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Abstract

In this paper we study some connectivity augmenta-
tion problems. Given a connected graph G with some
property P, we want to make G 2-vertex connected
(or 2-edge connected) by adding edges such that the
resulting graph keeps property P. The aim is to add
as few edges as possible. The property that we con-
sider is planarity, both in an abstract graph-theoretic
and in a geometric setting.

We show that it is NP-hard to find a minimum-
cardinality augmentation that makes a planar graph
2-edge connected. For making a planar graph 2-
vertex connected this was known. We further show
that both problems are hard in the geometric setting,
even when restricted to trees. On the other hand we
give polynomial-time algorithms for the special case
of convex geometric graphs.

We also study the following related problem. Given
a plane geometric graph G, two vertices s and t of G,
and an integer k, how many edges have to be added
to G such that G contains k edge- (or vertex-) disjoint
s—t paths? For k = 2 we give optimal worst-case
bounds; for k = 3 we characterize all cases that have
a solution.

1 Introduction

Augmenting a given graph to increase its connectivity
is important, e.g., for securing communication net-
works against node and link failures. The planar
version of the problem, where the augmentation has
to preserve planarity, also has applications in graph
drawing [§]. Many graph-drawing algorithms guaran-
tee nice properties (such as convex faces) for graphs
with high connectivity. To apply such an algorithm
to a less highly connected graph, one adds edges un-
til one reaches the required level of connectivity, uses
the algorithm to produce the drawing, and finally re-
moves the added edges again. However, with each
removal of an edge one might lose some of the nice
properties (such as the convexity of a face). Hence
it is natural to look for an augmentation that uses
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as few edges as possible. Recall that a graph is k-
vertex connected (k-edge connected) if the removal of
any subset of k — 1 vertices (edges) does not make the
graph disconnected.

We consider the following two problems.

Planar 2-Vertex Connectivity Augmentation
(PVCA):

Given a connected planar graph G = (V, E)
with n := |V] and m := |E|, find a smallest
set B’ of vertex pairs such that the graph
G' = (V, EUFE’) is planar and 2-vertex con-
nected (biconnected).

Planar 2-Edge Connectivity Augmentation
(PECA) is defined as PVCA, but with 2-vertex
connected replaced by 2-edge connected (bridge-
connected).

The corresponding problems without the planarity
constraints have a long history, both for directed and
undirected graphs. The unweighted cases can be
solved in polynomial time, while the weighted ver-
sions are hard [2]. Frederickson and Ja’Ja’ [] gave
O(n?)-time factor-2 approximations and showed that
augmenting a directed acyclic graph to be strongly
connected, and augmenting a tree to be bridge- or
biconnected, is NP-complete—even if weights are re-
stricted to the set {1,2}. Hsu [B] gave an O(m + n)-
time algorithm for (unit-weight) 2-vertex connectivity
augmentation.

Kant and Bodlaender [§] showed that PVCA is NP-
complete and gave 2-approximations for both PVCA
and PECA that run in O(nlogn) time. Their 1.5-
approximation turned out to be wrong [3]. Fialko and
Mutzel gave a 5/3-approximation [B]. Kant showed
that PVCA and PECA can be solved in linear time
for outerplanar graphs [1].

Provan and Burk [I0] considered related problems.
Given a planar graph G = (V, E¢) and a planar bicon-
nected (bridge-connected) graph H = (V, Ey) with
Eq C Ejy, find a smallest set £/ C Ex such that
G' = (V, Eg U E’) is planar and biconnected (bridge-
connected). They show that both problems are NP-
hard if G is not necessarily connected and give O(n*)-
time algorithms for the connected cases.

