
The Many Faces of Planarity
– Matching, Augmentation, and Embedding

Algorithms for Planar Graphs –

zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften

der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation
von

Ignaz Rutter
aus Karlsruhe

Tag der mündlichen Prüfung: 1. Juli 2011

Erster Gutachter: Frau Prof. Dr. Dorothea Wagner

Zweiter Gutachter: Herr Prof. Dr. Alexander Wolff

Acknowledgments

This thesis is the result of roughly four years of work. During this phase, I got support from
various sides, and I would like to take the opportunity to thank everyone who supported
me during this time.

First and foremost, I thank my two advisors Dorothea Wagner and Alexander (Sascha)
Wolff for offering me the chance to do a PhD with them and all the encouragement and
support I received during this time. I appreciate especially their trusting and benevolent
style of leadership. By first advising my diploma thesis and then offering me the final year
of funding in his DFG project “GeoNet” Sascha introduced me to the wonderful world of
science and guided me during my first steps there. Although we never had positions at the
same place, his door was always open for me, and I have tremendously gained from our
frequent research meetings during his time in Eindhoven and afterwards. After my first year,
Dorothea completely adopted me into her great group; the productive atmosphere, shaped
by mutual trust, encouragement and the freedom to work on almost anything is legendary.
In particular, I thank both my advisors for their competent and extensive feedback on my
work and for their constant encouragement to attend workshops, conferences and summer
schools. I am glad that this thesis is not the end of this collaboration.

Special thanks go to my office mates (in chronological order) Martin Nöllenburg, Thomas
Pajor, and Sascha Meinert. You were often the first to turn to for asking question and
discussing ideas. Let me extend these thanks to all my colleagues, Reinhard Bauer, Michael
Baur, Daniel Delling, Julian Dibbelt, Marco Gaertler, Andreas Gemsa, Robert Görke,
Tanja Hartmann, Martin Holzer, Bastian Katz, Marcus Krug, Steffen Mecke, Sascha
Meinert, Martin Nöllenburg, Thomas Pajor, Andrea Schumm, and Markus Völker. In
particular, I thank Marcus Krug and Bastian Katz for countless hours of discussions on
various problems and Andreas Gemsa and Martin Nöllenburg for working with me on
interesting research problems, when I desperately needed a distraction from finishing the
write-up of this thesis. Moreover, I thank our secretaries Lilian Beckert and Elke Sauer,
who helped me to easily take all bureaucratic hurdles, and our system administrator Bernd
Giesinger, who keeps our systems up and running and our data safe.

I also thank my numerous coauthors, Patrizio Angelini, Giuseppe Di Battista, Mark de
Berg, Thomas Bläsius, Edith Brunel, Robert Franke, Fabrizio Frati, Andreas Gemsa, Dirk
Gerrits, Emilio Di Giacomo, Luca Grilli, Vít Jelínek, Mong-Jen Kao, Bastian Katz, Amirali
Khosravi, Marcus Krug, Jan Kratochvíl, D.T. Lee, Giuseppe Liotta, Andreas Lochbihler,
Martin Nöllenburg, Thomas Pajor, Maurizio Patrignani, Gregor Snelting, Ben Strasser,
Constantinos Tsirogiannis, Dorothea Wagner, Gerhard Woeginger, and Alexander Wolff.
Working with you has been a great pleasure and I am looking forward to working with
many of you in the future.

Special thanks go to Walter Didimo and Beppe Liotta for inviting me to the Bertinoro
Workshop on Graph Drawing in 2009, 2010 and 2011. Especially the 2009 edition has

iv Acknowledgments

been very fruitful for me and has greatly influenced this thesis. I would also like to thank
Giuseppe Di Battista for inviting me to Rome for a research stay, and Jan Kratochvíl for
inviting me to Prague twice.

Last but not least I thank my wife Eva for her constant support, encouragement and
patience, in particular in the final weeks before handing in this thesis.

Deutsche Zusammenfassung

Ein Graph ist planar, wenn er sich kreuzungsfrei in die Ebene zeichnen lässt. Planarität
ist eine zentrale Eigenschaft, nicht nur im Graphenzeichnen, sondern in der gesamten
Graphentheorie. Oftmals lassen sich für planare Graphen stärkere theoretische Aussagen
beweisen und effizientere Algorithmen angeben als für allgemeine Graphen. Andererseits
tritt Planarität oft auch als Nebenbedingung auf und macht Probleme dadurch schwieriger.
Eine besondere Rolle spielen planare Graphen in der Visualisierung, da Kreuzungen die
Lesbarkeit von Zeichnungen verschlechtern.

Kuratowski [Kur30] legte 1930 den Grundstein für die systematische Untersuchung
der planaren Graphen durch eine vollständige Charakterisierung mittels verbotener Sub-
strukturen. Diese Charakterisierung über verbotene Substrukturen, nämlich K5 und K3,3,
zeigt, dass Planarität ein „endliches“ Problem ist und führte zu den ersten polynomiellen
Erkennungsalgorithmen. Den ersten Linearzeitalgorithmus zur Erkennung von planaren
Graphen veröffentlichten Hopcroft und Tarjan erschien 1974 [HT74]. Seitdem ist eine
Fülle von Resultaten über planare Graphen erschienen. Beispielsweise besitzen planare
Graphen gute Zerlegungseigenschaften, lassen sich mit wenigen Farben färben und viele
Lösungen für Standardprobleme, die als Subroutine in anderen Algorithmen eingesetzt
werden, lassen sich auf planaren Graphen sehr effizient implementieren. Hierzu zählen
beispielsweise Matching- und Flussalgorithmen. Zudem dienen planare Graphen oft als
Sprungbrett für die Entwicklung effizienter Algorithmen auf allgemeineren Graphklassen,
etwa Graphen mit beschränktem Genus oder den sogenannten H-minorenfreien Graphen.

Diese Arbeit liefert einen Beitrag zur Theorie der planaren Graphen. Neben der grund-
legenden Klassifikation in polynomiell lösbare und NP-schwere Probleme liegt der Schwer-
punkt vor allem auf effizienten Lösungsverfahren mit möglichst linearer Laufzeit. Hierzu
werden die Probleme zunächst hinsichtlich ihrer kombinatorischen Eigenschaften untersucht
und – sofern sie nicht NP-schwer sind – möglichst einfache Algorithmen angegeben, die
die polynomielle Lösbarkeit belegen. Anschließend werden diese Algorithmen schrittweise
verfeinert. In vielen Fällen wird dadurch optimale lineare Laufzeit erreicht.

Die Arbeit ist in zwei Teile gegliedert. Im ersten Teil stehen Fragestellungen der
kombinatorischen Optimierung im Vordergrund. Dort treten zwei Facetten von Planarität
zutage: Einerseits wird Planarität als zusätzliche, hilfreiche Eigenschaft der Eingabe
ausgenutzt, andererseits tritt Planarität auch als Nebenbedingung auf, deren Einhaltung
durch die Problemstellung gefordert wird und die Probleme häufig schwieriger macht. Der
zweite Teil befasst sich mit dem Zeichnen von planaren Graphen. Dabei spielt die Wahl der
Einbettung eines planaren Graphen eine wesentliche Rolle für die Qualität der Darstellung.
Es wird eine Reihe von Verfahren vorgestellt, die möglichst gute Einbettungen von planaren
Graphen für verschiedene Zeichenstile berechnen.

vi Deutsche Zusammenfassung (German Summary)

Kombinatorische Optimierung auf planaren Graphen
Dieser Teil der Arbeit beschäftigt sich mit verschiedenen kombinatorischen Optimierungs-
problemen auf planaren Graphen. Dabei werden drei Fragestellungen behandelt.

Graphaugmentierung Oft möchte man einen gegebenen Graphen durch Hinzufügen
möglichst weniger Kanten so verändern, dass er eine gewissen Eigenschaft erhält. In
diesem Abschnitt wird eine Reihe von solchen Graphaugmentierungs-Problemen betrachtet,
bei denen der Zusammenhangsgrad eines
Graphen erhöht werden soll. Das Einfügen
der dicken roten Kanten in der Abbildung
rechts sichert das Netzwerk gegen den Aus-
fall einer einzelnen Kante ab. In dieser Arbeit
wird zusätzlich gefordert, dass der augmen-
tierte Graph planar bleibt. Dieses Problem
tritt beispielsweise im Graphenzeichnen auf,
da viele Zeichenalgorithmen für planare Gra-
phen zweifachen Zusammenhang vorausset-
zen oder zumindest für diese Art von Gra-
phen besondere Qualitätsgarantien angeben.
Die Forderung möglichst wenige Kanten hinzuzufügen sorgt dafür, dass diese Qualitätsga-
rantien möglichst gut erhalten bleiben.

Es wird der Komplexitätsstatus einer Reihe von planaren Augmentierungsproblemen
untersucht. Insbesondere stellt sich heraus, dass diese Probleme NP-schwer sind, sowohl
für den gewöhnlichen Planaritätsbegriff, als auch wenn der Graph geometrisch eingebettet
ist, also jeder Knoten bereits eine fest zugewiesene Position hat und die Kanten geradlinig
gezeichnet werden müssen. Andererseits wird gezeigt, dass sich eine Reihe von Spezialfällen
dennoch effizient lösen lässt, etwa das Absichern einer Verbindung zwischen zwei festen
Knoten.

Schaltergraphen Schaltergraphen bieten erweiterte Modellierungsmöglichkeiten ge-
genüber gewöhnlichen Graphen. Ein Schalter besteht aus einer Menge von Kanten, die
sich einen gemeinsamen Knoten teilen. Eine Konfiguration wählt aus jedem Schalter
eine Kante aus. Ein Schaltergraph beschreibt also eine Familie von Graphen und eine
Konfiguration beschreibt ein konkretes Mitglied
dieser Familie. Die nebenstehende Abbildung zeigt
einen Schaltergraphen, wobei Kanten, die zum sel-
ben Schalter gehören, durch einen Bogen am ge-
meinsamen Knoten miteinander verbunden sind.
Die hervorgehobenen Kanten bilden eine Konfigu-
ration dieses Schaltergraphen, deren resultierender
Graph zusammenhängend ist. Aufgrund ihres Auf-
baus eignen sich Schaltergraphen gut, um graphentheoretische Probleme zu modellieren,
die strukturelle Entscheidungen beinhalten. Hat man einen Schaltergraphen vorliegen, ist
man daran interessiert herauszufinden, ob seine Familie einen Graphen enthält, der eine
gegebene Grapheigenschaft besitzt.

Es wird gezeigt, dass dieses Problem für die Eigenschaften eulersch, bipartit und planar
NP-schwer ist. Andererseits werden effiziente Algorithmen für Zusammenhang und Pfade
zwischen vorgegebenen Knoten angegeben.

vii

Große Matchings in planaren Graphen Ein Matching ist eine Teilmenge der Kanten
eines Graphen bei der jeder Knoten zu höchstens einer Kante dieser Menge inzident ist.
Das Finden von möglichst großen Matchings ist ein gut untersuchtes Problem aus der
kombinatorischen Optimierung. Nishizeki und Baybars [NB79] zeigten, dass in planaren
Graphen mit festem Minimalgrad stets Matchings einer bestimmten Mindestgröße existieren.
Dennoch ist unklar, ob ein solches Matching, von dem man ja weiß, dass es existiert, schneller
gefunden werden kann als ein größtes Matching.

In dieser Arbeit wird gezeigt, wie fester Minimalgrad in planaren Graphen eingesetzt
werden kann, um Matchings mit garantierter Mindestgröße schnell zu berechnen. Für
Minimalgrad 3 wird dabei die scharfe Schranke von Nishizeki und Baybars erreicht.

Einbettungen von planaren Graphen
Der zweite Teil der Arbeit beschäftigt sich mit der Problemstellung, Einbettungen von
planaren Graphen zu finden, die möglichst gut für bestimmte Visualisierungsarten geeignet
sind.

Diese Art von Problemen ist inhärent schwierig, da planare Graphen im Allgemeinen
exponentiell viele planare Einbettungen besitzen. Es werden Einbettungsprobleme für
unterschiedliche Zeichenstile untersucht, sowohl für topologische Zeichnungen, bei denen
Kanten als beliebige Kurven gezeichnet werden dürfen, als auch für orthogonale Zeichnungen,
bei denen Kanten nur aus horizontalen und vertikalen Streckensegmenten zusammengesetzt
werden.

Planarität partiell eingebetteter Graphen In einer topologischen Zeichnung eines
Graphen werden Knoten durch Punkte und Kanten durch Jordankurven zwischen ih-
ren Endpunkten repräsentiert. Dieser Teil der Arbeit beschäftigt sich mit der Frage

123

4

8 5
6

71–5, 2–8, 3–6, 4–7

der Erweiterbarkeit planarer Zeichnungen. Gege-
ben ein Graph G sowie eine topologische Zeich-
nung eines Teilgraphen H von G stellt sich fol-
gende Frage: Kann die gegebene Zeichnung zu
einer planaren Zeichnung von G erweitert werden,
ohne die Zeichnung von H zu verändern? Die ne-
benstehende Abbildung zeigt eine Teilzeichnung
eines Graphen (fett gezeichnet) und die planare
Ergänzung um die angegebenen Kanten (gestrichelt). Es ist nicht möglich zusätzlich die
Kante 1–8 auf planare Art und Weise einzufügen ohne die vorgegebene Teilzeichnung zu
verändern, obwohl der resultierende Graph noch planar ist. Für geradliniges Zeichnen ist
bekannt, dass das Zeichnungs-Erweiterungsproblem NP-schwer ist [Pat06].

In dieser Arbeit wird ein Algorithmus angegeben, der das Problem für topologische
Zeichnungen in Linearzeit löst. Dies ist insofern bemerkenswert, als es sich um ein typisches
Lösungs-Erweiterungsproblem handelt und diese oftmals bedeutend schwieriger sind als
die entsprechende Problemstellung ohne vorgegebene Teillösung. Weiterhin werden die
lösbaren Instanzen, also die Instanzen, die sich planar erweitern lassen, nach dem Vorbild
des berühmten Satzes von Kuratowski für planare Graphen [Kur30], durch verbotene
Substrukturen charakterisiert. Dabei ergibt sich zusätzlich ein effizienter, zertifizierender
Algorithmus für das Einbettungs-Erweiterungsproblem, der im Falle der Lösbarkeit eine
entsprechende Einbettung findet und anderenfalls eine verbotene Substruktur liefert.

viii Deutsche Zusammenfassung (German Summary)

Simultane Einbettungen Liegen zwei (oder mehr) Graphen auf derselben Knotenmenge
vor, so ist man häufig daran interessiert, diese Gra-
phen miteinander zu vergleichen, beispielsweise
durch Angabe einer Zeichnung, die die Ähnlich-
keiten möglichst gut hervorhebt. Selbst für Paare
planarer Graphen ist der Vereinigungsgraph im
Allgemeinen nicht planar. Daher sucht man nach
einer sogenannten simultanen Einbettung mit fes-
ten Kanten, das heißt die Knoten der beiden Graphen werden an dieselben Positionen
gezeichnet, gemeinsame Kanten werden durch dieselbe Kurve dargestellt und jede Zeichnung
für sich genommen ist planar (siehe Beispiel rechts). Obwohl sich in den letzten Jahren
viele Wissenschaftler mit diesem Problem beschäftigt haben, ist der Komplexitätsstatus
des Problems für Paare allgemeiner planarer Graphen noch ungeklärt.

In dieser Arbeit werden einige Spezialfälle behandelt, unter anderem wird für den Fall,
dass der Durchschnitt beider Graphen zweifach zusammenhängend ist, ein polynomieller
Algorithmus angegeben. Durch geschickte Anwendung von dynamischer Programmierung
wird der zunächst kubische Algorithmus auf lineare Laufzeit beschleunigt.

Orthogonale Zeichnungen mit Flexibilitäts-Bedingungen In einer orthogonalen Zeich-
nung eines Graphen sind alle Kanten aus horizontalen und vertikalen Streckensegmenten
zusammengesetzt. Da Kanten mit vielen Knicken die Lesbarkeit der Zeichnungen verschlech-
tern, ist man bestrebt, die Anzahl der Knicke in der Zeichnung möglichst klein zu halten.
Klassischerweise versucht man entweder die Ge-
samtanzahl an Knicken oder die maximale Anzahl
an Knicken pro Kante zu minimieren. Beide Pro-
bleme sind NP-schwer, da es NP-schwer ist zu
entscheiden, ob sich ein gegebener Graph ganz
ohne Knicke zeichnen lässt [GT01]. Es ist aber
bekannt, dass sich bis auf eine einzige Ausnahme
alle planaren Graphen mit höchstens zwei Knicken
pro Kante zeichnen lassen [BK94]. Dagegen war bisher unklar, ob man effizient entscheiden
kann, ob sich ein Graph mit nur einem Knick pro Kante orthogonal zeichnen lässt.

In dieser Arbeit wird ein neues Problem dieser Art eingeföhrt, bei dem jeder Kante eine
Maximalzahl von Knicken zugeordnet wird, ihre Flexibilität. Dies umfasst das Problem
der Ein-Knick-Zeichenbarkeit, ist aber noch wesentlich allgemeiner. In der nebenstehenden
Abbildung ist die Wichtigkeit der Kanten durch ihre Dicke angegeben. Da wichtige Kanten
weniger Knicke haben, ist die Zeichnung besonders gut lesbar. Erlaubt man auch starre
Kanten, also solche mit Flexibilität 0, so ist das Problem NP-schwer. Es wird gezeigt, dass
das Problem effizient lösbar ist, sofern man jeder Kante mindestens einen Knick erlaubt.
Durch geschickte Wiederverwendung von Teilergebnissen, lässt sich der resultierende
Algorithmus mit quadratischer Laufzeit implementieren.

Contents

Acknowledgments iii

Deutsche Zusammenfassung (German Summary) v

1. Introduction 1

2. Preliminaries 7
2.1. Graphs and Related Concepts . 7
2.2. Drawings and Planarity . 9
2.3. The SPQR-tree . 11
2.4. Complexity . 16

I. Combinatorial Optimization on Planar Graphs 21

3. Augmenting the Connectivity of Planar and Geometric Graphs 23
3.1. Introduction . 23
3.2. Complexity . 26

3.2.1. Complexity of PECA . 26
3.2.2. Geometric PVCA and Geometric PECA 28

3.3. Convex Geometric Graphs . 34
3.3.1. Biconnecting Convex Geometric Graphs 34
3.3.2. Bridge-Connecting Convex Geometric Graphs 34
3.3.3. Minimum-Weight Augmentation . 36

3.4. Path Augmentation . 38
3.4.1. Planar 2-Path Augmentation . 38
3.4.2. Geometric 2-Path Augmentation . 39
3.4.3. Geometric 3-Path Augmentation . 43

3.5. Concluding Remarks . 45

4. Switch Graphs 47
4.1. Introduction . 47
4.2. Basic Definitions . 49
4.3. Bipartite, Planar, and Triangle-Free Graphs 50
4.4. Global Connectivity . 52
4.5. Local Connectivity . 56
4.6. Even Degrees, Eulerian Graphs and Biconnectivity 59
4.7. Acyclic and Almost Acyclic Graphs . 60
4.8. Concluding Remarks . 62

x Contents

5. Matchings in Planar Graphs with Fixed Minimum Degree 65
5.1. Introduction . 65
5.2. Exploiting Minimum Degrees . 67

5.2.1. Algorithm Based on Short Augmenting Paths 67
5.2.2. More Structure via Pure Tree-Like Matchings 68

5.3. Algorithm . 71
5.3.1. Enlargement by Adding a Suitable Edge 71
5.3.2. Exploiting Existence of an Augmenting Path of Length 3 72
5.3.3. Linear-Time Algorithm . 73

5.4. A Better Bound for Minimum Degree 5 . 75
5.5. Concluding Remarks . 75

II. Embeddings of Planar Graphs 79

6. Testing Planarity of Partially Embedded Graphs 81
6.1. Introduction . 81
6.2. Notation and Preliminaries . 83

6.2.1. Drawings, Embeddings, and the Problem Definition 83
6.2.2. Facial Cycles and H-Bridges . 84
6.2.3. Connectivity and Data Structures 86

6.3. Combinatorial Characterization . 87
6.3.1. Planarity of Biconnected Pegs . 88
6.3.2. Planarity of Connected and Disconnected Pegs 90

6.4. Linear-Time Algorithm . 95
6.4.1. G Biconnected, H Connected . 96
6.4.2. G Biconnected, All Vertices and Edges of G Lie in the Same Face of H 98
6.4.3. G Biconnected . 102
6.4.4. G Connected or Disconnected . 107

6.5. Applications and Extensions . 112
6.6. Concluding Remarks . 114

7. A Kuratowski-Type Theorem for Planarity of Partially Embedded Graphs 117
7.1. Introduction . 117
7.2. Preliminaries and Notation . 120
7.3. Biconnected Pegs . 122

7.3.1. P-Nodes . 123
7.3.2. R-Nodes . 126

7.4. Disconnected and 1-Connected Pegs . 159
7.5. Other Minor-Like Operations . 162
7.6. Concluding Remarks . 163

8. Simultaneous Embedding with Fixed Edges 165
8.1. Introduction . 165
8.2. Preliminaries . 166
8.3. Computing a Sefe When the Intersection Graph is Biconnected 168

8.3.1. A Polynomial-Time Algorithm . 168
8.3.2. A Linear-Time Algorithm . 176

8.4. The Intersection Graph is Connected . 184

Contents xi

8.5. Concluding Remarks . 189

9. Orthogonal Graph Drawing with Flexibility Constraints 191
9.1. Introduction . 191
9.2. Preliminaries . 194
9.3. The Maximum Rotation with a Fixed Embedding 196
9.4. Biconnected Graphs . 200
9.5. Quadratic-Time Implementation . 204
9.6. Connected Graphs . 208
9.7. Complexity . 209
9.8. Concluding Remarks . 211

10.Conclusion 213

Bibliography 228

List of Publications 229

Curriculum Vitæ 233

Chapter 1

Introduction

The foundations to graph theory were laid in the 18th century when Leonhard Euler resolved
the problem of the Seven Bridges of Königsberg, which asked whether it was possible to

Figure 1.1.: The seven bridges of Königsberg.

take a walk through Königsberg that uses
each of the seven bridges, each crossing the
river Pregel, exactly once; see Figure 1.1.
Euler’s ingenious insight was that the choice
of routes inside each landmass, and the ex-
act location at which the bridges attach
to landmasses are irrelevant for solving the
problem. In fact, these two insights led to
the development of two very fruitful fields
in mathematics, namely topology and graph
theory. After applying these two ideas to
the problem of the seven bridges, what re-
mains is a list of landmasses together with
the information which landmasses are con-
nected by which bridge. This is exactly a
graph in modern terminology, a term that was introduced only more than a hundred years
later, in 1878, by Sylvester [Syl78], who studied chemical bonds.

It is worth noting that even this first instance of a graph was a planar graph, and
actually one with a given planar embedding inherited from the layout of the landmasses
and bridges in the city. Although planarity does not play a role in Euler’s solution to
the problem, it was probably helpful that the “graph” could be studied by looking at its
drawing in the form of a map. Sylvester, who introduced the notion of a graph, studied
chemical bonds, which also have a natural embedding, albeit in space and not in the
plane. These observations make clear that embeddings of graphs into topological spaces
and in particular into the plane are not artificial concepts but they where present even
at the starting point of graph theory and played an important role in its development.
Another indication for this inter-connection is one of the early graph-theoretic problems
that spawned a lot of research and results; the four-color problem. In 1852, Francis Guthrie
posed the question whether it was always possible to color the regions of a planar map
with four colors so that no two regions that share a boundary have the same color.

Today, it can be said without exaggeration that graph theory is one of the big success
stories of discrete mathematics and, as it comes to automated processing, also of computer
science. Graphs are ubiquitous; they are used in areas well beyond these two fields to
model, study and understand various relations among very different entities, for example,

2 Chapter 1: Introduction

in physics, biology and social sciences, but also to describe IT infrastructure networks
or process models. Humans are very visually oriented. Hence, the usage of graphs for
describing complex relations often goes together with a corresponding visualization of
graphs. If edges cross in a drawing, readability degrades quickly. Therefore, it is intuitive
to avoid crossings altogether. This leads to the question which graphs are drawable without
any crossings at all, and thus to the definition of the class of planar graphs.

Nowadays, planarity is one of the central concepts not only in graph drawing, but in graph
theory as a whole. The characterization of planar graphs proved by Kuratowski [Kur30]
in 1930 marks the beginning of modern graph theory. Such a characterization, based on
two forbidden topological subgraphs – K5 and K3,3 – makes planarity a finite problem
and leads to a polynomial-time recognition algorithm. Planarity is thus “simple” from a
computational point of view (this, of course, does not mean that algorithms for testing
planarity are trivial) in the strongest possible way, as several linear-time algorithms for
testing planarity are known [BM04, HT74, dFdMR06].

Planar graphs constitute the class of graphs that is probably best studied. A rich body
of literature shows the tremendous interest in their properties, drawing algorithms, and
optimization algorithms that are custom-tailored for planar instances. Nowadays, there
is a plethora of results on planar graphs available, and it is well beyond the scope of this
thesis to give a comprehensive overview of what is known about planar graphs. We wish to
survey, however, at least the most useful properties and available tools for the treatment of
planar graphs.

The most basic properties are that planar graphs have only linearly many edges, and
they always contain a vertex of degree at most 5. Many properties of planar graphs have
immediate algorithmic consequences. For example, the fact that every planar graph has a
vertex of low degree immediately implies algorithms for quickly coloring planar graphs with
few colors, and also a data structure of linear size that allows to check in constant time,
whether two given vertices are adjacent. Another useful property is that planar graphs
have good decomposition properties; they have small separators that split the graph in a
relatively balanced manner [LT79], which is particularly important for divide & conquer
based algorithms. Among others this has lead to a linear-time algorithm for computing
shortest paths in planar graphs [HKRS97]. A frequently used property is that planar
graphs admit the notion of a dual graph, and that there is an interesting correspondence
between the cuts of a graph and the cycles of its dual. For an extreme example, this
correspondence is the main reason why the problem MaxCut, which asks for an edge cut of
maximum weight and is NP-hard for general graphs, is polynomial-time solvable on planar
graphs, even in the more general case where weights may be both positive and negative.
Moreover, many standard problems that are used as subroutines in other algorithms admit
particularly efficient algorithms that are custom-tailored for planar graphs. For example,
matching and flow algorithms fall into this category [MS06, BK09, Eri10]. Finally, planar
graphs have often inspired the development of efficient algorithms for larger classes of
graphs; for example, for graphs with bounded genus, or for the so-called H-minor free
graphs.

The usefulness of all these graph properties strongly varies with the considered problems,
and in particular with the role that planarity plays in the problem. If a problem asks to
solve a general optimization problem with the additional restriction that the input graph
is planar, all the above properties are immediately applicable in order to transform the
input graph, reduce it to the same problem on a smaller graph, or to derive a divide &
conquer scheme, making many of these kinds of problems solvable more efficiently than

3

the corresponding general problem. An example of this case is the maximum matching
problem, which allows for faster algorithms that are specialized to planar graphs [MS06].
This is, however, not the only role planarity can play in a problem. Because of the useful
properties of planar graphs, it may be desirable to require planarity as a side constraint
for other optimization problems. This applies to combinatorial optimization problems that
ask for a graph with certain properties. A new problem is then obtained by additionally
requiring that the solution graph must be planar. Here, the role of planarity is to restrict
the set of feasible solutions of an optimization problem, instead of its input. For this kind
of problems, it is not at all obvious how any of the nice properties of planar graphs can
be applied. Yet another type of problems comes from the area of graph drawing. When
drawing a planar graph, it may make a substantial difference for the quality of a drawing
which planar embedding of the graph is chosen. Since a planar graph usually has many
different embeddings, it is not easy to find an optimal one for a particular drawing style.
Here, planarity is a prerequisite for the problem, and the set of feasible solutions consists
of a set of planar embeddings of the input graph. We have thus identified three different
roles that planarity can have for a problem. This insight is reflected in the structure of this
thesis, and it is therefore arranged in two parts. In the first part, we consider combinatorial
optimization problems, where either the input is restricted to planar graphs, or where
planarity occurs as a side constraint. In the second part, we treat problems of the last
type, where the input is a planar graph, and we seek an optimal embedding for a given
drawing style.

There exist many problems of these types, and their complexities vary from NP-hard
problems over polynomial-time solvable to linear-time solvable problems; we will see several
examples throughout this thesis. It therefore seems that planarity has different faces, and
it depends on the type of the problem, and in particular the role planarity plays in the
problem, which of its many faces becomes apparent when trying to solve the problem.

This work contributes to the theory of planar graphs, and in particular to the classical
field of algorithms for planar graphs, by studying several algorithmic questions in which
planarity plays different roles. At a higher level, we will also discuss the reasons why some
problems are more difficult than others, and relate this to the role that planarity plays
in the problem statement. In addition to the basic classification into polynomial-time
solvable and NP-hard problems, the main focus of this thesis is to find fast algorithms
for the considered problems, in particular linear-time algorithms. Although this varies
with the different topics, the main approach is always similar. First, we investigate basic
combinatorial properties of the problem under consideration, and, unless it turns out to
be NP-hard, we try to give algorithms that are as simple as possible, yet show that the
problem is polynomial-time solvable. In a second step, we then refine these algorithms and
their implementations until we reach a fast algorithm. In many cases, we achieve optimal
linear running time.

Thesis Outline
This thesis consists of two parts. In the first part, we consider problems from the area
of combinatorial optimization, of course with a special link to planarity. Here, the two
prevalent faces of planarity are that planarity is not a friendly side constraint, and it
seems to make problems much more difficult, unless stronger planarity conditions such as
planarity of convex geometric graphs are employed. One the other hand, we will experience

4 Chapter 1: Introduction

a typical example of a problem where the input is restricted to be planar, which often is
much better to handle than planarity as a side constraint. The second part focuses on
drawing planar graphs and related problems. When drawing planar graphs, the choice
of the planar embedding plays a crucial role for the quality of the resulting drawing. We
present algorithms that compute particularly good embeddings for different drawing styles.
The problems considered in the second part are typical problems of the third type, where
the input is a planar graph, and we seek an embedding of this planar graph that is optimal
with respect to some quality measure.

Part I: Combinatorial Optimization on Planar Graphs
The first part of the thesis is mainly concerned with combinatorial optimization problems
on planar graphs. In particular, we cover three distinct problems.

Graph Augmention (Chapter 3)
One often wants to enhance a given network by adding edges in order to ensure that the
final network has a certain property. One such property, which is particularly important for
the robustness of a network, is high connectivity. In this thesis, we additionally require that
the input graph is planar and stays planar after edges have been added. These constraints
make the problem more difficult than its counterpart without the planarity constraint.

We study several variants of this problem with different types of planarity constraints
and different variants of connectivity criteria.

Switch Graphs (Chapter 4)
Switch graphs are a generalization of ordinary graphs. A switch consists of a set of edges
that share a common vertex. A configuration picks exactly one edge from each switch.
Hence, a switch graph describes a family of graphs, and a configuration describes a concrete
member of such a family. Switches are common building blocks in telephone networks
and IT infrastructure networks. Given a switch graph, one is interested in finding out
whether the family of graphs it describes contains a graph with a certain property. For
example, one would like to know whether it is possible to find a switch configuration so
that packages between two given computers can be routed directly, without changing the
configuration of any switches in between.

