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Abstract
In this paper we present algorithms for computing large matchings in 3-regular graphs,

graphs with maximum degree 3, and 3-connected planar graphs. The algorithms give a
guarantee on the size of the computed matching and take linear or slightly superlinear time.
Thus they are faster than the best-known algorithm for computing maximum matchings in
general graphs, which runs in O(

√
nm) time, where n denotes the number of vertices and m

the number of edges of the given graph. For the classes of 3-regular graphs and graphs with
maximum degree 3 the bounds we achieve are known to be best possible.

We also investigate graphs with block trees of bounded degree, where the d-block tree is
the adjacency graph of the d-connected components of the given graph. In 3-regular graphs
and 3-connected planar graphs with bounded-degree 2- and 4-block trees, respectively, we
show how to compute maximum matchings in slightly superlinear time.
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1 Introduction

Recall that a matching is a set of independent (i.e., pairwise non-incident) edges in a graph.
A maximum matching is one of maximum cardinality, and a maximal matching cannot be
enlarged by adding edges. The problem of finding maximum matchings in graphs has a long
history dating back to Petersen’s theorem [Pet91], which states that every biconnected 3-regular
graph has a perfect matching, i.e., a matching that matches every vertex. Finding maximum
matchings, or large matchings in general, has many applications, see for example the book on
matching theory of Lovász and Plummer [LP86]. To-date the asymptotically fastest (but rather
complicated) algorithm for finding maximum matchings in general graphs runs in O(

√
nm) time

[MV80], where n and m are the numbers of vertices and edges of the given graph, respectively.
Only recently faster algorithms for dense graphs, for planar graphs, for graphs of bounded genus,
and for general H-minor free graphs have been suggested. They are all based on fast matrix
multiplication (which, as a tool, is not very practical) and run in O(nω) time for dense graphs
[MS04], O(nω/2) time for planar graphs [MS06] and for graphs of bounded genus [YZ07], and in
O(n3ω/(ω+3)) ⊂ O(n1.326) time for H-minor free graphs [YZ07], where ω ≤ 2.376 is the exponent
in the running time of the best-known matrix-multiplication algorithm [CW87]. However, for
practical purposes often slower, but less complicated algorithms are used: both LEDA [Alg07]
and the Boost Graph Library [SLL07] provide maximum-matching algorithms with a running
time of O(nmα(n,m)) that are based on repeatedly finding augmenting paths [Gab76, Tar83].

There has been a sequence of more and more general characterizations of graphs with perfect
matchings [Pet91, Hal35, Tut47], which are special maximum matchings. This has also led
to algorithms that test the existence of or compute perfect matchings in o(

√
nm) time in,

e.g., bipartite k-regular graphs [Sch99, COS01], 3-regular biconnected graphs [BBDL01], and
subgraphs of regular grids [Thu90, HZ93, KR96]. The last four algorithms all work in linear
time for the corresponding subclasses of planar graphs. There is also a fast algorithm for finding
unique maximum matchings [GKT01]. It takes O(m log4 n) time in general and O(n log n) time
in planar graphs.

However, although the theory of matchings is a very well-researched area, there has not
been a comprehensive investigation of graph classes where maximum matchings or matchings
of guaranteed size can be computed faster than matchings in general graphs, i.e., in o(

√
nm)

time. This paper is a first step into this direction. Our work was inspired by and addresses
some open questions of a recent paper of Biedl et al. [BDD+04] that gives tight bounds on
the sizes of maximal and maximum matchings in certain graph classes. Note that, in order to
establish bounds on the size of matchings that depend on n, one has to forbid isolated vertices.
In this paper we assume that graphs are connected since matchings can be computed for each
connected component separately. The analysis of Biedl et al. uses the d-block tree Td, i.e., the
adjacency graph of the d-(vertex-)connected components of the given graph. The parameter of
interest is `d, the number of leaves of this tree. The bounds of Biedl et al. fall in two categories,
those that use `d (type-2 bound) and those where `d has been replaced by upper bounds on `d
for the corresponding graph class (type-1 bound). For example, Biedl et al. show that every
3-regular graph has a matching of size at least (3n − 2`2)/6. Using that `2 ≤ (n + 2)/6 for
3-regular graphs leads to a bound of (4n− 1)/9 for the matching size in this graph class. The
work of Biedl et al. improves some of the earlier results of Nishizeki and Baybars [NB79] who
investigated lower bounds on the size of maximum matchings in planar graphs depending on
the minimum degree (3–5), the connectivity (1–4), and the number of vertices of the graph.

Our first and main result is that we “implement” in O(n polylog n) time all of the bounds of
Biedl et al. except for the type-2 bound for 3-connected planar graphs, see Table 1. Their bound
of (2n + 4 − `2)/4 is without the bold 6. Our most urgent open question is how to close this
gap. Our general approach is as follows. We use block trees to grasp the coarse structure of the
graph. They help us to quickly decompose the graph into pieces with desirable properties (such
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graph class bound on matching size runtime
type-1 type-2 O(·)

3-regular (4n− 1)/9 (3n− 2`2)/6 n log4 n
maxdeg-3 (n− 1)/3 (3n− n2 − 2`2)/6 n |n log4 n
3-connected, planar, n ≥ 10 (n+ 4)/3 (2n+ 4− 6`4)/4 n |nα(n)
3-regular planar (3n− 6`2)/6 n
triangulated, planar (2n+ 4− 2`4)/4 n
maxdeg-k 2(n− 1)/k n
3-regular, bounded-deg 2-block tree maximum n log4 n
3-regular, planar, bounded-deg 2-block tree maximum n
3-connected, planar, bounded-deg 4-block tree maximum nα(n)

Table 1: Our results. The partition in type-1 and type-2 bounds follows the work of Biedl et
al. [BDD+04]. Our fast algorithms achieve all of theirs bounds (first three rows) except the
type-2 bound for 3-connected planar graphs. Their bound is without the bold 6. The function
α(n) := α(n, n) denotes the slowly growing inverse of the Ackermann function.

as higher connectivity). We then compute matchings locally and put these local results together
to form a (near-) maximum matching in the whole graph. We treat trees is Section 2, turn to
maxdeg-3 graphs (i.e., graphs of maximum degree 3) in Section 3 and deal with 3-connected
planar graphs in Section 4.

As an example, one of these algorithms finds matchings of size at least (3n − n2 − 2`2)/6
in maxdeg-3 graphs, where n2 denotes the number of degree-2 vertices, see Section 3. Such
graphs arise naturally when converting triangulations into quadrangulations [RRT98]. Biedl
et al. [BDD+04] have shown that this bound is tight, but their original construction has no
degree-2 vertices, i.e., n2 = 0. They give another construction with n2 = 3n/5, but that graph
has a matching of size 2n/5, which is larger than (n − 1)/3, the corresponding type-1 bound.
Therefore Biedl et al. pose the question whether there are graphs with a significant number
of degree-2 vertices for which the bound (3n − n2 − 2`2)/6 is actually sharp. We answer this
question in the affirmative. Our construction uses roughly n/3 degree-2 vertices. This is our
second result.