We also consider a geometric version of the above
problems. Recall that a geometric graph is a graph
where each vertex v corresponds to a point p(v) in
the plane and where each edge uv corresponds to the
straight-line segment p(u)u(v). We are exclusively



problem planar | outerplanar | geometric | convex
PVCA NPC [g] O(n) [ NPC O(n)
PECA NPC O(n) [ NPC O(n)
weighted PVCA | NPC open NPC O(n?)
weighted PECA NPC open NPC O(n)

Table 1: Complexity of PVCA and PECA.

interested in geometric graphs that are plane, that
is, whose edges intersect at most in their endpoints.
Therefore, in this paper by geometric graph we always
mean a plane geometric graph. Given a geometric
graph G we again want to find a (small) set of vertex
pairs such that adding the corresponding edges to G
leaves G plane and augments its connectivity.
Rappaport [II] has shown that it is NP-complete
to decide whether a set of line segments can be con-
nected to a simple polygon, i.e., geometric PVCA and
PECA are NP-complete. Abellanas et al. [I] have
shown worst-case bounds for geometric PVCA and
PECA. For geometric PVCA they show that n — 2
edges are sometimes needed and are always sufficient.
For geometric PECA they prove that 2n/3 edges are
sometimes needed and 6n/7 edges are always suffi-
cient. In the special case of plane geometric trees
they show that n/2 edges are sometimes needed and
that 2n/3 edges are always sufficient for PECA.

Our results. First we show that PECA is NP-
complete, too. This answers an open question posed
by Kant [G].

Second, we sharpen the result of Rappaport [I1] by
showing that geometric PVCA and PECA are NP-
complete even if restricted to trees.

Third, we give algorithms that solve geometric
PVCA and PECA in polynomial time for convex
geometric graphs, that is, graphs whose vertex sets
correspond to point sets in convex position.

Table [1] gives an overview about our results and
what has been known previously about the complexity
of PVCA and PECA.

Fourth, we consider a related problem, the geomet-
ric s—t path augmentation problem. Given a plane
geometric graph G, two vertices s and ¢ of G, and
an integer k > 0, is it possible to augment G such
that it contains k edge-disjoint (k vertex-disjoint) s—¢
paths? We restrict ourselves to k € {2,3}. For k =2
we show that edge-disjoint s—t path augmentation can
always be done and needs at most n/2 edges. We give
an algorithm that computes such an augmentation in
linear time. The tree that yields the above-mentioned
lower-bound of Abellanas et al. [I] also shows that our
bound is tight. For k = 3 we show that edge-disjoint
s—t path augmentation is always possible, and we give
an O(n?)-time algorithm that decides whether a given
graph has a vertex-disjoint s—¢ path augmentation.

2 Complexity results

In this section we show that PECA is NP-complete.
This settles an open problem posed by Kant and Bod-
laender [§]. Our proof also implies that PVCA is
NP-complete, which was already shown by Kant and
Bodlaender [g].

Theorem 1 PECA is NP-complete.

The hardness proof is by reduction from PLA-
NAR3SAT, which is known to be NP-hard [9]. The
main idea is to use a base graph that is 3-connected
(and hence has a unique embedding) and to add some
leaves (i.e., degree-1 vertices) to this graph. These
leaves can then be embedded in different faces of the
graph. It is clear that in order to increase the con-
nectivity the degree of each of the leaves must be en-
larged. Ideally (i.e., if the given planar 3SAT formula
is satisfiable) the embedding is chosen in such a way
that the number of leaves in each face is even, be-
cause in this case we need only one edge for every two
leaves, which is optimal.

Now we consider geometric PVCA and geometric
PECA for connected graphs. These problems are NP-
complete as well, however for reasons very different
from the planar case. In the geometric setting the
embedding is fixed, but two leaves lying in the same
face cannot necessarily be connected by a straight-
line segment without violating planarity. Especially
adding one edge can rule out several others. For ex-
ample in a square one could add one of the diagonals,
but not both. This can again be used to construct a
reduction from PLANAR3SAT.

Theorem 2 Let G be a plane geometric graph and
k > 0 be an integer. It is NP-complete to decide
whether adding k edges suffices to make G bridge- or
biconnected. This is true even if G has exactly 2k
leaves and G is a tree.