We study several problems of this type. In particular, we consider the variants where
the desired properties are Eulerian, bipartite, planar and connected.

Large Matchings in Planar Graphs (Chapter 5)
A matching is a subset of edges of a graph such that each node is incident to at most
one of the edges in the set. Finding large matchings, and in particular matchings of
maximum cardinality, is a classical problem in combinatorial optimization. Nishizeki and
Baybars [NB79] studied matchings in graphs with fixed minimum degree and proved lower
bounds on the size of maximum matchings in such graphs. It has, however, been unclear
whether a matching whose size matches the lower bound, which is known to exist, can be
computed more efficiently than a maximum matching.

We show how fixed minimum degree in planar graphs can be exploited to find matchings
with a guaranteed minimum size, quickly. In particular, for graphs with minimum degree 3,
we achieve the tight bound of Nishizeki and Baybars.

5

Part II: Embeddings of Planar Graphs
The second part of this thesis is concerned with the problem of finding embeddings of
planar graphs that are especially well-suited for certain visualization styles. These types of
problems are inherently difficult, as planar graphs generally have an exponential number
of planar embeddings. We consider embedding problems for different drawing styles, in
particular for topological drawings, where edges are drawn as arbitrary curves, and for
orthogonal drawings, where edges must be composed of axis-parallel line segments. It will
turn out that the planar embeddings of a given graph have a lot of structure that can often
be exploited to obtain surprisingly simple solutions.

Planarity of Partially Embedded Graphs (Chapters 6 and 7)
In a topological drawing of a graph, nodes are represented by points and edges are
represented by Jordan curves between their endpoints. By definition, a graph is planar if it
admits a planar drawing in this way. We study an extension problem for planar drawings,
where a subgraph is already drawn and the question is whether the remainder of the
graph can be drawn in a planar way without modifying the drawing of the given subgraph.
For straight-line drawings this problem is known to be NP-hard [Pat06]. For topological
drawings, this drawing problem is actually equivalent to an embedding problem, where the
given drawing of a subgraph describes an embedding of the subgraph. This leads to the
notion of partially embedded graphs.

We show that this problem can be solved in polynomial, even linear time; see Chapter 6.
This is particularly remarkable, as it is a typical partial-solution extension problem, which
are often much more difficult than their counterparts without a given partial solution.

Following the example of Kuratowski’s famous characterization of planar graphs, we
introduce a containment relation for partially embedded graphs analogous to the usual
minor containment and characterize the planar partially embedded graphs via forbidden
substructures; see Chapter 7.

Together, these two chapters result in an efficient certifying algorithm for the partial
embedding problem, which in the positive case outputs a corresponding embedding, and in
the negative case extracts a forbidden substructure, as a proof for non-embeddability.

Simultaneous Embeddings (Chapter 8)
Given two (or more) graphs on the same vertex set, one is often interested in comparing
these graphs. One approach to compare them effectively is to find a drawing of the two
graphs that highlights similarities as much as possible. Since the union of two planar graphs
is generally not planar, this chapter steps slightly beyond the usual notion of planarity.
We study the problem of finding simultaneous embeddings with fixed edges, where the
vertices of both graphs are drawn at the same positions, common edges are represented
by the same curves, and the induced drawing of each single graph is planar. Hence, in a
simultaneous embedding with fixed edges, only edges belonging to different graphs may
cross.

Although a lot of research effort went into this problems over the last few years, its
complexity is still open. We study the complexity of this problem for special cases of the
input. In particular, we derive a linear-time algorithm for the case when the intersection
of the two graphs is biconnected. Before, such a result was only known for more restricted
cases, when one of the graphs contains at most one cycle, or when both graphs are
outerplanar.

6 Chapter 1: Introduction

Orthogonal Drawings with Flexibility Constraints (Chapter 9)
In orthogonal drawings all edges are composed of axis-parallel straight-line segments, which
automatically yields good angular resolution. Since edges with many bends degrade the
readability of a drawing, a typical optimization criterion is the total number of bends or
the maximum number of bends per edge. On the one hand, it is known that deciding
whether a drawing without bends exists is NP-hard. On the other hand, two bends per
edge always suffice. The complexity of deciding whether a given graph can be drawn with
at most one bend per edge was unknown.

We introduce the notion of flexibility, which allows us to specify, for each edge individually,
its maximum number of bends. Obviously, this contains the problem of drawing a graph
with at most one bend per edge, but it is more general. The possibility to allow fewer bends
for important edges and to give additional freedom to less important ones, potentially
yields clearer drawings. We show that the problem of deciding whether a graph admits a
drawing adhering to given flexibility constraints can be decided efficiently if every edge
may have at least one bend. By carefully recycling partial solutions we achieve quadratic
running time for this problem.

Chapter 2

Preliminaries

This chapter introduces basic concepts and notations that are used throughout this thesis.
We do not intend to give a complete introduction to the topic, rather we briefly introduce
these notions, and then focus on the most important interconnections in the context of
this thesis. Therefore we assume some familiarity with basic mathematical concepts, such
as naive set theory and the Big-O-notation. Good introductions to graphs and graph
algorithms are provided in the book by Diestel [Die10] and in “Combinatorial Optimization”
by Korte and Vygen [KV08]. “Introduction to Algorithms” [CLRS01] is a good reference
for the Big-O-notation and contains many basic algorithms. The book “Computers and
Intractability” by Garey and Johnson [GJ79] provides a nice introduction to the theory of
NP-completeness, as well as a rich compendium of NP-hard problems.

2.1. Graphs and Related Concepts
A directed graph is a tuple G = (V,E) consisting of a set V of vertices (or nodes) and an
edge set E that forms a binary relation on V , that is, E ⊆ V × V . The elements of E
therefore are ordered pairs (u, v) of vertices in V . We will denote the vertex set and the
edge set of a graph by V (G) and E(G), respectively. For brevity, we also use the notation
uv to denote the edge (u, v). For an edge e = uv we say that e connects u and v, such
that u is the source and v is the target of e and that u and v are the endpoints of e. An
undirected graph is essentially the same, except that the relation defined by E is symmetric
and therefore consists of unordered pairs {u, v} ⊆ V , and hence uv = vu for undirected
graphs. A graph is either a directed graph or an undirected graph. We will usually denote
the cardinality of the vertex set V by n := |V |, and the cardinality of the edge set E by
m := |E|.

A vertex u is incident to an edge e if u is an endpoint of e. Two distinct vertices u and
v are adjacent if there is an edge e that is incident to both u and v, that is, if there is an
edge e that connects u and v. Note that our definition allows for edges whose endpoints
coincide. Such an edge e = vv that is incident to the same vertex twice is called a loop. A
graph that does not contain loops is loop-free.

Sometimes we also study multi-graphs, where E is a multi-set and may contain an
element multiple times. For an undirected graph, two edges e and e′ with e 6= e′ that have
the same endpoints are called parallel. For directed graphs the edges e and e′ need to
have the same source and target to be parallel. A graph is called simple if it has neither
loops nor parallel edges. Graphs that may contain parallel edges or loops are also called

8 Chapter 2: Preliminaries

non-simple graphs and we will state their usage explicitly in this thesis. Unless stated
otherwise, all graphs in this thesis are assumed to be simple undirected graphs.

For a vertex v denote by E(v) the set of edges that are incident to v. The number
of edge incidences a vertex v has, is called its degree and is denoted by deg(v). Note
that for loop-free graphs, it holds that deg(v) = |E(v)|, while for graphs with loops we
have to count the loops twice. For directed graphs we further distinguish the out-degree
deg→(v) and the in-degree deg←(v), denoting the number of edges for which v is a source
and a target, respectively. For every vertex v we have deg(v) = deg←(v) + deg→(v). If
necessary, we will provide the graph to which these notations refer as an index; for example
degG(v). The neighbors of u are all the vertices that are adjacent to u, and are denoted by
N(u) = {v | uv ∈ E or vu ∈ E}. A vertex with degree 0 is isolated.

Paths, Cycles and Trees. A walk in a graph G = (V,E) is a sequence W of vertices
and edges such that W = v0, e1, v1, e2, . . . , ek, vk with ei = vi−1vi for i = 1, . . . , k, that is
any two consecutive vertices of W are connected by an edge. A walk contains a vertex v if
v = vi for some i = 0, . . . , k and it contains an edge e if e = ei for some i = 1, . . . , k. The
vertices v0 and vk are endvertices of W and the nodes v1, . . . , vk−1 are inner nodes of W .
We say that W starts at v0 and ends at vk and W connects v0 to vk.

A path is a walk that contains each edge at most once and a path that also contains
each vertex at most once is simple. A subpath of a path P is a path that is contained in P .
For simple paths a subpath can be described by its first and last vertex. A path whose
endpoints coincide is a cycle, and it is a simple cycle if each vertex is contained at most
once, except for the endpoint v0, which occurs twice. A graph that does not contain any
cycles is acyclic. Note that for simple graphs we can omit the edges from the sequence and
describe paths as sequences of vertices only. A graph is connected if there exists a path
between any two vertices.

A directed acyclic graph is also called a DAG. An undirected acyclic graph is a forest.
A connected forest is a tree. Every pair of vertices in a tree T is connected by a unique
path in T . Vertices with degree 1 are called leaves, and every tree has at least two leaves.
Often it is convenient to root a tree, that is to pick a certain node as the root in the tree.
This gives rise to a parent relationship for all other nodes. Namely, if r is the root and
v 6= r is another vertex of the tree, then the first vertex after v on the (unique) path from
v to r is the parent of v. Once a root is chosen, every vertex except the root has a unique
parent in this way. All other neighbors of a vertex are children, and hence each vertex is
the parent of all its children.

Subgraphs and Elementary Graph Operations. A subgraph of a graph G = (V,E) is
a graph G′ with V (G′) ⊆ V and E(G′) ⊆ E. For a subset V ′ ⊆ V of vertices the induced
subgraph of V ′ in G is the graph (V ′, {uv ∈ E(G) | u, v ∈ V ′}), and it is denoted by G[V ′].
A subgraph G′ of G is spanning if V (G) = V (G′). In particular a spanning tree of G is a
tree T = (V,E′) with E′ ⊆ E.

Often, it will be necessary to modify a graph. We briefly introduce some basic operations
for modifying graphs. Let G = (V,E) be a graph and let E′ ⊆ E be any subset of edges.
We say that the graph G′ = (V,E \ E′) is obtained from E by removing the edges in E′
and we denote this graph by G− E′. For a set V ′ ⊆ V we say that the graph G[V \ V ′] is
obtained from G by removing the vertices in V ′ and denote this graph by G− V ′. Note
that this is the graph that is obtained from G by removing all edges that are incident to
vertices of V ′ and then removing the (now isolated) vertices of V ′. We simply write G− e
for G − {e} and G − v for G − {v}. Similarly, it is sometimes useful to add edges to a

2.2 Drawings and Planarity 9

graph G = (V,E) and we write G+ uv for the graph (V,E ∪ {uv}), where u and v are two
vertices of V .

Another useful operation is that of subdividing an edge e = uv of a graph G = (V,E).
This operation inserts a new vertex w and replaces the edge uv by two edges uw and wv. A
subdivision of a graph G is a graph G′ that can be obtained from G by a sequence of edge
subdivisions. Given a graph G together with edge e = uv the graph G/e is the graph that
is obtained from G by identifying the endpoints of e. This operation is called contracting
edge e. A minor of a graph G is any graph that can be obtained from a subgraph of G by
successively contracting edges. If H is a minor of G, we also say that G contains H as a
minor.

Connectivity and the Block–Cutvertex Tree. Recall that a graph is connected, if
there exists a path between any pair of vertices. The maximal connected subgraphs of a
graph are called its connected components. An edge whose removal increases the number
of connected components is called a bridge.

A graph G is k-vertex connected (k-edge connected) if removing at most k vertices (edges)
leaves G connected. We will use the term k-connected as an abbreviation for k-vertex
connected. A graph is 2-edge connected, if it does not contain any bridges, therefore we
sometimes also use the term bridge-connected for such graphs. A set of vertices whose
removal disconnects a graph is called a separator. Separators of size 1, 2, and 3 are called
cutvertices, separation pairs and separating triplets, respectively. A connected graph is
2-connected if it does not have a cutvertex and it is 3-connected if it does not have a
separation pair. Graphs that are 2-connected or 3-connected are also called biconnected
and triconnected, respectively.

The maximal biconnected subgraphs of a graph G are called blocks. Each edge and
each vertex that is not a cutvertex belongs to exactly one block, while cut vertices are
shared between several blocks. Note that in particular, each bridge forms a block of its
own. To capture the relationship of the blocks of a graph, we use the block–cutvertex tree,
which contains as nodes the blocks and cutvertices of G. A cutvertex v and a block B
are connected by an edge if v belongs to B. We use the term nodes for vertices of the
block–cutvertex tree in order to distinguish them from the vertices of G.

2.2. Drawings and Planarity
A (topological) drawing of a graph G = (V,E) is a mapping Γ that maps the vertices
of G to distinct points in the plane and maps edges to simple Jordan curves connecting
their endpoints. A drawing is planar if the curves representing the edges do not cross
but, possibly, at common endpoints. A graph is planar if it admits a planar drawing. A
planar drawing Γ determines a subdivision of the plane into connected regions, called
faces, and a circular ordering of the edges incident to each vertex, called rotation scheme.
Moreover, one of the faces is unbounded and is called the external face or the outer face.
The remaining faces are called internal faces.

Visiting the (not necessarily) connected border of a face f of Γ in such a way that f
is to the left, we determine a set of circular lists of vertices, the face boundary of f . Two
drawings are equivalent if they have the same rotation schemes, the same face boundaries,
and the same external face. A planar embedding is an equivalence class of planar drawings.
For connected graphs an embedding is completely described by the rotation scheme and

10 Chapter 2: Preliminaries

the external face. For biconnected graphs, each face is bounded by a simple cycle, that is
each face boundary consists of a single circular vertex list without duplicates.

Embedding Graphs on the Sphere. In this thesis we will sometimes also consider
drawings on the sphere. Although it is in principle also possible to draw graphs on
arbitrary surfaces, this is beyond the scope of this thesis. Drawing graphs on the sphere is
closely related to graph drawing in the plane. In fact, a graph admits a planar drawing
in the plane if and only if it admits a planar drawing on the sphere. The stereographic
projection provides a transformation of such drawings, mapping drawings on the sphere
into the plane. Its inverse can be used to project a drawing in the plane onto the sphere.
As the sphere is compact, all its faces are bounded and the distinction between the internal
faces and the external face vanishes. When projecting back to the plane, the face containing
the north-pole becomes the external face. Since, by simple rotation of the sphere, any face
can be made to contain the north-pole, this shows that the external face can be chosen
arbitrarily without altering the rotation scheme and the face boundaries.

Other drawing styles. So far we have only considered topological drawings, where edges
of a graph are represented by arbitrary Jordan curves. This is, however, not the only choice,
and we can further restrict the curves that may be used in a drawing. Two widespread
alternatives are straight-line drawings and orthogonal drawings. In a straight-line drawing,
the curves representing the edges are the straight-line segments between their endpoints.
For orthogonal drawings, each curve consists of a piecewise axis-parallel curve. A graph
together with a straight-line drawing is also called a geometric graph. Naturally, these
drawing conventions give rise to corresponding planarity definitions, by defining a graph
to be planar if it admits a corresponding planar drawing. Fortunately, these planarity
definitions are not vastly different. By a classical result of Kőnig, Fáry and Stein, any planar
graph admits a planar straight-line drawing, and hence the topological and the geometric
planarity definitions coincide. For orthogonal drawings it is clear that any vertex may
have degree at most 4. Tamassia [Tam87] showed that any planar graph with maximum
degree 4 admits an orthogonal drawing. Hence, the orthogonal planarity definition is the
usual planarity definition restricted to graphs with maximum degree 4. In both cases even
a given combinatorial embedding can be preserved.

By further restricting the drawing conventions we can obtain other notions of planarity,
for example, by additionally requiring that the vertices are in convex position. For
topological drawings, again, this notion of planarity coincides with the standard planarity
definition [PW01]. However, for geometric graphs this makes a difference. A convex
geometric graph is a geometric graph whose vertices are in convex position. The set of
graphs that admits a planar straight-line drawing with the vertices in convex position
is exactly the class of outerplanar graphs, where a graph is outerplanar if it admits an
embedding such that all vertices are on the external face.

Basic Properties of Planar Graphs. Planarity is a very strong property for graphs
and the main topic of this thesis. Here we highlight a few connections of planarity to
connectivity and other graph properties. A graph is planar if and only if all its blocks are
planar. We will see later in Section 2.3 that a graph is planar if and only if its triconnected
components are planar. Note that given any planar embedding E of a graph G another
planar embedding of G can be obtained by simultaneously reversing the circular lists of
incident edges of all vertices. This embedding is called the flip of E . By a classical theorem
of Whitney [Whi32], the embedding of a 3-connected planar graph is fixed up to flip and
the choice of the external face. Therefore also any subdivision of a 3-connected graph has

2.3 The SPQR-tree 11

a (in this sense) unique embedding.
Although the structure of the faces, that is, the set of face boundaries, grossly changes

when varying the embeddings, the number of faces does not. For connected graphs it only
depends on the number of vertices and edges of the graph. More precisely, for a planar
graph with n vertices, m edges and f faces we have that n+m− f = 2, which is known
as Euler’s formula. This formula can be used to show that a simple planar graph with
n vertices has at most 3n − 6 edges (and therefore at most 2n − 4 faces). In particular,
the number of edges a simple planar graph can have is linear in the number of vertices.
Note that a graph is planar if and only if the graph obtained by removing parallel edges is
planar. Further, this shows that the average degree of a simple planar graph is less than 6
and therefore any simple planar graph contains a vertex of degree at most 5.

Planarity is a property that is preserved by several operations. For instance, any
subgraph of a planar graph is again planar, and by restricting the rotation scheme of a
planar embedding E of a graph G to the edges in a subgraph H ⊆ G, we obtain a planar
embedding E|H of H induced by E . Similarly, any subdivision G+ of G is planar and E
also induces a planar embedding on G+. Contracting an edge e = uv can be seen as a
continuous motion of the endpoints of the curve representing e in a drawing. Therefore,
contracting an edge e = uv in a graph G with a planar embedding E yields not just
the graph G/e, but along with it an induced planar embedding E/e with the following
properties. For each vertex of G/e distinct from u and v, the circular ordering of the
incident edges is the same as in E . For the vertex w resulting from the contraction of u
and v, the edges that were originally incident to u and v keep their circular order and both
form intervals in the circular ordering around w. Moreover, the interval stemming from
the edges incident to v occurs in the circular ordering around u at the former position of
the edge uv. Symmetrically, the edges formerly incident to u are inserted at the former
position of uv in the ordering around v. In particular, every minor of a planar graph is
again planar. Kuratowski [Kur30] showed that a graph is planar if and only if it contains
neither K5, nor K3,3 as a minor. This completely characterizes the class of planar graphs by
forbidden minors. The first linear-time algorithm for checking whether a graph is planar is
due to Hopcroft and Tarjan [HT74]. Today, there are several different linear-time planarity
tests available [BM04, dFdMR06, HT08]. In the case that the input graph is planar, these
algorithms construct a planar embedding. Otherwise, they extract a subdivision of K5 or
K3,3, which serves as a certificate for non-planarity.

Finally, for a planar graph with a fixed planar embedding there exists a notion of
a dual graph. Let G = (V,E) be a planar graph with a fixed planar embedding, and
let F denote the set of faces of G in the given embedding. The dual G? of G is a graph
whose vertices are the faces of G, and whose edges are dual to those in G in the following
sense. Any edge e of G is incident to two faces f1 and f2 in the embedding of G. We
denote by e? = f1f2 the edge between these two faces. The dual graph then is the
graph G? = (F,E?), where E? = {e? | e ∈ E} is the set of dual edges of E.

2.3. The SPQR-tree
Similar to the decomposition of a (connected) graph into biconnected components, it
is possible to decompose a biconnected graph into its triconnected components [HT73].
Again the relationships among the triconnected components can be modeled as a tree,
called the SPQR-tree. In particular, the SPQR-tree allows to concisely represent the

12 Chapter 2: Preliminaries

s

t
(a)

s

t ttt

ss s

(b)

s

t
(c)

Figure 2.1.: Example of a split pair {s, t} (a) and its maximal split components (b). The skeleton
of a P-node showing the arrangement of the maximal split components for the split
pair {s, t} (c); the virtual edges are drawn as thick grey edges. The graphs in (b) are
the expansion graphs of the virtual edges in the skeleton.

possible planar embeddings of a given biconnected planar graph. The SPQR-tree was
introduced by Di Battista and Tamassia [DT96b, DT96a], based on ideas by Bienstock
and Monma [BM89, BM90]. We first give a description of the properties of the SPQR-tree
and describe its construction. Afterwards, we show how it can be used to represent all
planar embeddings of a biconnected planar graph.

A graph G with vertices s and t is st-biconnectible if adding the edge st yields a
biconnected graph. A split pair of G is either a separation pair of G or a pair of adjacent
vertices. A maximal split component of a split pair {u, v} is either an edge uv or a maximal
subgraph C of G such that C contains u and v and {u, v} is not a split pair of C. Note
that every vertex w 6= u, v belongs to exactly one maximal split component. We call the
union of any number of maximal split components of {u, v} a split component of {u, v};
note that indeed a split component may consist of several maximal split components. This
sounds strange at first, and the reason is that “maximal” rather refers to the splitting, not
to the components. We decided to keep the name for consistency with the literature. See
Figure 2.1 for an example of a split pair and the corresponding split components.

The SPQR-tree of a biconnected graph G is a tree T whose leaves correspond bijectively
to the edges of G. It is constructed by recursively decomposing G along split pairs. We
refer to the vertices of T as nodes in order to distinguish them from the vertices of G. Each
node µ is associated with a multigraph skel(µ), the skeleton of µ, which can be seen as a
sketch of the graph from a certain viewpoint. See for example the skeleton in Figure 2.1c,
which sketches the graph from Figure 2.1a from the viewpoint of the split pair {s, t}. The
construction is such that each skeleton forms either a cycle, a set of parallel edges on two
vertices, or a triconnected graph. Each vertex of skel(µ) is also a vertex of G, and each
edge uv in skel(µ) represents a corresponding split pair {u, v} in G. The edges of the
skeletons are either virtual edges representing a subgraph of G containing the endpoints of
the virtual edge or real edges, which are edges that also belong to G.

The leaves of T are also called Q-nodes. The skeleton of the Q-node corresponding to an
edge uv contains the two vertices u and v and two parallel edges between u and v, one real
edge representing the edge uv and one virtual edge representing the rest of the graph. Note
that in our definition of the SPQR-tree only the skeletons of Q-nodes contain real edges,
all other edges of skeletons are virtual edges. An SPQR-tree T has three types of internal
nodes, namely S-nodes, P-nodes, and R-nodes, depending on the type of the skeleton of

2.3 The SPQR-tree 13

(a) (b) (c) (d)

Figure 2.2.: Skeletons of different node types, virtual edges are thick and grey, real edges are fat
black edges. Skeletons of a Q-node (a), an S-node (b), a P-node (c), and an R-node (d).

the node. An S-node (or series node) is a node whose skeleton is a cycle of length k ≥ 3.
A P-node (or parallel node) is a node whose skeleton has two vertices and k ≥ 3 parallel
edges. An R-node (or rigid node) is a node whose skeleton is a simple 3-connected graph.
It is assumed that no two S-nodes and no two P-nodes are adjacent in T . Figure 2.2 shows
examples for the skeletons of different types of nodes.

Two distinct skeletons skel(µ) and skel(µ′) share vertices if and only if µ and µ′ are
adjacent in T . In this case they share exactly two vertices u and v and both contain the
virtual edge uv. Now suppose that T1, . . . , Tk are the subtrees of T adjacent to the node µ,
that is, they are the connected components of T − µ. Each of these subtrees is associated
bijectively with a virtual edge ei of skel(µ). Moreover, each of these subtrees defines a
graph Gi formed by the edges of G represented by the Q-nodes of Ti together with the
vertices of G incident to these edges. Let ei = uv. The graph Gi is connected, contains
the two vertices u and v, and does not contain any other vertex of skel(µ). If the graphs
Gi and Gj with i 6= j share a vertex v, then v must be a common endpoint of the edges
ei and ej in skel(µ). Therefore, the graphs G1, . . . , Gk are an edge-disjoint decomposition
of G, and skel(µ) is obtained from G by contracting each Gi into a single edge ei. We say
that the graph Gi projects into ei and that Gi is the expansion graph of ei. For an edge or
a vertex of Gi we also say that it belongs to ei.

The SPQR-tree always exists and is unique. Before we describe its construction and its
relation to planarity, we need some further definitions.

Construction of the SPQR-tree. The rooted SPQR-tree is defined with respect to a
reference edge of G. It describes a recursive decomposition of G along its split pairs; the
endpoints of each virtual edge e of a skeleton form a split pair splitting off the expansion
graph of e. Note that rooting the tree at a node determines for each node µ except for the
root one special virtual edge, namely the one that skel(µ) shares with its parent. Usually,
SPQR-trees are rooted at Q-nodes, and the construction is such that the tree is rooted at
the Q-node corresponding to the reference edge.

To obtain the pertinent graph of µ, denoted by pert(µ), we replace each virtual edge ei
of skel(µ), except for the one that µ shares with its parent, by its expansion graph. The
remaining virtual edge then represents the rest of the graph in pert(µ). Note that the
pertinent graph of the root is G itself.

We are now ready to describe the construction of the SPQR-tree. Given a biconnected
graph G with reference edge e = u′v′, the SPQR-tree is recursively defined as follows. At
each step, a split component G?, a pair of vertices {u, v}, and a node ν in T are given.

14 Chapter 2: Preliminaries

A node µ corresponding to G? is introduced in T and attached to its parent ν. The
vertices u and v are the poles of µ and they are denoted by u(µ) and v(µ), respectively. The
decomposition possibly recurs on some split components of G?. Initially, we set G? = G−e,
{u, v} = {u′, v′} and ν is a Q-node, corresponding to e. Figure 2.3 shows a complete
example illustrating the construction of an SPQR-tree.

Base Case: If G? consists of a single edge from u to v, then T is a single Q-node whose
skeleton is G? itself.

Series Case: If G? is not biconnected, let v1, . . . , vk−1, k ≥ 2, be its cutvertices and let
G1, . . . , Gk be its blocks in the order from u to v. Then µ is an S-node and the
graph skel(µ) is the path e1, . . . , ek, where the virtual edge ei connects vi−1 with vi
(i = 2, . . . , k − 1), e1 connects u with v1, and ek connects vk−1 with v. The decom-
position recurs on the split components corresponding to each of the virtual edges
e1, e2, . . . , ek−1, ek with µ as parent node, and with {u, c1}, {c1, c2}, . . . , {ck−2, ck−1},
{ck−1, v} as pair of vertices, respectively.

Parallel Case: If {u, v} is a split pair of G? with maximal split components G1, . . . , Gk,
k ≥ 2, then µ is a P-node. The graph skel(µ) consists of k parallel virtual edges
e1, . . . , ek between u and v. The decomposition recurs on G1, . . . , Gk with {u, v} as
pair of vertices for every graph, and with µ as parent node.

Rigid Case: If none of the above cases applies, the goal of the decomposition step is to
partition G? into the smallest number of split components and recurring on each of
them. We need some further definitions. Given a maximal split component G′ of a
split pair {s, t} of G?, a vertex w ∈ V (G′) properly belongs to G′ if w 6= s, t. Given a
split pair {s, t} of G?, a maximal split component G′ of {s, t} is internal if neither u
nor v (the poles of G?) properly belong to G′. Otherwise, it is external. A maximal
split pair {s, t} of G? is a split pair of G? that is not contained in an internal maximal
split component of any other split pair {s′, t′} of G?. Let {u1, v1}, . . . , {uk, vk} be the
maximal split pairs of G?, k ≥ 2 and, for i = 1, . . . , k let Gi be the union of all the
internal maximal split components of {ui, vi}. Observe that each vertex of G? either
properly belongs to exactly one Gi or belongs to some maximal split pair {ui, vi}.
The node µ is an R-node. The graph skel(µ) is the graph obtained from G? by
replacing each subgraph Gi with the virtual edge ei = uivi. The decomposition recurs
on each Gi with µ as parent node and with {ui, vi} as pair of vertices.

For each node µ of T with poles u and v, the construction of skel(µ) is completed by
adding a virtual edge uv representing the rest of the graph, that is the graph obtained
from G by removing all the vertices of pert(µ) except for its poles, together with their
incident edges. Note that his makes all skeletons biconnected, and in particular the
skeletons of R-nodes become triconnected. Moreover, by construction of the SPQR-tree,
the expansion graph of a virtual edge uv of an S-node µ does not contain a cutvertex
separating u and v, and hence no two S-nodes are adjacent. Similarly, the expansion graph
Guv of a virtual edge uv of a P-node is either a single edge or it does not contain the
edge uv and Guv − {u, v} is connected, that is there are no two adjacent P-nodes in T .

Although at first it seems that the construction might depend on the choice of the
reference edge, this is not the case. Instead, changing the reference edge from an edge e to
a different edge e′ corresponds to rerooting the tree at the Q-node corresponding to e′. It
is important to note that the SPQR-tree itself, the skeletons and the expansion graph of an

2.3 The SPQR-tree 15

s

t
(a) The original graph, the reference

edge is drawn dashed.

P1
s

t

t

s

t

s

t

s

(b) Decomposition along the split pair {s, t}, result-
ing in a P-node and its expansion graphs.

S1

S2

R1

P1

(c) Further decomposition of the remaining expansion graphs.

P1

S1

S2

R1

S3R2 P2

S4

(d) The final SPQR-tree.

Figure 2.3.: Example of the construction of an SPQR-tree, for clarity, all Q-nodes are omitted. The
reference edge of the original graph is dashed and for each skeleton S, the edge that S
shares with its parent is dashed and the two edges are connected by a curve. Graphs
enclosed in thick grey boxes with rounded corners are expansion graphs and are further
decomposed in the next step.

16 Chapter 2: Preliminaries

edge only depend on the structure of the original graph G, while the pertinent graph and
the poles of a skeleton also depend on the choice of the reference edge. As we will see later,
rooting the tree at the Q-node representing e amounts to considering only embeddings
of the graph for which e lies on the external face. The unrooted version corresponds to
neglecting the information about the external face and therefore models embeddings of
graphs on the sphere.

The SPQR-tree and Planarity. Until now, all the definitions of the SPQR-tree apply
to general biconnected graphs, not just to biconnected planar graphs. As mentioned
above, each skeleton skel(µ) can be obtained as a minor by contracting the expansion
graphs of its edges. Hence, for a planar graph all skeletons are planar and in particular a
planar embedding E of a graph G induces in this way a planar embedding E(µ) for each
skeleton skel(µ). Note that if the SPQR-tree is rooted at an edge that is incident to the
outer face, then for each node µ of T (except the root), the edge that skel(µ) shares with
its parent lies on the external face of E(µ). Conversely, if a planar embedding Eµ for each
skeleton skel(µ) is fixed, a planar embedding E of G can be constructed with the property
that E(µ) coincides with Eµ for each node µ of T .

Two skeletons of adjacent nodes µ and µ′ can be merged as follows. Since µ and µ′ are
adjacent, their skeletons share two vertices u and v and the virtual edge uv. To merge
skel(µ) and skel(µ′) we first identify their common virtual edge uv and then remove it
from the graph. The embeddings Eµ and Eµ′ together induce a unique planar embedding
of the merged graph. Exhaustively merging all skeletons recreates the original graph G,
and hence, along with, it the desired embedding E .