Our third and final result concerns the fast computation of maximum matchings in special 3-
regular and special 3-connected planar graphs. Note that Petersen’s theorem is actually slightly
stronger than stated above. It says that every 3-regular graph whose 2-block tree has maximum
degree 2 (i.e., is a path) contains a perfect matching. Biedl et al. [BBDL01] have shown how
to compute perfect matchings in such a graph in O(n log4 n) time. We extend the findings
of Biedl et al. by showing how to compute a maximum matching in 3-regular graphs whose
2-block tree has constant maximum degree. Our algorithm also takes O(n log4 n) time. If,
however, the graph is additionally planar, our algorithm runs in optimal O(n) time. It is based
on dynamic programming and on administrating which and how many vertices are matched in
the interfaces between the 2-connected components. Note that for maxdeg-3 graphs 2-vertex
connectivity (biconnectivity) and 2-edge connectivity (bridge-connectivity) are equivalent. We
apply a similar technique to 3-connected planar graphs with bounded-degree 4-block tree. This
yields maximum matchings in such graphs in O(nα(n)) time, see Section 5.

For the 3-regular case we actually use the algorithm of Biedl et al. as a subroutine. The
bottleneck of that algorithm is the dynamic maintenance of the 2-connected components of
a graph. Using a data structure of Holm et al. [HdLT01] yields a query time of O(log4 n).
Thorup [Tho00] claims to have a data structure with query time O(log3 n log log n). This and
any further improvements would immediately improve the O(log4 n)-factors in the running time
of the algorithm of Biedl et al. and of our algorithms, see Table 1.

Although our fast maximum matching algorithms can only handle special cases of 3-con-
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nected planar and 3-regular graphs, these results are of general interest since Biedl [Bie01]
showed that there exists a linear-time reduction from maximum matching in arbitrary graphs
to maximum matching in 3-regular graphs and from maximum matching in planar graphs to
maximum matching in triangulated (i.e., 3-connected) planar graphs of maximum degree 9.
Biedl’s results make it unlikely that there are near-linear-time algorithms for much wider sub-
classes of 3-regular graphs and 3-connected planar graphs.

2 Trees

We first compute maximum matchings in trees and then use this result to find matchings in
more complex graph classes: maxdeg-3 graphs and 3-connected planar graphs. Although the
techniques in this section are quite simple, they suffice to reach some of the bounds given by
Biedl et al. [BDD+04].

Consider the following simple algorithm PickLeafEdges that takes an arbitrary graph G
as input and outputs a set M of edges in G, which is computed as follows. Initially M is empty.
As long as G has a leaf (i.e., a degree-1 vertex), the unique edge e incident to the leaf is put in
M and both endpoints of e are removed from G with all their incident edges. The algorithm
yields the following well-known theorem [AFP98].

Theorem 1 Let G be a graph, let M = PickLeafEdges(G), let G′ = G−
⋃

uv∈M{u, v}, and
let M ′ be a maximum matching in G′. Then M ∪M ′ is a maximum matching in G.

Note that if we apply PickLeafEdges to a tree, edges are picked until the remaining graph
G′ is empty. This shows that the following corollary holds.

Corollary 1 Applying PickLeafEdges to a tree yields a maximum matching in linear time.

Theorem 2 Let T be a tree with n vertices and maxdeg k. Then a maximum matching of T
has size at least (n− 1)/k.

Proof. When PickLeafEdges matches a leaf u to its parent v and removes both vertices, at
most k edges are removed and the matching is enlarged by 1. There are n − 1 edges, so this
can be done at least (n− 1)/k times.

This thereom yields interesting results for maxdeg-3 graphs and 3-connected planar graphs:
we first find a spanning tree of bounded degree and then a maximum matching in the spanning
tree. Clearly this is a matching in the original graph.

Corollary 2 Let G be a maxdeg-3 graph. Then G has a matching of size at least (n − 1)/3,
and such a matching can be found in linear time.

Proof. First we find a spanning tree T of G in linear time, e.g., by breadth-first search. Then T
also has maximum degree at most 3. By Corollary 1 we can find a maximum matching in T in
linear time, and by Theorem 2 it has size at least (n− 1)/3.

This is one of the type-1 bounds of Biedl et al. [BDD+04], see Table 1. The same technique
can be used for maxdeg-k graphs, leading to a matching of size at least (n−1)/k. However, this
is a rather weak bound. We can achieve better bounds by guaranteeing a good upper bound on
the maximum degree of our spanning tree.

Corollary 3 Let G be a 3-connected planar graph. Then we can find in G a matching of size
at least (n− 1)/3 in linear time and, if n ≥ 10, a matching of size (n+ 4)/3 in linear time.
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Proof. A maxdeg-3 spanning tree T of G can be computed in linear time [Str97]. Then
Corollary 2 yields in linear time a matching of size at least (n− 1)/3 in T .

Note that this bound is only by 5/3 smaller than the type-1 bound (n + 4)/3 of Biedl et
al. [BDD+04] for 3-connected planar graphs with n ≥ 10, see Table 1. Hence we can reach their
bound by finding at most two augmenting paths, which takes O(n) time [Tar83].

3 Graphs with Maximum Degree 3

In this section we consider matchings in maxdeg-3 graphs. We first consider 3-regular graphs
and give an algorithm that achieves the tight bounds of Biedl et al. [BDD+04] (see Table 1).
Then we show how to extend this algorithm to arbitrary maxdeg-3 graphs. We also give a
family of maxdeg-3 graphs for which the bound of Biedl et al. is tight. The novelty is that each
graph of the family contains a large fraction of degree-2 vertices. Finally we focus on planar
3-regular graphs.

3.1 3-regular graphs

Biedl et al. [BDD+04] have shown that every 3-regular graph has a matching of size at least
(4n− 1)/9, or more generally of size (3n− 2`2)/6, where `2 denotes the number of leaves of the
2-block tree T2. We will show how to find such matchings in o(

√
nm) time. This has been known

only for a special case: Biedl et al. [BBDL01] have “implemented” Petersen’s theorem. Given a
3-regular graph with `2 ≤ 2 they can find a perfect matching in that graph in O(n log4 n) time.

We present a constructive proof of the bound (3n − 2`2)/6 that yields an algorithm with
running time O(n log4 n) for finding such a matching. The basic idea is to cut off leaves in
the 2-block tree such that a small number of free, i.e. unmatched, vertices can be guaranteed.
Recall that a bridge is an edge whose removal disconnects the graph.

