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In this article, we consider the rectilinear crossing minimization problem, i.e., we seek a straight-line draw-
ing Γ of a graph G = (V ,E) with a small number of edge crossings. Crossing minimization is an active field
of research [1, 10]. While there is a lot of work on heuristics for topological drawings, these techniques
are typically not transferable to the rectilinear (i.e., straight-line) setting. We introduce and evaluate three
heuristics for rectilinear crossing minimization. The approaches are based on the primitive operation of
moving a single vertex to its crossing-minimal position in the current drawing Γ, for which we give an
O ((kn +m)2 log(kn +m))-time algorithm, where k is the degree of the vertex and n andm are the number of
vertices and edges of the graph, respectively. In an experimental evaluation, we demonstrate that our algo-
rithms compute straight-line drawings with fewer crossings than energy-based algorithms implemented in
the Open Graph Drawing Framework [11] on a varied set of benchmark instances. Additionally, we show
that the difference of the number of crossings of topological drawings computed with the edge insertion ap-
proach [10, 13] and the number of crossings in straight-line drawings computed by our heuristic is relatively
small. All experiments are evaluated with a statistical significance level of α = 0.05.
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1 INTRODUCTION

The empirical study of Purchase et al. [30] indicates that a drawing of a graph with a small num-
ber of crossings is easier to comprehend than a drawing of the same graph with a large number
of crossings. Consequently, the minimization of crossings has received considerable attention in
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theory and in practice; the bibliography of Vrt’o is an impressive list of over 700 references [37].
A topological drawing of a graph is a drawing where each edge is a Jordan arc and in a straight-

line drawing each edge is restricted to be a straight-line segment. The crossing number cr(G ) of
a graph G is the minimum crossing number of all possible topological drawings of G. The recti-

linear crossing number cr(G ) of G is the minimum number of crossings over all possible straight-
line drawings of G. Indeed, there is a family of graphs with a constant crossing number but an
unbounded rectilinear crossing number [6]. Moreover, there is a difference in the algorithmic
complexity of the respective minimization problem. The minimization of the crossing number
isNP-complete [21]. For the minimization of the rectilinear crossing number, onlyNP-hardness
is known; more precisely, the problem is ∃R-complete [5]. Due to these gaps, we can either insist
on a small number of crossings or on straight-line edges. In case of topological drawings itera-
tively inserting edges into a (planar) graph with a small number of crossings proved to be effective
in practice [10, 13]. Unfortunately, deciding whether there is a straight-line drawing homeomor-
phic to a given drawing is ∃R-complete [32, 34]. Based on the topological drawings with a small
number of crossings, Bläsius et al. [7] heuristically straighten the edges. In general it is not possi-
ble to transfer the results on topological drawings to the geometric setting. Thus, if we insist on
straight-line drawings, there is need for a geometric approach.
Several surveys [1, 10] show that the estimation of the (rectilinear) crossing number of complete

graphs has received considerable attention. Most recently Fox et al. [16] introduced an n2+o (1)-time
algorithm that computes a straight-line drawing of a graph G with at most cr(G ) + o(n4) pairs of
crossing edges. This is a 1 +O (1) approximation for dense graphs but rather of theoretical interest
for sparse graphs. A considerable number of known upper bounds for the rectilinear crossing
number of the complete graphs Kn for n ≤ 100 [2] is due to Fabila-Monroy and López [15].
Energy-based algorithms are a common way to compute straight-line drawings of arbitrary

graphs. For a detailed description, we refer to the survey of Kobourov [26]. Energy-based algo-
rithms are often designed to compute drawings with, e.g., uniform edge length or small stress.
Kobourov claims that these algorithms tend to produce crossing-free drawings for planar graphs.
The force-directed approach by Davidson and Harel [14] actively reduces the number of cross-
ings among other optimization criteria. Apart from that, we are not aware of any algorithms that
compute straight-line drawings with a small number of crossings.

Contribution and Outline. Let G = (V ,E) be an undirected graph with vertex set V and edge
set E and let Γ be a straight-line drawing of G. For a vertex v ∈ V and a point p ∈ R2, we denote
by Γ[v �→ p] the straight-line drawing obtained from Γ by moving v to the point p. Based on the
assumption that we are able to compute a drawing Γ[v �→ p�] with a small number of crossings,
we introduce in Section 2 three heuristics to compute drawings with few crossings. In Section 3,
we show that a drawing Γ[v �→ p�] with a minimum number of crossings can be computed in
O ((kn +m)2 log(kn +m)) time for a graph with n vertices,m edges, and a vertex v of degree k . In
Section 4, we experimentally evaluate our algorithms and show that we achieve fewer crossings
than energy-based algorithms implemented in the Open Graph Drawing Framework [11] with a
statistical significance ofα = 0.05. Additionally, we compare our algorithm to topological drawings
with a small number of crossings. We show that there is only a small gap between the number of
crossings in topological and straight-line drawings of our benchmark instances. Throughout the
remainder of this article, a drawing of a graph is a straight-line drawing.

2 A FRAMEWORK FOR RECTILINEAR CROSSING MINIMIZATION

Let v be a vertex of the graph G = (V ,E) and let Γ be a drawing of G. Recall that the drawing
Γ[v �→ p] is obtained from Γ by moving v to p. Assume that we are able to efficiently compute a
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Fig. 1. Assume that structures in (a)–(c) are substructures of a common drawing Γ. Depending on the func-

tion crx (Γ, ·), the vertices are moved in a different ascending order. For x = Log, we have that crLog (Γ,v3) <
3.81 ≤ crLog (Γ,v1) = 4 < 4.5 < crLog (Γ,v2). For x = Sum, we have that crSum (Γ,v1) = 6 < crSum (Γ,v3) =
7 < crSum (Γ,v2) = 8. For x = Sq, we have that crSq (Γ,v1) = 18 < crSq (Γ,v2) = 34 < crSq (Γ,v3) = 37.

position p� so the number of crossings is minimized over all drawings Γ[v �→ p],p ∈ R2. With this
operation at hand, several possibilities arise to compute a drawing of G with a small rectilinear
crossing number. We introduce three approaches. The vertex movement approach iteratively moves
the vertices in some order to their locally optimal position. The vertex insertion approach starts
from a large induced planar subgraph and inserts vertices at their locally optimal position. The
edge insertion approach starts with a maximal planar subgraph and iteratively inserts edges into
the drawing and locally modifies the drawing to reduce the number of crossings.