This shows that a biconnected graph G is planar if and only if all skeletons of its
SPQR-tree are planar. Moreover, if G is a planar graph and T is its SPQR-tree, any
planar embedding of G induces a unique planar embedding of each skeleton of T , and
conversely, by specifying a planar embedding for each skeleton, we obtain a unique planar
embedding of G. Note that the skeletons of S-nodes, P-nodes and Q-nodes are always
planar and hence a graph is planar if and only if all its R-node skeletons are planar. Further,
considering the skeletons we can also get more information on how many different possible
embeddings a planar graph may have. For S- and Q-nodes the skeleton has only a single
embedding. The skeletons of R-nodes are 3-connected planar graphs and therefore have a
unique embedding up to a flip. Finally, a P-node whose skeleton consists of k parallel edges
admits (k − 1)! distinct circular orderings of its edges. This also allows us to compute the
number of embeddings of a planar graph. If the SPQR-tree of a biconnected planar graph
G contains r R-nodes and p P-nodes, such that the skeleton of the i-th P-node consists
of pi parallel edges, then G has 2r ·∏p

i=1(pi − 1)! distinct planar embeddings, up to the
choice of the external face. Since any of the involved numbers may be of linear size, such a
graph usually has an exponential number of different planar embeddings.

Finally, the SPQR-tree of a biconnected planar graph can be computed in linear
time [GM00], making it a useful tool for fast algorithms.

2.4. Complexity
While the goal of this thesis is to provide efficient algorithms for the considered graph-
theoretic problems, for some problems we did not succeed in constructing such algorithms.
In many of these cases we instead show that it is unlikely that the problem admits an

2.4 Complexity 17

efficient algorithm by showing that it is NP-hard. In this section we briefly sketch the basic
ideas behind these arguments and why it is believed that these problems do not admit
efficient solutions.

The classes P and NP. The class P contains all problems that admit an efficient
algorithm. An algorithm is efficient, if its running time is polynomially bounded by its input
size, that is, if the input size is n, its running time is in O(nc) for some fixed constant c.
Note that this does not, in general, mean that such an algorithm is particularly useful:
although an algorithm with running time Θ(n100) is efficient, it will most probably be
unusable in practice as it would probably not even solve the smallest instances within any
reasonable time frame.

The class NP contains all problems for which a given solution can be verified in
polynomial time. Clearly, we have P ⊆ NP.

To understand the difference between these two concepts it is helpful to consider a simple
example. Given a natural number N , do there exist natural numbers n1, n2 > 1 such that
n1 · n2 = N? While it may be difficult to find out whether such a factoring exists, given a
possible solution of two numbers n1 and n2 even a school kid can easily check whether they
form a solution to the problem, simply by computing their product. It seems that at least
for some problems actually finding a solution is considerably more difficult that checking a
given solution. The example of checking whether a number can be written as a non-trivial
product, or equivalently, that it is not prime, should be taken with a grain of salt, as in
fact it has turned out that checking whether a number is a prime number can be done
in polynomial time and therefore, from the perspective of polynomial-time computability,
solving the problem and checking a given solution are equally difficult [AKS04].

However, it is unknown, and in fact one of the most important open questions in the
whole of computer science whether it holds that P = NP or P 6= NP. It is widely
believed that P 6= NP and that therefore problems exist for which checking a solution
is considerably simpler than computing one. One such problem, which belongs to NP
but is not known to be in P is the problem Satisfiability or Sat for short. A Boolean
CNF formula over a set {x1, . . . , xn} of variables is a conjunction of a set {C1, . . . , Cm} of
clauses, where each Ci is a disjunction of literals, that is, positive or negative occurrences
of variables. The problem Satisfiability asks whether a given boolean formula ϕ admits
a satisfying truth assignment. The problem clearly belongs to NP as ϕ can be evaluated
for a given truth assignment in polynomial (even linear) time. It is, however, not known
whether Sat ∈ P.

Polynomial-Time Reductions and NP-Completeness. Let Π and Π′ be two problems
and let I be an instance of Π. A polynomial-time reduction of Π to Π′ is a polynomial-time
algorithm A that computes for each instance I of Π an instance A(I) of Π′ with the
property that I is a Yes-instance of Π if and only if A(I) is a Yes-instance of Π′. If
there exists a polynomial-time reduction from Π to Π′, we write Π .P Π′. The motivation
for this notation is that by using the reduction algorithm, any algorithm for solving Π′
efficiently, immediately implies an algorithm for solving Π, and hence Π′ is at least as
hard as Π. The binary relation defined by .P on NP is reflexive and transitive and hence
a quasi-ordering on NP, which roughly orders the problems in NP according to their
difficulty, neglecting differences in complexity that are polynomially bounded. For resolving
the P vs. NP problem, the minimal and maximal elements of this relation are of special
interest, as they are most likely to be separable by a super-polynomial complexity barrier.
On the other hand, if a maximal element could be solved in polynomial-time this would

18 Chapter 2: Preliminaries

show the polynomial-time solvability of a large part of NP (and in fact that P = NP, as
we will see in a moment).

For the minimal elements, note that for all problems Π and Π′ in P we have Π .P Π′
and therefore the set of minimal elements of .P is exactly P. The maximal elements are
more complicated and their existence is not at all obvious.

A problem Π is NP-hard, if every problem in NP can be reduced to Π in polynomial
time, that is Π′ .P Π for all Π′ ∈ NP . A problem Π is NP-complete if it is NP-hard and
Π ∈ NP. Clearly, the NP-complete problems are the maximal elements of .P and every
problem in NP can be reduced in polynomial-time to any NP-complete problem, making
NP-complete problems the “most difficult” problems in NP. If any of these problems
admits a polynomial-time algorithm, then, by virtue of these reductions, all problems in
NP admit polynomial-time algorithms and this would prove P = NP . On the other hand,
if P 6= NP, then the NP-complete problems are the primary candidates for proving the
non-existence of an efficient algorithm.

To prove that a problem Π is NP-hard it is sufficient to show that Π′ .P Π for some
known NP-complete problem Π′, that is giving a polynomial time reduction from the
NP-complete problem Π′ to Π. Since NP-complete problems are the most difficult problems
in NP, the widely believed assumption that P 6= NP implies that these problems are
unlikely to be efficiently solvable.

There is, however, a subtle problem. Namely, it is not clear that such problems even
exist. In his seminal paper Cook [Coo71] showed that Sat, the problem of deciding whether
a given boolean formula in CNF is satisfiable is NP-complete. His proof showing explicitly
that every problem instance of every problem in NP can be encoded as a Sat formula
of polynomial size was a major breakthrough in complexity theory. Moreover, it lay the
ground for proving further problems NP-complete; Karp [Kar72] presented a list of 21
NP-complete problems, in particular combinatorial and graph theoretical problems. Today,
a vast number of problems are known to be NP-complete.

Basic NP-complete Problems. In this thesis we will prove some problems to be NP-
complete, in order to show that they are unlikely to be polynomial-time solvable. We now
describe three NP-complete problems that we use in our reductions. Two of these problems
are variants of problems in Karp’s initial list of 21 NP-complete problems.

The first is a variant of Sat with additional constraints. The problem k-Sat is a
special case of Sat, where the formulas are restricted to clauses with at most k literals.
This problem is also NP-complete for k ≥ 3 [GJ79], while 2-Sat is polynomial-time
solvable [APT79]. Given a formula ϕ we can associate with ϕ a graph representing the
interaction of variables and clauses in the formula, the variable–clause graph Gϕ whose
vertices are the variables and clauses of ϕ. A variable and a clause are connected by an
edge in Gϕ if the variable occurs in the clause. The problem Planar 3-Sat asks whether
a given 3-Sat formula whose variable–clause graph is planar admits a satisfying truth
assignment. Planar 3-Sat is NP-hard [Lic82]. Due to the planarity constraint on the
variable–clause graph, Planar 3-Sat is especially well-suited for proving NP-hardness of
problems involving planarity for both graph-theoretic and geometric problems.

The second problem we will use is HamiltonianCircuit. The problem asks whether
a given graph G = (V,E) contains simple cycle that visits all vertices. It is NP-hard
for directed as well as for undirected graphs, even if the input graph is planar and has
maximum degree 3 [GJ79, Ple79].

Finally, we will use the problem SteinerTree. An instance of SteinerTree consists
of an undirected graph G = (V,E) and set T ⊆ V of terminals. It asks, for the smallest

2.4 Complexity 19

subgraph of G (in terms of number of edges) that is connected and contains all terminals.
More precisely, we use the decision version of this problem, which has an additional integer
input parameter k and asks whether a subgraph with k edges suffices to connect all the
terminals. Again this problem is NP-complete [GJ79].

Part I.

Combinatorial Optimization on
Planar Graphs

Chapter 3

Augmenting the Connectivity of
Planar and Geometric Graphs

In this chapter we study connectivity augmentation problems. Given a connected graph G
with some desirable property, we want to make G 2-vertex connected (or 2-edge connected)
by adding edges such that the resulting graph keeps the property. The aim is to add as
few edges as possible. The property that we consider is planarity, both in an abstract
graph-theoretic and in a geometric setting, where vertices correspond to points in the plane
and edges to straight-line segments.

We show that it is NP-hard to find a minimum-cardinality augmentation that makes a
planar graph 2-edge connected. For making a planar graph 2-vertex connected this was
known. We further show that both problems are hard in the geometric setting, even when
restricted to trees. The problems remain hard for higher degrees of connectivity. On the
other hand we give polynomial-time algorithms for the special case of convex geometric
graphs.

We also study the following related problem. Given a planar (plane geometric) graph G,
two vertices s and t of G, and an integer c, how many edges have to be added to G such
that G is still planar (plane geometric) and contains c edge- (or vertex-) disjoint s–t paths?
For the planar case we give a linear-time algorithm for c = 2. For the plane geometric case
we give optimal worst-case bounds for c = 2; for c = 3 we characterize the cases that have
a solution.

The chapter is based on joint work with Alexander Wolff [RW08a, RW08b].

3.1. Introduction
Augmenting a given graph to increase its connectivity is important, for example, for making
communication networks resistant against node and link failures. The planar version of
the problem, where the augmentation has to preserve planarity, also has applications in
graph drawing [KB91]. Many graph-drawing algorithms guarantee nice properties (such
as convex faces) for graphs with high connectivity. To apply such an algorithm to a less
highly connected graph, one adds edges until one reaches the required level of connectivity,
uses the algorithm to produce the drawing, and finally removes edges that were added
before. With each removal of an edge, however, one might lose some of the nice properties
(such as the convexity of a face). Hence, it is natural to look for an augmentation that uses
as few edges as possible. Recall that a graph is c-vertex connected (or simply c-connected)

24 Chapter 3: Augmenting the Connectivity of Planar and Geometric Graphs

if the removal of any subset of c− 1 vertices does not disconnect the graph. Analogously, a
graph is c-edge connected if the removal of any subset of c− 1 edges does not disconnect
the graph. It is common to use the term biconnected for 2-vertex connected and the term
bridge-connected for 2-edge connected.

In this chapter, we consider the following two problems.

Planar 2-Vertex Connectivity Augmentation (PVCA):
Given a connected planar graph G = (V,E), find a smallest set E′ of vertex
pairs such that the graph G′ = (V,E ∪ E′) is planar and biconnected.

Planar 2-Edge Connectivity Augmentation (PECA)
is defined as PVCA, but with biconnected replaced by bridge-connected.

Related Work. The corresponding problems without the planarity constraints have a
long history, both for directed and undirected graphs. Eswaran and Tarjan [ET76] showed
that the unweighted cases can be solved in polynomial time, whereas the weighted versions
are hard. Frederickson and Ja’Ja’ [FJ81] gave O(n2)-time factor-2 approximations and
showed that augmenting a directed acyclic graph to be strongly connected, and augmenting
a tree to be bridge- or biconnected, is NP-complete—even if weights are restricted to
the set {1, 2}. Hsu [Hsu02] gave an O(m+ n)-time sequential algorithm for (unit-weight)
2-vertex connectivity augmentation that can be parallelized well.

Kant and Bodlaender [KB91] showed that PVCA is NP-complete and gave 2-approxi-
mations for both PVCA and PECA that run in O(n logn) time. Their 1.5-approximation
for PVCA turned out to be wrong [FM98]. Fialko and Mutzel [FM98] gave a 5/3-
approximation for PVCA. Kant [Kan96] showed that PVCA and PECA can be solved in
linear time for outerplanar graphs.

Provan and Burk [PB99] considered related problems. Given a planar graph G = (V,EG)
and a planar biconnected (bridge-connected) graph H = (V,EH) with EG ⊆ EH , find
a smallest set E′ ⊆ EH such that G′ = (V,EG ∪ E′) is planar and biconnected (bridge-
connected). They show that both problems are NP-hard if G is not necessarily connected
and give O(n4)-time algorithms for the connected cases.

We also consider a geometric version of the above problems. Recall that a geometric
graph is a graph where each vertex v corresponds to a point µ(v) in the plane and where
each edge uv corresponds to the straight-line segment µ(u)µ(v) connecting u and v. We
are exclusively interested in plane geometric graphs, that is, geometric graphs whose
edges neither cross each other nor contain vertices other than their endpoints. Therefore,
in this chapter by geometric graph we always mean a plane geometric graph. Given a
geometric graph G we again want to find a (small) set of vertex pairs such that adding the
corresponding edges to G leaves G plane and augments its connectivity.

In this context, Rappaport [Rap89] showed that it is NP-complete to decide whether
a set of line segments can be connected to a simple polygon, that is, geometric PVCA
and PECA are NP-complete. Abellanas et al. [AGH+08] gave worst-case bounds for
geometric PVCA and PECA. For geometric PVCA, they showed that n− 2 edges are
sometimes needed and are always sufficient. For geometric PECA, they proved that
2n/3 edges are sometimes needed and 6n/7 edges are always sufficient for graphs with
n vertices. In the special case of plane geometric trees (with n vertices) they show that
n/2 edges are sometimes needed and that 2n/3 edges are always sufficient for PECA.
Tóth [Tót08] lowered the upper bounds to bn/2c for n-vertex trees and 2n/3 +O(1) for
arbitrary n-vertex plane geometric graphs. Tóth and Valtr [TV09] characterized all cases

3.1 Introduction 25

where a 2-vertex or a 2-edge connected plane geometric graph can be augmented to be
3-vertex or 3-edge connected. They further showed that in both cases n − 2 new edges
suffice and are sometimes necessary for graphs with n vertices. Al-Jubeh et al. [AJIR+09]
proved that an arbitrary (not necessarily 2-edge connected) 3-edge augmentable plane
geometric graph with n vertices can be 3-edge augmented with 2n− 2 new edges and that
this number is sometimes necessary. Their augmentation algorithm runs in O(n log2 n)
time.

Contribution. First we show that PECA is NP-complete, too. This answers an open
question posed by Kant [Kan93].

Second, we sharpen the result of Rappaport [Rap89] by showing that geometric PVCA
and PECA are NP-complete even if restricted to trees. Not unexpectedly, the problems
remain hard for higher degrees of connectivity: finding a minimum-cardinality augmentation
that makes a plane geometric (c− 1)-vertex connected graph c-vertex connected is also
NP-hard for c = 3, . . . , 5. The gadgets in our construction are such that they establish
hardness for both vertex and edge connectivity. Recall that any planar graph has a vertex
of degree at most 5 and hence is at most 5-connected.

Third, we give algorithms that solve geometric PVCA and PECA in polynomial time
for convex geometric graphs, that is, graphs whose vertex sets correspond to point sets in
convex position.

Table 3.1 gives an overview about what is currently known about the complexity of
PVCA and PECA and their geometric variants.

problem planar outerplanar geometric convex
PVCA NPC [KB91] O(n) [Kan96] NPC O(n)
PECA NPC O(n) [Kan96] NPC O(n)
weighted PVCA NPC open NPC O(n)
weighted PECA NPC open NPC O(n2)

Table 3.1.: Complexity of various versions of PVCA and PECA. NPC stands for NP-complete.

Fourth, we consider a related problem, the geometric s–t path augmentation problem.
Given a plane geometric graph G, two vertices s and t of G, and an integer c > 0, is it
possible to augment G such that it contains c edge-disjoint (c vertex-disjoint) s–t paths? We
restrict ourselves to c ∈ {2, 3}. For c = 2 we show that edge-disjoint s–t path augmentation
can always be done and needs at most n/2 edges, where n is the number of vertices in the
graph G. We give an algorithm that computes such an augmentation in linear time. The
tree that yields the above-mentioned lower-bound of Abellanas et al. [AGH+08] also shows
that our bound is tight. For c = 3 we show that edge-disjoint s–t path augmentation is
always possible, and we give an O(n2)-time algorithm that decides whether a given graph
has a vertex-disjoint s–t path augmentation.

In this chapter we use the term leaf for a degree-1 vertex in any graph, not only in a
tree.

26 Chapter 3: Augmenting the Connectivity of Planar and Geometric Graphs

x1 x2 x3 x4 x5 x6

c1

c2

c3

c4

c5

c6

c7

Figure 3.1.: Layout of the variable–clause graph corresponding to a planar 3-SAT formula with
variables x1, . . . , x6 and clauses c1, . . . , c7.

3.2. Complexity
In this section we show that PECA is NP-complete. This settles an open problem posed
by Kant [KB91]. Kant proved that the minimum biconnectivity augmentation problem is
NP-complete and gave 2-approximations for both problems, PVCA and PECA [KB91].
We also strengthen the result of Rappaport [Rap89] and show that geometric PECA and
geometric PVCA are NP-complete even in the case of trees. We also show hardness for
the corresponding problems with higher degrees of connectivity.

3.2.1. Complexity of PECA
We start by settling the complexity of PECA. For our proof, recall that an embedding of a
connected planar graph is given by a circular ordering of the incident edges around each
vertex.

Theorem 3.1. PECA is NP-complete.

Proof. PECA is in NP since given a planar graph G and an integer k > 0 we can
guess (with positive probability) a set E′ of at most k non-edges of G and then test
efficiently whether G + E′ is planar. We prove the NP-hardness of PECA by reducing
from the problem Planar3SAT, which is known to be NP-hard [Lic82]. An instance of
Planar3SAT is a 3SAT formula ϕ whose variable–clause graph is planar. Such a graph
can be laid out (in polynomial time) such that variables correspond to pairwise disjoint
axis-parallel rectangles intersecting a horizontal line and clauses correspond to non-crossing
three-legged “combs” above or below that line [KR92], see Figure 3.1.

Note that if a graph G has k leaves, at least k/2 edges need to be added to bridge-connect
the graph. In case k/2 edges suffice, each of these edges connects two leaves and no two
edges are incident to the same leaf. In other words, the edges form a perfect matching of
the leaves. We now construct a planar graph Gϕ that can be augmented with a perfect leaf
matching if and only if ϕ is satisfiable. The graph Gϕ consists of so-called gadgets, that
is, subgraphs that represent the variables, literals, and clauses of ϕ, see Figure 3.2. For
each gadget, we will argue that there are only a few ways to embed and augment it with a
perfect leaf matching. Note that our construction connects variable gadgets corresponding
to neighboring variables in the layout of the variable–clause graph of ϕ. Hence Gϕ is always
connected. Additionally, we identify the left boundary of the leftmost variable gadget with
the right boundary of the rightmost variable gadget.

3.2 Complexity 27

. . .

. . .

...

x ¬y z

x

¬x













I-shape Y-shape

clause
gadgets

variable
gadgets

literal
gadgets

Figure 3.2.: Part of the graph Gϕ for a 3SAT formula ϕ that contains the clause (x ∧ ¬y ∧ z).
The augmentation (dotted edges) corresponds to the assignment x = y = false and
z = true.

In the figure, leaves are highlighted by small black disks. All bends and junctions
of line segments represent vertices of degree greater 1. The (black and dark gray) solid
line segments between adjacent vertices represent the edges of Gϕ; the thick dotted line
segments represent non-edges of Gϕ that are candidates for an augmentation of Gϕ. The
set of black solid edges forms a subgraph of Gϕ that we call the frame. The dark gray solid
edges form what we call I-shapes and Y-shapes, which connect singles leaves and pairs of
leaves to the frame, respectively. In Figure 3.2, we marked examples of I- and Y-shapes.

Consider the graph G′ϕ that we obtain from the frame by contracting all vertices of
degree 2. We claim that G′ϕ is 3-vertex connected. This is true since (a) the subgraph
of G′ϕ induced by the variable gadgets is 3-connected and (b) each subgraph induced by
a clause gadget and the three corresponding literal gadgets is also 3-connected and is
attached to the former (variable gadget) subgraph in six vertices.

Recall a classical result of Whitney’s [Whi32] which says that a planar graph has a
unique dual (and thus a unique embedding) if and only if it is 3-vertex connected. Hence,
G′ϕ has a unique embedding. The same holds for the frame of Gϕ as it is a subdivision
of G′ϕ. In other words, the embedding of Gϕ is fixed up to the embedding of the I- and
Y-shapes.

We say that an augmentation of a gadget or of Gϕ is tight if the new edges form a leaf
matching. It is easy to see that if Gϕ has a tight augmentation, then Gϕ has an embedding
such that the following two properties hold.

(P1) Each face contains an even number of leaves.

(P2) Each face that contains a Y-shape contains at least four leaves.

Note that in a tight augmentation, the two leaves of a Y-shape cannot be matched to each
other since the edge of the Y-shape that is not incident to a leaf would be a bridge.

28 Chapter 3: Augmenting the Connectivity of Planar and Geometric Graphs

Our variable gadget consists of two rows of square faces where the horizontal edge
between the two leftmost faces and the horizontal edge between the two rightmost faces is
missing. Effectively, the faces of a variable gadget form a cycle. Starting from the leftmost
(rectangular) face, we call the faces odd and even. To every interior vertical edge an I-shape
is attached. Due to (P1), the I-shapes can be matched in exactly two ways; either in the
odd or in the even faces. If the matching is in the even faces, then the corresponding
variable is true, and vice versa.

A literal gadget consists of a square face that lies immediately above or below the
variable gadget. A positive literal (such as the ones labeled with x in Figure 3.2) is attached
to an even face, a negated literal (such as the one labeled with ¬y in Figure 3.2) is attached
to an odd faces. A literal gadget contains two Y-shapes, one attached to each of its two
horizontal edges. Due to (P2) these Y-shapes are embedded either both inside or both
outside the literal gadget. Again due to (P2) the Y-shapes must be embedded inside the
literal gadget if no I-shapes are embedded into the adjacent face of the variable gadget. In
this case, the literal has the value false. If two I-shapes are embedded into the adjacent
face of the variable gadget, the Y-shapes of the literal gadget can (but don’t have to) be
embedded to the outside (see the literal ¬y).

Finally, each clause gadget consists of a single rectangular face that contains a Y-shape.
If Gϕ has a tight augmentation, then, due to (P2), at least two other leaves are embedded
into every clause gadget face. This means that for each clause gadget, the Y-shapes of at
least one adjacent literal gadget are embedded to the outside. In other words, at least one
of the literals that make the clause is true. Hence, ϕ has a satisfying truth assignment.

Conversely, it is easy to see that if ϕ has a satisfying truth assignment, then all gadgets
have a tight augmentation and hence, so does Gϕ.

We use a constant number of vertices and edges for each literal and clause gadget,
thus our reduction—including the computation of the embedding of the variable–clause
graph—is polynomial.

Note that the graph constructed in the proof is 2-edge connected if and only if it is
biconnected. Hence our proof also shows that PVCA is NP-complete.

3.2.2. Geometric PVCA and Geometric PECA
Next we show that geometric PVCA and geometric PECA are NP-complete as well. With
a simple modification it follows that the problems are even NP-complete if the input is
restricted to plane geometric trees. With another modification, we show hardness of the
corresponding problems for higher degrees of connectivity.

Note that we cannot recycle our proof of Theorem 3.1 to show hardness of the geometric
variants of the problems: there, we exploited that certain parts of the graph (the I- and Y-
shapes) could be embedded in different (but adjacent) faces. Here, we are given embedded
graphs; we cannot even move vertices or edges. To show hardness, we exploit this rigidity.
Our proof is again by reduction from Planar3SAT. Although the graph that we are about
to construct looks very different from the one we constructed in the proof of Theorem 3.1,
similar functional units (as the I- and Y-shapes) will play a role.

Theorem 3.2. Let G be a connected plane geometric graph with k leaves. It is NP-complete
to decide whether it is possible to augment G with k/2 edges such that G becomes bridge-
or biconnected.

3.2 Complexity 29

(a) (b) (c) (d)

Figure 3.3.: Various variants of loopholes, (a)–(c), and subdivision of the boundary of a loophole
into rectangular block (d).

(a) true (b) false

Figure 3.4.: Variable gadget without any adjacent literal gadgets; the two minimum augmentations
correspond to the values of the variable.

Proof. For membership in NP we argue as in the proof of Theorem 3.1. To show the
NP-hardness of the two problems, we again reduce from Planar3SAT and construct
a connected plane geometric graph G consisting of gadgets that represent the variables,
literals, and clauses of the given planar 3SAT formula. Recall once more that we need to
add at least k/2 edges in order to make G bridge- or biconnected since every leaf must lie
on a cycle afterwards and must hence be incident to one of the added edges.

The basic building block of our gadgets is what we call a loophole. The default loophole,
depicted in Figure 3.3a, consists of an E-shaped cycle and two attached I-shapes which
are placed such that their leaves cannot see each other. (Recall that an I-shape is a
leaf with its incident edge.) In contrast, in a self-connecting loophole (see Figure 3.3b),
the two leaves do see each other. A skewed loophole is a loophole that misses one of
the boundaries (Figure 3.3c). In the terminology of the proof of Theorem 3.1, a default
loophole corresponds to a Y-shape, and a self-connecting loophole corresponds to a pair of
I-shapes in the same face. Skewed loopholes are similar to default loopholes; their shape
differs to allow for certain connections without crossings.

Again, all our gadgets are surrounded by walls, that is, by biconnected subgraphs that
ensure that the whole construction without the leaves is biconnected. In the figures, walls
are indicated by gray rectilinear polygons.

We are now ready to describe our variable gadget, see Figure 3.4. It consists of two
parallel rows of evenly spaced loopholes with the upper loopholes pointing downwards and
the lower ones pointing upwards. The lower row contains one loophole more than the upper
one and its two outermost loopholes are self-connecting. The rows are aligned so that
every loophole (except the first and last of the lower row) lies horizontally between two
opposing loopholes—which we call its partners—on the other row. The distances between
the loopholes and the two rows are chosen such that the I-shapes of each loophole can
only be connected to the leaves of its two partners on the other row without producing
a crossing. As in the proof of Theorem 3.1, we connect neighboring variable gadgets to
ensure that the resulting graph is connected.

For any minimum augmentation, the two I-shapes of a loophole on the upper row must
be connected to the two I-shapes of its left or right partner on the other row and the
edges in the augmentation have slope 1 or −1. By construction this choice has to be the

30 Chapter 3: Augmenting the Connectivity of Planar and Geometric Graphs

true

false

(a) state true

true

false

(b) state false

Figure 3.5.: Variable gadget (middle gray) with two adjacent literal gadgets (light gray). The upper
left literal gadget transmits the logical value of the variable, whereas the lower right
literal gadget transmits the negation of that value.

same for each loophole on the upper row, otherwise crossings would occur. On the lower
row, depending on the choice either the first or last loophole does not receive new edges
and its I-shapes must be connected. Hence, a variable has exactly two different minimum
augmentations. The two possible states are shown in Figure 3.4. We say that the variable
is in state true if the edges connecting loophole partners have slope 1 and false if they have
slope −1.

Next we show how the state of a variable is transmitted to the gadgets that represent
the clauses in which the variable occurs. This is the job of the literal gadgets. Roughly
speaking, for each literal gadget we remove two wall pieces of the variable gadget, and
attach a self-connecting loophole on one side and a skewed loophole on the other side, see
Figure 3.5.

If the literal is positive (as in the case of the upper left literal gadget in Figure 3.5), a
leaf in one of the two loopholes can be connected to a leaf in the other loophole if and only
if the new edges in the variable gadget all have slope 1. If the literal is negated (as in the
case of the lower right literal gadget in Figure 3.5), leaves of the two loopholes can only be
interconnected if the new edges in the variable gadget all have slope −1.

In this way, the leaves of the skewed loophole can be matched to the leaves of the
corresponding self-connecting loophole if and only if the value of the variable satisfies the
corresponding literal. Otherwise, leaves of the skewed loophole have to be connected to a
vertex inside the clause gadget, which we present next.

The clause gadget consists of a square that contains a loophole and two L-shaped wall
parts that occupy the corners opposite of the loophole, see Figure 3.6. On three sides, the
square is connected via literal gadgets to the gadgets of the three variables that form the
clause in the given planar 3SAT formula. Each literal gadget contains two I-shapes that
are positioned such that they see (a) each other, (b) the two I-shapes inside the square,
and (c) the two I-shapes of the skewed loophole where the literal gadget is attached to a
variable. It is not hard to see that if any of the skewed loopholes is matched to leaves in
the variable gadget, then the two I-shapes in the literal gadget are free to connect to the
two I-shapes in the square. Only if all three skewed loopholes are matched to I-shapes in
their literal gadget, then the two I-shapes in the center square require an additional edge.

As in the proof of Theorem 3.1 we use a constant number of vertices and edges for each
literal and clause gadget, thus our reduction—including the computation of the embedding
of the variable–clause graph—is polynomial.

3.2 Complexity 31

(a) state false (b) state true

Figure 3.6.: Clause gadget (middle gray) with the three adjacent literal gadgets (light gray). If
all literals are false, the leaves in the clause gadget (or some other leaves) must be
matched to non-leaves, or a leaf receives more than one new edge (a). If at least one
literal is true, there is an augmentation that matches all leaves to other leaves. The
right figure (b) depicts the situation where the literals corresponding to the left and
the right gadget are true and the literal corresponding to the middle gadget is false.

.
u v

Figure 3.7.: Construction that removes a cycle, locally leaves only one possibility to augment, and
does not interfere with the remainder of the graph with respect to augmentation.

By a simple trick we can slightly strengthen the result of Theorem 3.2.

Corollary 3.1. It is NP-complete to decide whether a plane geometric tree with k leaves
can be augmented to be bridge- or biconnected with k/2 edges.

Proof. The proof is by reduction from the previous case. Let G be a connected plane
geometric graph with kG leaves. We now show how to remove cycles from G. Since the
construction leaves G connected, the resulting graph is a tree.

To reduce the number of cycles we replace an arbitrary edge that lies on a cycle by the
construction shown in Figure 3.7. Note that we can make the spiral in the center of the
construction so small that is does not prevent any connections in the remainder of the
graph. We iterate this construction until there are no cycles left. The resulting graph is a
tree T . Let kT be the number of leaves of T . It is clear that for each of the new leaves (in
the spiral centers) there is only one way to connect to another leaf, namely to the one that
restores the cycle we removed before. Hence, T can be augmented with kT /2 edges if and
only if G can be augmented with kG/2 edges.

The reduction can be performed in polynomial time since we introduce at most one
spiral per edge of G, each consisting of a constant number of edges. The length of the
shortest new edge of T is roughly proportional to the smallest distance among the vertices
of G.

