can compute matchings of size

at least (2n + 4 — 644)/4 in O(na(n)) time. Can we
achieve the tight bound (2n+4—/¢4)/4 of Biedl et al. [5]
in near-linear time? At least in the triangulated case?

Can we speed up our O(n log* n)-time algorithm for

3-regular graphs in the planar case? In the general case
we use the algorithm of Biedl et al.] as a subroutine,
which takes only O(n) time in the planar case. However,
our current approach does not preserve planarity.

Are there fast algorithms that implement the

bounds of Nishizeki and Baybars [2]] for planar graphs?
Le., how can we exploit minimum degrees?

Acknowledgments

We thank Therese Biedl and the anonymous referees for
helpful comments.

References

(1
2]

3l

(9]

(10]

(11]

(12]

(13]

Algorithmic Solutions. The LEDA user manual version
5.2. www.algorithmic-solutions.info/leda_manual.
J. Aronson, A. Frieze, and B. G. Pittel. Maximum
matchings in sparse random graphs: Karp-Sipser revis-
ited. Random Structures € Algorithms, 12(2):111-177,
1998.

T. Biedl. Linear reductions of maximum matching.
In Proc. 12th Annu. ACM-SIAM Sympos. Discrete
Algorithms (SODA’01), pages 825-826, 2001.

T. Biedl, P. Bose, E. Demaine, and A. Lubiw. Efficient
algorithms for Petersen’s theorem. J. Algorithms,
38:110-134, 2001.

T. Biedl, E. D. Demaine, C. A. Duncan, R. Fleischer,
and S. G. Kobourov. Tight bounds on maximal and
maximum matchings. Discrete Math., 285(1-3):7-15,
2004.

N. Chiba and T. Nishizeki. The Hamiltonian cycle
problem is linear-time solvable for 4-connected planar
graphs. J. Algorithms, 10:187-211, 1989.

R. Cole, K. Ost, and S. Schirra. Edge-coloring bipartite
multigraphs in O(FE log D) time. Combinatorica, 21:5—
12, 2001.

D. Coppersmith and S. Winograd. Matrix multiplica-
tion via arithmetic progressions. In Proc. 19th Annu.
ACM Conf. Theory Comput. (STOC’87), pages 1-6,
1987.

H. N. Gabow. An efficient implementation of Ed-
monds’ algorithm for maximum matching on graphs.
J. ACM, 23(23):221-234, 1976.

H. N. Gabow, H. Kaplan, and R. E. Tarjan.
Unique maximum matching algorithms. J. Algorithms,
40(2):159-183, 2001.

P. Hall. On representatives of subsets. Jour. London
Math. Soc., 10:26-30, 1935.

P. Hansen and M. L. Zheng. A linear algorithm
for perfect matching in hexagonal systems. Discrete
Math., 122(1-3):179-196, 1993.

J. Holm, K. de Lichtenberg, and M. Thorup. Poly-
logarithmic deterministic fully-dynamic algorithms for

(14]

(15]

[16]

(17]

18]

[19]

[20]

21]

22]

23]

24]

[25]

[26]

27]

(28]
29]

(30]

(31]

32]

33]

connectivity, minimum spanning tree, 2-edge, and
biconnectivity. J. ACM, 48(4):723-760, 2001.

A. Kanevsky, R. Tamassia, G. D. Battista, and
J. Chen. On-line maintenance of the four-connected
components of a graph. In Proc. 83th Annu. IEEE
Sympos. Found. Comput. Sci. (FOCS’92), pages 793—
801, 1992.

G. Kant. A more compact visibility representation.
Intern. J. Comput. Geom. Appl., 7(3):197-210, 1997.
C. Kenyon and E. Rémila. Perfect matchings in the
triangular lattice. Discrete Math., 152(1-3):191-210,
1996.

L. Lovasz and M. D. Plummer. Matching Theory.
North Holland, Amsterdam, 1986.

S. Micali and V. V. Vazirani. An O(\/[V] - |E|)
algorithm for finding maximum matchings in general
graphs. In Proc. 21st Annu. IEEE Sympos. Found.
Comput. Sci. (FOCS’80), pages 17-27, 1980.

M. Mucha and P. Sankowski. Maximum matchings
via Gaussian elimination. In Proc. 45th Annu. IEEE
Sympos. Foundat. Comput. Sci., pages 248—255, 2004.
M. Mucha and P. Sankowski. Maximum matchings in
planar graphs via Gaussian elimination. Algorithmica,
45(1):3-20, 2006.

T. Nishizeki and I. Baybars. Lower bounds on the car-
dinality of the maximum matchings of planar graphs.
Discrete Math., 28(3):255-267, 1979.

J. Petersen. Die Theorie der reguldren Graphs. Acta
Mathematica, 15:193-220, 1891.

S. Ramaswami, P. Ramos, and G. Toussaint. Convert-
ing triangulations to quadrangulations. Computational
Geometry Theory and Applications, 9:257-276, 1998.
I. Rutter and A. Wolff. Computing large matchings
fast. Technical Report 2007-19, Fakultat fiir Infor-
matik, Universitdt Karlsruhe, 2007. Available at www.
ubka.uni-karlsruhe.de/indexer-vvv/ira/2007/19.
A. Schrijver. Bipartite edge coloring in O(Am) time.
SIAM J. Comput., 28:841-846, 1999.

J. Siek, L.-Q. Lee, and A. Lumsdaine. The Boost
Graph Library documentation. www.boost.org/libs/
graph, visited 07/04/2007.

W.-B. Strothmann. Bounded Degree Spanning Trees.
PhD thesis, Heinz-Nixdorf-Institut, Universitat Pader-
born, 1997.

R. E. Tarjan. Depth first search and linear graph
algorithms. SIAM J. Comput., 2:146-160, 1972.

R. E. Tarjan. Data structures and network algorithms.
SIAM, Philadelphia, 1983.

R. Thomas and X. Yu. 4-connected projective-planar
graphs are Hamiltonian. J. Combinat. Theory Ser. B,
1:114-132, 1994.

M. Thorup. Near-optimal fully-dynamic graph con-
nectivity. In Proc. 82nd Annu. ACM Sympos. Theory
Comput. (STOC’00), pages 343-350, 2000.

W. P. Thurston. Conway’s tiling groups. Amer. Math.
Monthly, 97(8):757-773, 1990.

W. T. Tutte. The factorization of linear graphs. J.
Lond. Math. Soc., 22:107-111, 1947.

	Introduction
	Trees
	Graphs with Maximum Degree 3
	3-regular graphs.
	Maxdeg-3 graphs.

	3-Connected Planar Graphs
	The 4-block tree is a path.
	Cutting leaves.

	Graphs with Bounded-Degree Block-Trees
	Open Questions
	Acknowledgments
	References