2.1 Vertex Movement Approach

Let S = 〈v1,v2, . . . ,vk 〉, k ∈ N be a sequence of vertices of G, and let Γ0 be an arbitrary straight-
line drawing ofG. The drawing Γi is obtained from Γi−1 by moving vertex vi to its locally optimal
position.
The number of crossings in Γn may depend on the order S . Hence, we introduce the following

possibilities to choose S . As a baseline, we use a random permutation of V for S . We refer to
this sequence as Random. To obtain other sequences S , we order the vertices V in descending or
ascending order with respect to the number of crossings ofv in the initial drawing Γ0 ofG. Denote
by E (v ) the set of edges incident to v , and by cr(Γ, e ) the number of crossings of an edge e in the
drawing Γ. We propose the following ways to count the number of crossings incident to a vertex
v . Figure 1 illustrates that these can yield different orders of the same vertex set.

crLog (Γ,v ) =
∑

e ∈E (v )

log(cr(Γ, e ) + 1), (1)

crSum (Γ,v ) =
∑

e ∈E (v )

cr(Γ, e ), (2)

crSq (Γ,v ) =
∑

e ∈E (v )

cr(Γ, e )2. (3)

2.2 Vertex Insertion Approach

In the vertex insertion approach, we identify a subsetV ′ ⊂ V so the induced subgraphGP ofV \V ′
is a planar subgraph ofG. Starting from a planar drawing Γp ofGp , we iteratively insert the vertices
in V ′ at their locally optimal position into Γp . Since the respective decision problem of deciding
whether there is set V ′ of at most k vertices is known to be NP-complete [27, 29], we take the
following greedy approach:
Let Γ be a non-planar straight-line drawing of G. Let T ′ = 〈v1,v2, . . .vn〉 be an ascending (or

descending) order of the vertices of G with respect to their number of crossing crx in Γ with
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Fig. 2. (a) Crossing minimal curve Cuv with dense subgraphs H1 and H2. (b) Graph with the contracted

subgraphs H1 and H2. (c) H1 unpacked. (d) H1 and H2 unpacked.

x = Log, Sum, Sq. Let i be the smallest index such that the sub-drawing Γi of Γ induced by the
vertices vi , . . . ,vn is planar, i.e., the verticesV ′ = {vj | j = 1, 2, . . . , i − 1} are removed from Γ. We
obtain a drawing Γj from Γj+1 by insertingvj at its locally optimal position in Γj+1 for j = 1, . . . i − 1.

2.3 Edge Insertion Approach

The following heuristic is inspired by the topological edge-insertion algorithm introduced by
Gutwenger et al. [22]. We start with a maximal planar subgraph ofG and iteratively reinsert edges
e into the previous drawing. We modify each drawing so we can add the edge e with a small num-
ber of crossings. It is NP-complete to decide whether there is a set E ′ of k edges such that the
graphG ′ = (V ,E \ E ′) is planar [20]. Fortunately, there are exact and heuristic approaches known
[12, 24]. For further details, we refer to Section 4.6.
Note that we assume all vertices to be in general position. More formally, let e = uv be an edge

of a graphG and Γ−e be a straight-line drawing ofG − e . We obtain a drawing Γ+e ofG by inserting
e into Γ−e as a straight-line segment. In the following, we discuss strategies to locally modify
the drawing Γ+e to obtain a drawing Γ with a small number of crossings. Let Cuv be a crossing

minimal curve from u to v , i.e., a Jordan arc in Γ−e with u and v as its endpoints, only intersecting
edges in its interior and with a minimal number of edge crossings; see Figure 2(a). Ideally, we can
rearrange Γ−e such that the edges crossed by e in Γ+e are the same as the edges crossed by Cuv .
Note that this problem is closely related to the stretchability of pseudolines, which is known to be
∃R-complete [34].
Endpoint. The Endpoint strategy solely moves the endpoints u and v of the inserted edge e in an
arbitrary order to their locally optimal position.

Crossed Neighborhood. For a vertex x and an edge e , denote the number of edges xy that cross e in
Γ+e by cr(Γ+e , e,x ). Let Ce be the set of vertices with cr(Γ+e , e,x ) > 0. In addition to the endpoints
of e , the Crossed Neighborhood strategy moves the vertices inCe in an order depending on the
crossing number cra ,a = Log, Sum, Sq to their locally optimal position.

Subgraph. Let Cuv be a crossing-minimal curve from u to v in Γ−e and let E ′ be the edges crossing
Cuv . Let R be the (not necessarily simple) region enclosed by e and Cuv ; see Figure 2. The region
R partitions G into a set of subgraphs H1,H2, . . . ,Hk of G with drawings ΓH1 , ΓH2 , . . . , ΓHk

in the
interior of R. Let Ej be the set of edges uv with u ∈ V \V (Hj ) and v ∈ V (Hj ).
Let Γ0 be the drawing obtained from Γ+e by contracting every subgraph Hj to a vertex c j and

placing the vertex in the barycenter of the vertices ofHj . To obtain a drawing Γj from Γj−1, consider
a connected region fj such that moving the vertex c j within fj in Γj−1 yields the same number of
crossings, i.e., cr(Γj−1[c j �→ p]) = cr(Γj−1[c j �→ p ′]) for every pair of points p,p ′ ∈ fj . Let f �j be the

region containing the crossing minimal position p�j of the vertex c j in the drawing Γj−1 (we prove
the existence of such a region in Section 3). We obtain a drawing Γj by placing a scaled drawing
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Fig. 3. The figures highlight the complements of the visibility regions. (a) The visibility regionVR (q, s ) of a

point q and a segment s = S[a,b]. (b) All regionsVR (u1, e ) for a neighbor u1 of v . (c) All regionsVR (uj , e )
for all neighbors uj of a vertex v .