We use a slightly simpler definition of the 2-block tree than Biedl et al. [BDD+04]. Their
2-block tree has a vertex for each biconnected component of G and a vertex for each cut vertex
of G, i.e., for each vertex whose removal decomposes G. (The definition of the tree edges is
obvious.) Since our graphs have maximum degree 3, each cut vertex must be incident to a
bridge. (This observation yields the equivalence of 2-edge and 2-vertex connectivity in maxdeg-
3 graphs.) Thus our simplified 2-block tree only has a node for each biconnected component of
G and an edge for each bridge in G. Note that the number of leaves in both trees is the same.
From now on we will refer to vertices of the d-block tree Td as nodes (as opposed to the vertices
of the given graph). We have the following result.

In the following lemma we treat another special case, namely `2 ∈ {3, 4}. It will serve as
the base of the induction in the proof of Theorem 3.

Lemma 1 Let G be a 3-regular graph whose 2-block tree has `2 leaves. If `2 ≤ 4 then G has a
matching of size at least (3n− 2`2)/6. The matching can be chosen such that every free vertex
is incident to a bridge.

Proof. If `2 ∈ {1, 2}, there exists a perfect matching by Petersen’s theorem [Pet91].
If `2 = 3 we consider two subcases. In the first subcase there exists exactly one split vertex v

of G such that G−v has three components. In this subcase every edge incident to v is a bridge.
We remove these three bridges. Now we have four components, namely the single vertex v and
three branches, each containing one vertex of degree 2. We claim that in each of the branches
there exists a matching that leaves only the degree-2 vertex free. To show the claim we argue
as follows. We attach the helper graph H (see Figure 1a) to each degree-2 vertex. This makes
the branches 3-regular. Thus Petersen’s theorem [Pet91] yields a perfect matching in each of
them. Finally we delete the helper graphs. Due to the structure of the helper graphs it is clear
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that the degree-2 vertices become free, and the claim holds. One of these free vertices can be
matched to v. This results in a total of two free vertices. Note that, as desired, every free vertex
is incident to a bridge.

Now we treat the second subcase. If there is no split vertex as above, there is exactly one
biconnected component C of G such that C contains more than one vertex and the node in
the 2-block tree corresponding to C has degree 3. We remove two of the three bridges incident
to C and call them b and b′. This yields three connected components B1, B2, and B3, where B1

contains C and thus has two degree-2 vertices, while B2 and B3 have only one degree-2 vertex
each. Note that the 2-block trees of B1, B2, and B3 are paths. We treat B2 and B3 as in
the first subcase above. This yields two nearly perfect matchings M2 and M3 in B2 and B3,
respectively, that leave the two degree-2 vertices free.

In B1 we connect the two degree-2 vertices by a new edge e. This makes B1 3-regular and
yields a perfect matching M1 in B1 since the 2-block tree of B1 is a path. If e is not in M1

then M1 ∪M2 ∪M3 is a matching in G that leaves two vertices free both of which are incident
to a bridge. If e is in M1 then (M1 \ {e}) ∪ {b, b′} ∪M2 ∪M3 is a perfect matching in G. This
completes our treatment of the second subcase and thus settles the case `2 = 3. In the case
`2 = 4 we can argue similarly.

Theorem 3 Let G be a 3-regular graph whose 2-block tree has `2 leaves. Then G has a matching
of size at least (3n−2`2)/6. This matching can be chosen such that every free vertex is incident
to a bridge.

Proof. We use induction on `2. If `2 ∈ {1, 2}, then there exists a perfect matching by Petersen’s
theorem [Pet91]. The cases `2 ∈ {3, 4} are covered by Lemma 1. Now let `2 ≥ 5. We cut off
three parts of the graph such that we remove three leaves from the 2-block tree T2 of G at the
cost of at most two free vertices. Then the induction hypothesis takes effect.

We first show that there always exist three leaves that are suitable for removal. Choose an
arbitrary leaf node ` of T2 and walk upwards until a node v` of degree at least 3 is reached. The
last edge of the traversal corresponds to a bridge b` after whose removal G decomposes into
two components: the branch containing the leaf component ` and the main component now
containing one degree-2 vertex. The 2-block tree of the branch is a path, and the 2-block tree
of the main component has `2 − 1 leaves.

Now assume that every leaf ` of T2 has a pointer to the tree node v` defined as above. If,
after removing b`, the degree of v` in the tree is still at least 3, there is nothing to do. Otherwise,
there is at most one other leaf `′ with v` = v`′ . It cannot be cut off at v`′ anymore since this
would not reduce the number of leaves in the 2-block tree of the main component. Hence by
cutting off a leaf ` we make at most one other leaf `′ invalid. Since `2 ≥ 5, we can cut off three
branches such that the number of leaves in the 2-block tree of the main component decreases
by 3 in total.

After removing the three bridges G decomposes into four components: three branches, each
with one degree-2 vertex, and the main component with three degree-2 vertices. The 2-block
tree of the main component has `2 − 3 leaves. Now we restore 3-regularity in each component.
We extend each branch B by attaching the helper graph H depicted in Figure 1a to the unique
degree-2 vertex, which we denote by vB. Now Petersen’s theorem yields a perfect matching
in each of the extended branches. Then we remove H from each branch B. This results only
in vB becoming free. Thus so far we have three free vertices, all incident to bridges. Now
consider the main component. We add a new vertex h and connect it to each of the three
degree-2 vertices, see Figure 1b. Now the main component is again 3-regular. Its 2-block tree
still has `2 − 3 leaves. By induction the main component has a matching that leaves at most
2(`2 − 3)/3 = 2`2/3− 2 vertices free, each incident to a bridge. Since the main component was
already connected the new vertex h is not incident to a bridge and hence not free. When we

5



H

(a) in a branch

Gh

(b) in the main component

GH ′

(c) at degree-1 vertices

Fig. 1: Restoring 3-regularity.

remove h, one of the incident degree-2 vertices becomes free and can be matched to the free
vertex in the corresponding branch. Thus in total we have created at most 2`2/3 free vertices,
each incident to a bridge.

Since the proof is constructive, we simply implement each step of the proof. We use the
algorithm of Biedl et al. [BBDL01] for computing matchings in the branches and for the base
case. We only need to make a linear number of cuts because `2 ≤ (n+2)/6 [BDD+04]. After each
cut we just add a constant number of vertices. Since each vertex is in exactly one component,
the computation of all partial matchings takes O(n log4 n) time in total.