We now generalize the proof of Theorem 3.2 to show that for any 2 ≤ c ≤ 5, it is
NP-hard to augment a plane geometric graph to be c-connected by adding a given number
of edges. Note that any planar graph has a vertex of degree at most 5, so planar graphs

32 Chapter 3: Augmenting the Connectivity of Planar and Geometric Graphs

v
(a)

v
(b)

Figure 3.8.: Adding edges to leaves in the second step of the construction of Gϕ (here with c = 5).

are at most 5-connected. To show that our construction has the desired properties, let us
make some simple observations.
Observation 3.1. Let G be a graph with vertices u and v. Then the following properties
hold:

(i) If G− u is c-connected and u has degree at least c, then G is c-connected as well.

(ii) If G− {u, v} is c-connected and vertices u and v are not adjacent and have degree at
least c− 1 but no common neighbor, then G+ uv is c-connected.

Proof. For showing property (i), suppose that S is a separator of G with |S| < k. Since S
is no separator in G− u, S splits off only u from G. Hence, S contains all neighbors of u,
and thus |S| ≥ k. Contradiction.

Similarly, for property (ii), suppose that S is a separator of G+uv with |S| < k. Since S
is not a separator of G−{u, v}, S splits off u or v (or both) in G+uv. This, however, is not
possible since both u and v have degree at least c in G+ uv and since their neighborhoods
are disjoint.

To generalize the proof of Theorem 3.2 to higher degrees of connectivity, we make the
graph Gϕ (c− 1)-connected in two steps.

First, we temporarily remove all I-shapes from Gϕ, subdivide the walls of the loopholes
as in Figure 3.3d into gray rectangles, and replace each gray rectangle in Figures 3.5 and 3.6
by a copy of the graph depicted in Figure 3.9a. We stick two building blocks together by
identifying the five vertices on the edge of one block to the five corresponding vertices on
the edge of the other block. Call the resulting graph G1

ϕ.
Second, we treat the former I-shapes of Gϕ. We connect each leaf of Gϕ by (c − 2)

additional edges to the boundary of G1
ϕ such that no two leaves have a common neighbor,

see Figure 3.8. We call the resulting graph G2
ϕ. We now show that G2

ϕ does the job.

Theorem 3.3. It is NP-hard to decide the following question: given integers 2 ≤ c ≤ 5
and k ≥ 1 and a (c− 1)-connected plane geometric graph G, can G be augmented to being
c-connected by adding at most k edges?

Proof. We again reduce from Planar3SAT, along the lines of the proof of Theorem 3.2.
We first show that G2

ϕ is (c− 1)-connected.
In order to see this, we claim that G1

ϕ is 5-connected. The walls of G1
ϕ are made from

copies of our basic building blocks. Such a block is 5-connected for two reasons; (a) it
consists of four copies of the smaller 5-connected graph, a sub-block, depicted in Figure 3.9b,
whose 5-connectivity we have verified by a computer program and (b) two neighboring
sub-blocks lie in the same 5-connected component. To see (b), consider the five portals
that we define on the boundary of each sub-block, see the black squares in Figure 3.9c.

3.2 Complexity 33

(a) (b) (c)

Figure 3.9.: A building block (a), a 5-connected sub-block with 33 vertices (b), proof that a building
block is 5-vertex connected (c).

Each vertex in a sub-block has five vertex-disjoint paths to its portals, which are connected
to the corresponding portals of the neighboring sub-block via (possibly trivial) pairwise
vertex-disjoint paths. Observations (a) and (b) plus symmetry show our claim.

Given that G1
ϕ is 5-connected and c ≤ 5, property (i) of Observation 3.1 yields that

G2
ϕ is (c− 1)-connected. Note that the leaves of Gϕ and the degree-(c− 1) vertices of G2

ϕ

are in one-to-one correspondence. Let K be their number. Clearly, in order to make G2
ϕ

c-connected, we need at least K/2 new edges. We claim that the graph G2
ϕ that we have

constructed above can be made c-connected by adding K/2 edges if and only if Gϕ can be
made biconnected by adding K/2 edges.

If G2
ϕ can be made c-connected by adding K/2 edges, then these edges form a matching

of the vertices of degree c− 1. This matching can also be added (in a plane fashion) to Gϕ.
Now we turn to the other direction. If Gϕ can be made biconnected by adding K/2

edges, we add the corresponding edges to G2
ϕ. We have shown above that G1

ϕ is 5- and
thus c-connected. Now property (ii) of Observation 3.1 yields that each of the remaining
vertices lies in the same c-connected component as G1

ϕ. This finishes the proof of our claim.
Clearly, our reduction is polynomial.

Using the same graph G2
ϕ in the reduction, we can prove the statement for edge

connectivity, too.

Corollary 3.2. Given integers 2 ≤ c ≤ 5 and k ≥ 1 and a (c− 1)-edge connected plane
geometric graph G, it is NP-hard to decide whether G can be augmented to being c-edge
connected by adding at most k edges.

34 Chapter 3: Augmenting the Connectivity of Planar and Geometric Graphs

Figure 3.10.: A cycle (left) and a near-cycle (right).

3.3. Convex Geometric Graphs
In this section we show that geometric PVCA and geometric PECA can be solved in
polynomial time for connected convex geometric graphs, that is, for graphs whose vertices
are in convex position. We focus on augmenting a given connected convex geometric graph
to bridge- and biconnectivity. Note that every convex geometric graph is outerplanar and
hence contains a vertex of degree at most 2, which prevents higher connectivity.

We first consider the very simple problem of biconnecting a convex geometric graph,
see Section 3.3.1. Then we give an algorithm that computes an edge set of minimum
cardinality that bridge-connects a convex geometric graph, see Section 3.3.2. Finally, in
Section 3.3.3 we consider a weighted version of bridge-connectivity augmentation. We
give an algorithm that computes a minimum-weight augmentation in a connected n-vertex
convex geometric graph in O(n2) time.

We assume that for a geometric graph the edges incident to a vertex are ordered
clockwise. If this information is not provided, we can easily compute it in O(n logn) time.

3.3.1. Biconnecting Convex Geometric Graphs
Consider an arbitrary connected convex geometric graph G. Suppose that there are two
consecutive vertices u and v on the convex hull that are not connected by an edge. Since
G is connected, adding the edge uv creates a new face F . It is not hard to see that every
vertex of F − {u, v} disconnects G. Hence, in a biconnected convex graph all edges of the
convex hull must be present.

On the other hand if all edges of the convex hull are present, then the graph is biconnected.
Hence, it suffices to add all edges of the convex hull that are not already in G to make
G biconnected. This is also the minimum number of edges that must be added. As the
convex hull of the point set can be computed in linear time if G is connected [Mel87], this
can be done in linear time.

3.3.2. Bridge-Connecting Convex Geometric Graphs
In this section we consider the problem of bridge-connecting a convex geometric graph
G = (V,E). We start by considering two basic graphs that are especially easy to bridge-
connect, the cycle and the near-cycle shown in Figure 3.10. While the cycle is already
bridge-connected, the near-cycle is not. It can, however, be bridge-connected by adding
the single missing edge to form a cycle.

The basic idea is to decompose an arbitrary convex geometric graph into cycles and
near-cycles and to use this decomposition to compute in a greedy fashion an edge set of
minimum cardinality that bridge-connects the graph.

3.3 Convex Geometric Graphs 35

1

2 3

4

5
6

Figure 3.11.: A convex geometric graph (left) and its decomposition along interior edges (right). The
dashed edges form a bridge-connectivity augmentation of minimal size, the numbers
indicate the processing order of the components.

We differentiate between two types of edges. If an edge connects two consecutive vertices
of the convex hull, we call it an outer edge, otherwise an inner edge. Note that if G is a
connected convex geometric graph that does not contain an inner edge, then G is a cycle
or a near-cycle.

Otherwise, an inner edge e = uv can be used to split G into two subgraphs that can be
augmented almost independently. The line defined by e splits the vertex set of G into two
convex point sets P1 and P2. We then define, for i = 1, 2, the graph Gi as the subgraph
of G induced by Pi ∪ {u, v}. The interplay between augmentations of these two graphs is
very limited since adding any edge between two vertices that are distinct from u and v and
that do not belong to the same subgraph would introduce a crossing with e and is hence
forbidden. On the other hand, the two augmentations are not completely independent as
it suffices for e to be in one cycle. Hence, we store, for each edge e of G, a flag indicating
whether e is already part of a cycle in the current partial augmentation. Initially all these
flags are set to false.

Splitting G recursively along all inner edges defines a tree T whose nodes correspond to
subgraphs of G. Two nodes of T are adjacent if and only if the corresponding subgraphs
share an edge of G. Note that the tree T is essentially the weak dual of the graph that is
obtained from G by adding all edges of the convex hull. The nodes of this tree correspond
to components that are cycles or near-cycles. Starting from E′ = ∅, we compute a minimum
augmentation E′ of G by iteratively augmenting a component C that corresponds to a leaf
of T . We do this as follows.

Let e = uv be the edge that is shared by C and its parent in T , and let C ′ = C \ {u, v}.
We distinguish three different types of components. If C is a cycle, we mark all edges of C
and remove C ′ from G. If C is a near-cycle that contains at least one edge except e that is
not yet marked, we add to E′ the unique edge that completes the cycle, mark e as lying on
a cycle and remove C ′ from G. Finally, if C is a near-cycle and each edge except possibly
e has been marked, we do not add any edge to E′ and remove all vertices of C ′ from G.
See Figure 3.11 for an example. Note that component 5 does not require an edge although
it is not a cycle.

Once we have processed the last component of G, the set E′ is an augmentation of G
since we only remove edges from G that are marked as lying on cycles in G + E′. The
minimality of E′ follows from the fact that in each component we need to add at most one
edge and we only add an edge to a component if it is strictly required.

36 Chapter 3: Augmenting the Connectivity of Planar and Geometric Graphs

edge a b d f
cost 2 4 5 10

f
b

d

a

x

y

e

Figure 3.12.: Example of a minimum-weight augmentation.

The algorithm can be implemented to run in linear time. The initial computation of T
takes linear time, maintaining a list of leaves of the decomposition tree can be done in
constant time per step and processing a component C takes time linear in the size of C.

We summarize our result.

Theorem 3.4. Let S be a set of n points in the plane, and let G = (S,E) be a connected con-
vex geometric graph. There is an efficient algorithm that computes a minimum-cardinality
set E′ of edges such that G + E′ is bridge-connected. If the convex hull of S and the
corresponding embedding of G is given, the algorithm runs in linear time and uses linear
space.

3.3.3. Minimum-Weight Augmentation
We now generalize the algorithm from the previous section to the case where every
potentially new edge e is associated with a positive cost c(e). We seek a minimum-cost
augmentation of a given plane graph G such that G becomes bridge-connected (while
remaining plane). For a set of edges E′ we define the cost of E′ as c(E′) = ∑

e∈E′ c(e).
Given a connected convex geometric graph with n vertices, we can solve the problem in
O(n2) time.

The basic idea is again to use a decomposition into (near-)cycles. The main difference
from the previous problem is that in a near-cycle it is not always the best solution to add
the unique edge that completes the cycle. Consider the graph given by the solid edges in
Figure 3.12. The costs of the vertex pairs that are connected by dashed line segments are
given in the table next to the drawing or will be specified later; all other non-adjacent
vertex pairs have a very high cost. We first focus on the component to the right of and
including the bold split edge e. Adding the unique edge f that completes the cycle would
incur a cost of 10, whereas adding the edge set E1 = {b, d} would incur a cost of only 9.
Adding the edge set E2 = {a, d} would be even cheaper, namely 7. This solution, however,
has the disadvantage that e does not lie on a cycle in the component to the right of e;
hence e is forced to lie on a cycle in the component to the left of e. Which option yields
the better solution globally depends on the costs of edges x and y. If c(y)− c(x) is greater
than c(E1)− c(E2), the optimal global solution is E1 ∪ {x}, otherwise E2 ∪ {y} is optimal.
Hence, we cannot make the decision between E1 and E2 in advance. Instead, we store both
costs for the component to the right of e, the cost w+(e) of a cheapest augmentation that
puts e on a cycle and the cost w−(e) of a cheapest augmentation that does not necessarily
put e on a cycle. Note that w+(s) ≥ w−(s) for any split edge s.

Initially, we set w+(e) =∞ and w−(e) = 0 for each outer edge e of G. We then compute
the decomposition tree T of G and process its components starting from the leaves as in
the algorithm described in the previous section. Other than there, we need to use dynamic

3.3 Convex Geometric Graphs 37

programming to find a global minimum-cost solution. Let C be a component and let e = uv
be the edge that is shared by C and its parent in T . We assume that, for all edges e′ of C
that are distinct from e, we already have computed w+(e′) and w−(e′). For any set E′ of
vertex pairs of C, we denote the set of bridges of C + E′ by brC(E′), and we define the
cost of E′ as

cost(E′) =
∑

e′∈brC(E′)\{e}
(w+(e′)− w−(e′)) +

∑
e′∈E′

c(e′).

The first term of the cost function describes the increase of augmentation cost stemming
from the fact that e is not on a cycle in C + E′ and hence must be part of a cycle in a
previously processed component. The second term is the cost for the edges in E′. We set

w−(e) = min
E′

cost(E′)

and

w+(e) = min
E′, e/∈brC(E′)

cost(E′).

We now show how to compute these values efficiently. If C is a cycle, then w−(e) =
w+(e) = cost(∅) = 0. If C is a near-cycle, we can reduce the computation of w−(e) and
w+(e) to a shortest-path problem as follows.

We say that an augmentation E′ of C is (inclusion) minimal if, for any proper subset
E′′ ⊂ E′, we have that brC(E′) is a proper subset of brC(E′′), that is, any smaller set also
covers fewer edges. The following lemma shows that the minimal plane augmentations of
C essentially have path structure.

Lemma 3.1. Let E′ be a minimal plane augmentation of C, and let u1, . . . , uk be the
vertices of C as they occur along C. Then E′ ∪ brC(E′) forms a path P from u1 to uk.
The subset of vertices that is visited by P occur along P in the same order as in C.

Proof. We first show that all vertices of P have degree at most 2, except for u1 and uk,
which have degree at most 1. Suppose that a vertex ui of P is incident to two distinct
vertices uj , uj′ with i < j < j′. Then the edge uiuj cannot be a bridge, since ui, uj , . . . , uj′
forms a cycle containing this edge. Therefore also uiuj belongs to E′ and since j′ > j we
have brC(E′ \ {uiuj}) = brC(E′). Analogously, ui can have at most one neighbor uj with
j < i in E′ ∪ brC(E′).

Next, we show that P connects u1 and uk. Note that u1 is not a singleton, as it either
is incident to an edge of E′ or u1u2 is in brC(E′). Let ui the vertex with the largest index
that belongs to the connected component of u1 in P . Note that i > 0 holds by the previous
observation and suppose that i < k. The choice of ui implies that ui is not adjacent to any
vertex uj with j > i in P . In particular, uiui+1 /∈ brC(E′), which implies the existence of
an edge ui′uj with i′ < i and j > i. Since uj is not in the same connected component as u1
(this would contradict the choice of ui we have that ui′ also belongs to another connected
component. Hence the path from ui to u1 must contain an edge urur′ with 1 < r < i′

and i′ < r ≤ i < j. Such an edge would however cross the edge ui′uj , contradicting the
planarity of E′. Hence we have i = k and P connects u1 and uk as claimed.

It remains to show that P is connected. Suppose that P contains a vertex ui that is not
connected to u1. Then there exists an edge ujuj′ with j < i < i′ in the path from u1 to uk.
Hence, the edges urur+1 with j ≤ r < i′ are not bridges and for all other edges urur′ ∈ E′

38 Chapter 3: Augmenting the Connectivity of Planar and Geometric Graphs

with i < r < r′ < i′ we have brc(E′) = brC(E′ \ {urur′}), which would contradict the
minimality of E′. Hence such a vertex ui does not exist and P is connected.

The planarity of E′ also implies that P contains the vertices as ordered along C.

Lemma 3.1 shows that we can compute w+(e) by finding a shortest u1–uk path in
the directed, weighted graph ~C = (VC , ~EC ; `) with vertex set VC = {u1, . . . , uk}, edge set
~EC = {uiuj | 1 ≤ i < j ≤ k, uiuj 6= e}, and weight

`(uiuj) =
{
w+(uiuj)− w−(uiuj), j = i+ 1
c(uiuj), j > i+ 1

for each edge uiuj in ~EC . Analogously, we can compute w−(e) by adding e to ~C with a
weight of 0. Since ~C is a directed acyclic graph, a shortest path can be computed in time
O(|~C|) = O(|C|2) [CLRS01]. This yields an overall running time of O(n2).

We have proved the following theorem.

Theorem 3.5. Let G be a connected convex geometric graph. Then we can find an edge
set E′ of minimum total weight such that G+ E′ is bridge-connected in O(n2) time.

3.4. Path Augmentation
In this section we consider the following two problems.

Planar k-path augmentation (k-PathAug):
Given a planar graph G, two vertices s and t of G, and an integer k > 1, find
a smallest set E′ of vertex pairs sucht that G + E′ is planar and contains k
edge-disjoint s–t paths.

Plane geometric k-path augmentation (geometric k-PathAug) is defined as above
with “planar” replaced by “plane geometric”. Note that for k = 2 the geometric case
(geometric 2-PathAug) is a relaxed version of PECA. Both problems have a variant
where the aim is to find vertex-disjoint paths. We refer to this as the vertex variant of
(geometric) k-PathAug.

In the following we give a polynomial-time algorithm for planar 2-PathAug. We then
turn to the geometric version of the problem. We show that in the worst case n/2 edges
are needed for geometric 2-PathAug. For k > 2 geometric k-PathAug does not always
have a solution. We give necessary and sufficient conditions for geometric 3-PathAug. We
do not consider the non-geometric variant 3-PathAug, because every planar graph with
at least four vertices can be triangulated and hence, can be augmented to contain three
vertex-disjoint paths between any two vertices [KN05].

3.4.1. Planar 2-Path Augmentation
Theorem 3.6. 2-PathAug and its vertex variant can be solved in linear time.

Proof. We only consider the edge variant; the vertex variant can be solved analogously.
Let G = (V,E) be a planar graph, let s and t be two vertices of G, and let C1, . . . , Cr be
the 2-edge connected components of G. We first consider a special case of the problem.

3.4 Path Augmentation 39

s t

Figure 3.13.: Zig-zag path of n vertices that needs n/2 edges (dashed) to augment [AGH+08].

We assume that the 2-edge connected components of G form a path C1, . . . , Cr and that
s ∈ C1 and t ∈ Cr.

For each component Cj with 2 ≤ j ≤ r − 1 consider the two vertices uj and vj of Cj
that are incident to bridges. We say that Cj is a pearl, if Cj + ujvj is planar. This is the
case if and only if Cj has an embedding such that uj and vj lie on the outer face. If Cj is
not a pearl, we say that Cj is a ring.

Let i < k and let wi and wk be vertices of Ci and Ck, respectively, such that G+wiwk is
planar. Now assume there is a component Cj with i < j < k that is a ring. Then the graph
that results from contracting C1 ∪ · · · ∪ Cj−1 to uj and Cj+1 ∪ · · · ∪ Cr to vj is Cj + ujvj .
Contractions do not violate planarity, thus Cj + ujvj is planar. This, however, violates the
assumption that Cj is a ring. Hence no edge in a planar augmentation of G can “bypass”
a ring. In other words, an optimal augmentation contains an edge between C1 and the
first ring, between the first and the second ring, etc., and between the last ring and Cr. If
there are no rings, the optimal augmentation consists of an edge connecting C1 and Cr, for
example, between the corresponding cut vertices.

Now we consider the general case, that is, the 2-edge connected components form a
tree T . In T , the components that contain s and t are connected by a path. This is the
special case we have treated above. Obviously, any planar augmentation of the subgraph
induced by the components on the path is also a planar augmentation of G. Since no ring
on the path can be bypassed, there is no planar augmentation of G that uses fewer edges.

The tree of the 2-edge connected components can be computed in linear time. Finding
the ring components on the path between s and t also takes linear time. Hence the whole
algorithm runs in linear time.

3.4.2. Geometric 2-Path Augmentation
Although geometric 2-PathAug appears to be a simplification of geometric PECA, it is
not obvious how to take advantage of this. Therefore we consider the worst-case problem:
how many edges are needed for geometric 2-PathAug in the worst case. For a zig-zag path
with end vertices s and t whose vertices are in convex position n/2 edges are needed in
order to establish two edge-disjoint s–t paths, see Figure 3.13. Abellanas et al. [AGH+08]
came up with this example to show that, for trees, geometric PECA sometimes requires
n/2 edges. They conjectured that n/2 edges always suffice to augment a tree to bridge-
connectivity. Recently, Tóth [Tót08] confirmed this. This shows that n/2 edges always
suffice for geometric 2-PathAug in trees.

We show that any plane geometric graph has, for any two vertices s and t, an s–t 2-path
augmentation with at most n/2 edges. We also give a simple algorithm that finds such
an augmentation in linear time. We use the fact that every geometric graph G = (S,E)
has a geometric triangulation, that is, there is a graph T = (S,E′) with E ⊆ E′ such that
all faces of T except perhaps the outer face are triangles. This follows from the fact that

40 Chapter 3: Augmenting the Connectivity of Planar and Geometric Graphs

every simple polygon has a triangulation [dBCvKO08].

Lemma 3.2. Let S be a finite set of points in the plane, and let s, t ∈ S. Let G = (S,E)
and G′ = (S,E′) be connected plane geometric graphs such that E ⊆ E′. If G′ contains a
path of length L between s and t, then there exists an s–t 2-path augmentation of G with
at most L edges.

Proof. We can assume that G′ is a triangulation of S since this does not increase the length
of a shortest s–t path in G′.

Let π be a path of length L between s and t in G′. We denote its vertices by s =
v0, . . . , vL = t. We use induction on L to show that we can augment G with L edges. We
start with the case L = 1, that is, G′ contains the edge e = {s, t}. If s and t lie in the
same 2-edge connected component of G, G already contains two edge-disjoint s–t paths
and we’re done. Otherwise we consider two cases.

If e is not in G, then s and t lie in the same 2-edge connected component of G+ e since
G is connected. If e is already in G then e is a bridge (otherwise s and t would be in the
same 2-edge connected component). Removing e from G yields two connected subgraphs
G1 and G2 of G. Since G′ is a triangulation of S that contains all edges of G, there exists
an edge e′ = vw in G′ with v ∈ G1 and w ∈ G2 such that e′ is different from e and G+ e′

is plane. In G+ e′ the vertices s and t lie in the same 2-edge connected components.
We now consider L > 1. Given a path π of length L we first apply the induction

hypothesis to the path π′ = v0, . . . , vL−1. Then we use the same argument as above to
show that it suffices to add at most one edge to G to make sure that vL−1 and vL are in the
same 2-edge connected component. The augmented graph is plane since it is a subgraph
of G′.

For the main result of this section it remains to show that triangulations have small
diameter. We need the following notation. Given a triangulation T and vertices s and
t in T , we denote by d(s, t) the length of a shortest s–t path in T . For a vertex v of T
we denote by N i(v) = {u ∈ T | d(v, u) ≤ i} the set of vertices of T at distance at most i
from v and by ∂N i(v) = {u ∈ T | d(v, u) = i} the set of all vertices at distance exactly i
from v. Note that N i+1(v) = N i(v)∪∂N i+1(v) for any vertex v in T and any integer i ≥ 0.

Lemma 3.3. Let S be a set of n points in the plane, and let T = (S,E) be a triangulation
of S. Then T contains a path of length at most n/2 between any pair of points in S.

Proof. We first show that for any vertex v of T and for any integer i ≥ 0 it holds that
|N i(v)| ≥ 2i+ 1 or N i(v) = S. For i = 0 the statement clearly holds. For i > 0, we show
that either |∂N i(v)| ≥ 2 or N i(v) = S. Clearly, ∂N i(v) = ∅ implies N i(v) = S since T is
connected. If ∂N i(v) = {x} and N i(v) 6= S then there exists a vertex y in S \N i(v). In
this case, however, the fact that every path from s to y must contain x implies that x is
a cut vertex, which contradicts the fact that T is a triangulation, and thus biconnected.
This proves our lower bound on |N i(v)|.

Now consider any pair of vertices s and t in S and set k = bn/2c. By the previous
inequality we have that |Nk(s)| ≥ 2 bn/2c+ 1 ≥ n and hence Nk(s) = S. Hence, t lies in
Nk(s) and, by the definition of Nk(s), there exists a path of length at most n/2 from s
to t.

Together, Lemmas 3.2 and 3.3 yield the following theorem.

3.4 Path Augmentation 41

Theorem 3.7. Let S be a set of n points in the plane, let G = (S,E) be a plane geometric
graph, and let s and t be two vertices of G. Then there is an s–t 2-path augmentation of G
that uses at most n/2 edges.

We now improve this bound for the case that the convex hull CH(S) of S does not
contain too many points. The basic idea is to simultaneously grow neighborhoods around s
and t; once N i(s) and N i(t) both contain vertices of CH(S) for some i ≥ 0, there is a
relatively short path connecting them.

Lemma 3.4. Given a set S of n points in the plane, a geometric triangulation of S has
diameter at most 2(n+ 3)/5 + h/2, where h = |CH(S)|.

Proof. Let T be a triangulation of S and let v be a vertex of T . We claim the following. If
N i(v) ∩ CH(S) = ∅ then |N i(v)| ≥ 3i+ 1.

We show this by induction on i. Clearly, the claim holds for i = 0. Now let i ≥ 1. We
apply the induction hypothesis to N i−1(v) and show that |∂N i(v)| ≥ 3 if N i(v)∩CH(S) = ∅.
Assume, for the sake of contradiction, that |∂N i(v)| ≤ 2. That means that all paths going
from N i−1(v) to S \N i(v) must pass through one of the two vertices in ∂N i(v). Hence,
∂N i(v) is a separator of cardinality 2. Let T ′ be the plane graph that results from T
by triangulating the outer face of T (using non-straight-line edges). Since all edges in
T ′ − T connect points on the convex hull of S, which is disjoint from N i(v), it holds that
∂N i(v) is a separator of cardinality 2 of T ′. This is a contradiction to the fact that every
fully triangulated graph is 3-connected. Hence, our assumption is wrong, and the case
|∂N i(v)| ≤ 2 is ruled out. In other words, |∂N i(v)| ≥ 3 for all i ≥ 1 with N i(v)∩CH(S) = ∅.
This proves our claim.

Now let

k = min{i | N i(s) ∩N i(t) 6= ∅ or both N i(s) ∩ CH(S) 6= ∅ and N i(t) ∩ CH(S) 6= ∅}.

be the first iteration where the iterated neighborhoods either meet or both have reached
the convex hull of S.

Clearly there exists a path of length 2k + h/2 between s and t. The neighborhoods give
a path from s to the convex hull and from t to the convex hull and any two points on the
convex hull are connected by a path of length at most h/2.

We now bound k in a similar fashion as before. We have |Nk−1(s) ∪ Nk−1(t)| ≥
5(k − 1) + 2 = 5k − 3 since the neighborhoods of s and t grow by at least two vertices as
shown in the proof of Lemma 3.3 and one of them grows by at least three vertices by the
claim above. On the other hand |Nk−1(s) ∪Nk−1(t)| ≤ n. From this we get k ≤ (n+ 3)/5.

Hence there exists a path from s to t with length at most 2k+h/2 ≤ 2(n+3)/5+h/2.

Note that the bound in Lemma 3.4 is strictly better than the bound in Lemma 3.3 if
h < (n− 12)/5.

We now turn to the corresponding algorithmic problem. In the remainder of this
subsection we show how to compute a solution to geometric 2-PathAug of size at most
n/2 in linear time. Given a graph G, our algorithm consists of the following three steps.

1. Find any triangulation T of G.

2. Compute a shortest path π from s to t in T .

3. Construct an s–t 2-augmentation from π (whose existence follows from Lemma 3.2).

42 Chapter 3: Augmenting the Connectivity of Planar and Geometric Graphs

s t
1 2 2

3

34 5 4 5 5

π′

π v4 v6

w2

1

v2 v3 v5 v7 v8

1
1

5

5 5

5

(a) A geometric graph G (solid gray, solid black and
dashed black edges) with an s–t path π′ (black;
bridges are dashed). The s–t path π (dotted
gray straight line) belongs to the triangulation T ,
which is not shown.

s t

(b) The same graph G (gray edges) and the augmen-
tation (black edges) computed by our algorithm.

Figure 3.14.: Example for the linear-time 2-path-augmentation algorithm.

Concerning step 1, note that the boundary of the outer face of a plane geometric graph
is, in general, not a simple polygon. It is however weakly simple in the sense that segments
that have a common point in the interior are actually the same segment. Algorithmically,
weakly simple polygons can be handled just like simple polygons [AGH+08].

Therefore, we can apply Melkman’s linear-time algorithm [Mel87] for computing the
convex hull of a polygonal chain to compute the convex hull of our geometric graph. We
then add edges between neighboring points on the convex hull. Now all interior faces of our
graph are weakly simple polygons and can hence be triangulated in linear time [Cha91].
Let T be the resulting triangulation of G.

Concerning step 2, a shortest s–t path π in T can be found in linear time using
breadth-first search.

Finally, concerning step 3, we want to show how to find an augmentation of G in linear
time. We first compute a data structure that allows us to measure how we proceed along
the path π by adding edges. Let π′ be a simple s–t path in G. We remove all bridges of G
that are used by π′. We call the resulting graph G′. We number the connected components
of G′ in the order in which they occur along π′ and label the vertices of each component
accordingly, starting with 1. Note that, by construction, all vertices on π′ that have the
same label lie in the same 2-edge connected component (with respect to the graph G). We
denote the label of a vertex u by `(u). See Figure 3.14a for an example.

As in the proof of Lemma 3.2, we go through the edges of π in order, starting from
the edge leaving s. We consider the edges of π directed towards t. Initially, we set j = 1.
Throughout the algorithm we maintain the following two invariants.

(I1) It holds that j ≥ `(v) for each vertex v of π whose incoming edge has already been
processed.

(I2) All vertices of π′ with label up to j lie in the same 2-edge connected component of G.

Both invariants clearly hold for j = 1. Together, the invariants yield the correctness of
the algorithm since π ends in t and hence, according to invariant (I1), we have j = `(t)
after the last step and thus, by invariant (I2), s and t belong to the same 2-edge connected
component.

3.4 Path Augmentation 43

We now describe the algorithm and show that it preserves the two invariants. We
distinguish two main cases based on the values of j and of the label `(v) of the endpoint of
the current edge e = uv of π.

If `(v) ≤ j (as for e = v5v6 in Fig. 3.14a), we simply advance to the next edge of π.
Clearly, this preserves both invariants.

If `(v) > j, we add a suitable edge to G as follows. If e is not in G (as for e = v3v4
in Fig. 3.14a), we simply add e to G and set j to `(v). Otherwise (as for e = v4v5 in
Fig. 3.14a), e is a bridge of G lying on the path π′ and we have `(v) = `(u) + 1. In the
triangulation T , the edge e = uv bounds at least one triangle. Let uwv be such a triangle.
Hence, there are two possibilities for adding an edge to G; either uw or wv. If `(w) > `(u)
(as for u = v4 and v = v5 in Fig. 3.14a), we add the edge uw (edge v4w in Fig. 3.14a) and
set j to `(w) (to 5 in Fig. 3.14a). Otherwise, we add the edge wv and set j to `(v).

Clearly, the number of edges we add is bounded by the length of the path π. See
Fig. 3.14b for the edges that are added in the case of the graph from Fig. 3.14a.