ΓHj
in the interior of f �j and reinserting the edges Ej and deleting c j and its edges. This operation

can introduce new crossings of the edges Ej with ΓHj
. We resolve these crossings by repositioning

every vertexw ∈ V (Hj ) to its locally optimal position with respect to the drawing Γj .

3 LOCALLY OPTIMAL VERTEX MOVEMENT

Let Γ be a drawing of a graph G and v be a vertex of G. The algorithms introduced in Section 2
are based on the assumption that we can efficiently compute a position p� so the number of
crossings in the drawing Γ[v �→ p�] is minimized. In this section, we show that this is possible in
O ((kn +m)2 log(kn +m)) time for a degree-k vertex.
In the following, we refer to the edges incident to the vertex v as active. The remaining edges

are called inactive. Let uv be an active edge and let e be an inactive edge. We characterize the set
of points p such that movingv to p introduces a crossing betweenuv and e . Based on the resulting
region, we define an arrangementA (Γ,v ). Moving the vertex v within a face of this arrangement
does not change the number of crossings. Thus, computing an optimal position p� reduces to
finding a particular face in A (Γ,v ).
The mentioned characterization is based on the notion of visibility. Let q ∈ R2 be the position

of u and let s = S[a,b] ⊂ R2 be a closed segment between two points a and b. LetVR (q, s ) ⊂ R2

be the visibility region of q with respect to s , i.e., the set of points p ∈ VR (q, s ), so the segments
s and S[q,p] do not intersect. Clearly,VR (q, s ) is the union of three half-planesHq,a ,Hq,b , and
Ha,b as depicted in Figure 3(a). We denote the boundary ofVR (q, s ) by BD (q, s ). LetA (Γ,v ) be
the arrangement obtained from intersecting the boundaries BD (u, e ) for all pairs of active edges
uv ∈ E and inactive edges e; see Figures 3(b) and 3(c). We show that moving the vertex v within
a face of this arrangement does not change the number of crossings in the drawing Γ[v �→ p].
Thus, it is sufficient to compute this arrangement and determine the face f � inducing the smallest
number of crossings. To avoid special cases, we assume that all vertices are in general position.

Lemma 1. Let G = (V ,E) be a graph with a vertex v ∈ V , and let Γ be a straight-line drawing of

G. Let f be a face of A (Γ,v ), and let p and p ′ be two points in the interior of f . Then p and p ′ have

the same crossing number, i.e., cr(Γ[v �→ p]) = cr(Γ[v �→ p ′]).

Proof. For the sake of a contradiction, assume that there are two distinct points p and p ′ in the
interior of f , so cr(Γ[v �→ p]) < cr(Γ[v �→ p ′]). This implies that there is a pair of an active edge
e1 and an inactive edge e2 that cross in Γ[v �→ p ′] but not in Γ[v �→ p]; see Figure 4. Thus, p ′ is
not contained inVR (v, e2) but p is. This contradicts the assumption that both p and p ′ lie in the
interior of the same face of A (Γ,v ). �
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Fig. 4. Moving the vertex v within a face of A (Γ,v ) does not change the number of crossings. Illustration

for the contradiction.

Fig. 5. (a) The boundary BD (q,ab) is bounded by the two rays Rq,a ,Ra,b and the edge ab. The ray Rq,b

lies on the boundary of BD (q,ab) and BD (a,bc ). (b) The faces f and д share a segment incident to an edge

e . (c) The faces f and д share a segment on Rq,u .

Due to Lemma 1, it is sufficient to consider only one point p in the interior of a face f to evaluate
the crossing number cr(Γ[v �→ q]) for an arbitrary point q in f . Thus, in the following, we denote
with Γ[v �→ f ] a drawing, where v is moved to an arbitrary point in f .

Theorem 1. Let Γ be a straight-line drawing of a graphG = (V ,E), and letv be a degree-k vertex of

G. A point p� ∈ R2 with the property that cr(Γ[v �→ p�]) = minq∈R2 cr(Γ[v �→ q]) can be computed

in O ((kn +m)2 log(kn +m)) time.

Proof. The proof relies on the following claims:

Claim 1. The arrangement A (Γ,v ) has O ((kn +m)2) vertices. Moreover, it can be computed in

O ((kn +m)2 log(kn +m)) time.

For each active edge uv , we obtain O (m) visibility regions. The boundary BD (q,ab) with re-
spect to an edge ab can be represented by two rays Rq,a , Rq,b and the edge ab; see Figure 5(a).
Observe that the two edges ab, bc share a common ray Rq,b . Thus, there are in total O (kn +m)
geometric entities (O (kn) rays andO (m) edges) with at mostO ((kn +m)2) intersections. Thus, we
can compute A (Γ,v ) with a sweep-line algorithm [3] in O ((kn +m)2 log(kn +m)) time.

Claim 2. For all faces f andд ofA (Γ,v ) that share a segment s the values Δf ,д such that cr(Γ[v �→
д]) = cr(Γ[v �→ f ]) + Δf ,д can be computed in O ((kn +m)2) time.