The 2-block tree T2 of G can be computed in linear time [Tar72], but T2 changes drastically
when we link the new vertex h to the three degree-2 vertices of the main component. The
addition of h creates a new super vertex in T2 that consists of vertices a, b, and c corresponding
to the components with the three degree-2 vertices in G and of all nodes of T2 that lie on the
unique paths between a, b, and c. Thus it remains to show how to efficiently maintain the
2-block tree of the main component and the leaf pointers. We call a branch good if its removal
decreases the number of leaves in the main component.

Lemma 2 Given a 3-regular graph G, we can in O(nα(n)) total time repeatedly determine three
good branches of G, remove the branches, link the degree-2 vertices of the main component to a
new vertex, and update the 2-block tree T2 of the main component. The process ends when T2
has less than five leaves.

Proof. In addition to the 2-block tree we store the following data:
We choose an arbitrary node w of the 2-block tree T2 and direct all edges to w. We maintain

a list of all leaves. For each leaf node we have a pointer pointing to a bridge where it can be
cut off. At every vertex we keep a list of all leafs that can be cut off at an incoming edge. This
initialization takes linear time at the start of the algorithm.

We start by finding three leaves, we can cut off. As shown in the proof of Theorem 3 we
can find three leaves to cut off and identify at most three leaves that cannot be cut off at the
bridge they are pointing to any more and hence need an update. With our data-structure this
can be done in constant time. Denote the vertices where we cut off by a, b, c as in the proof of
Theorem 3.

We now have to contract the vertices a, b, c and all nodes that lie on the unique paths
between a, b, c into one big supernode. To identify these quickly we start a search from each
of the nodes a, b, c along the directed edges in parallel. Each of the searches marks its visited
vertices. The searches stop, when the first node v has been visited by all three searches. The
nodes that need to be contracted are all nodes that haven been visited before the corresponding
search reached v and v itself. If we contract k nodes, then the searches have visited at most
3k + 2 nodes. Using a union-find data structure with path compression and union by rank
[Tar83] this step only takes O(nα(n)) time for the whole algorithm.

After we have computed the 2-block tree of the main component we have to update the at
most three leafs marked as needing an update. We use their pointer to get our starting point in
the graph and walk up from there until we reach a node of degree at least 3. This establishes
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the invariant. Since we never walk back, each edge is visited at most once and this step needs
linear time too.

Note that the above description does not work correctly if the root of the tree has degree
less than 3. A small root degree may be due to our initial choice of the root or the result of
a contraction. If the root has degree 1, it is a leaf but does not have a bridge where it can be
cut off. If the root has degree 2, there may be a leaf whose pointer points to a bridge incident
to the root. This bridge, however, does not define a good branch. Both cases can be checked
easily. We resolve this issue by using other leaves as long as there are at least six leaves. Once
the number of leaves drops to five, we choose a new root with degree at least 3 and direct all
edges towards it. This takes linear time and happens only once during the whole algorithm.

Theorem 3 and Lemma 2 together yield the following theorem.

Theorem 4 Let G be a 3-regular graph whose 2-block tree has `2 leaves. Then we can find in G
a matching of size at least (3n− 2`2)/6 in O(n log4 n) time.

3.2 Maxdeg-3 graphs

We now extend the algorithm of the previous subsection to maxdeg-3 graphs. Let G be such a
graph and let n2 denote the number of degree-2 vertices of G. For now we assume that G has
no degree-1 vertices. For every three degree-2 vertices we add a helper vertex and link it to the
three vertices. Note that this does not increase the number of leaves of T2. If n2 is a multiple
of 3 this results in a 3-regular graph. By Theorem 4 we can find a matching of size at least
(3n− 2`2)/6 in O(n log4 n) time in this graph. Removing the n2/3 added vertices results in at
most n2/3 free vertices and a matching of size at least (3n− n2 − 2`2)/6.

If n2 is no multiple of 3, we first add helper vertices as before until there are at most two
degree-2 vertices left. If there are two degree-2 vertices left, we connect them by an additional
edge. If there is only one degree-2 vertex left, we link it to the helper graph H, see Figure 1a.
Using Theorem 4 we compute a matching in the resulting 3-regular graph. Removing the
added vertices results in a matching M of size at least (3n − n2 − 2`2)/6 − 1. If M actually
contains exactly (3n− n2 − 2`2)/6− 1 edges, we can enlarge M by one edge by computing an
augmenting path in G in O(n) time. This is due to the fact that we know G has a matching of
size (3n− n2 − 2`2)/6. Making G 3-regular as above takes O(n) time, too.

Finally we also admit degree-1 vertices. Each such vertex is a leaf in the 2-block tree. Hence
we can make G 3-regular by linking a copy of the helper graph H ′ depicted in Figure 1c to each
degree-1 vertex. This neither changes `2 nor the number of free vertices and can be done in
linear time. We summarize:

Theorem 5 If G is a maxdeg-3 graph with n2 degree-2 vertices whose 2-block tree has `2 leaves,
we can find in G a matching of size at least (3n− n2 − 2`2)/6 in O(n log4 n) time.

Now we construct a family of graphs that shows that the bound (3n − n2 − 2`2)/6 holds
even in the presence of a large fraction of degree-2 nodes. This answers an open question posed
by Biedl et al. [BDD+04] in the affirmative.

3.3 A sharp bound for maxdeg-3 graphs with many degree-2 nodes

Refer to Figure 2. We denote the graph in the right gray box by G0 and call its root w. The
bound (3n− n2 − 2`2)/6 is tight for this graph. We construct Gi inductively; we attach a copy
of G0 to Gi−1 by connecting their roots via two vertices (one of degree 3 and one of degree 1)
and three edges as shown in Figure 2. The resulting graph has 12i+ 10 vertices, 4i+ 2 of which
have degree 2. Thus the fraction of degree-2 vertices tends to 1/3. Note that since Gi is a tree,
it is essentially its own 2-block trees. Hence `2 equals the number of leaves of Gi, i.e., 4i + 5.
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Fig. 2: Maxdeg-3 graphs with many degree-2 vertices and small maximum matching.

The algorithm PickLeafEdges of Section 2 yields a maximum matching in Gi with 4i + 3
edges. This shows that the bound (3n− n2 − 2`2)/6 is tight for all Gi.

3.4 Planar 3-regular graphs

We now turn to planar 3-regular graphs. The algorithm of Biedl et al. [BBDL01], which
finds perfect matchings in (non-planar) 3-regular graphs whose 2-block trees are paths, runs
in O(n log4 n) time. We show how to reduce its running time to O(n) in the planar case and
how to find large matchings in arbitrary planar 3-regular graphs in O(n) time.