We now argue that the algorithm preserves our invariants. By our choice of j, it is clear
that invariant (I1) holds. To prove (I2), let a and b be the two endpoints of the newly
added edge. Let a′ be a vertex of π′ closest to a in G′ (in terms of graph distance) and let
πa be a shortest a–a′ path. Let b′ and πb be defined analogously. Since πa and πb lie in G′,
`(a) = `(a′) and `(b) = `(b′). As `(a) 6= `(b), πa and πb are disjoint; they “live” in different
2-edge-connected components of G. The newly added edge ab together with πa and πb
and the subpath of π′ that connects a′ and b′ form a simple cycle. This shows that, after
adding the new edge ab, vertices a′ and b′ belong to the same 2-edge connected component
of G. By invariant (I2) we have that a′ lies in the same 2-edge connected component as s.
Now we use transitivity and the fact that, after the addition of ab, variable j is set to
`(b) = `(b′). This yields that indeed, after adding ab, all vertices of π′ with label at most j
lie in the same 2-edge connected component. In summary, we have proved the following
theorem.

Theorem 3.8. Let S be a set of n points in the plane, let G = (S,E) be a plane geometric
graph, and let s and t be vertices of G. Then there exists a set E′ of at most n/2 vertex
pairs such that G+E′ is a plane geometric graph that contains two edge-disjoint s–t paths.
Such a set of vertex pairs can be computed in O(n) time.

3.4.3. Geometric 3-Path Augmentation
In this section we consider the problem of augmenting geometric graphs to contain more
than two disjoint s–t paths while staying plane. The planar case obviously always has
a solution, because every planar graph can be triangulated and a planar triangulation
is always 3-connected. Hence we focus on the plane geometric cases in this section. In
the following we give necessary and sufficient conditions for when plane geometric s–t
3-augmentation has a solution.

We first consider the vertex version of the problem, that is, given a geometric graph
G = (S,E) and two vertices s and t of G, add edges to G such that G contains three
vertex-disjoint s–t paths.

The Vertex-Disjoint Case

Let T = (S,E) be any plane geometric triangulation, and let s and t be any two vertices
of T . An edge between two vertices of the convex hull that does not belong to the convex

44 Chapter 3: Augmenting the Connectivity of Planar and Geometric Graphs

s t

u

v

w

w′

(a)

s t

u

vw

w′

(b)

Figure 3.15.: Removing an s–t separating chord uv by flipping (a). If the new edge ww′ is again
an s–t separating chord, then uw or vw is an s–t separating chord that is closer to s
than uv (b).

hull itself is called a chord. A chord e = {u, v} is s–t separating if s and t lie in different
connected components of T \ {u, v}.

Obviously there exist three vertex-disjoint s–t paths in T if and only if T does not
contain an s–t separating chord. Hence we can rephrase our original question in the
following form: Let G be any plane geometric graph. Can we triangulate G such that the
resulting triangulation TG contains no s–t separating chord? The following theorem states
that this question can be answered in the affirmative.

Theorem 3.9. Let S be a finite set of points in the plane, let G = (S,E) be a plane
geometric graph, and let s and t be any two vertices of G. If G contains no s–t separating
chord, we can compute a triangulation TG that contains three vertex-disjoint s–t paths.

Proof. In the first step we add all edges of the convex hull to G and compute any trian-
gulation of the interior. We can give a total ordering to the s–t separating chords of the
triangulation by their facial distance from s. Let uv be the chord that is closest to s. Let
uvw be the triangle that is on the same side as s with respect to uv and let uvw′ be the
other triangle bounded by uv. As u and v lie on the convex hull, we can flip the chord uv,
that is, replace uv by the edge ww′ without destroying planarity; see Figure 3.15a. If the
new edge ww′ was an s–t separating chord, then one of the edges uw and vw would have
to be an s–t separating chord that is closer to s than uv, contradicting the choice of uv;
see Figure 3.15b. Hence we have removed an s–t separating chord without introducing a
new one. Inductively we obtain the desired triangulation TG.

The Edge-Disjoint Case
In this section we consider the problem of adding edges to a given plane geometric graph G
such that for two fixed vertices s and t of G there exist three edge disjoint s–t paths. Since
every plane geometric graph can be triangulated, we characterize the triangulations that
contain three edge-disjoint s–t paths.

Theorem 3.10. Let S be a finite set of points in the plane, let T = (S,E) be a geometric
triangulation of S, and let s and t be any two vertices of T . Then T contains three
edge-disjoint s–t paths if and only if s and t have degree at least 3.

Proof. Clearly the degree conditions are necessary for the existence of three edge-disjoint
paths in T . We show that they are also sufficient. We use Menger’s Theorem, which says
that a graph is k-connected if and only if it contains k vertex-disjoint paths between any

3.5 Concluding Remarks 45

s t

π1

π2

u

v
we1

e2

s1

s2

(a)

s2
s t

π1

π2

u
v

w

e1

e2

s1

(b)

Figure 3.16.: Hand rail construction along path π1.

pair of vertices. Hence, since T is biconnected, there exist two vertex-disjoint s–t paths π1
and π2. We now show that we can find a third s–t path π3 that is edge-disjoint from π1
and π2.

We start our construction of π3 by constructing a path to a vertex s∗ on (π1 ∪ π2) \ {s}.
Let e1 and e2 be the first edges of π1 and π2, respectively. Since s has degree at least 3
and T is triangulated, there exists a triangle incident to s whose boundary contains exactly
one of the edges e1 and e2. Let s, s1, and s2 be the vertices of this triangle. We assume
without loss of generality that ss1 = e1. We start π3 with the edge ss2, which neither
belongs to π1 nor to π2. If s2 lies on π1 (see Figure 3.16a), we let s∗ = s2. Otherwise
(see Figure 3.16b) we append the edge s2s1 to π3 and let s∗ = s1. Note that s2s1 neither
belongs to π1 nor to π2.

We now show that given the vertex s∗ on π1, we can continue the construction of π3
by using π1 as a “hand rail”. Let u be a vertex on π1 (initially u = s∗), and let v be the
vertex next to u on π1 in the direction of t. Then the edge uv bounds a triangle on at
least one side. If v = t then, due to deg(t) ≥ 3, there exists a triangle whose boundary
contains ut and two other edges that do not belong to π1 and π2. Hence, we can use these
to connect π3 to t. If v 6= t, we consider the triangle {u, v, w} whose boundary contains uv.
If w is incident to v on π1 in the direction of t, then we append the edge uw to π3, see
Figure 3.16a. Otherwise we append edges uw and wv to π3, see Figure 3.16b. In neither of
the two cases do we use edges that belong to π1 or π2.

Note that the path we construct in this way is not necessarily simple. This can be
corrected by removing cycles.

3.5. Concluding Remarks
We have studied the complexity of several connectivity augmentation problems. We have
showed that PECA, PVCA, and their geometric variants are all NP-hard. On the positive
side, we have given efficient algorithms for 2-PathAug and its vertex variant on planar
graphs. Further, we have studied worst-case bounds for geometric 2-PathAug, and
we have fully characterized geometric graphs that can be augmented to contain three
(vertex-)disjoint s–t paths.

In particular, we have seen that although the problem of bridge- or biconnecting a given
connected graph is polynomial-time solvable, adding the constraint of preserving planarity
makes these problems much more difficult and shows a different face of planarity than the
helpful one. On the other hand, planarity was still helpful in many cases, in particular the
strong planarity conditions of convex geometric graphs allow to solve PECA for convex

46 Chapter 3: Augmenting the Connectivity of Planar and Geometric Graphs

geometric graphs, even in the much more difficult weighted case. This is a stark contrast
to the result of Frederickson and Ja’Ja [FJ81] that finding a minimum-weight edge set that
biconnects a given tree is NP-hard, even if the weights are restricted to the set {1, 2}.

Open Problems. We conclude with some open questions. The most important open
questions are whether geometric PECA and geometric PVCA admit efficient constant-
factor approximations. This would nicely complement the negative results on these problems.
A worthwhile direction for future work may also be to study the worst-case behavior of
augmenting a (c− 1)-connected plane geometric graph to be c-connected for c > 2.

More questions arise from a look at Table 3.1; what are the correct entries for the
remaining open cells? Is it possible to adapt Kant’s optimal augmentation algorithms for
outer-planar graphs [Kan96] to the weighted case?

Finally, what is the complexity of the path augmentation problems for which we have
given worst-case bounds in this chapter? In particular, can geometric 2-PathAug be
solved efficiently?

Chapter 4

Switch Graphs

Switch graphs offer enhanced modeling capabilities over ordinary graphs. A switch consists
of a set of edges that share a common vertex. A configuration of a switch graph picks
one edge from each switch. Therefore, a switch graph describes a family of graphs and a
configuration describes a concrete member of this family. By construction, switch graphs
are well-suited for modeling graph-theoretic problems that involve structural decisions.
Given a switch graph, we wish to find out whether the corresponding family of graphs
contains a member that satisfies a specified graph property.

We derive a variety of results on the algorithmics of switch graphs. On the negative
side we prove hardness of the following problems: Given a switch graph, does it possess
a bipartite/planar/triangle-free/Eulerian configuration? On the positive side we design
fast algorithms for several connectivity problems in undirected switch graphs, and for
recognizing acyclic configurations in directed switch graphs.

The chapter is based on joint work with Bastian Katz and Gerhard Woeginger [KRW10].

4.1. Introduction
What is a switch graph? A switch s on an underlying vertex set V is a pair (ps, Ts)
where ps ∈ V is the pivot vertex and where Ts ⊆ V is a non-empty set of target vertices.
The vertex set V and some set S of switches on V together form a switch graph G = (V, S).
A configuration of a switch graph is a mapping c : S → V such that c(s) ∈ Ts for all
s ∈ S. The configuration selects exactly one edge ec(s) := {ps, c(s)} for every switch
s ∈ S, and thus yields a corresponding multi-set Ec = {ec(s) : s ∈ S} of edges. The
corresponding multi-graph is denoted Gc = (V,Ec); see Figure 4.1 for an illustration.
Biologically speaking, a switch graph represents the genotype of an entire population of
graphs, and every configuration specifies the phenotype of one concrete member in this
population.

A brief history of switch graphs. Over the last 30 years a huge number of fairly
unrelated combinatorial structures has been introduced under the name switch graph or
switching graph; see the introduction of the paper by Groote and Ploeger [GP08] for some
pointers to the literature. The switching graph model of Meinel [Mei89] comes very close
to the model that is investigated in this chapter. Another somewhat restricted type of
switch graph has been introduced by Cook [Coo03] who studied cyclic configurations as
an abstraction of certain features in Conway’s game of life. In Cook’s model the vertices

48 Chapter 4: Switch Graphs

s1

s2

s3

s4

s5

s6

s1

s2

s3

s4

s5

s6

Figure 4.1.: To the left: A switch graph G with six switches, where s5 has only a single target.
To the right: A configuration yielding a multigraph Gc. Edges belonging to the same
switch are marked by an arc at their pivot. The edges picked by the configuration are
shown in black, the grey edges are not picked.

are not allowed to have degrees higher than three, and every switch has an obligatory
incident edge that must show up in every configuration. Reinhardt [Rei09] essentially
studies Cook’s model, but drops the constant degree constraint. Reinhardt constructs a
polynomial-time O(|V |4) algorithm that decides whether there exists a configuration that
contains a simple path between two prespecified vertices. He also links switch graphs to
certain matching problems in computational biology [SGYBD05]. We note that Cook’s
and Reinhardt’s switch graph models can both easily be emulated by our switch graph
model. Huckenbeck [Huc93, Huc97] studied a related but more general problem where the
configuration of valves at nodes decides which pairs of incoming and outgoing edges of a
node may be used by a path.

Groote and Ploeger [GP08] concentrate on switch graphs with binary switches (where
every target set contains two elements). Their work is motivated by the problem of solving
Boolean equation systems, which is known to be equivalent to the model checking problem
in modal µ-calculus, a problem whose complexity is yet open. Previously, Groote and
Keinänen showed that solving Boolean equation systems can be reduced to solving parity
games [GK04]. A parity game is a two player game that is played on a directed graph
whose vertices are labeled with natural numbers, called priorities. From a given starting
node, the two players, usually called 0 and 1, alternatingly move to an adjacent node. This
results in an infinite path. If the smallest priority that occurs infinitely often in the path is
even, Player 0 wins, otherwise Player 1 wins. It is not hard to see that the player decisions
at each node can be encoded as switches; at a node, a player must choose exactly one of
the outgoing edges. A winning strategy for player 0 then consists of a switch setting (that
is, a decision for each node), such that on all cycles the lowest occurring priority is even.

Motivated by this observation, Groote and Ploeger [GP08] study the complexity of
finding configurations of given switch graphs that have certain graph properties. For
instance, they show that in directed binary switch graphs, one can decide in polynomial time
whether there is a configuration that connects (respectively disconnects) two prespecified
vertices. This chapter was heavily inspired by the conclusions section of their work;
our results in Theorems 4.3, 4.5, and 4.9 answer open questions that have been posed
there [GP08].

Contribution. Let P be any graph property and let G be a switch graph. We say that
a configuration c of G has property P if Gc satisfies property P. Every graph property P
naturally leads to a corresponding algorithmic problem on switch graphs: Given a switch
graph G, does there exist a configuration with property P? We will derive a collection of

4.2 Basic Definitions 49

positive and negative results for various graph properties.

• It is NP-hard to decide whether a given switch graph has a configuration that is
(a) bipartite, (b) planar, or (c) triangle-free. The three hardness proofs are presented
in Section 4.3.

• We establish a number of matroid properties for switch graphs that possess a connected
configuration. This yields a simple O(|S|+ |V |2) time greedy algorithm for finding a
configuration that minimizes the number of connected components (and of course
also settles the question whether there is a connected configuration); see Section 4.4.

• We provide a linear-time algorithm to detect a configuration that connects two given
vertices in an undirected switch graph. This substantially improves the O(n4) time
complexity of Reinhardt’s result [Rei09]; see Section 4.5.

• Finding a configuration in which all vertex degrees are even is easy, but finding a
configuration with a Eulerian cycle is NP-hard for forward directed switch graphs as
well as for undirected switch graphs. Moreover, it is NP-hard to find a configuration
that is biconnected (for undirected switch graphs) or strongly connected (for forward
directed switch graphs); see Section 4.6.

• Deciding whether a forward directed switch graph allows an acyclic configuration can
be done in linear time. In contrast to this, finding a configuration that minimizes
the number of directed cycles is NP-hard; see Section 4.7.

We stress that our negative results hold in the most restricted binary switch model, whereas
our positive results apply to the general model.

4.2. Basic Definitions
Let G = (V, S) be a switch graph. For a subset S′ ⊆ S of switches and a configuration c, we
denote Ec(S′) = {ec(s) : s ∈ S′} andGc(S′) = (V,Ec(S′)). We denote V (s) := Ts∪{ps} and
V (S′) := ⋃

s∈S′ V (s). For S′ ⊆ S and V ′ ⊆ V , we denote by S′(V ′) := {s ∈ S′ | V (s) ⊆ V ′}
the set of inner switches of V ′. Observe that V (S′(V ′)) ⊆ V ′. A switch graph has fan-out k
if |Ts| ≤ k for all s ∈ S. It is called binary if |Ts| ≤ 2 holds for all s ∈ S. Throughout this
chapter we will use n := |V |, m := |S|, and m := ∑

s |Ts|. Note that m ≤ m ≤ km for the
fanout k of G.

Although this chapter mainly deals with undirected graphs, all definitions easily carry
over to directed switches and directed multi-graphs. In a forward switch s = (ps, Ts),
arcs must be directed from pivot to target. In a reverse switch s = (Ts, ps), arcs must
be directed from target to pivot. A directed switch graph may contain both, forward and
reverse switches. A forward directed switch graph contains only forward switches.

Note that all problems we consider in this chapter ask for configurations of a given
switch graph with properties that can be tested in polynomial time on usual graphs. Since
every switch graph has at most nm configurations, all NP-hard problems presented in this
chapter are also NP-complete.

50 Chapter 4: Switch Graphs

x?
1 x1 x1 x?

2 x2 x2 x?
3 x3 x3 x?

4 x4 x4

v11 v12 v13 v21 v22 v23

(x1 ∨ x2 ∨ x3)∧
(x2 ∨ x3 ∨ x4)

Figure 4.2.: Reduction of 3-Sat to SwitchTriangleFree

4.3. Bipartite, Planar, and Triangle-Free Graphs
In this section, we show hardness of finding configurations that are bipartite, triangle-free
or planar.

Theorem 4.1. For binary undirected switch graphs, it is NP-hard to decide if there is a
bipartite configuration (SwitchBipartite).

Proof. We sketch a reduction from SetSplitting: Given a ground set X = {x1, . . . , xn}
and a set T of 3-element subsets of X, it is NP-hard to decide whether there is a partition
of X into two sets X1, X2, such that every t ∈ T has non-empty intersection with both,
X1 and X2 [GJ79]. For a given instance of SetSplitting, we construct a switch graph
G = (V, S), containing vertices x1, . . . , xn for the elements of X. For each triplet ti ∈ T we
introduce a switch si = (xj , ti − {xj}) for an arbitrary xj ∈ ti.

Every solution X1, X2 to SetSplitting yields a bipartite configuration: Color the
vertices xi according to X1, X2. Then every triplet t contains both colors, which allows to
set the corresponding switch to connect two vertices of distinct colors. Conversely, every
bipartition of some configuration Gc induces a bipartition of the xi. For any triplet in T ,
the switches prevent the corresponding three vertices from receiving all the same color,
and thus the induced partition yields a solution to SetSplitting.

Theorem 4.2. For binary undirected switch graphs, it is NP-hard to decide if there is a
triangle-free configuration (SwitchTriangleFree).

Proof. The proof is by reduction from 3-Sat. Let ϕ be an instance of 3-Sat. Without
loss of generality we assume that each clause contains three different variables. For each
variable xi we create three vertices x?i , xi and xi, and a variable switch si = (x?i , {xi, xi}).
For every clause Cj , we add three new vertices vj1, v

j
2, v

j
3. If the kth literal in clause Cj

corresponds to variable xi, we introduce an edge (vjk, {x?i }). If it is xi, we introduce a
switch (vjk, {v

j
k+1, xi}). If it is xi, we introduce a switch (vjk, {v

j
k+1, xi}), defining v

j
4 := vj1.

See Figure 4.2 for an example.
Intuitively, the variable switch is supposed to pick the true literal. A clause switch can

only connect outside the clause, if its corresponding literal is satisfied. Consequently, in
a satisfying truth assignment we can connect at least one switch of every clause to the
outside, thus avoiding all triangles. Conversely, a triangle-free configuration specifies a
truth assignment for the variables such that every clause contains at least one satisfied
literal. Otherwise, the corresponding clause switches would induce a triangle.

Theorem 4.3. For binary undirected switch graphs, it is NP-hard to decide if there is a
planar configuration (SwitchPlanar).

4.3 Bipartite, Planar, and Triangle-Free Graphs 51

x

x

x?

`1x`2x`...x

`1x`2x`...x

sx tx

(a)

`·x

`·y

`·z

(b)

Figure 4.3.: Gadgets for the reduction of Monotone Planar 3-Sat to SwitchPlanar. The
variable gadget forces that either upper or all lower literal switches have a target outside
the variable gadget (a). The clause gadget forms a K5 if all its switches choose a target
inside the clause (b).

Proof. The proof is by reduction from Monotone Planar 3-Sat. Planar 3-Sat is a
well-known NP-hard restriction of 3-Sat where additionally the variable–clause graph is
assumed to be planar. Monotone planar 3-Sat is even more restricted: the literals of each
clause must be either all positive or all negative. Moreover, the variable–clause graph can
be drawn in the plane without crossings such that all the variables are on the x-axis, the
clauses with positive literals are above the x-axis and the clauses with negative literals are
below the x-axis. Monotone planar 3-Sat is NP-hard [dBK10].

Let ϕ be an instance of planar monotone 3-Sat. For every variable x, we introduce a
variable gadget as depicted in Figure 4.3a with one variable switch sx and switches with
pivots `ix and `ix for every occurrence i of a literal x or x in a clause. For every clause C,
we introduce a clause gadget as depicted in Figure 4.3b, which basically is a K5 of which
three edges can be disabled by setting a switch appropriately. We identify the pivots of
these switches (and the pivots themselves) with the vertices `ix or `ix for the respective
literal x or x and an i induced by the drawing of ϕ. An example is given in Figure 4.4.

A solution to ϕ induces a planar drawing by switching sx for a true x to x and the
switches with pivots `ix to the inner of the variable gadget, the switches with pivots `ix to
the inner of the clause gadget. For a false x, we set switches accordingly. Conversely, in a
planar drawing at most two switches of a clause gadget may be switched to the inner of the
clause, which otherwise would be a K5. If, in turn, some switch with pivot `ix is switched
to the inner of the variable gadget, the switch sx must be switched to x, since otherwise
contraction of the path tx`1x . . . `ix would make the upper half of the variable gadget a K5.
Analogously, any switch with pivot `ix being switched to the inner of the variable clause
forces sx to be switched to x.

52 Chapter 4: Switch Graphs

(x1 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x4 ∨ x5)

Figure 4.4.: Example reduction of Monotone Planar 3-Sat to SwitchPlanar.

4.4. Global Connectivity
In this section we discuss the question whether a given switch graph G = (V, S) has a
connected configuration. It turns out that this question has many ties to matroid theory,
which allows us to invoke some powerful machinery from mathematical programming.

In this context a structure is a tuple (E,F) consisting of a ground set E and a set
system F ⊆ 2E over the ground set. Let further c : E −→ R be a cost function. Many
combinatorial optimization problems can be cast into this form such that the goal is to
find a set X ∈ F with maximum total weight. In its full generality this problem is very
difficult. It becomes more feasible, if we pose additional requirements on the structure. A
matroid is a structure (E,F) that satisfies the following three properties.

(i) ∅ ∈ F ;
(ii) Y ∈ F and X ⊆ Y implies X ∈ F ;
(iii) If X,Y ∈ F with |X| > |Y |, then there is an x ∈ X \ Y such that Y ∪ {x} ∈ F .

The sets in F are also called independent sets. For matroids, the maximization problem
mentioned above can be solved by a simple greedy algorithm [KV08]. The algorithm starts
with the empty set and successively either adds elements or discards them, depending on
whether adding an element yields a set belonging to F . If the elements are processed in
non-increasing order of weight, the algorithm is guaranteed to find a solution of maximum
weight. To employ the greedy algorithm it is necessary to have a fast independence test that
checks for a given set X ∈ F and an element x ∈ E whether X ∪ {x} ∈ F . The running
time of the algorithm is usually dominated by n applications of such an independence
test. In the following we omit the cost function since we are only interested in solutions of
maximum size, instead of weight.

4.4 Global Connectivity 53

For the problem of connecting a given switch graph, we propose two approaches, one
that immediately shows membership in P, but results in a complicated and not very
practical algorithm and a second algorithm that requires a longer argument but is both
faster and simpler.

First, we consider two matroids (E, I1) and (E, I2) that both have the same ground set
E, which is the set of all the multi-edges over V that can possibly result from any switch
in S. The set system I1 consists of all cycle-free subsets of E. The set system I2 consists
of all subsets of E that contain at most one multi-edge from each switch. Then (E, I1)
forms a graphic matroid and (E, I2) forms a partition matroid. Obviously, the switch
graph G = (V, S) has a connected configuration, if and only if there exists a set E′ ⊆ E of
cardinality n− 1 that belongs to both I1 and I2. This is a standard matroid intersection
problem, which can be solved in polynomial time [Edm69].

It is not hard to see that the intersection (E, I1 ∩ I2) itself does not form a matroid. In
the following, we will model the problem in terms of a single matroid, which yields simpler
and faster algorithms. Our approach is based on a third structure (S, I3) that is defined
over the ground set S of switches. A subset S′ ⊆ S lies in I3, if there exists a configuration
c such that Ec(S′) is cycle-free (or in other words, such that Ec(S′) belongs to I1).

Theorem 4.4. The structure (S, I3) forms a matroid.

Proof. Clearly the set system I3 contains the empty set and is closed under taking subsets.
It remains to show that for two independent sets A,B ⊆ S with |A| < |B|, there is an
s ∈ B \A such that also A ∪ {s} is independent.

Since A and B are independent, there exist configurations a and b for which the
corresponding edge sets Ea(A) and Eb(B) are cycle-free. Among all such configurations a
and b, we consider a pair that maximizes the number of switches that are in A ∩B and
that configure into the same edge both in configuration Ea(A) and in configuration Eb(B);
such switches are called good switches. Since Ea(A) and Eb(B) are cycle-free, they belong
to I1 in the underlying graphic matroid. Since |Ea(A)| = |A| < |B| = |Eb(B)|, there exists
an edge e ∈ Eb(B) \ Ea(A) such that Ea(A) ∪ {e} is cycle-free.

Let se ∈ B denote the switch that in configuration b generates edge e. We claim that
this switch se cannot be in A: Otherwise configuration a would configure this switch se into
an edge f . Then we can modify configuration a into a new configuration c by switching se
into e instead of f . The resulting edge set Ec(A) is still cycle-free, whereas the number of
good switches has increased. That is a contradiction. Hence se /∈ A, and A ∪ {se} is an
independent set of switches.

Our next goal is to get a better understanding of independence in (S, I3).

Lemma 4.1. A set S′ ⊆ S is independent if and only if |T | < |V (T)| holds for all T ⊆ S′.

Proof. One direction of the proof is easy: If there is a T ⊆ S′ with |T | ≥ |V (T)|, then
every configuration c induces a cycle on T since |Ec(T)| = |T | ≥ |V (T)| holds.

For the other direction of the proof, we consider a set S′ ⊆ S that contains some switch
s ∈ S′ for which S′′ = S′ − {s} is independent. We will show that then either S′ itself is
independent, or that it contains an appropriate subset T with |T | ≥ |V (T)|. Indeed, since
S′′ is independent there exists a configuration c for which Ec(S′′) is cycle-free. Adding an
arbitrary edge e from switch s to Ec(S′′) produces a configuration c for S′ whose edge set
E := Ec(S′′)∪ {e} contains at most one cycle. If the edge set forms an acyclic graph, there
is nothing to show. We hence assume that is contains a single cycle. Let C0 denote the

54 Chapter 4: Switch Graphs

s3

s1

s2

s5

0

3

1

2

5

4

s4

Figure 4.5.: A proper switch sequence s1, . . . , s5 that eventually breaks the cycle. Switches are
reinserted changing s5, s4, s1.

connected component that contains the cycle, and let V0 denote the set of all vertices in
V (S′) that are not in C0.

We work through a number of removal phases. In the ith phase (i ≥ 1) we select a
switch si = (pi, Ti) that contributes an edge ei to component Ci−1, and whose target set
Ti contains a target t∗i in some set Vj(i) with 0 ≤ j(i) ≤ i− 1. We remove the edge ei from
the edge set, and thus split component Ci−1 into two connected parts. The part containing
the cycle becomes the new component Ci, and the vertices of Ci−1 in the other (cycle-free)
part form the set Vi. Then the (i+ 1)th removal phase starts.

There are two possibilities how this process can terminate: Either (i) there is no
appropriate switch with a target in V0, . . . , Vi−1, or (ii) removing the edge destroys the
cycle in component Ci−1. In case (i), we choose T as the set of switches in component Ci−1;
then |T | ≥ |V (T)|, and we are done. In case (ii) we will show how to reinsert and how to
reconfigure the removed edges and switches step by step in reverse order sk, sk−1, . . . , s1 so
that the resulting edge set is cycle-free (here k denotes the number of the last phase). See
Figure 4.5 for an illustration.

Throughout the procedure we will maintain the following invariant: Just after the
reconfiguration of switch si (1 ≤ i ≤ k), there exists an index `(i) with 0 ≤ `(i) < i, such
that the vertex set V`(i) ∪

⋃
h≥i Vh forms a cycle-free connected component with respect to

the current edge set. This component is called the crucial component; intuitively speaking
we will make it grow until it covers all of V (S′). We start the growing process with switch
sk, which by definition has a target t∗k in the set Vj(k) with j(k) < k. By reinserting the
edge {pk, t∗k} for switch sk and by setting `(k) := j(k), we satisfy the invariant. In handling
a switch si with i < k we distinguish two cases: First, if i 6= `(i+ 1) then we simply reinsert
its old edge ei and keep `(i) := `(i + 1). This merges the vertices in Vi into the crucial
component while maintaining the invariant since j(i) ≤ i−1. In the second case i = `(i+1).
We insert the new edge {pi, t∗i }, and set `(i) := j(i). This merges the vertices in Vj(i) into
the crucial component, and again maintains the invariant. This reconfiguration process
eventually produces a cycle-free configuration for S′, and thus completes the proof.

The statement of Lemma 4.1 is combinatorial, but its proof is algorithmical and yields as
a by-product a fast independence test for the matroid (S, I3): Given an acyclic configuration

4.4 Global Connectivity 55

of an independent set S′′ we can check in O(n + m) time whether a given switch s can
be added to S′′ without destroying independence: The independence of S′′ implies that
|S′′ + s| ≤ n, which also bounds the number of removal phases. To achieve selection of
removable switches within a total of O(n+m) time, we direct all edges in Ec(S′) that are
not part of the cycle to point away from it. Whenever a switch si is removed, we use this
information to mark all vertices in Vi. Obviously, this only adds O(n+m) time. A switch
s is a candidate if it has a marked target and both ps and c(s) are unmarked. A set of
candidates can be maintained in O(m) total time.

If the test is positive, we obtain a corresponding cycle-free configuration for S′′ ∪ {s}. If
the test is negative, we get the final component Ck−1 that contains the cycle. Let U denote
the set of all switches in S′′ that contribute an edge to Ck−1. Then |U | = |V (Ck−1)| − 1,
and none of the switches in U has a target outside of V (Ck−1). Hence in any cycle-free
configuration of S′′ the switches in U induce a connected graph on V (Ck−1); such a set U of
switches is called a tight set. These ideas lead to the following theorem, which is the main
result of this section. Note that, as a special case, the theorem yields a polynomial-time
algorithm for recognizing switch graphs with connected configurations.

Theorem 4.5. For a given switch-graph on n vertices whose underlying multigraph has m
edges, we can determine in O(n2 + nm) time a configuration that minimizes the number of
connected components.

Proof. Any basis B of the matroid (S, I3) yields a cycle-free configuration with the maximum
number of edges, and hence a configuration with the minimum number of connected
components; the switches not in B can then be set arbitrarily. Hence it is enough to
determine a basis, and this is done by the standard greedy algorithm.

We start with the empty set, and test the switches one by one. If the test is positive, we
add the switch and update the cycle-free configuration. If the test is negative, we discard
the switch and contract all switches in the corresponding tight set U . These contractions
can be done in overall O(nα(n)) time by using a union-find data structure. Every test
on a non-trivial graph costs O(kn) time. Every positive test adds an edge to a cycle-free
edge set; hence there are at most n− 1 of these tests. Every negative test on a non-trivial
graph contracts some vertices; hence there are at most n− 1 of these tests. All negative
test on trivial graphs (that have been contracted to a single vertex) together cost O(m)
time. All in all, this yields the claimed time complexity.

Global Connectivity and Bipartite Matching. Although not obvious at first sight,
there is a strong similarity between global connectivity in switch graphs and bipartite
matching. Both problems can be expressed as an intersection of two matroids and the
characterization of independent sets of switches is very similar to Hall’s theorem [Hal35].
In this section we show that this similarity is no coincidence and that in fact, bipartite
matching can be expressed in terms of global connectivity and that in this case the
characterization of independent switch sets is exactly Hall’s theorem.