We distinguish whether the segment s lies on an edge e or on a ray Ru,z for a neighbor u of v
and z ∈ V . In both cases, we show that the value Δf ,д is equal for all pairs of faces f ,д that share
a segment on e or Ru,z , respectively.
First, consider the case that s lies on an edge e = xy in Γ; see Figure 5(b). Denote by Hf and Hд

the half-planes of the line that contains s such thatHf contains f andHд contains д. Let pf and pд

be points in f and д, respectively, that are sufficiently close to s . Note that, since we assume the
vertices to be in general position, there is no vertex z � x ,y that lies on the line that contains s ,
Thus, an edgeuv and s cross in Γ[v �→ pf ] if and only ifu ∈ Hд . Correspondingly,uv and s cross in
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Γ[v �→ pд] if and only if u ∈ Hf . Let nf and nд be the number of vertices incident tov contained in
Hf and Hд , respectively. Hence, we have that Γ[v �→ pд] = Γ[v �→ pf ] + nf − nд . Due to Lemma 1,
it follows that Δf ,д = nf − nд . Moreover, the number nд and nf are equal for all segments on e ,
i.e., it is sufficient to compute nд and nf with respect to Γ and not for each segment s in A (Γ,v ).
Overall, the counting requiresO (km) time, and mapping these values to differences Δf ,д requires
additional time linear in the size of the arrangement, i.e., O ((kn +m)2) time.
Second, consider the case that s lies on a ray Ru,z , i.e., the ray originates in a vertex z and

the direction is determined by a neighbor u of v ; see Figure 5(c). As before, let Hf and Hд be the
half-planes that contain f and д, respectively. Since all vertices lie in general position, we have the
following. Each edgewv withw � u crosses the same edges in Γ[v �→ f ] as in Γ[v �→ д]. The edges
uv and xy cross in Γ[v �→ f ], with z � x ,y, if and only if uv and xy cross in Γ[v �→ д]. Moreover,
the edges uv and xz cross in Γ[v �→ f ] if and only if x lies inHf . Correspondingly,uv and xz cross
in Γ[v �→ д] if and only if x lies in Hд . Let n′f and n

′
f
be the number of neighbors of z that lie in Hf

and Hд , respectively. Thus, Δf ,д = n
′
д − n′f .

The values n′
f
and n′д can be computed in O (du ) time, where du is the degree of u. Since all

differences Δf ,д are equal for all pair of faces f ,д that have a common segment that lies on Ru,z ,
all differences can be computed in O (

∑
q∈Nv

∑
u ∈V du ) = O (km) time. In time linear in the size of

A (Γ,v ), these values can be mapped to segments inA (Γ,v ). This finishes the proof of the second
claim.
In the following, vf denotes the dual vertex of a face f of A (Γ,v ):

Claim 3. Let s and t be two faces of A (Γ,v ), and let s contain v in its interior. Let Π be a simple

path from vs to vt in the dual graph of A (Γ,v ). Then cr(Γ[v �→ t]) = cr(Γ) +
∑

(vf ,vд )∈Π Δf ,д .

Since s contains v in its interior, the number of crossings in Γ and Γ[v �→ s] coincide, i.e.,
cr(Γ[v �→ s]) = cr(Γ). Secondly, for two adjacent faces f and д, we can express the number of
crossings in Γ[v �→ д], depending on the number of crossings in Γ[v �→ f ] and Δf ,д , i.e., cr(Γ[v �→
д]) = cr(Γ[v �→ f ]) + Δf ,д . This proves the claim.
Let f be the face of A (Γ,v ) containing v . To find a face f � with the minimum number of

crossings cr(Γ[v �→ f �]), we determine the number of crossing cr(Γ[v �→ д]) for every face д in
the arrangement A (Γ,v ). First, we compute the differences Δf ,д for all adjacent faces. According
to Claim 2, this requires O ((kn +m)2) time.
In time linear in the size of A (Γ,v ), the values Γ[v �→ д] can be accumulated as described in

Claim 3 with a breadth-first search in the dual ofA (Γ,v ) starting at the dual vertex of f . Note that
to determine the face f �, the term cr(Γ) can be omitted from the statement of Claim 3, and thus,
does not need to be computed. According to Claim 1, the size ofA (Γ,v ) is inO ((kn +m)2) and the
arrangement can be computed in O ((kn +m)2 log(kn +m)) time. This concludes the proof. �

4 EVALUATION

In the following evaluation, we consider three approaches (i) our geometric heuristic to minimize
the number of crossings, (ii) commonly used algorithms to compute straight-line drawings of ar-
bitrary graphs, i.e., energy-based algorithms, and (iii) an approach to minimize the number of
crossings in topological drawings.
We use synthetic and real-world instances to evaluate the performance of the algorithms. Sec-

tion 4.1 contains a brief description of our benchmark instances. The evaluation is based on de-
scriptive statistics and the statistical test described in Section 4.2. Our evaluation is structured as
follows. First, we identify a representative for each type of heuristic, i.e., in Section 4.3, we consider
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Fig. 6. (a, c) Example drawings computed by our Edge Insertion heuristic with a repositioning with PrEd.

(b, d) Drawings computed with Stress. (a, b) North graph 20.47. (c, d) K6. Number of crossings: (a) 5, (b) 11,

(c) 3, (d) 15.

energy-based layouts, in Section 4.4, Section 4.5 and Section 4.6, we consider several configurations
of the vertex-movement, vertex-insertion and edge-insertion approach, respectively.
Starting from Section 4.7, we compare the representatives to each other. In particular, in Sec-

tion 4.7, we focus on the vertex-movement, vertex-insertion and the edge-insertion approach. Sec-
tion 4.8 compares stress minimization [19], i.e., the representative of the energy-based layouts, to
our heuristics. In Section 4.9, we compare our heuristics to a topological crossing minimization
approach. We conclude the evaluation with an analysis of the running time in Section 4.10.
The drawings in Figure 6 give a first impression of the effectiveness of our algorithm compared

to stress minimization. Figure 6(a) and Figure 6(c) are obtained by one of our heuristics with addi-
tional runs of PrEd [4] to optimize the aesthetics of the drawing. The remaining two drawings are
computed by stress minimization.
All experiments were conducted on a single core of an Intel Xeon(tm) E5-2670 processor clocked

at 2.6GHz. The server is equipped with 64GB RAM. All algorithms were compiled with g++ version
7.3.1 with optimization mode -O3. The operation system was openSUSE Leap 15.0. For geometric
operations, we rely on CGAL [36] (v4.10) and GMP1 to represent coordinates. The usage of CGAL
and GMP allows us to evaluate our heuristics without dealing with geometric edge cases. We use
snapshot 2017-07-23 of OGDF.