We first sketch the algorithm of Biedl et al. Their algorithm is based on decomposing the
input graph G into bridgeless 3-regular components. It works as follows. Remove all bridges.
Let Gi with i = 1, . . . , s be the resulting (bridgeless) connected components with ni vertices of
which at most two have degree 2. Then replace each degree-2 vertex and its incident edges by a
single new edge. For each of the resulting 3-regular bridgeless components G′i call a subroutine
that computes in O(ni log4 ni) time a perfect matching not including the at most two new edges
in G′i. Now the union of the perfect matchings in G′1, . . . , G

′
s plus the bridges is the desired

perfect matching in G. In the same paper, Biedl et al. also consider the planar bridgeless case,
which they can handle in linear time. Our aim is to generalize their algorithm from the planar
bridgeless case to the planar version of Petersen’s theorem while keeping its linear running time.

The subroutine of Biedl et al. makes use of the following simple observation. Given a 3-
regular bridgeless graph G and two edges e1 and e2 of G, there is a perfect matching that
does not contain e1 and e2. This can be seen as follows: subdivide e1 and e2 using extra
vertices v1 and v2, respectively, and add the edge v1v2 to the graph. Let G? be the resulting
graph. Compute a perfect matching of G?. In case it does not contain v1v2, find an alternating
cycle that contains v1v2. The symmetric difference of the matching and the cycle is the desired
matching. Computing an alternating cycle can be done in linear time [BBDL01]. Removing
v1v2 from this matching yields the desired matching without e1 and e2 in the original graph G.
Adding the edge v1v2 may violate planarity, which forces Biedl et al. to use the O(n log4 n)-time
subroutine for the non-planar case. The following lemma shows that this can be avoided.

Lemma 3 Let G be a planar 3-regular bridgeless graph and let e1 and e2 be any two edges of G.
A perfect matching of G that neither contains e1 nor e2 can be computed in linear time.

Proof. To make use of the algorithm for the planar case we modify the above procedure slightly.
We first compute any perfect matching M of G using the linear-time algorithm of Biedl et
al. [BBDL01] for the planar bridgeless case. Let G? be defined as above. Observe that M \
{e1, e2} is a matching in G? that leaves only a constant number of vertices free. We now
compute a matching M? in G? that contains the edge v1v2 by computing a constant number
of augmenting paths with respect to M \ {e1, e2}, which takes linear time [Tar83]. Again
M? \ {v1v2} is the desired matching in G.
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Now we plug Lemma 3 as a subroutine into the algorithm of Biedl et al. that is sketched
above. This yields the following.

Corollary 4 Let G be a 3-regular planar graphs whose 2-block tree is a path. Then a perfect
matching in G can be computed in linear time.

Naturally we would like to use this improved algorithm as a subroutine of our algorithm
for arbitrary 3-regular graphs to improve its running time to linear in case the graph is planar.
Our scheme of cutting branches and adding new vertices, however, does not preserve planarity.
So we cannot assume that the branches we cut are still planar. We leave open the question
whether linear time suffices to compute a matching of size at least (3n − 2`2)/6 in any planar
3-regular graph. If we insist on linear time, we can achieve the following weaker bound.

Theorem 6 Let G be a 3-regular planar graph whose 2-block tree has `2 leaves. Then a match-
ing of size at least (3n− 6`2)/6 can be computed in linear time.

Proof. We first compute the 2-block tree of G in linear time. Recall our algorithm for non-
planar 3-regular graphs (Theorem 3). In each step it cuts off three branches from the main
component. Here, in the planar case, we cut branches off one by one. We can easily find a
good branch B by walking upwards from a leaf in the 2-block tree until we find a node of
degree at least 3. The edge between this node and the last node of the branch corresponds to a
bridge b = uv in G, where u is a vertex of the branch and v is a vertex of the main component.
Now we remove the bridge b. The branch contains a nearly perfect matching that leaves only u
free. By Corollary 4 we can compute such a matching MB in time linear in the size of the
branch B.

The other endpoint of the bridge, vertex v, has degree 2 in the main component Cmain.
Denote the neighbors of v by v1 and v2. We remove v and add the edge v1v2 to G. Note
that this leaves Cmain planar, but Cmain may now be a multigraph with two copies of the edge
v1v2. The 2-block tree of the main component has `2 − 1 leaves. By induction Cmain contains
a matching that leaves at most 2`2 − 2 vertices free. We can compute such a matching Mmain

recursively; the algorithm of Biedl et al. [BBDL01] that is used as a subroutine in Corollary 4
explicitly allows multiple edges.

Consider the matching M = (Mmain\{v1v2})∪{b}∪MB in G. This matching leaves at most
2`2 vertices free—the free vertices of Mmain plus possibly v1 and v2 (if v1v2 ∈Mmain). Thus M
covers at least n− 2`2 vertices. In other words, M consists of at least n/2− `2 edges.

We do not know how to generalize this result to maxdeg-3 graphs since our reduction for
making a maxdeg-3 graph 3-regular does not preserve planarity.

4 3-Connected Planar Graphs

In this section we give an algorithm for finding a matching of size at least (2n + 4 − 6`4)/4
in 3-connected planar graphs. In graphs where every separating triplet is a triangle (e.g., in
triangulated graphs) we can even guarantee a size of (2n + 4 − 2`4)/4. This is very close to
the tight bound (2n+ 4− `4)/4 that Biedl et al. [BDD+04] gave for 3-connected planar graphs.
We use an approach similar to Section 3.1. We cut off leaves of the 4-block tree until it has
only two leaves left. To implement this, we first need an algorithm for finding matchings in
3-connected planar graphs whose 4-block tree is a path. Biedl et al. [BDD+04] have shown that
such a graph always has a perfect or a nearly perfect matching, i.e., a matching that matches
all vertices but one.

If a graph G is 3- but not 4-connected, there exists a separating vertex triplet T = {u, v, w}
such that G − T has more than one component. For each of these components C we consider
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Fig. 3: Graph whose 4-block tree is a path.

the graph C + T and add the dummy edges uv, vw, uw if they did not exist already. We iterate
this process until all components are 4-connected. These are the 4-connected components of G.
The 4-block tree of G contains one node for every 4-connected component of G. Since we con-
sider only 3-connected planar graphs, every separating triplet separates only two components,
otherwise G would contain a subdivision of K3,3 (contradicting planarity). So we simply link
two nodes of the 4-block tree by an edge if the corresponding 4-connected components share a
separating triplet. Note that the definition of Biedl et al. [BDD+04] is more general. However,
for 3-connected planar graphs both definitions lead to the same value of `4.

4.1 The 4-block tree is a path

Let G be a 3-connected planar graph whose 4-block tree is a path. If G is 4-connected we can
find a Hamiltonian cycle and hence a (nearly) perfect matching in linear time [CN89]. If G is
not 4-connected the basic idea is to find a matching in every block separately and combine them
to a matching in G. Let G1, . . . , Gk be the 4-connected components of G and for i = 1, . . . , k−1
let Ti be the triplet that separates Gi and Gi+1, see Figure 3. Note that consecutive triplets do
not need to be disjoint.