Once we have shown the result for connected graphs
it is easy to extend this to trees. We reduce from the
previous case. Let G be a connected plane geomet-
ric graph. As long as G contains a cycle, replace an
arbitrary edge of a cycle by the construction shown
in Figure Call the resulting tree T. Clearly an
optimal augmentation connects the two leaves of the
construction. Hence an optimal augmentation of T’
induces an optimal augmentation of G.
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Figure 1: Construction
for removing cycles in G.

Figure 2: A cycle (left)
and a near-cycle (right).

3 Convex geometric graphs

In this section we consider the geometric version of
PVCA and PECA in the special case that the input
graph is a convex geometric graph. We call an edge
outer edge if it belongs to the convex hull and inner
edge otherwise.

Note that PVCA for a convex geometric graph G
is trivial: G is biconnected if and only if it contains all
edges of the convex hull. Thus we focus on PECA.

If a connected convex geometric graph does not
contain an inner edge then it is either a cycle or a
near-cycle, see Figure While the cycle is already
bridge-connected, we need a single edge to make the
near-cycle bridge-connected.

The basic idea is to decompose an arbitrary convex
geometric graph into cycles and near-cycles and use
this decomposition to compute an edge set of mini-
mum cardinality that bridge-connects the graph.

Given a convex geometric graph G = (5, F) and an
inner edge e of G, we define an operation that we call
splitting G at e. Splitting G at e yields two subgraphs
G} and G7 of G induced by the vertices to the left
of or on e and to the right of or on e, respectively.

Lemma 3 Let G be a connected convex geometric
graph and let f be an outer edge of G. If G is not a
cycle or a near-cycle, then there exists an inner edge e
such that G or G is a cycle or a near-cycle that does
not contain f.

We use Lemma [3| to repeatedly cut off (near-) cy-
cles (i.e., remove all its edges except the split-edge)
from G. Each time we cut off a near-cycle, we add to
our augmentation the edge that completes the cycle.
This is optimal since no edge can cross the split-edge
and hence both sides can be processed independently.

If an endpoint of the split-edge is a leaf, we can also
remove the split-edge. Otherwise we mark the split-
edge and remove it as soon as one of its endpoints
becomes a leaf. This ensures that every near-cycle
that is cut off actually requires an additional edge in
the augmentation. Let’s summarize the above.

Theorem 4 Let S C R? be a set of n points and let
G = (S, E) be a connected convex geometric graph. If
the convex hull of S and the corresponding embedding
of G are given, we can compute in O(n) time and
space a set E' of vertex pairs of minimum cardinality
such that G' = (S, E'U E") is bridge-connected.

By combining the previous approach with dynamic
programming we can also solve the case where each
pair of vertices has a positive weight and the aim is to
minimize the total weight of the augmentation. Time
and space consumption become quadratic.

4 s—t path augmentation

In this section we consider the following problems:
Given a plane geometric graph G = (S, E), two ver-
tices s # t of G, and an integer k£ > 0, find a smallest
set B’ of vertex pairs such that G' = (S, F U E') is
plane and contains k edge-disjoint s—t paths. We also
consider the corresponding problem for vertex-disjoint
s—t paths. We treat the cases k = 2 and k£ = 3.

4.1 Path augmentation for k=2

The case k = 2 is a relaxed version of PECA and
PVCA. Although the problem is very restricted in
comparison to full 2-edge or 2-vertex connectivity
augmentation, it does not seem to be much easier.
Like Abellanas et al. [I] we consider the correspond-
ing worst-case problem: how many edges are needed
for an s—t path augmentation in the worst case?

Let’s quickly discuss the vertex-disjoint case. For
the lower bound we can re-use the example of Abel-
lanas et al. [I]: a zig-zag path with end vertices s and ¢
whose vertices are in convex position. There, n — 2
edges are needed to establish two vertex-disjoint s—t
paths. On the other hand it is not hard to see that
n — 2 edges always suffice.

Now let’s turn to the more interesting edge-disjoint
case. Here, the zig-zag path yields a lower bound of
n/2. Note that the solution actually makes the graph
bridge-connected. In fact, Abellanas et al. [I] conjec-
ture that any geometric n-vertex tree can be made
bridge-connected by adding at most n/2 edges. We
show that there is always an s—t path augmentation
with at most n/2 edges, which is tight by the zig-zag
example. We also give a simple algorithm that finds
such an augmentation in linear time.