4.1 Benchmark Instances

We evaluated our algorithms on four classes of graphs, either purely synthetic or with a structure
resembling real-world data. The classes North and Rome (AT&T)2 are the non-planar subsets
of the corresponding well-known benchmark sets, respectively. The Triangulation+X dataset
contains maximal planar graphs with 64 vertices (generated using Reference [9]) and 10 additional
random edges. Note that 64 is the maximal number of vertices the generator of Brinkmann et al.
can handle. The Community graphs are generated with the LFR-Generator [28] implemented
in NetworKit [35]. They resemble social networks with a community structure. From each of
these datasets, we selected 100 graphs uniformly at random. Figure 7 shows the size distribution
of these graphs.
For each graph G, we generated a random drawing on an m ×m integer grid, i.e., the x- and

y-coordinates of each vertex is an integer between 0 andm chosen uniformly at random, where
m is the number of edges of G. In case the drawing contains three collinear vertices, we assign a

1gmplib.org.
2http://graphdrawing.org/data.html.
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Fig. 7. Distribution of number of vertices plus number of edges for each dataset.

Table 1. Energy-based Graph Drawing Algorithms

Implemented in OGDF

Name OGDF Ref.

DH ogdf::DavidsonHarel [14]
FMMM ogdf::FMMMLayout [23]
FR ogdf::SpringEmbedderFR [18]
GEM ogdf::GEMLayout [17]
KK ogdf::SpringEmbedderKK [25]
PMDS ogdf::PivotMDS [8]
Stress ogdf::StressMinimization [19]

new random position to one of the three vertices. We repeat this process until all vertices are in
general position. The resulting drawing is then used as input for all evaluated algorithms.

4.2 Binomial Advantage Test

The binomial advantage test is based on a binomial sign test [33]. We follow the terminology of
Bläsius et al. [7]. In the following, let p ∈ (0, 1] and α ∈ (0, 1) be fixed. A sequence Σ over {0, 1}
is good if the binomial test indicates that the sequence Σ contains more than p · |Σ| ones at a
significance level α . Note that the binomial test can be used regardless of the distribution of Σ.
We denote by Γ{G} the set of all drawings of G. Let G = {G1,G2, . . . ,Gk } be a family of (non-

planar) graphs. We refer to a set Λ = {Γ1, . . . , Γk } with Γi ∈ Γ{Gi } as a family of drawings of G. Let
Λ1 and Λ2 be two families of drawings of G. The comparison cr(Γ1i ) · Δ < cr(Γ2i ) with 1 ≤ i ≤ k
yields a sequence ΣΔ. We say that Λ1 has an advantage overΛ2 if Σ1 is good. If Λ1 has an advantage
over Λ2, then we refer to the maximum value Δ� such that ΣΔ� is good, as advantage of Λ1 over

Λ2.

4.3 Energy-based Layouts

In this section, we evaluate the energy-based layouts implemented in the Open Graph Draw-
ing Framework (OGDF) (compare Table 1) with respect to the rectilinear crossing number. Some
drawings computed by FMMM, KK, and PMDS are not valid, i.e., distinct vertices have the same
coordinates or a vertex lies in the interior of an edge.We resolve this issue by iteratively perturbing
vertices that lie on the interior of an edge.
According to Table 2, drawings computed byDHhave a considerably higher number of crossings

than drawings computed by GEM, FR, or Stress. The table indicates that FR computes drawings
with a slightly higher number of crossings compared to Stress and GEM. A comparison of Stress
and GEM is not conclusive, e.g., Stress has larger mean but a smaller median. Observe that FMMM

ACM Journal of Experimental Algorithmics, Vol. 24, No. 1, Article 1.12. Publication date: July 2019.
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Table 2. Descriptive Statistics of the Number of Crossings

Algorithm Mean Min .25-Percentile Median .75-Percentile Max

DH 651.59 6 248.50 570.0 993.25 2,210
FMMM 156.58 1 35.00 89.0 289.00 1,369
FR 163.75 2 46.75 109.0 281.25 1,115
GEM 153.43 1 34.25 94.0 259.75 1,174
KK 202.20 1 35.75 86.0 327.00 2,503
PMDS 198.84 1 37.75 99.0 307.25 2,449
Stress 155.78 1 32.75 82.5 288.75 1,220

Fig. 8. Comparison of drawings obtained from algorithms implemented in OGDF. The number of crossings

of a drawing for each graph in the class indicated on the x-axis clustered by the algorithms. Outliers have

been removed.

computes drawings with only a small number of crossings more than Stress. Note that the objec-
tive function of DH is explicitly configured to minimize the number of crossings. The remaining
algorithms do not have explicit mechanisms to reduce the crossings.
Each point in the plot in Figure 8 corresponds to the number of crossings of one drawing com-

puted by the algorithm indicated by the color. The measurements are categorized by the respective
graph class. We removed outliers from the plot, i.e., the plot shows all measurements that differ
by at most three times the standard deviation from the mean of the respective datasets. The plot
confirms our observation that DH computes drawings with the highest number of crossings. For
the remaining algorithms, the plot does not show a clear preference. Comparing the graph classes
to each other, the plot indicates that the drawings of graphs in the class Triangulation+X com-
puted by energy-based algorithms tend to have a larger number of crossings in comparison to the
remaining classes.
The observations drawn from Table 2 and Figure 8 neglect the fact that the algorithms compute

drawings of the same graphs, i.e., we are able to directly compare the number of crossings of the
drawings. The statistical test introduced in Section 4.2 uses the mapping between the drawings
to obtain a statistically reliable comparison of the drawings. Note that the binomial test does not
use any assumption about the distribution of the measurements. Figure 9 shows the advantages
of the algorithms on the x-axis over the algorithms on the y-axis. For example, Stress has an
advantage of 3.5 over DH on 75 out of 100 drawings (p = 0.75), i.e., the number of crossings of at
least 75% of the drawings computed by DH are larger by a factor of 3.5 than in the corresponding
drawings computed by Stress. This and the following advantages are significant at significance
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Fig. 9. Advantages of pairs of algorithms.