If n is odd, choose a face of Gk that is not incident to all vertices of Tk−1. Place a new
vertex v? into this face and connect it to each vertex of the face. Now G has an even number
of vertices, G is still 3-connected planar and its 4-block tree a path, and hence has a perfect
matching. In particular it follows that it is enough to leave a vertex free in Gk (the one matched
to v?).

One idea would be to find a Hamiltonian cycle in G1 using the algorithm of Chiba and
Nishizeki [CN89]. However, it seems difficult to extend the corresponding matching to one of
G. Therefore we go a different way.

Consider a perfect matching M in a 3-connected planar graph G with `4 = 2. Now we
restrict M to a 4-connected component C of G. We denote this matching by M ′. It is clear
that only vertices of C that belong to separating triplets of G are free with respect to M ′. Note
that the fact that we can combine M ′ with the rest of M to a perfect matching only depends
on which of these vertices are matched and which are free. In particular the combinability is
independent of the structure of M ′ with respect to the vertices of C that do not belong to a
separating triplet. The next definition formalizes this idea.

A matching configuration of a component Gi is a pair (Ti,matched, Ti,free) with Ti,matched ⊆
Ti−1 and Ti,free ⊆ Ti. Such a configuration is called feasible if both of the following conditions
hold:

• Ti,matched ∩ Ti,free = ∅, and

• there exists a matching Mi in Gi which matches exactly the vertices of G− (Ti,matched ∪
Ti,free) and uses only edges in G (i.e., no dummy edges).

The first condition makes sure that vertices already matched in Gi−1 are not used again in Gi+1.
The second condition makes sure that we can use this configuration to find a perfect matching
in G.
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Fig. 4: Examples of matching configurations

The matching graph of G is a directed acyclic graph whose vertices correspond to the feasible
matching configurations of G. Let u = (Ti,matched, Ti,free) and v = (Tj,matched, Tj,free) be two
vertices of the matching graph. There is an edge uv if j = i + 1 and Ti \ Ti,free = Tj,matched.
This is the case if and only if the matching given by u can be extended into v such that the
only free vertices are in Tj,free. In the situation of Figure 4 there would be an edge between
the two vertices representing the first and the last configuration, but not between the first and
the second. For ease of description we add a source node with edges to all feasible matching
configurations of G1.

The matching graph has O(n) vertices, since there are only O(n) components and every
components has only a constant number of feasible matching configurations. Every perfect
matching of G corresponds to a path of length k in the matching graph and vice versa. The
path describes a sequence of matching configurations that fit together. For the configuration
(Ti,matched, Ti,free) of Gi lying on the path there exists a matching Mi that is perfect in Gi −
(Ti,matched ∪ Ti,free). Then M1 ∪ · · · ∪Mk is a perfect matching in G. Such a path can be found
in O(n) time by breadth-first search from the source node of the matching graph.

Now we need a fast algorithm for finding the feasible matching configurations of a 4-
connected component Gi. Let ni denote the number of vertices of Gi. Since Gi has only a
constant number of matching configurations, it is enough to give an algorithm that can quickly
determine feasibility of a given matching configuration. We first compute a (nearly) perfect
matching M in Gi by finding a Hamiltonian cycle in O(ni) time [CN89]. From M we remove all
edges that do not belong to G and all edges incident to vertices we may not use (i.e., vertices
in Ti,matched ∪ Ti,free). This results in O(1) free vertices. Hence if there is a perfect matching
in Gi − (Ti,matched ∪ Ti,free), we can find it in O(ni) time by computing a constant number of
augmenting paths [Tar83]. If the resulting matching is perfect, the configuration is feasible and
we store the matching as Mi, otherwise the configuration is not feasible.

Thus we can compute all feasible matching configurations of a component Gi in O(ni) time.
Since every component shares at most six vertices with other components, we can compute the
feasible matching configurations for all components in linear time.

Finally, if the graph originally had an odd number of vertices, we have to remove the vertex
v? added in the beginning, which frees the vertex v?? matched to v?. This yields a perfect
matching in G − v??, i.e., a nearly perfect matching in G. We summarize our observations as
follows.

Lemma 4 Let G be a 3-connected planar graph whose 4-block tree is a path. Then we can
compute a (nearly) perfect matching in G in linear time.

4.2 Cutting leaves

In this section we apply the algorithm from the previous section to cut off leaves of the 4-block
tree T4 similarly to the way we treated the 2-block tree in Section 3.1. The 4-block tree of a
3-connected planar graph can be computed in O(nα(n)) time [KTBC92]. The 4-block tree has
at most (2n−4)/3 leaves [BDD+04]. We pick an arbitrary one and walk upwards in the 4-block
tree until we reach a component of degree at least 3. This is the place to cut the leaf off. The
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last used edge corresponds to a separating triplet that we can use to cut off a leaf of the 4-block
tree.

We now split the graph at this separating triplet. This results in two components, the
branch containing the leaf we want to cut off and the main component. We add to each of these
components the edges between the vertices of the separating triplet if they did not already exist.
Now we compute matchings in the main component and in the branch using recursion and the
algorithm of the previous section, respectively. The following lemma states that we can combine
these matchings without getting too many free vertices.

Lemma 5 Let G be a 3-connected planar graph. Let B be a branch, let Cmain be the corre-
sponding main component, and let T = {u, v, w} be the triplet that separates B and Cmain. Let
C ′main = Cmain ∪ {uv, vw,wu}. Let Mmain be a matching in C ′main and let f be the number of
free vertices in C ′main with respect to Mmain. Then there is a matching M of G that leaves at
most f + 3 vertices free.

Proof. Let B′ = B ∪ {uv, vw,wu}. Note that B′ is planar. Clearly, B′ has a (nearly) perfect
matching MB′ . We claim that we can choose MB′ such that its free vertex, if any, belongs
to T . If |B′| is even, B′ has a perfect matching. Otherwise we connect a dummy vertex to u, v,
and w. Then the resulting graph B′′ is still 3-connected, it is still planar, and its 4-block tree is
still a path. Thus B′′ contains a perfect matching. This perfect matching minus the edge that
matches the dummy vertex is the claimed nearly perfect matching.

Denote the vertices that u, v and w are matched to with respect to MB′ by u?, v? and w?,
if they exist. If one of the vertices u, v, and v is free with respect to MB′ the corresponding
?-vertex refers to itself (i.e., if v is free with respect to MB′ then v? = v).