Let G = (A ∪B,E) be a bipartite graph with |A| = |B|. We construct a switch graph
G′ = (V, S) as follows. Let V consist of B and a new vertex s. Now for each vertex a ∈ A
we create a switch sa = (s,N(a)) where N(a) denotes the neighbors of a in G. The graph
G has a perfect matching if and only if G′ has a connected configuration. This is the case
if and only if all |A| switches of G′ are independent, that is, |S′| < |V (S′)| holds for every
S′ ⊆ S. By the construction of G′ this is equivalent to the statement that every set A′ ⊆ A
has at least |A′| neighbors, which is Hall’s theorem [Hal35].

56 Chapter 4: Switch Graphs

SwitchConnect-T . We further briefly analyze a generalization of the global connectivity
problem, where only a subset of terminal is required to be in the same connected component.
The problem SwitchConnect-T is defined as follows. Given a switch graph G = (V, S)
and a set T ⊆ V of terminals, does there exist a configuration c such that in Gc all vertices
of T are in the same connected component?

Theorem 4.6. SwitchConnect-T is NP-hard.

Proof. We reduce from 3-Sat. Let ϕ be an instance of 3-Sat. We construct a switch
graph Gϕ as follows. For each clause C we create a vertex vC and for each variable x we
create two literal vertices vx and vx̄. For each clause we create a switch sC = (vC , TC)
where TC is the set of vertices corresponding to literals that occur in C. Finally, we add
one new node s and for each variable x a switch sx = (s, {vx, vx̄}). Let T be the set that
contains all clause-vertices and the node s.

We claim that Gϕ has a configuration that connects T if and only if ϕ has a satisfiable
truth assignment. Given a truth assignment of ϕ we construct a configuration of Gϕ as
follows. For each variable x we set c(sx) = vx if x has the value true and c(sx) = vx̄
otherwise and for each clause C we set c(sC) = v where v is a vertex that corresponds to
a satisfied literal of C. Conversely from a configuration c that connects T we can find a
truth assignment by setting x to true if c(sx) = vx and false otherwise.

The claim follows from the fact that a clause vertex vC is connected to s if and only if
the corresponding clause C is satisfied by the truth assignment. Note that we can reduce
to binary switches by replacing each switch with three targets by two binary switches.

Although SwitchConnect-T is NP-hard in general it can be solved in polynomial
time for some special cases. We have already shown that it can be solved efficiently in the
case T = V . In the next section we will show that the problem can be solved in polynomial
time if |T | = 2.

Moreover, from the polynomial-time algorithm for T = V it follows that the problem
is fixed-parameter tractable (FPT) with respect to the parameter k′ := n − |T | (that is
whether it admits an algorithm with running time in O(f(k′)nc), where c is a constant,
and f is a function that depends only on k′) since we can enumerate all possible subsets V ′
of V \ T and solve the corresponding connectivity instance G− V ′. It is an open question
whether SwitchConnect-T is FPT with respect to |T | or even if it can be solved in
polynomial time if |T | = 3.

4.5. Local Connectivity
In this section, we investigate configurations that connect two given vertices a and b by a
path. In the following, we call a sequence of switches a forward path if every switch’s pivot
is a target of its predecessor. A contraction of a switch s in a switch graph is defined as
the switch graph identifying all vertices in Ts ∪ {ps}.

Lemma 4.2. Let G = (V, S) be a switch graph, a and b two vertices of G, and s be any
switch such that in (V, S \ {s}), there is a (possibly trivial) forward path from ps to b. Let
G′ be the result from contracting s. Then G can be switched to connect a and b if and only
if this is possible for G′.

4.5 Local Connectivity 57

a b

ps
ta tb

P

(a) Non-trivial case: P (grey) connects
both endpoints a and b with targets
of s

a b

ps
ta tb

x

a b

ps
ta tb

x

(b) The forward path (dashed) from ps to b hits a first vertex x on
P , allowing to bypass either ps − tb or ps − ta without altering a
switch on P .

Figure 4.6.: A path in G′c′ witnesses a path in Gc for some configuration c.

Proof. First, by contracting a switch, it is not possible to lose connectivity. We will thus
assume that it is possible to find a configuration c′ that connects a and b in G′ and show
that this witnesses such a configuration c for G. We denote the path in G′c′ as a sequence
of switches P . If P forms a single path in Gc′ , or if P connects either a or b to ps, finding
a connecting configuration is trivial. Otherwise, P forms two paths, connecting a to some
ta ∈ Ts and b to some tb ∈ Ts. In this situation, depicted in Figure 4.6, we can make use of
the fact that in S − s, there is a forward path from ps to b. Its first switch is not part of P ,
and we simply follow the forward path until we hit some vertex x on P . Now, switching
the forward path from ps to x gives us a bypass on either ps− ta or ps− tb and switching s
accordingly connects a and b.

This lemma provides a simple test for a-b-connectivity: If there is a configuration c that
connects a and b in Gc, there either is a forward path from b to a or there is a contractable
switch, since there must be a first switch that is used “forward” on the path from a to b in
Gc. The proof of Lemma 4.2 is constructive, naively implemented, it yields an O(n2 + nm)
time algorithm to test the existence of and compute a connecting configuration by storing
a forward path for each contraction. It is not difficult to improve the running time for the
problem of deciding whether an ab-path exists to almost linear time by using a Union-Find
data structure. However, it is not as easy to also provide a corresponding path if it exists.
Instead we show that the local connectivity problem is in fact equivalent to the problem of
finding an augmenting path with respect to a matching. This yields a fast algorithm for
solving the local connectivity problem.

Theorem 4.7. Given a switch graph G = (V, S) on n vertices whose underlying multi-
graph has m edges and two vertices a, b ∈ V , it can be determined in O(m+n) time whether
a configuration that connects a and b exists.

Proof. We construct a new graph H = (VH , EH) and a matching of H as follows. For each
vertex v ∈ V we create two node vertices v1 and v2 in VH and add to EH the edge ev = v1v2.

58 Chapter 4: Switch Graphs

v

w

x

y

s s′

(a)

v1

v2

w1 w2

x1

x2

y1 y2

s1 s2 s′2 s′1

(b)

v1

w1 w2

x2

y1 y2

s1 s2 s′2 s′1

(c)

Figure 4.7.: Example for the reduction of local connectivity to finding an augmenting path. A
switch graph (a) and corresponding graph H with matching M drawn as bold edges (b).
The augmenting path v1s1s2w1w2s

′
2s
′
1x2 in H − {v2, x1} corresponds to the path vwx

in G (c). The fact that H − {y2, w1} does not admit a perfect matching shows that
there is no path from y to w in G.

We call these edges node edges. For each switch s = (p, T) ∈ S we create two switch vertices
s1 and s2 in VH and we add the edges s1p1 and s1p2, which we call pivot connector edges,
the switch edge s1s2, and for each of its targets t ∈ T the edges s2t1 and s2t2, called target
connector edges. We choose the matching M = {v1v2 | v ∈ V } ∪ {s1s2 | s ∈ S}. We now
claim that there is a configuration that connects a and b in G if and only if there exists an
augmenting path from a1 to b2 in H − {a2, b1} with respect to M ′ = M \ {a1a2, b1b2}. See
Figure 4.7 for an example.

Let c be a configuration such that a and b are connected. Then a simple path between
a and b in Gc can be described by an alternating sequence of vertices and switches
v1s1v2s2 . . . vk−1sk−1vk with a = v1, b = vk and such that all switches and all vertices are
distinct and for i = 1, . . . , k − 1 it holds that ec(si) = vivi+1. To compute an alternating
path between a1 and b2 in H−{a2, b1} we drop all vertices of this sequence and replace each
switch si for i = 1, . . . , k − 1 as follows. If vi is the pivot of si we replace si by vi1si1si2vi+1

2 ,
otherwise we replace it by vi1si2si1vi+1

2 . This substitution results in an alternating a1b2-path
in H with respect to M ′.

Conversely assume that we have an alternating a1b2-path in H − {a2, b1} with respect
to M ′. A first observation is that any alternating path in H that contains a node vertex v1
or v2 stemming from a vertex v ∈ V \ {a, b} must also contain the corresponding node edge
v1v2 and thus both node vertices since v1v2 is in M ′. The same holds for switch vertices
s1 and s2 for all switches s ∈ S. Second, the matching edges that are contained in an
alternating path must alternate between switch edges and node edges since by construction
of H no two node vertices and no two switch vertices are connected by an edge that is
not in M ′. Further, for a node vertex and a switch vertex that are adjacent in H the
corresponding switch is incident to the corresponding vertex in G. Hence, the alternating
a1b2-path in H − {a2, b1} yields an ab-path in the underlying multigraph of G, that is, the
graph that contains all edges that can possibly result from any configuration of G. As the
path in H can contain at most one target connector edge of each switch this path contains
at most one edge of each switch and hence can be realized by a configuration. This proves
the claim.

It is not hard to see that the reduction can be performed in linear time and that also the
resulting path can be translated back in linear time. The claim follows since the existence
of an augmenting path can be checked in linear time [Tar83].

4.6 Even Degrees, Eulerian Graphs and Biconnectivity 59

4.6. Even Degrees, Eulerian Graphs and Biconnectivity
In this section we study the problems of finding a Eulerian or a biconnected configuration
and several related problems. A graph is Eulerian (that is it admits a cycle that uses each
edge exactly once) if and only if it is connected and all vertices have even degrees. As
we have seen in Section 4.4, a connected configuration of a switch graph can be found
efficiently, if it exists. It turns out that a configuration for which all vertex degrees are
even can be found efficiently, too.

Lemma 4.3. For an undirected switch graph G = (V, S), a configuration in which all
vertex degrees are even (SwitchEven) can be computed in polynomial time.

Proof. We use the results of Cornuéjols [Cor88] on the general factor problem: Let (W,E)
be an undirected graph, and for every v ∈W let D(v) be a subset of {1, . . . , |W |}. Does
there exist a subset F ⊆ E, such that in the graph (W,F) every vertex has its degree in
D(v)? Cornuéjols [Cor88] shows that this problem can be decided in polynomial time, as
long as the sets D(v) do not contain any gap of length 2. (A set D of integers contains a
gap of length 2, if it contains two elements d1 and d2, such that d2 ≥ d1 + 3 and such that
none of the numbers d1 + 1, . . . , d2 − 1 is in D.)

For the proof of the lemma, construct a bipartite auxiliary graph between the set of
switches and the set of vertices in the switch graph. Put an edge between any switch s and
all targets in Ts. A vertex v ∈ V is called odd (even), if it is the pivot of an odd (even)
number of switches. For any switch s ∈ S set D(s) = {1}. For any even vertex v ∈ V
set D(v) = {0, 2, 4, . . .}, and for any odd vertex v ∈ V set D(v) = {1, 3, 5, . . .}. Note that
none of these sets contains a gap of length 2. It can be seen that the auxiliary graph has
a factor obeying the degree constraints if and only if the graph G has a configuration in
which all vertex degrees are even.

While this settles the membership of SwitchEven in P, the algorithm is not very
efficient. We therefore also provide a more elementary algorithm that is faster, namely
needs time O(n·(m̄+n)). Let G = (V, S) be a switch graph and let c be a configuration. We
define a helper switch graph H(c) = (V, Sc) that contains one switch for each switch of G in
the following manner. For every s ∈ S we define a corresponding switch (c(s), Ts \ {c(s)})
that has the current target of c(s) as pivot and as targets the target set of s minus the
current target. For ease of use we identify corresponding switches in the graphs G and
H(c).

Assume that two vertices a and b that are odd in Gc can be connected by a path in
H(c) with a configuration h. Let s1, . . . , sk be the set of switches in this path. We define a
new configuration c′ of G as follows: We set c′(s) = h(s) if s ∈ {s1, . . . , sk} and c′(s) = c(s)
otherwise. Now the even vertices of Gc′ are exactly the even vertices of Gc plus a and b.
By the definition of c′ the degree of a vertex changes from Gc to Gc′ by 1 for each edge on
the path between a and b in H(c)h. Since all interior vertices of the path have an even
number of incident edges only the parity of a and b changes. This suggests a very simple
strategy for finding even configurations: Start with any configuration c of G and as long as
there exists an odd vertex a find a path in H(c) that connects a to an odd vertex b and
change the configuration accordingly.

It remains to show that if the strategy does not succeed in finding an even configuration
then there is none. We prove that if there exists an even configuration c∗ of G then for any
odd vertex a of Gc it is possible to switch a path in H(c) that connects a to another odd
vertex b. Consider the graph H ′ = (V,EH′) with EH′ = {{c(s), c∗(s)} | s ∈ S with c(s) 6=

60 Chapter 4: Switch Graphs

c∗(s)}. Note that this graph can by definition be obtained as a subgraph of H(c) with a
suitable configuration h. Each edge in H ′ represents a change of the degree of its incident
vertices by 1 when changing c to c∗. Therefore, even (odd) vertices of Gc have even (odd)
degree in H ′. Hence a must have odd degree in H ′. Since the connected component of H ′
that contains a must have an even number of odd vertices, there is an odd vertex b in this
component and hence we can switch a path between a and b in H(c) as claimed. We have
proved the following theorem.

Theorem 4.8. For an undirected switch graph G = (V, S), SwitchEven can be decided
in O(n · (m̄+ n)) time.

As we have seen, we can efficiently check whether a given switch graph admits a connected
configuration and whether it admits an even configuration. A Eulerian configuration is
one that satisfies both properties simultaneously. Interestingly, this combined problem is
much more difficult than the two individual problems, and in fact NP-hard as we show
in the next theorem. Moreover, achieving higher degrees of connectivity, such as finding
a biconnected configuration or a strongly connected configuration in the case of directed
graphs is NP-hard as well.

Theorem 4.9. For binary undirected switch graphs it is NP-hard to decide whether there is
a Eulerian or a biconnected configuration. For forward directed switch graphs it is NP-hard
to decide whether there is a Eulerian or a strongly connected configuration.

Proof. We reduce from DirectedHamiltonianCycle, which is known to be NP-hard
for directed graphs with out-degree bounded by two [Ple79].

Let G = (V,E) be a directed graph with out-degrees 1 and 2. We define a switch
graph H = (V, S) as follows. For each vertex v ∈ V we add a switch sv = (v,N(v)) where
N(v) = {u ∈ V | (v, u) ∈ E}. Now, since for every configuration c the graph Hc has n
vertices and n edges, the following properties are equivalent:

(i) G has a directed Hamiltonian cycle.

(ii) H has a directed Eulerian configuration as a directed switch graph.

(iii) H has a strongly connected configuration as a directed switch graph.

(iv) H has a biconnected configuration as an undirected switch graph.

(v) H has a Eulerian cycle as an undirected switch graph.

The claim follows since the reduction can be performed in linear time.

4.7. Acyclic and Almost Acyclic Graphs
This section mainly deals with forward directed switch graphs (as defined in Section 4.2):
We check in polynomial time whether such a graph has a DAG configuration, and we show
that finding a configuration with the minimum number of directed cycles is NP-hard.

Hence, let G = (V, S) be a forward directed switch graph, and observe the following.
First: The out-degree of every vertex in Gc is independent of the chosen configuration.
Second: If all vertices in a digraph have out-degree at least 1, then the graph contains a

4.7 Acyclic and Almost Acyclic Graphs 61

(x1 ∨ x2 ∨ x3)∧
(x2 ∨ x3 ∨ x4)

x1 x1 x2 x2 x3 x3 x4

v1 v2

x4

w

z

Figure 4.8.: Reduction of 3-Sat to SwitchDirectedAcyclic with reverse switches.

directed cycle. Third: If G contains a sink v (that is, a vertex v with out-degree 0), then it
is safe to configure all switches s with v ∈ Ts towards this sink. These three observations
suggest a simple procedure: As long as the graph contains a sink v, we first set c(s) := v
for all switches s with v ∈ Ts, and then remove v together with all these switches. The
procedure either stops with an empty graph (and an acyclic configuration), or with a
non-empty subgraph of G in which all vertices have out-degree at least 1 (in which case
there is no acyclic configuration). The algorithm can easily be implemented to run in linear
time. In contrast, finding an acyclic configuration in general directed switch graphs and
minimizing the number of cycles in forward directed switch graphs is hard.

Theorem 4.10. For a forward directed switch graph, it can be decided in O(n+ m̄) time
if it has an acyclic configuration. If an acyclic configuration exists, it can be found within
the same time complexity.

Theorem 4.11. For a directed switch graph, it is NP-hard to decide if it has an acyclic
configuration (SwitchDirectedAcyclic).

Proof. The proof is by reduction from 3-Sat. Let ϕ be an instance of 3-Sat with variables
x1, . . . , xn and clauses C1, . . . , Cm. We construct a switch graph Gϕ as follows: We
start with two vertices z and w and the arc (w, z). For each variable xi we create two
corresponding vertices xi, xi and a reverse switch si = ({xi, xi}, w). For each clause Ci
we add a vertex vi and the arc (z, vi). Let xu, xv, xw be the variables occurring in clause
Ci. We set `u = xu if xu occurs negated in Ci and `u = xu otherwise. We define `v, `w
analogously. We then add a clause switch sCi = (vi, {`u, `v, `w}). See Figure 4.8 for an
example.

A satisfying truth assignment for ϕ yields an acyclic configuration c of Gϕ: For each
variable xi we set c(si) = xi if xi is assigned the value true and c(si) = xi otherwise. Since
each clause of ϕ is satisfied in this configuration at least one target of every clause switch
has out-degree 0. Hence every clause switch can easily be configured to avoid all cycles.

Furthermore, an acyclic configuration c of Gϕ yields a satisfying truth assignment for ϕ:
We set variable xi to true if c(si) = xi and to false otherwise. As the configuration is
acyclic every clause switch must have a sink as target, and this sink represents a satisfied
literal in the corresponding clause.

Note that although the clause switches have fan-out 3, the result also holds for binary
switch graphs, as we can replace each switch with fan-out 3 by two binary switches without
affecting the number of cycles with respect to any configuration.

62 Chapter 4: Switch Graphs

x x

w

xin xin

xoutxout

sx sx

Figure 4.9.: Replacement of reverse switches for reduction of SwitchDirectedAcyclic to Switch-
MinimumDirectedCycles

Theorem 4.12. For a forward directed switch graph G and an integer k > 0, it is NP-hard
to decide if there is a configuration with at most k cycles (SwitchMinimumDirectedCy-
cles).

Proof. We show how to simulate a binary reverse switches with usual binary forward
switches at the cost of one additional cycle. Let G′ be an instance of SwitchDirectedA-
cyclic with k binary reverse switches. We construct a directed switch graph G by
replacing each reverse switch s = ({x, x}, w) by the following construction. We add four
vertices xout, xout, xin, xin along with the arcs (xin, x), (xin, x), (xout, x), (xout, x) and the
two forward switches sx = (x, {xin, xout}), sx = (x, {xout, xin}); see Figure 4.9.

As each replacement creates at least one cycle every configuration of G has at least k
cycles. Each replacement has four distinct configurations. Two of them directly correspond
to a configuration of the original reverse switch, namely the ones where one of the vertices
x, x is connected to its in- and the other one to its out-vertex. We say that a configuration
of G is good for the replacement in this case. There is a bijection between the acyclic
configurations of G′ and the configurations of G with k cycles that are good for each
replacement.

Let c be a configuration of G with k cycles. We can modify c such that it is good for each
replacement without increasing the number of cycles: The case c(sx) = xout, c(sx) = xout
can be excluded, as it would induce two cycles. In case c(sx) = xin, c(sx) = xin we can
change c(sx) := xout without increasing the number of cycles thus making c good for the
replacement. This operation does not increase the number of cycles, as we introduce at
most one new cycle, namely xout but at the same time remove at least the cycle xxinxxin.

Hence G admits a configuration with at most k cycles if and only if G′ has an acyclic
configuration. Since G can be constructed in linear time from G′ the problem to decide
whether such a configuration exists is NP-hard.

4.8. Concluding Remarks
In this chapter we have studied the complexity of fundamental problems on switch graphs.
While finding a configuration of a switch graph such that the resulting graph satisfies a
certain property P is NP-hard for many properties, we gave efficient algorithms for certain
connectivity problems. In particular, we have shown how to test efficiently, whether all
vertices of a switch graph can be connected and how to check whether two given vertices
can be connected.

4.8 Concluding Remarks 63

One approach to solve the global connectivity problem was to consider two matroids on
the edges, the subsets of edges forming an acyclic subgraph and the subsets of edges that
can result from a configuration. The intersection of these two matroids contains exactly
those acyclic edge sets that can be produced by configurations and hence its elements of
size n − 1 correspond to spanning trees that can be produced by configurations. This
is a very general approach and shows that in fact for any graph property that induces
a matroid on the edges (for example, rigidity [Lam70]), the corresponding switch graph
problem can be solved efficiently.

Finding a planar configuration can be formalized similarly, one set contains again the
edge sets that can result from configurations, while the other one contains the edge sets
that result in a planar graph. Here the sets of size m in the intersection correspond to the
planar configurations. However, the problem of determining whether a planar configuration
exists turned out to be NP-hard. The crucial difference is that the planar subgraphs of
a graph do not form a matroid; removing a few edges from a maximal planar edge set
E′ ⊆ E may allow for inclusion of other edges of E, possibly resulting in an edge set E′′
with |E′′| > |E′| that is still planar.

Open Problems. We leave open the question whether it is possible to check in poly-
nomial time if three given vertices can be connected simultaneously and, more generally,
whether the problem SwitchConnect-T is fixed-parameter tractable with respect to |T |.

Chapter 5

Matchings in Planar Graphs with
Fixed Minimum Degree

In this chapter we present algorithms that compute large matchings in planar graphs
with fixed minimum degree. The algorithms give a guarantee on the size of the computed
matching and run in linear time. Thus they are faster than the best known algorithm
for computing maximum matchings in general graphs and in planar graphs, which run in
O(
√
nm) and O(n1.188) time, respectively. For the class of planar graphs with minimum

degree 3 the bound we achieve is known to be best possible. Further, we discuss how
minimum degree 5 can be used to obtain stronger bounds on the matching size.

The chapter is based on joint work with Robert Franke and Dorothea Wagner [FRW10].

5.1. Introduction
A matching is a set of independent (that is, pairwise non-adjacent) edges in a graph. A
maximum matching is a matching of maximum cardinality, and a maximal matching cannot
be enlarged by adding edges.

The problem of finding maximum matchings in graphs has a long history, dating back
to Petersen’s theorem [Pet91], which states that every biconnected 3-regular graph has a
perfect matching, that is a matching that matches every vertex.

Finding maximum matchings, or large matchings in general, has many applications; see
for example the book on matching theory of Lovász and Plummer [LP86]. To date the
asymptotically fastest (but rather complicated) algorithm for finding maximum matchings
in general graphs runs in O(

√
nm) time [MV80], where n and m are the numbers of vertices

and edges of the given graph, respectively. Only recently have faster algorithms for dense
graphs, for planar graphs, for graphs of bounded genus, and for general H-minor free graphs
been suggested. They are all based on fast matrix multiplication (which, as a tool, is not
very practical) and run in O(nω) time for dense graphs [MS04], O(nω/2) time for planar
graphs [MS06] and for graphs of bounded genus [YZ07], and in O(n3ω/(ω+3)) ⊂ O(n1.326)
time for H-minor free graphs [YZ07], where ω ≤ 2.376 is the exponent in the running
time of the best known matrix-multiplication algorithm [CW87]. However, for practical
purposes, often slower, but less complicated algorithms are used: both LEDA [Alg07] and
the Boost Graph Library [SLL07] provide maximum-matching algorithms that are based
on repeatedly finding augmenting paths and have a running time of O(nmα(n,m))[Tar83].

There has been a sequence of increasingly general characterizations of graphs with

66 Chapter 5: Matchings in Planar Graphs with Fixed Minimum Degree

perfect matchings [Pet91, Hal35, Tut47]. This has also led to algorithms that test the
existence of or compute perfect matchings in o(

√
nm) time in, for example, bipartite

k-regular graphs [Sch99, COS01], 3-regular biconnected graphs [BBDL01], and subgraphs
of regular grids [Thu90, HZ93, KR96]. The last four algorithms all work in linear time for
the corresponding subclasses of planar graphs. Moreover, for planar bipartite graphs a
perfect matching can be computed in O(n log3 n) time if it exists [MN95, FR06]. There is
also a fast algorithm for finding unique maximum matchings [GKT01]. It takes O(m log4 n)
time in general and O(n logn) time in planar graphs.

There are combinatorial results that prove lower bounds on the size of maximum
matchings in certain graph classes. Nishizeki and Baybars [NB79] show that planar graphs
with minimum degrees 3, 4 and 5 have matchings of size at least (n + 2)/3, (2n + 3)/5
and (5n + 6)/11, respectively. Biedl et al. [BDD+04] show that maxdeg-3 graphs have
a matching of size (n − 1)/3, 3-regular graphs have a matching of size (4n − 1)/9 and
3-connected planar graphs have a matching of size (n+ 4)/3. However, these proofs are not
constructive; in particular, they do not indicate a way to find such a matching faster than
by computation of a maximum matching. The only simple way to exploit these bounds
algorithmically is to use the fact that a maximal matching (which can be computed quickly)
has at least half the size of a maximum matching. The bounds obtained in this way are,
however, rather weak, for example, (n+ 2)/6 for planar graphs with minimum degree 3
compared to the tight (n+ 2)/3.

Recently, Rutter and Wolff [RW10] (a preliminary version appeared as [RW08c]) gave
fast algorithms that achieve the tight bounds of Biedl et al. Their algorithms compute
matchings of size (n−1)/3 in maxdeg-3 graphs in linear time, of size (4n−1)/9 in 3-regular
graphs in O(n log4 n) time and of size (n + 4)/3 in 3-connected planar graphs in linear
time. For graphs with bounded maximum degree k lower bounds for the size of maximal
matchings have been considered [Han08].

Contribution. Unfortunately, none of the above results can be used to obtain matchings
of guaranteed size in planar graphs with fixed minimum degree. In fact the question how
fixed minimum degrees can be exploited algorithmically was posed as an open question
in [RW10]. We answer this question and show that the tight bounds of Nishizeki and
Baybars [NB79] for minimum degree 3 can be reached in linear time. We further analyze our
algorithm in the context of minimum degree 5 and show that with some small modification
it yields a matching of size (2n+ 1)/5 in this case.

The bound of Nishizeki and Baybars [NB79] for connected planar graphs with minimum
degree 3 was also obtained by Papadimitriou and Yannakakis [PY81]. They analyze the
structure of maximum matchings for these graphs and show that the structure is such that
the free vertices can be balanced against the matching edges. We show that if we construct
the matching accordingly, this balancing can be done locally: there is a pairing of free
vertices with matching edges such that each free vertex is “adjacent” to its partner, in the
sense that the free vertex is adjacent to at least one endpoint of the matching edge it is
paired with.

Outline. The chapter is structured as follows. In Section 5.2 we propose a simple
algorithm that already gives a non-trivial guarantee on the matching size, yet fails to reach
the tight bound of (n+ 2)/3 for planar minimum degree 3 graphs. We then analyze the
algorithm and come up with additional structural conditions for the matching that allow
us to improve its size. Section 5.3 then shows how these structural constraints can be
employed to obtain a linear-time algorithm that finds matchings of size (n+ 2)/3 in planar

5.2 Exploiting Minimum Degrees 67

graphs with minimum degree 3. We discuss how our approach can be generalized to obtain
better bounds for planar graphs with minimum degree 5 in Section 5.4. We conclude and
pose some open questions in Section 5.5.

5.2. Exploiting Minimum Degrees
In this section we describe a simple linear-time matching algorithm that already gives a
non-trivial guarantee for planar mindeg-3 graphs. Our tight analysis then shows which
aspects of the algorithm need to be improved in order to achieve the tight bounds of
Nishizeki and Baybars [NB79].

We then show that certain additional structural requirements on the matching ensure
that for minimum degree δ = 3 we obtain the tight bound of Nishizeki and Baybars [NB79].
This analysis forms the basis of the algorithm presented in Section 5.3 where we show that
a corresponding matching can be found quickly.

In order to present the algorithms we need some standard notation for graphs and
matchings. Let G = (V,E) be a graph and let M be a matching of G. A vertex in V is
free (with respect to M) if it is not incident to an edge of M . An augmenting path P (with
respect to M) is a path that alternates between edges in M and edges in E \M and starts
and ends at different free vertices. In this case the symmetric difference of P and M is a
matching of size |M |+ 1. A matching is k-free if it does not admit an augmenting path of
length up to k.

5.2.1. Algorithm Based on Short Augmenting Paths
We propose the following two-step algorithm Match3Aug:

(1) Compute a maximal matching.

(2) Iteratively find augmenting paths of length 3.

Lemma 5.1. Let G = (V,E) be a connected graph with m edges. Match3Aug computes
a 3-free matching in O(m) time.

Proof. Step 1 is performed by choosing edges greedily. For Step 2 it is sufficient to consider
the matching edges one by one and to check whether they are contained in an augmenting
path of length 3. For an edge uv this can be done in O(d(u) + d(v)) time. The overall
linearity follows from the fact that edges that are added to the matching during Step 2
need not be checked. Let xy be an edge that is added in Step 2 such that x was free after
Step 1. If xy was contained in an augmenting path of length 3, then x would have a free
neighbor x′ contradicting the maximality of the matching after Step 1.

In the following, we analyze the size of 3-free matchings in planar graphs with minimum
degree δ. To this end, we divide the free vertices into two disjoint sets that we bound
independently.

Let G = (V,E) be a planar graph with minimum degree δ and let M be a 3-free
matching. Let e ∈M be an edge such that there is a free vertex v ∈ V that is adjacent to
both endpoints of e. We say that v covers e and that e is covered. An edge of the matching
that is not covered by a vertex is open. Let MC and MO denote the set of covered and open
edges of M , respectively. Moreover, let FC denote the set of vertices that cover an edge

68 Chapter 5: Matchings in Planar Graphs with Fixed Minimum Degree

and let FO be the set of free vertices that do not cover any edge. Note that, by definition,
MC and MO form a partition of M , and FC and FO form a partition of the free vertices of
V . Hence we have that |M | = |MC |+ |MO| and n = 2 · |M |+ |FC |+ |FO|. We now bound
the number of free vertices by independently bounding |FC | and |FO|.

Lemma 5.2. Let G = (V,E) be a planar graph with minimum degree δ, let M be a 3-free
matching and let MC ,MO, FC and FO be defined as above. Then,

|FC | ≤ |MC | (5.1)

|FO| ≤ 2 · |MO| − 2
δ − 2 . (5.2)

Proof. First note that Equation (5.1) holds since the vertex covering an edge is unique as
there would be an augmenting path of length 3 otherwise.

For the proof of Equation (5.2) consider the bipartite auxiliary graph G′ = (V ′, E′)
whose vertices are the vertices in FO and the open edges of M . We connect a vertex
v ∈ FO with an edge m ∈ MO if v is adjacent to an endpoint of m in G. The graph
G′ is planar as it can be obtained as a minor of G by removing all vertices that are
either incident to an edge in MC or cover an edge, contracting the remaining matching
edges and removing edges that are not incident to a free vertex. Since no vertex of FO is
adjacent to an endpoint of a covered edge (there would be an augmenting path of length 3
otherwise), each vertex in FO has degree at least δ in G′. Equation (5.2) now follows from
|E′| ≤ 2 · |V ′| − 4 = 2 · (|FO|+ |MO|)− 4 (bipartite, planar) and |E′| ≥ δ|FO| (minimum
degree).