Table 3. Different Possibilities to Order the Vertices

Name Counting forv ∈ V Order

Asc_Log crLog (v ) ascending
Asc_Sum crSum (v ) ascending
asc_Sq crSq (v ) ascending
Desc_Log crLog (v ) descending
Desc_Sum crSum (v ) descending
Desc_Sq crSq (v ) descending
Rnd random

level of α = 0.05. For p = 0.5, we observe that Stress has an advantage over all algorithms except
GEM. The advantages over FR, FMMM, and KK lie in between 1.0 and 1.1. We conclude that Stress
computes drawings with a slightly but significantly smaller number of crossings in comparison to
the other energy-based layouts. Thus, in the following, we use Stress as a representative for the
class of energy-based algorithms.

4.4 Vertex Movement

For the vertex movement approach described in Section 2.1, we are free to choose a vertex order.
In this section, we evaluate how the choice of the vertex order affects the number of crossings of
the final drawings.
In Section 2.1, we introduced three possibilities to count the number of crossings for a vertex v

of G. Moreover, we can decide to order the vertices in ascending or in descending order. Table 3
lists all configurations of the vertex movement approach that we evaluate. It contains additionally
a random permutation of the vertex set.
As in the evaluation of the energy-based layouts, we use the descriptive statistics in Table 4,

the plot in Figure 10, and the advantages (Figure 11) to compare the configurations of the vertex-
movement approach to each other. The statistics in Table 4 and the plot in Figure 10 indicate
that configurations that move the vertices in ascending order (Asc_�) compute drawings with a
considerably higher number of crossings compared to configurations using a descending order
(Desc_�) or the random order (Rnd).
The plots of the advantages in Figure 11 confirm this observation for p = 0.75. Moreover, for

p = 0.5, Desc_Sq has a small advantage over Desc_Log, i.e., the advantage is between 1.0 and
1.1. For p = 0.25, each configuration using a descending order (Desc_�) has an advantage of 1.1
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Table 4. Descriptive Statistics of the Number of Crossings Obtained by the Vertex-movement

Approach with Different Vertex Orders

Algorithm Mean Min .25-Percentile Median .75-Percentile Max

Asc_Log 282.35 1 44.00 214.5 495.50 1147
Asc_Sum 303.83 1 47.00 233.0 504.50 1303
Asc_Sq 310.28 1 46.75 246.5 510.25 1184
Desc_Log 182.28 1 32.75 167.5 267.25 1074
Desc_Sum 176.24 1 29.00 157.5 258.75 970
Desc_Sq 174.46 1 30.75 157.0 266.00 910
Rnd 238.54 1 35.75 185.5 387.00 1070

Fig. 10. Comparison of drawings obtained from different configurations of the vertex movement approach.

The number of crossings of a drawing for each graph in the class indicated on the x-axis clustered by the

configurations. Outliers have been removed.

Fig. 11. Advantages of pairs of configurations of the vertex movement approach.

over the other configurations using a descending order. Thus, the advantages do not show a clear
preference to one of these configurations.
To reduce the complexity of the rest of the evaluation, we choose a single configuration of

the vertex movement approach. Therefore, we consider the average number of crossings as a tie
breaker. Since theDesc_Sq computes the smallest number of crossingswith respect to this statistic,
we use this configuration as the representative for the vertex-movement approach.
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Table 5. Descriptive Statistics of the Number of Crossings Obtained by the Vertex-insertion

Approach with Different Vertex Orders

Algorithm Mean Min .25-Percentile Median .75-Percentile Max

Asc_Log 126.18 1 37.00 138.5 185.25 1,217
Asc_Sum 131.16 1 34.00 142.0 188.00 1,187
Asc_Sq 140.57 1 37.00 155.5 204.00 1,316
Desc_Log 406.32 1 76.75 310.0 778.50 1,905
Desc_Sum 386.56 1 72.75 276.5 739.75 1,712
Desc_Sq 360.68 1 62.00 252.0 680.25 1,652
Rnd 237.01 1 55.50 227.5 369.25 1,080

Fig. 12. Comparison of drawings obtained from different configurations of the vertex insertion approach.

The number of crossings of a drawing for each graph in the class indicated on the x-axis clustered by the

configurations. Outliers have been removed.

4.5 Vertex Insertion

Similar to the vertex-movement approach, the order in which we remove and insert vertices in
the vertex-insertion approach (Section 2.2) can affect the number of crossings of the final draw-
ing. In this section, we evaluate the vertex-insertion approach with different vertex orders (see
Table 3). Note that in case of an ascending order (Asc_�), the vertices are removed in this order
and inserted in the reversed (descending) order. Vice versa, in a descending order (Desc_�), the
vertices are removed in descending order and reinserted in ascending order. Preliminary experi-
ments indicated that reinserting the vertices in the same order instead of the reversed order yields
a larger number of crossings. To reduce the complexity of the evaluation, we decided to omit these
configurations.
The descriptive statistics in Table 5 and the plot in Figure 12 show that the descending vertex

orders yield drawings with a considerably higher number of crossings compared to the ascending
orders. The statistics indicate that the vertex insertion approach with the Asc_Log order computes
drawings with the smallest number of crossings. The advantages in Figure 13 confirm this obser-
vation. Forp = 0.75, Asc_Log has higher advantages as the corresponding advantages of Asc_Sum
and Asc_Sq. Moreover, for p = 0.25, the Asc_Log order has an advantage over both Asc_Sum and
Asc_Sq with an advantage of 1.2. However, Asc_Sum and Asc_Sq each have only an advantage of
1.1 over Asc_Log. Hence, for the following evaluations, we consider the vertex-insertion approach
with the Asc_Log order.
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Fig. 13. Advantages of pairs of configurations of the vertex insertion approach.