Consider the matching M ′ = (Mmain \ {uw, vw,wu}) ∪ (MB′ \ {uu?, vv?, ww?}). If u, v,
and w are matched in M ′ we can use M = M ′. Otherwise this means that an edge of the
separating triplet T (i.e., a possible dummy edge) was used in Mmain, say uv. In this case u
and v are free with respect to M ′.

The vertices that are free with respect to M ′ but were not already free with respect to Mmain

are a subset of the set F = {u, v, u?, v?, w?}. We now show that we can either add one edge
matching two of these vertices or |F | ≤ 3.

If u? is not in T , we simply take M := M ′ ∪ {uu?}. The same works if v? is not in T .
If uv is in MB′ then u? = v and v? = u and hence |F | = 3.
The last case to check is that one of the vertices u,v, say u, is free with respect to MB′ and v

is matched to w. But in this case again v? = w and w? = v and hence |F | ≤ 3.

This results in an algorithm that produces at most three free vertices for every leaf of the
4-block tree. Hence the matching has size at least (2n − 6`4)/4. We can reach the bound
(2n+ 4− 6`4)/4 by finding at most one augmenting path in linear time. Once the 4-block tree
is computed, we can find leaves to cut off in a way similar to Section 3.1. In fact here it is even
easier since we can cut off the leaves one by one. Hence the full decomposition of the graph can
be done in linear time. We do O(n) splits, and combining the matchings in both components
can be done in constant time. By Lemma 4 the computation of the matching in the branch
takes time linear in the size of the branch. Since two adjacent components share only three
vertices, the total number of vertices we process is linear, and the algorithm runs in O(nα(n))
time. The following theorem summarizes our discussion.

Theorem 7 In a 3-connected planar graph whose 4-block tree has `4 leaves we can compute a
matching of size at least (2n+ 4− 6`4)/4 in O(nα(n)) time.

In case the graph is a planar triangulation (and hence 3-connected) we can improve this
result. This is due to the fact that the edges between the vertices of a separating triplet are
already in the graph—every separating triplet is a separating triangle. This means that we can
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always choose the matching in the branches such that it fits optimally with the matching in the
main component.

Theorem 8 In a triangulated 3-connected planar graph whose 4-block tree has `4 leaves we can
compute a matching of size at least (2n+ 4− 2`4)/4 in linear time.

Proof. The triangulated case is a lot easier than the general 3-connected planar case since we
now know that the vertices of a separating triplet form a triangle. Let G be a triangulated
3-connected planar graph. Since G is triangulated, the 4-block tree of G can be computed in
linear time [Kan97].

Structurally we do the same as in the general case: we cut off a branch B at a separating
triangle T and process the main component recursively. Then we extend the matching M of the
main component into the branch. We now show that, in linear time, we can find a matching
M ′ ⊇ M that leaves at most one vertex in the branch free. By induction M ′ leaves at most
`4 − 1 vertices free. Hence M ′ has size at least (2n + 2 − 2`4)/4. Computing an augmenting
path yields the desired bound in linear time [Tar83].

The branch B is a path of 4-connected components. We go through these components
sequentially starting with the one that contains T . Let C be the current component. Let
T ′ = {u, v, w} be the triangle separating C from the previous (or the main) component. If C is
not the last component in B, let T ′′ be the triangle separating C from the next component and
let u′ be a vertex in T ′′ \ T ′. Otherwise let u′ be any vertex in C \ T ′. Note that T ′ contains at
most one free vertex. We distinguish two cases. For each case we specify a set R ⊆ {u, v, w, u′}
such that C \R contains a perfect matching.

Case 1: One vertex of T ′, say w, is free.

Then C − {u, v} contains a Hamiltonian circuit [TY94]. The circuit yields a (nearly)
perfect matching in C \ {u, v}. If |C| is odd, we can choose the matching such that u′ is
free. Let R = {u, v, u′}. If |C| is even, all vertices are matched. Let R = {u, v}.

Case 2: T ′ does not contain any free vertices.

If |C| is odd, then C \ {u} contains a Hamiltonian circuit containing the edge vw [TY94].
The circuit hence contains a perfect matching P of C \ {u}. It can be chosen such that it
contains vw. Now P \ {vw} is the desired matching. Let R = T ′.

If |C| is even, then C \ {u, u′} contains a Hamiltonian circuit with the edge vw [TY94].
As shown above this circuit contains an appropriate matching. Let R = T ′ ∪ {u′}.

It remains to analyze the running time. Since C is 4-connected and planar, we can compute
some Hamiltonian circuit H in C in O(|C|) time [CN89]. This circuit yields a (nearly) perfect
matching MH in C. From MH we remove all edges incident to vertices in R. This yields a
matching M ′H in C \ R. By construction of R we get a perfect matching MC in C \ R by
computing a constant number of augmenting paths in C \ R. Clearly, MC can be computed
in O(|C|) time. The linear running time of the whole algorithm can be seen as in the proof of
Lemma 4.

5 Graphs with Bounded-Degree Block-Trees

We already know two algorithms for the special case that the corresponding block tree has
maximum degree 2: (a) the algorithm of Biedl et al. [BBDL01] computes perfect matchings in
4-regular graphs whose 2-block trees are paths, and (b) the algorithm from Section 4 computes
(nearly) perfect matchings in 4-connected planar graphs whose 4-block trees are paths. In this
section we want to extend these results to graphs with block trees of constant maximum degree.

13



It is clear that if we bound the number of leaves of the block tree by a constant, we can find
maximum matchings in maxdeg-3 graphs and 3-connected planar graphs fast. In these cases
our algorithms of the previous sections guarantee to find a matching that is smaller than bn/2c
by only a constant. Hence we can enlarge the computed matching to a maximum matching by
finding a constant number of augmenting paths, which takes linear time [Tar83].

In this section we relax our previous requirement for the fast computation of maximum
matchings: instead of insisting that the block tree has a constant number of leaves, we require
only that its degree is bounded. In this way the number of leaves can still be large (i.e., linear in
the size of the graph). This also shows which structures make the fast computation of maximum
matchings difficult: components with a large number of neighbors.

The technique we use in this section is similar to the one we used in Section 4.1 for the case
of 4-connected planar graphs whose 4-block tree is a path. Recall that we first decomposed
the graph into its 4-connected components by iteratively splitting at separating triplets and
adding dummy edges as necessary. Then each 4-connected component contains at most two
(not necessarily disjoint) separating triplets. The clue was that whether a local matching in
such a 4-connected component can be combined with a matching of a neighboring component
depends exclusively on which vertices of the separating triplets are matched and which ones are
free. We called this a local configuration.

In the above case (where the 4-block tree is a path) we can afford to check all local configu-
rations since every component had at most two neighbor components and thus only a constant
number of local configurations. However, the arguments we used also work for a constant num-
ber of neighbor components. We now give fast algorithms, first for 3-connected planar graphs
and then for 3-regular graphs, in both cases assuming that the corresponding block tree has
constant maximum degree.