Theorem 5.1. Let G = (V,E) be a planar graph with n vertices, minimum degree δ ∈ {3, 4}
and let M be a 3-free matching. Then the following holds:

|M | ≥ (δ − 2) · n+ 4
2 · (δ − 1) . (5.3)

Proof. This follows from Lemma 5.2 and n = 2 · |M |+ |FO|+ |FC |.

Equation (5.3) does not hold for δ = 5 as in this case the bound on |FC |, which is
independent of δ, is too weak. By Theorem 5.1 Match3Aug computes in linear time
matchings of size at least (n+ 4)/4 in planar graphs with minimum degree 3 and matchings
of size (n+ 2)/3 in planar graphs with minimum degree 4.

In order to obtain the bound (n+ 2)/3 for δ = 3 we would like to improve the bound of
|FO| from Equation (5.2). However, the example in Figure 5.1 shows that our analysis is
tight. Roughly speaking the problem is that the graph induced by the matching in this
example is not connected. In the next section we give a precise definition of the desired
property of the matching in order to improve the bound on the size.

5.2.2. More Structure via Pure Tree-Like Matchings
Let G = (V,E) be a planar graph with a fixed planar embedding, that is, for every vertex
v we have a cyclic ordering σ(v) of its incident edges, and let M be a matching of G. Let
GM be the graph that is induced by the matched vertices of M . A matched vertex v is
cyclically pure if its incident edges in GM form an interval in σ(v); further, M is called
pure if all matched vertices are cyclically pure. The matching M is called tree-like if GM is
a tree.

5.2 Exploiting Minimum Degrees 69

Figure 5.1.: Planar graph with n vertices, mindeg 3 and a 3-free matching with only (n + 4)/4
edges.

C

(a)

1

2
4

5

(3
(2

(1

)1
)2 (4)4 (5

)5)3

3

C

x

(b)

Figure 5.2.: (a) Construction of curve C that separates matched and free vertices of a pure tree-like
matching. (b) Parenthetical structure of vertices in FM along C. The inner neighbors
of the most interior vertices of FM have a unique neighbor in FM , for example, vertex 1
is the unique neighbor of x.

Lemma 5.3. Let G = (V,E) be a planar embedded graph and let M be a pure tree-like
matching in G such that all free vertices have degree at least δ. Let FM be the set of
free vertices that have only matched neighbors. If FM is not empty then there is a vertex
v ∈ FM that has matched neighbors x1, . . . , xδ−2 such that each xi has no other neighbor
in FM .

Proof. In this proof we distinguish between outer vertices, that is, matched vertices with
free neighbors and inner vertices, that is, matched vertices that are not outer. To prove
the lemma we consider the subgraph G′ of G that is induced by the edges that have one
endpoint in FM . We show that all outer vertices share a common face in the embedding
inherited from G. Hence, by planarity, the vertices in FM must have a parenthetical
structure, where the most interior ones have the desired property.

Assume we have a planar drawing of G that realizes its given embedding. We construct
a simple closed curve C that contains all outer vertices, encloses all inner ones and separates
the matched vertices from the free vertices.

To construct C, we pick an arbitrary outer vertex v as starting point, traverse the Euler
tour of the tree GM induced by the embedding and draw the curve along the edges of GM .
Beginning from v, we traverse GM , starting along one of the edges bounding the interval
of edges that connect v to a vertex in FM . We position an imaginary pencil on the point
where v lies in the plane and draw along the edges of GM . Whenever we reach an outer
vertex v′ and would have to cross an edge that is incident to a free vertex to pass it, we
instead draw right through v′ and thus separate the free neighbors of v′ from the matched

70 Chapter 5: Matchings in Planar Graphs with Fixed Minimum Degree

ones. Since all vertices are cyclically pure the line visits every vertex at most once. Hence
C is a simple cycle that contains every outer vertex. By construction C does not cross any
edge and encloses all inner vertices but none of the free vertices; see Figure 5.2a. Removing
the interior of C (including edges) and free vertices that are not in FM yields G′ with all
outer vertices sharing a common face.

There is at least one outer vertex that is incident with the outer face of G′. Since all
vertices in FM are outside C there is at least one vertex x in FM that is incident to the
outer face of G′. Let e be an edge that is incident to x and bounds the outer face. The
other endpoint of e is the desired vertex as it is matched and hence belongs to C. Let
b1, . . . , bk be the outer vertices as they occur along C in clockwise order, where b1 is incident
with the outer face of GM .

Now consider the vertices of FM (note that all their neighbors belong to C). For each
vertex v in FM we set b`(v) and br(v) to be the vertex bi with the smallest, respectively
largest, index i such that bi is incident to v. We attach an opening parenthesis with label v
to the edge {b`(v), v} for each v in FM . Analogously we attach a closing parenthesis with
label v to the edge {br(v), v}. We then traverse b1, . . . , bk and collect at each vertex all
parentheses in clockwise order; see Figure 5.2b. This yields a sequence of opening and
closing parentheses where matching opening and closing parentheses have the same label
since a structure like (a (b)a)b would contradict planarity.

Now pick a pair of parentheses that does not enclose any other parentheses. Let v
be the vertex that induces this pair. In addition to the two matched neighbors at which
the parentheses were placed there have to be at least δ − 2 further matched neighbors
x1, . . . , xδ−2 since the degree of v is at least δ. Each of these vertices has only one free
neighbor in FM , namely v.

This result on pure tree-like matchings can be used to improve the bound on |FO| and
hence the bound on 3-free matchings.

Lemma 5.4. Let G = (V,E) be a planar graph with minimum degree δ, let M be a pure
tree-like 3-free matching and let MO and FO be defined as above. Then,

|FO| ≤
|MO| − 2
δ − 2 . (5.4)

Proof. Let C be the curve from the proof of Lemma 5.3. Similar to the proof of Lemma 5.2
let G′ be the graph obtained from G by contracting the edges in MO, removing the vertices
in FC , the endpoints of edges in MC and all edges in the interior of C. This again yields
a bipartite planar graph where one of the vertex sets corresponds to the open matching
edges. Note that C is still a simple cycle since C contains at most one endpoint of each
edge in MO. However, since the interior of C is empty, the graph obtained from duplicating
the vertices in FO (together with their incident edges) is still planar and bipartite. Thus
the bound is improved by a factor of 2, yielding the claim.

With the stronger bound of Equation 5.4 it follows that a pure tree-like 3-free matching
in a planar graph with n vertices and minimum degree 3 has size at least n/3. For minimum
degrees 4 and 5 the bound on |FC | is now weaker than the bound on |FO|. Hence to obtain
even stronger bounds we would need to improve the bound on the size of FC .

Unfortunately, it is not easily possible to find a maximal matching that is both pure
and tree-like in a given graph. Instead we show that we can construct such a matching in a
subgraph of the input graph, by carefully removing free vertices when we cannot continue

5.3 Algorithm 71

with enlarging the matching. The main part is to show that the number of removed vertices
is bounded by the number of matching edges.

5.3. Algorithm
In this section we describe an algorithm that computes in linear time a matching of size
at least (n+ 2)/3 in planar graphs with minimum degree 3. To show that our algorithm
actually finds a matching of this size we use the following argument. In the course of
the algorithm we perform a series of steps, each of which either increases the size of the
matching by 1 or deletes a free vertex. However, whenever a vertex is deleted, we make
sure that there is an edge in the matching that “remembers” it in such a way that each
matching edge “remembers” at most one vertex and no vertex is ever “forgotten”. The
algorithm finishes when there are no free vertices left. The bound then follows from the
observation that there can be at most as many free vertices as matching edges.

The algorithm works as follows. We start by adding an arbitrary edge to the matching,
which clearly is both pure and tree-like. We then enlarge the matching and make sure it
remains pure and tree-like. To find an adequate spot to try to enlarge the matching we use
Lemma 5.3. If there are only free vertices that also have free neighbors (that is, FM = ∅),
we can easily find an edge that can be used to enlarge the matching; see Section 5.3.1. If
FM is not empty (that is, there are free vertices that have only matched neighbors) the
lemma yields a free vertex v and a matched vertex x such that v is the only neighbor of x
in FM . In this case we try to enlarge the matching by two different strategies.

(a) If x has free neighbors that have further free neighbors, we will use one of these and
add an edge between two free vertices to the matching (Section 5.3.1).

(b) If there is an augmenting path vxyu of length 3, we will use this fact to swap xy for
two new matching edges (Section 5.3.2).

When neither of these strategies can be applied we remove v and show that there is a
suitable matching edge that can remember it. The algorithm stops when no free vertices
are left. In the following sections we describe these steps in detail and prove that they
preserve a pure tree-like matching.

5.3.1. Enlargement by Adding a Suitable Edge
In this section we discuss how to enlarge a pure tree-like matching M by adding a suitable
edge such that the outcome is still pure and tree-like. Consider a matched vertex x that
has free neighbors and some of these have further free neighbors. Since the edges that
connect x to free vertices form an interval in σ(x), there exist a leftmost and a rightmost
free neighbor of x (they coincide if x has only one free neighbor). To preserve cyclic purity
we need that the leftmost or rightmost free neighbor u of x has a free neighbor u′. This
situation occurs if x has at most one free neighbor that belongs to FM and x is adjacent
to a free vertex that is not in FM ; see Figure 5.3a. The exact procedure is shown in the
proof of the following lemma.

Lemma 5.5. Let G = (V,E) be a planar graph and let M be a pure tree-like matching
in G such that each free vertex has degree at least δ. Further let x be a matched vertex
such that the leftmost or rightmost free neighbor of x is adjacent to a free vertex. Then

72 Chapter 5: Matchings in Planar Graphs with Fixed Minimum Degree

v

x u

u′

(a)

v = v′

x

u

u′

y

(b)

v

x

(c)

v

x

(d)

Figure 5.3.: Illustration of the different cases that can occur in the algorithm for the candidate
vertex x and its unique neighbor v in FM .

there is a graph G′ = (V,E′) with E′ ⊆ E and a pure tree-like matching M ′ of G′ such that
|M ′| = |M |+ 1 and each free vertex has degree at least δ in G′.

Proof. Without loss of generality, we can assume that the leftmost free neighbor u of x has
a free neighbor. We now scan σ(u) beginning with x until we find the first free neighbor u′.
Let M ′ be M ∪{uu′} and let G′ be the graph that we obtain from G by removing all edges
between u or u′ and another matched vertex except for xu and uu′. We show that G′ and
M ′ satisfy the claim.

First, it is obvious that |M ′| = |M |+1 holds and each free vertex has the same degree as
before since we only deleted edges that have both endpoints matched. It remains to show
that M ′ is pure and tree-like. The vertex x is cyclically pure since u was the leftmost free
neighbor of x and a possible edge xu′ has been removed. Vertex u is cyclically pure since
it has just two matched neighbors x and u′ and the edges ux and uu′ are adjacent in σ(u).
Vertex u′ is cyclically pure, because u is its only matched neighbor. The other matched
vertices remain also cyclically pure as removing edges never violates cyclic purity. Thus
M ′ is pure. Moreover, M ′ is tree-like since G′M ′ can be obtained by adding the branch
xuu′ to GM (u and u′ were free and thus not in GM).

5.3.2. Exploiting Existence of an Augmenting Path of Length 3
In this section we describe how to make use of an augmenting path of length at most 3 in our
context. Let G = (V,E) be a planar embedded graph, let M be a pure tree-like matching
in G such that all free vertices have degree at least 3 and let vxyu be an augmenting path
of length 3. We show that we can modify G and M such that M is enlarged by 1 and
remains pure and tree-like. The problem is that just using the augmenting path to enlarge
the matching may violate the cyclic purity of the vertices u, v, x and y; an example of
such a situation is shown in Figure 5.3b. Instead we show that there exists a suitable
augmenting path of length 3 which leads (after removing some edges whose endpoints are
both matched) to an enlarged pure tree-like matching.

Lemma 5.6. Let G = (V,E) be a planar graph and let M be a pure tree-like matching
in G such that each free vertex has degree at least δ. Let vxyu be an augmenting path of
length 3. Then there is a graph G′ = (V,E′) with E′ ⊆ E and a pure tree-like matching
M ′ such that |M ′| = |M |+ 1 and each free vertex has degree at least δ in G′.

5.3 Algorithm 73

Proof. Let x` and xr be the leftmost and rightmost free neighbor of x, respectively, and
define yr,y` analogously. Choose v′ ∈ {x`, xr}, u′ ∈ {y`, yr} such that v′ and u′ are distinct.
This is always possible, otherwise x` = xr = y` = yr and x and y both have only one free
neighbor, which is actually shared by x and y, contradicting v 6= u.

We set M ′ := (M \ {xy}) ∪ {v′x, yu′} and let G′ be the graph obtained from G by
removing all edges that connect v′ or u′ to a matched vertex other than their matching
partner. Clearly |M ′| = |M |+ 1 holds. We claim that M ′ is a pure tree-like matching in
G′ and every free vertex of G′ has degree at least δ.

First note that by the choice of v′ and u′ the edges v′x and yu′ do not violate the cyclic
purity of x and y. The only edges that might violate the cyclic purity of x and y are the
edges v′y and xv′. They are however removed when going from G to G′. Hence x and y
are cyclically pure. By construction of G′, v′ and u′ each have only one matched neighbor
hence they are cyclically pure as well. All vertices different from v′, x, y, u′ may only have
lost edges to free neighbors in G. Hence they all remain cyclically pure and M ′ is pure.

The graph G′M ′ is a tree since it can be obtained from the tree GM by inserting the
edges v′x and u′y, which add the new leaves v′ and u′. Thus M ′ is tree-like. Since we
only remove edges that are not incident to free vertices the degrees of all free vertices are
preserved.

5.3.3. Linear-Time Algorithm
Lemma 5.5 and Lemma 5.6 yield together with Lemma 5.3 the simple algorithm Match-
MinDeg3, whose structure was outlined at the beginning of this section. A pseudo-code
description of the algorithm is shown as Algorithm 5.1.

Theorem 5.2. Let G be a planar embedded graph with n vertices and minimum degree 3.
The algorithm MatchMinDeg3 computes a matching of size at least (n+ 1)/3 in O(n)
time.

Proof. We begin this proof by stating and justifying some loop invariants for the while-loop
in MatchMinDeg3.

(a) Each removed vertex is remembered by an adjacent matching edge

(b) Each matching edge remembers at most one vertex.

Algorithm 5.1: MatchMinDeg3
Select an arbitrary edge e and set M ← {e}
while there are still free vertices do

if FM 6= ∅ then
Select a matched vertex x and a free vertex v according to Lemma 5.3;
if x has a free neighbor outside of FM then

The leftmost or rightmost free neighbor of x suits to apply Lemma 5.5
else if there is an augmenting path vxyu then

Enlarge the matching according to Lemma 5.6
else

Remove v (the matching edge that is incident to x remembers v)
else

Select a matched vertex that has free neighbors and apply Lemma 5.5

74 Chapter 5: Matchings in Planar Graphs with Fixed Minimum Degree

(c) The matching is pure and tree-like.

(d) Each free vertex has degree at least 3.

Invariants (a) and (b) are needed to prove the correctness of the algorithm while
Invariants (c) and (d) ensure that the conditions of Lemmas 5.3, 5.5 and 5.6 are satisfied.

We now show that the algorithm preserves the invariants. When we delete a free vertex
v, it is remembered by a matching edge xy (x and v are adjacent) that is not part of
an augmenting path of length 3 and x has no other adjacent free vertices. Thus also y
cannot be adjacent to a free vertex apart from v since there would be an augmenting
path of length 3 otherwise. Hence xy will not have to remember another vertex and it is
never removed from the matching; see Figures 5.3c and 5.3d. Thus Invariants (a) and (b)
hold throughout the algorithm. Invariant (c) holds since we change the matching only
by using Lemmas 5.5 and 5.6, which preserve the invariant. These lemmas together with
the fact that we exclusively remove vertices that have only matched neighbors guarantee
Invariant (d).

The size of the computed matching can now be seen as follows. Invariants (a), (b) and
the observation that the last removed vertex has an additional remembering edge yield the
bound |F | ≤ |M | − 1 where F is the set of free vertices of G with respect to the output
matching M . Using the equation |F | = n− 2 · |M | yields the bound (n+ 1)/3 ≤ |M |.

Next, we discuss how to implement MatchMinDeg3 in linear running time. In each
iteration the number of free vertices is decreased by at least 1. Thus the algorithm stops
after at most n iterations. Next, we show that each iteration of the while-loop runs in
amortized O(1) time.

For each vertex we store whether it is matched and if it has free neighbors. When a
vertex v becomes matched it requires O(d(v)) time to propagate this information to its
neighbors such that they can update their number of free neighbors. The overall time
spent in this step is linear since a matched vertex remains matched (although its matching
partner may change).

For matched vertices with free neighbors, we additionally store the first and the last
edge leading to a free vertex. Note that given a matching edge we can hence easily check
whether it is part of an augmenting path of length 3 since this involves only a constant
number of vertices, which can be found quickly using the first and last edge information.
Note that the first and last edge can be updated in constant time when we remove an edge
or match a free vertex. Moreover, for each matched vertex we store its FM -degree, that is,
its number of neighbors in FM . When the last free neighbor of a free vertex v gets matched
or v is deleted, v notifies its neighbors, which then update their FM -degree. Both cases
occur at most once for each free vertex and thus this notification work needs linear time in
total. By keeping a list of vertices with FM -degree 1 we can find a candidate vertex x as
in Lemma 5.3 in constant time.

The check whether Lemma 5.5 or Lemma 5.6 can be used to enlarge the matching can be
done in O(1) time. We only need to check a constant number of vertices for membership in
FM , which can be done by storing whether a vertex has free neighbors or not. The vertices
we need to check can easily be addressed via the leftmost and rightmost free neighbor
pointers.

The total running time for all applications of the procedures provided by Lemma 5.6
and Lemma 5.5 is linear. This can be seen by considering occurrences of these cases. For
applying Lemma 5.5 we first have to scan the neighborhood of a free vertex u for a free
neighbor v, which requires O(d(u)) time. For the application of Lemma 5.6 the two vertices

5.4 A Better Bound for Minimum Degree 5 75

u and v that are newly matched can be identified in O(1) time. In both cases in order to
ensure the cyclical purity for the two newly matched vertices u and v we scan σ(u) and
σ(v), which requires O(d(u) + d(v)) time. Since u and v are matched afterwards, they will
not be processed in the same way again. Finally, removing a free vertex v can also be done
in O(d(v)) time.

Note that we can miss the tight bound of (n+ 2)/3 by 1. We can, however, enlarge the
matching by 1 in O(n) time by computing an augmenting path [Tar83].

5.4. A Better Bound for Minimum Degree 5
In this section we show how to improve the bound for δ = 5 by ensuring that each removed
vertex is remembered by more than one matching edge.

When FM was not empty, we previously considered a matched vertex x that had only
one neighbor v in FM . This is the part where we make a small extension. Now, instead,
we consider more such matched vertices with the same neighbor in FM at once. Either one
of them can be used to enlarge the matching via Lemmas 5.5 and 5.6 or none of them and
their matching partners are adjacent to another free vertex. In this case all their matching
edges can be used to remember v. For δ = 5 Lemma 5.3 yields a free vertex v that has
three such neighbors and hence at least two matching edges can remember v.

Theorem 5.3. Let G = (V,E) be a planar graph with n vertices and minimum degree 5.
A matching of size at least (2n+ 1)/5 can be computed in O(n) time.

Proof. Let M be the matching computed by the modified algorithm. As shown above each
free vertex F is remembered by at least two matching edges. Together with the observation
that the last free vertex is remembered by at least three edges we get 2 · |F |+ 1 ≤ |M |.
The bound then follows from n = 2 · |M |+ |F |.

Next we show that the modified algorithm still runs in linear time. We need a way to
maintain the set of candidate vertices with δ−2 matched neighbors according to Lemma 5.3.
Instead of the FM -degree of a matched vertex (that is, the number of neighbors in FM) we
store a list of its neighbors in FM . Whenever the length of this list changes to 1 or from
1 to another number we notify the (previously) last neighbor. This notification enables
vertices in FM to keep track of their neighbors with FM -degree 1 by maintaining a list of
them. Hence we can maintain a list of vertices in FM that have at least δ − 2 neighbors
with FM -degree 1. Thus we can pick such a candidate in O(1) time and try to enlarge the
matching using δ − 2 of its FM -degree 1 neighbors. The procedures given by Lemmas 5.5
and 5.6 are called at most δ − 2 times per iteration.

5.5. Concluding Remarks
In this chapter, we have shown that it is possible to exploit minimum degrees in planar
graphs algorithmically to obtain algorithms that compute matchings of guaranteed size
quickly. Our algorithms run in linear time and yield matchings of size at least (n+ 2)/3
and (2n+ 1)/5 for planar graphs with minimum degrees 3 and 5, respectively. For planar
mindeg-3 graphs this bound is best possible.

76 Chapter 5: Matchings in Planar Graphs with Fixed Minimum Degree

In this chapter we experienced a very different aspect of planarity than in the previous
two chapters. In general, there exist graphs with minimum degree 3 that have no matching
of size (n+ 2)/3, or even something close to this number. The graph K3,n for n > 3 has
a maximum matching of size 3 and thus not even any constant fraction of the vertices
can be matched in general mindeg-3 graphs. Thus planarity lies at the starting point
of the problem we considered in this chapter. But this is not the only way in which we
exploit planarity. Initially, we tried to come up with an algorithm that could in principle
be run on any mindeg-3 graph and would yield the bound of Nishizeki et al. on planar
mindeg-3 graphs. The algorithm Match3Aug from Section 5.2 is an example of such
an algorithm, which does however provide a weaker bound on the matching size. We did
not succeed in finding such an algorithm that achieves the tight bound. Our algorithm
MatchMinDeg3 from Section 5.1 makes use of additional structural information provided
by planarity. Namely, we use the inherent structural information that is encoded in a
planar embedding of a planar graph to guide the algorithm in finding a matching that
meets the desired bound. Since the algorithm requires that the edges around each vertex
are ordered according to a planar embedding, the algorithm can only be run on planar
graphs.

Open problems. While the bound (n+ 2)/3 for the matching size is tight for planar
graphs with minimum degree 3, it is known that planar graphs with minimum degrees 4
and 5 admit matchings of size (2n+ 3)/5 and (5n+ 6)/11, respectively. Higher degrees of
connectivity yield even better bounds. We leave open the question whether these tight
bounds can be achieved in linear time.

It seems however, that this requires new insights and ideas that go beyond the concepts
presented in this chapter. To achieve the tight bound of (2n+ 3)/5 for planar mindeg-4
graphs it is not sufficient to apply the algorithm for planar mindeg-3 graphs and to conduct
a tighter analysis. There exist planar mindeg-4 graphs that have a pure, 3-free matching
for which the graph induced by the matched vertices is connected but that do not reach
the bound of (2n + 3)/5. The construction of a family of such graphs Gi together with
matchings Mi for i ≥ 0 is illustrated in Figure 5.4. Figure 5.4a shows the graph G0 on
seven vertices together with a matching M0 consisting of three edges. The graph Gi for
i > 0 is constructed by joining three copies of Gi−1 and adding an additional free vertex
as shown in Figure 5.4b. Note that Gi has minimum degree 4 for i > 0. Further the
matching Mi is pure and the graph GM is connected (and hence can be made tree-like
without reducing the degree of free vertices). We denote by ni the number of vertices of Gi.
By construction we have n0 = 7 and ni = 3ni−1 − 3 for i > 0. For the matching size we
have |M0| = 3 and |Mi| = 3|Mi−1| − 2. Solving these recurrences yields ni = (11 · 3i + 3)/2
and |Mi| = 2 · 3i + 1. Hence we get that |Mi|/ni tends to 4/11 ≈ 0.36 for i → ∞, thus
missing the bound of 2/5 = 0.4 proved by Nishizeki et al. [NB79].

Therefore we believe that additional algorithmic ingredients are required to achieve the
tight bounds for graphs with minimum degrees 4 and 5. One such ingredient might be to
try to do the balancing of free vertices against matching edges slightly less local by using,
say, augmenting paths of length up to 5.

5.5 Concluding Remarks 77

G0

(a)

Gi−1 Gi−1 Gi−1

(b)

Figure 5.4.: Construction of a family of planar mindeg-4 graphs Gi together with pure, tree-like,
3-free matchingsMi of size less than (2n+3)/5. The graph G0 (a) and the construction
of Gi from three copies of Gi−1 for i > 0 (b).

Part II.

Embeddings of Planar Graphs

Chapter 6

Testing Planarity of Partially
Embedded Graphs

In this chapter we study the following problem: Given a planar graph G and a planar
drawing (embedding) of a subgraph of a graph G, can such a drawing be extended to a
planar drawing of the entire graph G? This problem fits the paradigm of extending a
partial solution to a complete one, which has been studied before in many different settings.
Unlike many cases, in which the presence of a partial solution in the input makes hard
an otherwise easy problem, we show that the planarity question remains polynomial-time
solvable. Our algorithm is based on several combinatorial lemmas, which show that the
planarity of partially embedded graphs meets the “oncas” behaviour – obvious necessary
conditions for planarity are also sufficient. These conditions are expressed in terms of
the interplay between (a) rotation schemes and containment relationships between cycles
and (b) the decomposition of a graph into its connected, biconnected, and triconnected
components. This implies that no dynamic programming is needed for a decision algorithm
and that the elements of the decomposition can be processed independently.

Further, by equipping the components of the decomposition with suitable data structures
and by carefully splitting the problem into simpler subproblems, we make our algorithm
run in linear time.

Finally, we consider several generalizations of the problem, for example, minimizing the
number of edges of the partial embedding that need to be rerouted to extend it, and argue
that they are NP-hard. Also, we show how our algorithm can be applied to solve related
graph-drawing problems.

The chapter is based on joint work with Patrizio Angelini, Giuseppe Di Battista, Fabrizio
Frati, Vít Jelínek, Jan Kratochvíl, and Maurizio Patrignani [ADF+10a].

6.1. Introduction
In this chapter we pose and study the question of planarity testing in a constrained
setting, namely when part of the input graph is already drawn and cannot be changed. A
practical motivation for this question is, for example, the visualization of large networks
in which certain patterns are required to be drawn in a standard way. The known
planarity testing algorithms, even those that build a drawing incrementally, are of no help
here since they are allowed to redraw at each step the part of the graph processed so
far. For similar reasons, online planar embedding and planarity testing algorithms, such
as [Wes92, Tam96, DT96a, Pou94], are not suitable to be used in this context.

82 Chapter 6: Testing Planarity of Partially Embedded Graphs

Related work. The question of testing the planarity of partially drawn graphs fits
into the general paradigm of extending a partial solution to a full one. This has been
studied in various settings and often the extendability problem is more difficult than the
unconstrained one. As an example, graph coloring is NP-complete for perfect graphs
even if only four vertices are already colored [KS97], while the chromatic number of a
perfect graph can be determined in polynomial time [GLS88]. Another example is provided
by edge colorings – deciding 3-edge-colorability of cubic bipartite graphs if some edges
are already colored is NP-complete [Fia03], while it follows from the famous Kőnig-Hall
theorem that cubic bipartite graphs are always 3-edge colorable. In view of these hardness
results it is somewhat surprising that the planarity of partially drawn graphs can be tested
in polynomial time, in fact in linear time, as we show in this chapter. This is all the more
so since this problem is known to be NP-hard for drawings where edges are constrained to
be straight-line segments [Pat06].

Specific constraints on planar graph drawings have been studied by several authors.
See, for example, [TDB88, Tam98, Dor02, GKM08]. Unfortunately, none of those results
can be exploited to solve the question we pose in this chapter. Mohar [Moh99, JM05]
gives algorithms for extending 2-cell embeddings on the torus and surfaces of higher genus.
However, the 2-cell embedding is a very strong condition that substantially changes the
nature of the problem.

Contribution and Outline. In order to solve the general problem, we allow disconnected
or low connected graphs to be part of the input. It is readily seen that in this case the
rotation schemes (that is, the cyclic orderings of the edges incident to the vertices of the
graph) do not fully describe the input. In fact, the relative position of vertices against
cycles in the graph must also be considered. (These concepts and their technical details
are discussed later.) Further, we make use of the fact that drawing graphs on the plane
and on the sphere are equivalent concepts. The advantage of considering embeddings on
the sphere lies in the fact that we do not need to distinguish between the outer face and
the inner faces.

The main idea of our algorithm is to look at the problem from the “opposite” perspective.
Namely, we do not try to directly extend the input partial embedding (which seems much
harder than one would expect). Instead, we look at the possible embeddings of the entire
graph and decide if any of them contains the partially embedded part as prescribed by the
input.

Our algorithm is based on several combinatorial lemmas, relating the problem to the
connectivity of the graph. Most of them exhibit the “oncas” property – the obvious
necessary conditions are also sufficient. This is particularly elegant in the case of 2-
connected graphs. In this case, we exploit the SPQR-tree decomposition of the graph.
This notion was introduced in by Di Battista and Tamassia [DT96a] to describe all the
possible embeddings of 2-connected planar graphs in a succinct way and was used in various
situations when asking for planar embeddings with special properties. A survey on the use
of this technique in planar graphs is given by Mutzel [Mut03]. It is indeed obvious that
if a 2-connected graph admits a feasible drawing, then the skeleton of each node of the
SPQR-tree has a drawing compatible (a precise definition of compatibility will come later)
with the partial embedding. We prove that the converse is also true. Hence – if we only aim
at polynomial running time – we do not need to perform any dynamic programming on the
SPQR-tree and we could process its nodes independently. However, for the ultimate goal
of linear running time, we must refine the approach and pass several pieces of information
through the SPQR-tree. Then, dynamic programming becomes more than useful. Also, the

6.2 Notation and Preliminaries 83

SPQR-trees are exploited at two levels of abstraction, both for decomposing an entire block
and for computing the embedding of the subgraph induced by each face of the constrained
part of the drawing.

This chapter is organized as follows. We first describe the terminology and list auxiliary
topological lemmas, see Section 6.2. In particular, the combinatorial invariants of equivalent
embeddings are introduced. In Section 6.3 we state the combinatorial characterization
theorems for 2-connected, connected, and disconnected cases. The consequence of them is
a simple polynomial-time algorithm outlined at the end of the section. Section 6.4 is then
devoted to describe technical details of the linear-time algorithm. Section 6.5 discusses
several possible generalizations of the question leading to NP-hard problems, and shows
how our techniques can be used to solve other graph drawing problems. We summarize
our results and discuss some directions for further research in Section 6.6.

6.2. Notation and Preliminaries
In this section we introduce some notations and preliminaries that are specific to this
chapter. In particular, we give a detailed description how planar embeddings of not
necessarily connected graphs can be handled, and we give a first characterization of feasible
embeddings extensions. We conclude with an overview of data structures and their efficient
construction, which will be particularly important for the linear-time implementation of
our algorithm.

6.2.1. Drawings, Embeddings, and the Problem Definition
Recall that a planar embedding is an equivalence class of planar drawings. For connected
graphs in the plane such an equivalence class can be completely described by the rotation
scheme, that is the circular ordering of the edges incident to each vertex, and the external
face. For not necessarily connected graphs this is not sufficient, as it does not cover the
relative positions of the connected components. This additional information is encoded in
the face boundaries, which for each face consists of a list of circular lists of vertices. They
are constructed by visiting the (not necessarily connected) border of a face f in such a way
to keep f to the left. Together with the rotation scheme and the information which face
is the external face, they completely describe planar embeddings, even for non-connected
graphs; see Figure 6.1a and 6.1b for an example.