Table 6. Configuration of the Reference Algorithms

Algorithm Vertex Order Termination

VM Vertex Movement Desc_Sq
VI Vertex Insertion Asc_Log
EP Edge Insertion Endpoints
EI Edge Insertion EP + Crossed Neighbors (Desc_Sq)
Stress ogdf::StressMinimization convergence
Tpl ogdf::SubgraphPlanarizer - -

4.6 Edge Insertion

The edge insertion approach as described in Section 2.3 has several degrees of freedom: (i) the
computation of the maximal planar subgraph, (ii) the initial drawing of the maximal planar sub-
graph, (iii) the order in which the edges are reinserted, and (iv) the order in which the vertices are
moved after each edge insertion. We use the PlanarSubgraphFast algorithm [24] implemented
in OGDF to compute a large planar subgraph and the PlanarStraightLayout method to com-
pute an initial drawing of the planar subgraph. In both cases, we use the default configuration of
OGDF. We reinsert the edges in the order they are returned by the PlanarSubgraphFast rou-
tine. The configuration EP only moves the endpoints of an edge. The configuration EI moves in
addition to the endpoints the crossed neighborhood of the newly inserted edge e , i.e., vertices that
are incident to an edge that crosses e . In Section 4.4, we selected the Desc_Sq order as a repre-
sentative for the vertex-movement approach. Hence, we use this vertex order to move the crossed
neighborhood of an edge.
Since EI moves a superset of the vertices of EP, we expect that EI further reduces the number of

crossings, compared to EP. Table 7 and the plots in Figures 14 and 15 confirm this observation.
In comparison to the conference version of the article [31], we reimplemented the geometric

operation of moving a single vertex and the heuristics (VM, VI, EI, EP). In the experiments on the
old code base, we observed that the edge insertion heuristic with the additional movements of
subgraphs introduced a significant number of new crossings. Since moving entire subgraphs did
not seem promising, we decided to not reimplement this particular heuristic.

4.7 Comparison of Our Heuristics

In the following, we compare our heuristics, i.e., VM, VI, EP, and EI, to each other (Table 6).
For the comparison of the heuristics to Stress and Tpl,refer to Section 4.8 and Section 4.9,
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Table 7. Descriptive Statistics of the Number of Crossings of Drawings Computed by the

Final Configuration of the Heuristics, Stress, and Tpl

Algorithm Mean Min .25-Percentile Median .75-Percentile Max

Tpl 43.30 1 7.00 29.0 66.25 610
EI 55.43 1 9.00 41.0 87.25 601
EP 69.41 1 9.00 49.0 107.75 630
VI 126.18 1 37.00 138.5 185.25 1,217
VM 174.46 1 30.75 157.0 266.00 910
Stress 155.51 1 32.75 82.5 288.75 1,220

Fig. 14. Comparison of the final configurations of each heuristic, Stress, and Tpl. The number of crossings

of a drawing for each graph in the class indicated on the x-axis clustered by the heuristic. Outliers have been

removed.

Fig. 15. Advantages of pairs of the final configurations of the heuristics, Stress, and Tpl.

respectively. Table 7 suggests that EI computes drawings with fewer crossings than EP, EP fewer
than VI and VM. Recall that a point in Figure 14 corresponds to the number of crossings of one
drawing computed by the algorithm indicated by the color. The plot confirms that the edge-
insertion approaches compute drawings with less crossings than VI and VM. Moreover, VI com-
putes drawings of the Triangulation+X graphs with less crossings than VM.
For p = 0.75, we observe that EI and EP compute drawings with significantly less crossings than

VI and VM; refer to Figure 15. Thus, we can confirm the above observation at a significance level of
α = 0.05. Considering the graph classes independently, the statement remains true for the North,
Rome, and Community graphs; see Figures 16, 17, and 18. For the Triangulation+X graphs, only
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Fig. 16. North.

Fig. 17. Rome.

Fig. 18. Community.

EI has an advantage over both VI and VM, forp = 0.75 (Figure 19). Forp = 0.5, EP has an advantage
of 2.3 and 1.1 over VM and VI, respectively.
Only for Triangulation+X graphs and the Community graphs, EI has an advantage of 1.1 over

EP on at least 75% of the graphs. For p = 0.5, EI has an advantage between 1.0 and 1.1, on the Rome
graphs; for p = 0.25, this advantage increases to 1.2. For the North graphs and p = 0.25, EI has an
advantage of 1.1 over EP.
Comparing VI and VM, neither heuristic has an advantage over the other for p = 0.5 (Figure 15).

For p = 0.25, VI has an advantage of 1.4 over VM, and VM has an advantage of 1.1 over VI. Consid-
ering the graph classes independently, we see that on the North, Rome, and Community graphs,
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Fig. 19. Triangulation+X.

VM has a small advantage over VI. On the Triangulation+X graphs, VI computes drawings with
significantly less crossings than VM, i.e., for p = 0.75, VI has an advantage of 1.7 over VM.
Overall, we conclude that the edge-insertion approach (EI and EP) computes drawings with

significantly fewer crossings than its competitors. It depends on the graph class whether the addi-
tional movement of vertices (EI) significantly decreases the number of crossings compared to EP.

4.8 Comparison to Stress

We compare the drawings computed by our heuristics with drawings computed by stress mini-
mization (Stress), i.e., to an algorithm commonly used to compute straight-line drawings of gen-
eral graphs. In Section 4.3, we showed that this algorithm computes drawings with less crossings
than other energy-based heuristics implemented in OGDF.We configured Stress to stop after con-
vergence, thus we cannot expect Stress to compute drawings with a smaller number of crossings
if we increase the computing time.
Table 7 suggests that Stress computes drawings with at least a factor of two more crossings

than EI and EP. A comparison between Stress and VI is inconclusive. On average, VI computes
drawings with a smaller number of crossings; however, Stress has a smaller median value.
In addition to the above observations, Figure 14 shows that on a large subset of the Triangula-

tion+X graphs, Stress computes drawings with a considerably larger amount of crossings than
EI, EP, and VI. On the Community graphs, Stress achieves a smaller number of crossings than
VI and VM. For the remaining graph classes, the plot provides no clear distinction between VI,
VM, and Stress. Although Table 7 and Figure 14 do not provide a conclusive distinction between
Stress and VM, Figure 15 shows an advantage of 1.1 for Stress over VM, for p = 0.5.
The advantages in Figure 15 show that Stress computes drawings with a factor of 1.9 and

1.5 more crossings than EI and EP, respectively, for 75% of our benchmark instances. Further,
considering only the Community graphs (Figure 18), the advantage of EI over Stress drops from
1.9 to 1.5, for p = 0.75. However, for the Triangulation+X graphs, the advantage increases to 2.8.
We conclude that the edge-insertion approach computes drawings with significantly less crossings
than Stress.