Lemma 5 Let S C R?, let G = (S, E) be a connected
plane geometric graph, and let G' = (S, E’) with E C
E’ be any plane geometric graph that contains G. If
s and t are two vertices of G, and G’ contains a path
of length ¢ between s and t, then there exists an s—t
path augmentation of G with at most ¢ edges.

The proof shows how the path in G’ can be used to
determine an augmentation for G. The most inter-
esting case is that the path in G’ uses an edge that
actually is a bridge b in G. The crucial step is to show
that we can add a suitable edge to G that induces a
cycle with b on it, i.e., b is no longer a bridge. In all
other cases we either do not need to add an edge, or
we can use the edge of the path.



Let G = (S, F) be a geometric graph. A triangula-
tion of G is a triangulation T' = (S, E’) of the convex
hull of S with F C E’. It is well known that every
geometric graph can be triangulated [I]. We show:

Lemma 6 Let S C R? be a set of n points and let
T = (S, E) be a triangulation of the convex hull of S.
Then the diameter of T is at most n/2.

The basic idea is to consider growing neighborhoods
of the vertices s and t. The i-th iterated neighborhood
N;(v) of a vertex v contains all vertices of G within
(graph-theoretic) distance at most ¢ from v. Let k be
the smallest integer such that Ny (s) N Ny (t) # 0. We
use a lower bound on the size of i-th iterated neigh-
borhoods and the fact that Ni_1(s) N Ni—1(t) = 0 in
order to obtain an upper bound on k. Since G con-
tains an s—t path of length at most 2k, this upper
bound implies the claim.
Lemmas [f] and [] immediately yield the following.

Theorem 7 Let S C R?, let G = (S, E) be any plane
connected geometric graph with n vertices, and let s
and t be any two vertices of G. Then there always
exists a set E' of at most n/2 pairs of points in S
such that G' = (S, ENE’) is again a plane geometric
graph and contains two edge-disjoint s—t paths. Such
a set can be computed in linear time.

This bound can be improved if the convex hull of S
does not contain too many points. Take any trian-
gulation and consider the iterated neighborhoods of s
and t. As long as a neighborhood has not reached the
convex hull it grows by at least three vertices with
every iteration. As soon as both neighborhoods have
reached the convex hull, we can connect them by a
path along the convex hull.

Lemma 8 The diameter of a plane triangulation T =
(S, E) is at most 2(n+3)/5+ h/2, where n = |S| and
h is the number of vertices on the convex hull of S.

This improves Lemma [f] for A < (n — 12)/5.

4.2 Path augmentation for k=3

We first consider the problem of finding three vertex-
disjoint s—t paths in a geometric graph. Let T =
(S, E) be any plane geometric triangulation and let s
and t be any two vertices of T. An edge connecting
two vertices of the convex hull that does not belong
to the convex hull itself is called a chord. A chord uv
is (s,t)-separating if s and t are in different connected
components of T'\ uv.

Obviously T has three vertex-disjoint s—t paths if
and only if T does not contain an (s,t)-separating
chord. Hence we can rephrase our original question
as follows: does any plane geometric graph G without

(s, t)-separating chords have a triangulation without
(s,t)-separating chords? Such a triangulation would
then contain the desired augmentation.

Theorem 9 Let S C R? be a set of n points, let
G = (S, E) be a connected plane geometric graph, and
let s # t be two vertices of G. If G contains no (s,t)-
separating chord, then there is a triangulation T of G
that contains three vertex-disjoint s—t paths. Such a
triangulation can be computed in O(n?) time.

Now we consider the problem of finding three edge-
disjoint s—t paths. For triangulations we have the
following characterization.

Theorem 10 Let T = (S, E) be a triangulation of
the convex hull of S and let s,t € S. Then T contains
three edge-disjoint s—t paths if and only if s and t
have degree at least 3.

It is easy to check whether a given geometric graph
can be triangulated in such a way.
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