5.1 3-connected planar graphs

When we treated the case of 4-connected planar graphs whose 4-block tree is a path (see
Section 4.1), we knew that there exists a (nearly) perfect matching. Hence we could restrict
ourselves to considering configurations that can be reached without leaving any vertices free. In
the more general setting of arbitrary maximum matchings this is no longer the case. However,
instead of just considering the feasibility of the matching configurations as in Section 4.1, we
keep track of the number of vertices we must leave free to reach a given configuration. We then
use dynamic programming to join local configurations. We now give a sketch of the algorithm
for 3-connected planar graphs. The algorithm is exponential in the degree bound.

Let G be a 3-connected planar graph. We first compute its 4-block tree T4 in O(nα(n)) time
[KTBC92], choose an arbitrary node of T4, and direct all edges towards it. We call a node u
of T4 a predecessor of v if there is a directed path from u to v in T4. In this case we also say
that the 4-connected component of G corresponding to u is a predecessor of the component
corresponding to v. We process the 4-connected components of G in topological order with
respect to this predecessor relation. In this way, whenever we process a component, there is at
most one neighbor component that has not been processed before.

We split G into its 4-connected components by keeping with each component C copies of
all vertices that belong to separating triplets incident to C. In order to make the components
actually 4-connected, we add dummy edges that turn each separating triplet into a separating
triangle.

Now let C be one of the resulting components, and let GC denote the subgraph of G that
consists of all vertices that belong to C or to a predecessor of C. There is at most one separating
triplet T that separates C from a component that has not been processed already. We call T
the leaving separating triplet of C. An important observation is that the extendability of a
maximum matching in GC to a matching of G depends only on the question which vertices of T
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are free. Once we have computed all eight possibilities we do not need to consider any vertex
of GC − T again.

For each subset F ⊆ T we compute how many vertices we have to leave free for a maximum
matching in GC − F and store the resulting values in a counter. For this computation we use
the fact that we have already computed the counters of all predecessors of C. There is only a
constant number of neighbors, and each of them has a constant number of configurations. To
compute the cost of F we now simply check the cost of every possible combination. Since this is
only a constant number (even though exponential in the maximum degree of the 4-block tree),
this takes asymptotically the same time as checking a single configuration.

Checking the cost of a single configuration takes time proportional to the size of the com-
ponent C. This is due to the fact that C is 4-connected and planar, which means we can find
a Hamiltonian cycle in C in linear time [CN89] and hence a (nearly) perfect matching. After
computing such a matching we remove all dummy edges (e.g., edges that have only been added
to make the components 4-connected) and all vertices that are already matched by predecessor
components in the given configuration as well as all vertices in F . We remove only a constant
number of vertices and edges, resulting in a constant number of free vertices. Thus we can then
enlarge the matching to a maximum matching by computing a constant number of augmenting
paths in linear time [Tar83]. The number of free vertices of the given configuration then is the
number of free vertices in the considered component plus the number of free vertices in the
predecessor configurations.

If we store with each counter the corresponding configuration and the corresponding local
matching, we can report a maximum matching in linear time once all components have been
processed. (Instead of storing all local matchings we could also backtrack once we have pro-
cessed the whole graph.) The next theorem summarizes this result. Note that the asymptotic
running time is dominated by the initial computation of the 4-block tree, which takes O(nα(n))
time [KTBC92].

Theorem 9 In a 3-connected planar graph whose 4-block tree has bounded degree we can com-
pute a maximum matching in O(nα(n)) time.

5.2 3-regular graphs

A similar algorithm can be used to compute a maximum matching in a 3-regular graph with
bounded-degree 2-block tree. We first compute the 2-block tree in linear time [Tar72] and then
work upwards from the leaves in the same way as before. However, here we have only two
counters for each (2-connected) component. The vertex incident to the leaving bridge is either
matched or free. Note that when combining matchings we can add a bridge if both its incident
vertices are free. We compute the cost of each configuration (i.e., the number of free vertices)
according to this rule. We must make sure to not match a vertex via two bridges at the same
time. However, it is not hard to see that a vertex is either incident to at most one bridge or to
three bridges. In the latter case the vertex is actually a component by itself, and this can be
checked easily.

To check the configurations of a given component we do the following. We first substitute
every degree-2 vertex together with its incident edges by a new edge. This results in a 3-regular
bridgeless graph. We then use the algorithm of Biedl et al. [BBDL01] to compute a perfect
matching in the modified component. By removing the new edges from the matching we obtain
a matching in the original component that leaves only a constant number of vertices free. This
follows from the assumption that the degree of the 2-block tree is bounded. Starting from this
matching we can easily check the cost of every configuration by computing a constant number
of augmenting paths, which takes linear time [Tar83].

The overall running time for the 3-regular case is dominated by the running time of the
algorithm of Biedl et al. [BBDL01], which runs in O(p log4 p) time for a component of size p and
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in O(p) time if the input graph is planar. Summing up these running times over all components
yields the following theorem.

Theorem 10 Let G be a 3-regular graph with n vertices whose 2-block tree has bounded degree.
Then we can find a maximum matching in G in O(n log4 n) time. If G is planar, the running
time reduces to O(n).

As we pointed out in the introduction, the above results concerning special graph classes
are of general interest due to Biedl’s linear-time reductions [Bie01] from maximum matching
in general graphs and planar graphs. They make it unlikely that there are near-linear-time
algorithms for much wider subclasses of 3-regular graphs and 3-connected planar graphs.

6 Open Questions

Our most burning question deals with 3-connected planar graphs. In such graphs we can
compute matchings of size at least (2n+ 4−6`4)/4 in O(nα(n)) time. Can we achieve the tight
bound (2n + 4 − `4)/4 of Biedl et al. [BDD+04] in near-linear time? If not, what about the
triangulated case, where we currently achieve (2n+ 4− 2`4)/4?

In planar 3-regular graphs we currently have the choice of computing a matching of size
at least (3n − 2`2)/6 in O(n log4 n) time or a matching of size at least (3n − 6`2)/6 in linear
time. The first algorithm does not exploit planarity; the second does. The ingredients of these
algorithms are incompatible: the subroutine for treating branches in the linear-time algorithm
depends on planarity, while the scheme of cutting branches and fixing 3-regularity in the slower
but better algorithm does not preserve planarity. Can we still get the best of both worlds, i.e.,
a matching of size at least (3n− 2`2)/6 in linear time?

Finally, it would be interesting to see whether there are fast algorithms that implement the
bounds of Nishizeki and Baybars [NB79] for planar graphs. The main question here is how to
exploit minimum degrees.
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