4.9 Comparison to Tpl

We investigate how close the number of crossings in drawings computed by EI are to the number of
crossings in topological drawings. Note that Tpl aswell as EI start from a large planar subgraph and
iteratively insert the remaining edges. The drawings obtained by Tpl are not necessarily realizable
as straight-line drawings with the same number of crossings.
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Table 8. Descriptive Statistics of the Running Time in Seconds Per Graph Class

Algorithm Mean Min .25-Percentile Median .75-Percentile Max

North
Tpl 0.90 <0.01 <0.01 0.01 0.16 42.07
EI 35.77 0.04 0.46 2.61 30.64 934.79
EP 4.37 0.01 0.10 0.57 4.60 95.53
VI 1.49 0.02 0.17 0.69 2.09 9.23
VM 3.86 0.04 0.32 1.48 5.87 29.60
Rome
Tpl 0.06 <0.01 0.01 0.03 0.08 0.55
EI 10.86 0.20 1.14 4.99 15.81 61.11
EP 2.12 0.07 0.32 1.11 2.94 10.67
VI 5.62 0.09 0.66 1.85 3.24 178.40
VM 4.20 0.27 1.12 2.70 6.19 15.31
Community
Tpl 0.24 0.04 0.13 0.20 0.29 0.90
EI 50.81 24.66 38.80 50.41 61.11 88.73
EP 10.28 6.58 8.26 10.43 11.64 20.29
VI 27.40 7.05 8.60 10.25 17.53 514.47
VM 21.24 17.34 20.10 21.27 22.26 25.61
Triangulation+X
Tpl 0.67 0.10 0.40 0.57 0.83 2.79
EI 391.40 200.23 348.75 393.31 428.81 566.14
EP 52.20 22.23 45.28 50.56 60.47 89.74
VI 5.56 4.98 5.39 5.53 5.71 6.52
VM 34.17 31.28 33.06 34.06 34.99 50.46

Table 7 shows that the maximum number of crossings computed by EI is smaller than the cor-
responding number computed by Tpl. The Tpl approach iteratively inserts edges into a planar
graph. After each edge insertion, the crossings are replaced by degree-four vertices. This fixes the
crossings for future edge insertions. Our edge insertion approach (EI) at least moves the vertices
v incident to a new edge e . Since the vertex movement minimizes the number of crossings of all
edges incident to v , it is possible that two edges that cross in Γ do not cross in Γ+e . Apparently,
this flexibility helps in some cases to find drawings with less crossings compared to Tpl. Indeed,
there are 60 out of 400 instances in which the number of crossings computed by EI is smaller or
equal to the number of crossings computed by Tpl. On 35 instances, EI achieves a strictly smaller
number of crossings than Tpl.
For at least 75% of graphs, Tpl has an advantage of 1.1 over EP; see Figure 15. For the same

number of graphs, Tpl does not have an advantage over EI. However, there is a subset containing
at least 25% of graphs such that Tpl has an advantage of 1.5 over EI and 1.8 over EP. Considering the
Community and the Triangulation+X graphs, Tpl has an advantage over all other algorithms
for p = 0.75, but the advantage over EI is only 1.2 and 1.1, respectively.

4.10 Running Time

In this section, we analyze the running time of our algorithms. We abstain from a comparison to
Stress, since Stress is very well engineered and requires at most 10−2s per instance on our graphs.
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Fig. 20. The running time of each algorithm as a function of the running time of EP, i.e., each data point

(tx , ty ) corresponds to graphG and an algorithmA, where tx and ty is the running time of EP andA onG,

respectively. We removed outliers to increase readability.

We compare the remaining algorithms listed in Table 6. Table 8 shows several statistics of the
running time grouped by graph class. Figure 20 shows the running time of each instance for all
graph classes. Since the running time of Tpl is less than one second for most instances (compare
Table 8), we omit these measurements in Figure 20 to increase readability. A data point pG below
the green diagonal indicates that the algorithm that corresponds to pG uses less time to finish
on the graph than EP. For example, Figure 20(d) shows that there are many instances where VM
and VI consume less time than EP. However, on every Triangulation+X instance, the running
time of EI is considerably higher. Note that on the Triangulation+X graphs, EI only has a small
advantage over VI; compare Figure 19. However, VI is significantly faster on this graph class.
The observation that EI has the longest running time is true for all graph classes. Recall that

EI moves a superset of vertices compared to EP. Thus, this observation is expected. Moreover, the
figures show that the edge-insertion approach that only moves endpoints of an edge (EP) and VI
profit from the incremental growth of the drawing, whereas the vertex-movement approach has
to deal with the entire graph in each iteration.

5 CONCLUSION

In this article, we introduced several heuristics that are based on moving a vertex to its crossing
minimal position. This position can be computed in O ((kn +m)2 log(kn +m)) time. Our evalua-
tion in Section 4 shows that the approach yields drawings with a smaller number of crossings in
comparison to the well-established stress-minimization algorithm.
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The edge-insertion approach in combination with the crossed-neighborhood strategy computes
drawings with the smallest number of crossings. We compared our heuristic to an approach
computing topological drawings with a small number of crossings. Our experimental evaluation
showed that there is only a relatively small difference between the number of crossings. Especially,
we could show that we are able to match the number of crossings in about 15% of our instances. For
future work, it is desirable to further engineer the implementation to cope with larger instances.
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