While our initial motivation was to extend a given drawing of a subgraph of a planar
graph to a planar drawing of the complete graph, it is not hard to see that this is equivalent
to an embedding problem, where we wish to extend a planar embedding of a subgraph to
a planar embedding of the whole graph.

A partially embedded graph, or Peg for short, is a triplet (G,H,H) where G is a graph,
H is a subgraph of G, and H is a planar embedding of H. We say that the vertices and
edges of H are prescribed. The problem PartiallyEmbeddedPlanarity (Pep) asks
whether a given Peg (G,H,H) admits a planar (non-crossing) embedding G of G whose
restriction to H is H. In this case we say that the Peg (G,H,H) is planar. We say that G
is an extension of an embedding H of H if the restriction of G to H is H. See Figure 6.2
for an example of a Peg that admits two different embedding extension and an example
that does not admit one.

84 Chapter 6: Testing Planarity of Partially Embedded Graphs

1
2 3

4

5
6 7

89

10
3018

21 2022
19

23
24

25
26

27 28
29

32
31 3313

12

14 11

16 17

15

34

(a)

4 9

1018

20
19 29

32
31 3313

12

14 11

16 17

15

34

(b)

4
9

1018

20
19 29

13
12

11

16 17

15

34

(c)

Figure 6.1.: (a) A planar drawing of a graph G. The shaded region represents a face f of the
drawing. (b) The boundary of f . The circular lists defining the boundary of f are:
[15, 16, 17], [33, 31, 32, 31], [13, 12, 14, 12, 11, 10, 9, 4, 29, 20, 19, 18, 20, 4]. (c) The facial
cycles of f .

(a) (b) (c)

Figure 6.2.: Two different planar embeddings of a graph G whose restrictions to H (black vertices
and edges) coincide with H (a), (b). An instance that does not admit an embedding
extension (c). Vertices and edges in G \H are grey.

6.2.2. Facial Cycles and H-Bridges
Let Γ be a planar drawing of a graph H; see Figure 6.1a. Let ~C be a simple cycle in H
with an arbitrary orientation. The oriented cycle ~C splits the plane into two connected
parts. Denote by V left

Γ (~C) and V right
Γ (~C) the sets of vertices of the graph that are to the left

and to the right of ~C in Γ, respectively. The boundary of each face f of Γ can be uniquely
decomposed into simple edge-disjoint cycles, bridges (that is, edges that are not part of
a cycle), and isolated vertices; see Figure 6.1b. Orient the cycles in such a way that f is
to the left when walking along the cycle according to the orientation. Call these oriented
cycles the facial cycles of f ; see Figure 6.1c. Observe that the sets V left

Γ (~C), V right
Γ (~C) and

the notion of facial cycles only depend on the embedding H of Γ. Hence, it makes sense to
denote V left

H (~C) and V right
H (~C), and to consider the facial cycles of H.

Let x be a vertex of a graph G with embedding G. Denote by EG(x) the set of edges
incident to x and by σG(x) the rotation scheme of x in G. The following lemma characterizes
the planar embeddings G of a Peg (G,H,H) that extend H in terms of the rotation scheme
and relative cycle–vertex positions with respect to the facial cycles of H.

Lemma 6.1. Let (G,H,H) be a Peg and let G be a planar embedding of G. The restriction
of G to H is H if and only if the following conditions hold:

6.2 Notation and Preliminaries 85

1) for every vertex x ∈ V (H), σG(x) restricted to EH(x) coincides with σH(x), and

2) for every facial cycle ~C of each face of H, we have that V left
H (~C) ⊆ V left

G (~C) and
V right
H (~C) ⊆ V right

G (~C).

Proof. The proof easily descends from the following statement. Let Γ1 and Γ2 be two
drawings of the same graph G such that, for every vertex x ∈ V (G), σΓ1(x) = σΓ2(x).
Drawings Γ1 and Γ2 have the same embedding if and only if Γ1 and Γ2 have the same
oriented facial cycles and for each facial cycle ~C we have V left

Γ1
(~C) = V left

Γ2
(~C).

We need to prove this statement in both directions: (i) if Γ1 and Γ2 have the same
embedding then they have the same oriented facial cycles and for each facial cycle we have
V left

Γ1
(~C) = V left

Γ2
(~C) and (ii) if Γ1 and Γ2 have the same oriented facial cycles and for each

facial cycle we have V left
Γ1

(~C) = V left
Γ2

(~C), then Γ1 and Γ2 have the same embedding.
The first direction trivially descends from the observation that drawings with the same

embedding have the same facial cycles. Suppose for a contradiction that, for some facial
cycle ~C, V left

Γ1
(~C) 6= V left

Γ2
(~C). Then, at least one vertex v is to the left of ~C in Γ1 and to the

right of ~C in Γ2 (the opposite case being analogous). Hence, v is part of the boundary of a
face that is to the left of ~C in Γ1 and to the right of ~C in Γ2, contradicting the hypothesis
that Γ1 and Γ2 have the same facial boundaries.

For the second direction, first suppose that G is connected and has at least one vertex
of degree three. In this case, the fact that Γ1 and Γ2 have the same rotation scheme implies
that they also have the same face boundaries, and, hence, the same embedding. Second,
suppose that G is connected and has maximum degree two. Then, G is either a path or a
cycle. In both cases, the face boundaries of Γ1 and Γ2 are the same (recall that G is drawn
on the sphere). Finally, suppose that G has several connected components C1, C2, . . . ,
Ck. Then, Γ1 and Γ2 have the same face boundaries if: (a) for each Ci, i = 1, . . . , k, the
embedding G1 of Γ1 restricted to Ci is the same as the embedding G2 of Γ2 restricted to
Ci and (b) each pair of connected components Ci and Cj , with i, j = 1, . . . , k and i 6= j,
either do not share a face both in G1 and in G2 or they contribute with the same circular
lists to the boundary of the same face f in G1 and in G2.

Condition (a) is guaranteed as in the two cases in which G is connected. Condition (b)
follows from the hypothesis that, for each facial cycle ~C, we have V left

Γ1
(~C) = V left

Γ2
(~C). In

fact, suppose for a contradiction that two connected components Cx and Cy share a face f
in G1 and no face in G2. Since Cx and Cy share a face in G1, they are on the same side
of any facial cycle ~C belonging to any other component Cz (more intuitively, Cx and Cy
can not be separated by any facial cycle of Γ1). On the other hand, consider the unique
path Cx, f1, C1, f2, . . . , Cy in the component–face tree of G2. By hypothesis, C1 6= Cx, Cy.
Hence, the facial cycle ~C obtained from the boundary of f1 and containing vertices of C1
separates Cx from Cy, thus contradicting the hypothesis that V left

Γ1
(~C) = V left

Γ2
(~C).

Finally, suppose for a contradiction that two connected components Cx and Cy contribute
with circular lists Lx1 and Ly1 to the boundary of the same face f1 of G1 and with circular
lists Lx2 and Ly2 to the boundary of the same face f2 of G2 and suppose that Lx1 6= Lx2 . The
boundary of f1 is oriented in such a way that every facial cycle has f1 to its left. Then,
every facial cycle obtained from Lx1 has Cy to its left. Further, for every cycle C ′ of Cx that
is not a facial cycle obtained from Lx1 , there exists a facial cycle ~C obtained from Lx1 that
has C ′ to its right (part of ~C and of C ′ may coincide). As G1 and G2 restricted to Cx give
the same embedding, the last statement is true both in G1 and in G2. Then, for every facial
cycle ~C ′ obtained from Lx2 and not from Lx1 , there exists a facial cycle ~C obtained from Lx1

86 Chapter 6: Testing Planarity of Partially Embedded Graphs

hat has ~C ′ to its right. Since ~C ′ is incident to f2 and since Cy is incident to f2, such a
component is to the right of ~C, contradicting the hypothesis that V left

Γ1
(~C) = V left

Γ2
(~C).

Let G be a graph and let H be a subgraph of G. An H-bridge K of G is a subgraph of
G formed either by a single edge e ∈ E(G) \E(H) whose end-vertices belong to H or by a
connected component K− of G−V (H), together with all the edges (and their end-vertices)
that connect a vertex in K− to a vertex in H. In the first case, the H-bridge is trivial. A
vertex that belongs to V (H) ∩ V (K) is called an attachment vertex (or attachment) of K.
Note that the edge-sets of the H-bridges form a partition of E(G) \ E(H).

An H-bridge K is local to a block B of H if all the attachments of K belong to B.
Notice that an H-bridge with a single attachment can be local to more than one block,
while an H-bridge with at least two attachments is local to at most one block. An H-bridge
that is not local to any block of H is non-local.

6.2.3. Connectivity and Data Structures
Let (G,H,H) be a Peg. In the following we define some data structures that are widely
used throughout the chapter. All of these data structures can be easily computed in time
linear in the number of edges of the graph or of the embedding they refer to.

We use the decomposition of a graph G into its connected, biconnected, and triconnected
components. To further connect these decompositions with the embedding of H we make
use of several auxiliary data structures.

The component–face tree CF of H is a tree whose nodes are the connected components
of H and the faces of H. A face f and a component C are joined by an edge if a vertex
of C is incident to f . The block–face tree BF of H is a tree whose nodes are the blocks
of H and the faces of H. A face f and a block B are joined by an edge if B contains an
edge incident to f . The vertex–face incidence graph VF of H is a graph whose nodes are
the vertices of H and the faces of H. A vertex v and a face f are joined by an edge if v
appears on the boundary of f .

For the decomposition into biconnected components we use the block–cutvertex tree,
as defined in Chapter 2. The enriched block–cutvertex tree of a connected graph G is a
tree obtained by adding to the block-cutvertex tree of G each vertex v of G that is not a
cutvertex and by connecting v to the unique block it belongs to.

To handle the decomposition of a graph into its triconnected components we use the
SPQR-tree T of G, which describes the arrangement of its triconnected components, see
Chapter 2.3 for a precise definition. The SPQR-tree is well-suited for the implementation
of efficient algorithms, as the SPQR-tree of a biconnected graph on n vertices has O(n) Q-,
S-, P-, and R-nodes, the total size of all skeletons of all nodes of T is also O(n) [BDD00],
and the SPQR-tree of G can be computed in linear time [GM00]. We say that an edge e
of G projects to a virtual edge e′ (or belongs to e′) of skel(µ), for some node µ in T , if e
belongs to the expansion graph of e′.

Recall that the SPQR-tree T can be used to represent all the planar embeddings of G.
For our characterization we will consider drawings on the sphere, and hence we use the
unrooted version of the SPQR-tree. In the second part of the chapter, for the linear-time
implementation we will then root the tree to allow for dynamic programming on the tree
in a bottom-up fashion.

We emphasize the following properties, that are implicitly exploited throughout all the
chapter.

6.3 Combinatorial Characterization 87

Property 6.1. A planar embedding of the skeleton of every node of T determines a planar
embedding of G and vice versa.

Property 6.2. Let C be a cycle of G and let µ be any node of T . Then, either the edges
of C belong to a single virtual edge of skel(µ), or they belong to a set of virtual edges that
induce a cycle in skel(µ).

Efficient computation of data structures. We now briefly discuss the time complexity
of constructing the introduced data structures. We further show how to implement the
basic queries we use in our algorithms in constant time per operation.

First, observe that a linear-time preprocessing can associate each edge of a planar graph
with the unique connected component it belongs to, with the unique block it belongs to,
and (given a planar embedding of the graph) with the at most two faces it is incident to.
Additionally, we can associate each vertex of a graph with the unique connected component
it belongs to.

The block-cutvertex tree of a connected planar graph and the SPQR-tree of a biconnected
planar graph can be constructed in linear time [Tar72, GM00]. The enriched block-cutvertex
tree of a connected planar graph G can be constructed starting from the block-cutvertex
tree of G by adding to the tree (i) each vertex v that is not a cutvertex of G, and (ii) an
edge between v and the only block it belongs to.

The block-face tree BF of a planar embedding G of a planar graph G can be constructed
in linear time. Namely, for each edge e of G, let Be be the unique block of G containing
e and let f ′e and f ′′e be the two faces of G adjacent to e (possibly f ′e = f ′′e). Add edges
(f ′e, Be) and (f ′′e , Be) to BF . When all the edges of G have been considered, the resulting
multigraph BF has a linear number of edges. Remove multiple edges as follows. Root
BF at any node and orient BF so that all the edges point toward the root. Remove all
the edges, except for one, exiting from each node, thus obtaining the block-face tree BF
of G. The component-face tree CF of a planar embedding G of a planar graph G can be
constructed in linear time, analogously.

The vertex-face incidence graph VF of a planar embedding G of a planar graph G can
be constructed in linear time by processing faces of G one by one, where for each face f
we walk along the boundary of f and add to VF edges between f and the vertices on the
boundary. To avoid adding multiple edges, we remember, for each vertex x, the last face f
that has been connected to x in VF . Note that VF is again planar.

Kowalik and Kurowski [KK03] have shown that for a given planar graph F and an
integer k, it is possible to build in linear time a “short-path” data structure that allows to
check in constant time whether two given vertices of F are connected by a path of length
at most k, and return such a path if it exists. We will employ this data structure to search
for paths of lengths 1 and 2 in our auxiliary graphs. Using this data structure, we can, for
example, determine in constant time whether two vertices share a common face in H (by
finding a path of length two in the vertex-face incidence graph VF) or whether they share
the same block (by finding a path of length 2 in the enriched block-cutvertex tree).

6.3. Combinatorial Characterization
We first present a combinatorial characterization of the partially embedded graphs that
allow an embedding extension. This not only forms a basis of our algorithm, but it is
also interesting in its own right, since it shows that a Peg has an embedding extension if

88 Chapter 6: Testing Planarity of Partially Embedded Graphs

and only if it satisfies simple conditions that are obviously necessary for an embedding
extension to exist.

Our characterization is based on a decomposition of the graph G of a Peg (G,H,H)
into its connected, biconnected and triconnected components. For triconnected Pegs the
problem is particularly easy. For a triconnected Peg (G,H,H) the graph G has only two
distinct planar embeddings G1 and G2. The Peg is thus planar if and only if either G1 or
G2 extends H. Clearly, for a non-connected Peg in order to admit an embedding extension
it is as necessary condition that each of its connected components admits an embedding
extension. Similarly, it is a necessary condition for a connected Peg that at least each
biconnected component admits an embedding extension. We start with the most specific
case, the case where G is biconnected and then extend the characterization from there to
the cases where G is connected or even disconnected.

6.3.1. Planarity of Biconnected Pegs
In this section we focus on biconnected Pegs (G,H,H), that is the graph G is biconnected.
This assumption allows us to use the SPQR-tree ofG as the main tool of our characterization.
The characterization is based on the two necessary and sufficient conditions of Lemma 6.1.
We show that they can be individually translated to constraints on the embeddings of the
skeletons of the SPQR-tree of G.

Definition 6.1. A planar embedding of the skeleton of a node of the SPQR-tree of G is
edge-compatible with H if, for every vertex x of the skeleton and for every three edges of
EH(x) belonging to different virtual edges of the skeleton, their clockwise order determined
by the embedding of the skeleton is a suborder of σH(x).

Lemma 6.2. Let (G,H,H) be a biconnected Peg. Let T be the SPQR-tree of G. An
embedding G of G satisfies condition 1 of Lemma 6.1 if and only if, for each node µ of T ,
the corresponding embedding of skel(µ) is edge-compatible with H.

Proof. Obviously, if G has an embedding satisfying condition 1 of Lemma 6.1, then the
corresponding embedding of skel(µ) is edge-compatible with H, for each node µ of T .

To prove the converse, assume that the skeleton of every node of T has an embedding
that is edge-compatible with H, and let G be the embedding of G determined by all such
skeleton embeddings. We claim that G satisfies condition 1 of Lemma 6.1. To prove the
claim, it suffices to show that any three edges e, f, and g of H that share a common vertex
x appear in the same clockwise order around x in H and in G. Assume that the triple
(e, f, g) is embedded in clockwise order around x in H. Let µ be the node of T with the
property that the Q-nodes representing e, f , and g appear in distinct components of T −µ.
Note that such a node µ exists and is unique. The three edges e, f , and g project into three
distinct virtual edges e′, f ′, and g′ of skel(µ). Since the embedding of skel(µ) is assumed to
be edge-compatible with H, the triple (e′, f ′, g′) is embedded in clockwise order in skel(µ),
and hence the triple (e, f, g) is embedded in clockwise order in G.

This settles the translation of condition 1 of Lemma 6.1 to conditions on the embeddings
of the skeletons of the SPQR-tree of G. Next, we deal with condition 2. Consider a simple
cycle ~C of G with an arbitrary orientation and a node µ of the SPQR-tree of G. Either
all the edges of ~C belong to the expansion graph of a single virtual edge of skel(µ) or the
virtual edges whose expansion graphs contain the edges of ~C form a simple cycle in skel(µ).
Such a cycle in skel(µ) inherits the orientation of ~C in a natural way.

6.3 Combinatorial Characterization 89

~C e

yg

f

x
P

(a)

y
x

~C ′ e′

g′

f ′

P ′

(b)

Figure 6.3.: Illustration for the proof of Lemma 6.3. Grey regions represent virtual edges of the
skeleton of a node of T .

Definition 6.2. A planar embedding of the skeleton of a node µ of the SPQR-tree of
G is cycle-compatible with H if, for every facial cycle ~C of H whose edges project to a
simple cycle ~C ′ in skel(µ), all the vertices of skel(µ) that belong to V left

H (~C) and all the
virtual edges that contain vertices of V left

H (~C) (except for the virtual edges of ~C ′ itself) are
embedded to the left of ~C ′; and analogously for V right

H (~C).

Lemma 6.3. Let (G,H,H) be an instance of Pep where G is biconnected. Let T be the
SPQR-tree of G. An embedding G of G satisfies condition 2 of Lemma 6.1 if and only if,
for each node µ of T , the corresponding embedding of skel(µ) is cycle-compatible with H.

Proof. Obviously, if G is an embedding of G that satisfies condition 2 of Lemma 6.1, then
the corresponding embedding of skel(µ) is cycle-compatible with H, for each node µ of T .

To prove the converse, assume that skel(µ) has an embedding that is cycle-compatible
with H, for each node µ of T , and let G be the resulting embedding of G.

Our goal is to show that, for every facial cycle ~C of H and for every vertex x of H−V (~C),
the relative left/right position of x with respect to ~C is the same in H as in G.

Refer to Fig. 6.3. Assume that x is to the right of ~C in G (the other case being analogous).
Let P be the shortest path in G that connects x to a vertex of ~C. Such a path exists
since G is connected. Let y be the vertex of ~C ∩ P , and let e and f be the two edges of ~C
adjacent to y, where e directly precedes f in the orientation of ~C. By the minimality of P ,
all the vertices of P − y avoid ~C, hence all the vertices of P − y are to the right of ~C in G.
Let g be the edge of P adjacent to y. In G, the triple (e, f, g) appears in clockwise order
around y.

Let µ be the (unique) internal node of T in which e, f , and g project to distinct edges
e′, f ′, and g′ of skel(µ). Let ~C ′ be the projection of ~C into skel(µ) (in other words, ~C ′ is
the subgraph of skel(µ) formed by edges that contain the projection of at least one edge
of ~C), and let P ′ be the projection of P . It is easy to see that ~C ′ is a cycle of length at
least two, while P ′ is either a path or a cycle. Assume that the edges of ~C ′ are oriented
consistently with the orientation of ~C and that the edges of P ′ form an ordered sequence,
where the edge containing x is the first and g′ is the last.

Both the endpoints of an edge of ~C ′ are vertices of ~C. Analogously, both the endpoints
of an edge of P ′ are vertices of P , with the possible exception of the first vertex of P ′. It
follows that no vertex of P ′ belongs to ~C ′, except possibly for the first one and the last one.
Thus, no edge of P ′ belongs to ~C ′ and, by the assumption that the embedding of skel(µ) is
planar and that G is the embedding resulting from the skeleton embedding choices, all the
edges of P ′ are embedded to the right of the directed cycle ~C ′ in skel(µ). In particular,

90 Chapter 6: Testing Planarity of Partially Embedded Graphs

the edge of skel(µ) containing x is to the right of ~C ′. Since the embedding of skel(µ) is
assumed to be cycle-compatible with H, x is to the right of ~C in H.

This shows that G satisfies condition 2 of Lemma 6.1, as claimed.

Definition 6.3. A planar embedding of the skeleton of a node µ of the SPQR-tree of G is
compatible with H if it is both edge- and cycle-compatible with H.

As a consequence of Lemmas 6.2 and 6.3, we obtain the following result, characterizing
the positive instances of Pep in which G is biconnected.

Theorem 6.1. Let (G,H,H) be an instance of Pep where G is biconnected. Then G has
an embedding which extends H if and only if the skeleton of each node of its SPQR-tree
has an embedding compatible with H.

If G is biconnected we can use Theorem 6.1 for devising a polynomial-time algorithm
for Pep. Namely, we can test, for each node µ of the SPQR-tree T of G whether skel(µ)
has an embedding that is compatible with H. For Q-, S-, and R-nodes, this test is easily
done in polynomial time.

If µ is a P-node, the test is more complex. Let x and y be the two poles of skel(µ).
We say that a virtual edge e of skel(µ) is constrained if the expansion graph of e (that is,
the pertinent graph of the child node of µ in T corresponding to e) contains at least one
edge of H incident to x and at least one edge of H incident to y. To obtain an embedding
of µ edge-compatible with H, the constrained edges must be embedded in a cyclic order
that is consistent with σH(x) and σH(y). Such a cyclic order, if it exists, is unique and
can be determined in polynomial time. Note that, if H has a facial cycle ~C that projects
to a proper cycle ~C ′ in µ, then ~C ′ has exactly two edges and these two edges are both
constrained. Thus, the embedding of any such cycle ~C ′ in µ is fixed as soon as we fix the
cyclic order of the constrained edges. Once the cyclic order of the constrained edges of µ is
determined, we process the remaining edges one-by-one and insert them among the edges
that are already embedded, in such a way that no edge-compatibility or cycle-compatibility
constraints are violated. It is not difficult to verify that this procedure constructs an
embedding of µ compatible with H, if such an embedding exists.

Thus, Pep can be solved in polynomial time for biconnected Pegs.

6.3.2. Planarity of Connected and Disconnected Pegs
A graph is planar if and only if each of its blocks is planar. Thus, planarity testing of general
graphs can be reduced to planarity testing of biconnected graphs. For planarity testing
of partially embedded graphs, the same simple reduction does not work; see Figure 6.4.
However, we will show that solving partially embedded planarity for a general instance
(G,H,H) can be reduced to solving the subinstances induced by the blocks of G and to
checking additional conditions that guarantee that the partial solutions can be combined
into a full solution for G.

Let us consider connected Pegs (G,H,H), that is instances of Pep, in which G is
connected. When dealing with such an instance, it is useful to assume that G has no non-
trivial non-local H-bridge. We will now show that any instance of Pep can be transformed
to an equivalent instance that satisfies this additional assumption.

Let K be a non-trivial non-local H-bridge of G. Since K is non-local, it must have at
least two attachments, and these attachments do not belong to any single block of H.

Let fK be the face of H whose boundary contains all the attachments of the H-bridge K.
Note that there can be at most one such a face (see Fig. 6.5.a): If the attachments of K

6.3 Combinatorial Characterization 91

(a) (b) (c)

Figure 6.4.: Three examples of Pep instances (G,H,H) that have no embedding extension, even
though each block of G admits an embedding extending the corresponding sub-
embedding of H. The black edges and vertices represent H, the gray edges and
vertices belong to G but not to H. Note that instance (a) fails to satisfy condition 3 of
Lemma 6.4, instance (b) fails to satisfy condition 2 of Lemma 6.4, and instance (c) has
a non-trivial non-local H-bridge. The modification of instance (c) into an equivalent
instance without non-trivial non-local H-bridges creates a block of G that does not
have an embedding extension.

fK

(a) (b)

Figure 6.5.: A non-local bridge is either necessarily contained in a face fK (a) or causes a non-
planarity (b).

were contained in the intersection of the boundaries of two distinct faces of H, then K
would necessarily be local. If there is no face of H incident to all the attachments of K,
then G clearly has no embedding extension (see Fig. 6.5.b). In this case, we define fK as
an arbitrary face of H.

Let K be the set of non-trivial non-local H-bridges of G. It is clear that, in any
embedding of G extending H, all the vertices of K − V (H) are embedded inside fK , for
every K ∈ K. This motivates the following definition.

Definition 6.4. Let H ′ be the graph whose edge set is equal to the edge set of H, and
whose vertex set is defined by V (H ′) = V (H) ∪ ⋃K∈K V (K). Let H′ be the embedding
of H ′ that is obtained from H by inserting, for every H-bridge K ∈ K, all the vertices of
K − V (H) into the interior of the face fK .

Observe that the graph G has no non-trivial non-local H ′-bridges. Observe also, that
any embedding of G that extends H also extends H′, and vice versa. Thus, the instance

92 Chapter 6: Testing Planarity of Partially Embedded Graphs

(G,H,H) of Pep is equivalent to the instance (G,H ′,H′), which contains no non-trivial
non-local bridges.

Before we state the next lemma, we need more terminology. Let H be an embedding
of a graph H, and let H1 and H2 be edge-disjoint subgraphs of H. We say that H1 and
H2 alternate around a vertex x of H if there are two pairs of edges e, e′ ∈ E(H1) and
f, f ′ ∈ E(H2) that are incident to x and that appear in the cyclic order (e, f, e′, f ′) in
the rotation scheme of x restricted to these four edges. Let x and y be two vertices of H
and let ~C be a directed cycle in H. We say that ~C separates x and y if x ∈ V left

H (~C) and
y ∈ V right

H (~C), or vice versa.

Lemma 6.4. Let (G,H,H) be an instance of Pep where G is connected and every non-
trivial H-bridge of G is local. Let G1, . . . , Gt be the blocks of G, let Hi be the subgraph
of H induced by the vertices of Gi, and let Hi be H restricted to Hi. Then, G has an
embedding extending H if and only if

1) each Gi has an embedding extending Hi,

2) no two distinct graphs Hi and Hj alternate around any vertex of H, and

3) for every facial cycle ~C of H and for any two vertices x and y of H separated by ~C,
any path in G connecting x and y contains a vertex of ~C.

Proof. Clearly, the three conditions of the lemma are necessary. To show that they are
also sufficient, assume that the three conditions are satisfied and proceed by induction on
the number t of blocks of G.

If t = 1, then G is biconnected, and there is nothing to prove. Assume that t ≥ 2.
If there is at least one block Gi that does not contain any vertex of H, we restrict our
attention to the subgraph G′ of G induced by those blocks that contain at least one vertex
of H. Since every non-trivial H-bridge of G is local, graph G′ is connected, and hence
it satisfies the three conditions of the lemma. By induction, the embedding H can be
extended into an embedding G′ of G′. Since every block Gi of G is planar (by condition 1
of the lemma), it is easy to extend the embedding G′ into an embedding of G.

Assume now that every block of G contains at least one vertex of H. This implies that
every cutvertex of G belongs to H, because otherwise the cutvertex would belong to a
non-local H-bridge, which is impossible by assumption. Let x be any cutvertex of G. Let
G′1, G

′
2, . . . , G

′
k be the connected components of G−x, where we select G′1 by the following

rules: if there is a component of G− x that has no vertex connected to x by an edge of H,
then let G′1 be such a component; if each component of G− x is connected to x by an edge
of H, then choose G′1 in such a way that the edges of H incident to x and belonging to G′1
form an interval in σH(x). Such a choice of G′1 is always possible, due to condition 2 of the
lemma.

Let G′ be the subgraph of G induced by V (G′1) ∪ {x}, and let G′′ be the subgraph of G
induced by V (G′2) ∪ · · · ∪ V (G′k) ∪ {x}. Let H ′ and H ′′ be the subgraphs of H induced
by the vertices of G′ and G′′, respectively, and let H′ and H′′ be H restricted to H ′ and
H ′′, respectively. Both G′ and G′′ have fewer blocks than G. Also, both the instances
(G′, H ′,H′) and (G′′, H ′′,H′′) satisfy the conditions of the lemma. Thus, by induction,
there is an embedding G′ of G′ that extends H′ and an embedding G′′ of G′′ that extends H′′.
Our goal is to combine G′ and G′′ into a single embedding of G that extends H. To see
that this is possible, we prove two auxiliary claims.

Claim 1. H′ has a face f ′ whose boundary contains x and, for any facial cycle ~C of f ′,
all the vertices of H ′′ except for x are in V left

H (~C), that is, they are ‘inside’ f ′.

6.3 Combinatorial Characterization 93

H ′

H ′

H ′

H ′

H ′

H ′
x

y

G′

G′

G′′

G′′

G′′

G′′

G′′
G′′

(a)

H ′

H ′

H ′

H ′

H ′

H ′
x

y

z

H ′
H ′

H ′ H ′

G′
i

G′
i

G′
i
G′

i
G′

i

(b)

Figure 6.6.: Illustration for the proof of Lemma 6.4. (a) H ′ has no edge incident to x. (b) H ′ has
an edge incident to x.

To see that the claim holds, assume first that H ′ has no edge incident to x (see Fig. 6.6.a).
Let f ′ be the unique face of H′ incident to x. We show that all the vertices of H ′′ are
inside f ′ in H. Let y be any vertex of H ′′. Since G′′ is connected, there is a path P in G′′
from y to x. Assume for contradiction that H′ has a facial cycle ~C such that ~C separates
y from x in H. This cycle belongs to H ′ − x, hence ~C and P are disjoint, contradicting
condition 3 of the lemma.

Next, assume that H ′ has an edge incident to x (see Fig. 6.6.b). By the construction
of G1, each connected component of G− x has at least one vertex connected to x by an
edge of H. Moreover, the edges of H′ incident to x form an interval in σH(x). This shows
that H′ has a face f ′ containing x on its boundary, and such that every vertex of H ′′
adjacent to x is inside f ′ in H. We now show that all the vertices of H ′′ except for x are
inside f ′. Let y be a vertex of H ′′ different from x. Let G′i be the component of G − x
containing y. We know that G′i has a vertex z adjacent to x by an edge of H and that z is
inside f ′ in H. Let P be a path in G′i connecting y and z. If y is not inside f ′, then y is
separated from z in H by a facial cycle of H′, contradicting condition 3 of the lemma.

Claim 2. All the vertices of H ′, except for x, appear in H inside the same face f ′′ of
H′′; further, x is on the boundary of f ′′.

To prove the claim, note that any two vertices from H ′ − x are inside the same face
f ′′ of H′′ in H by condition 3 of the lemma, because they are connected by a path in G′1.
Vertex x is on the boundary of f ′′, since otherwise it would be separated in H from the
remaining vertices of H ′ by a facial cycle of f ′′, again contradicting condition 3 of the
lemma.

In view of the previous two claims, it is easy to see that the embedding G′ of G′ and
the embedding G′′ of G′′ can be combined into a single embedding G of G that extends
H. To see this, note that, when H′ is extended into G′, the face f ′ from Claim 1 can be
subdivided into several faces of G′, at least one of which, say g′, contains x on its boundary.
Analogously, the face f ′′ from Claim 2 can be subdivided into several faces of G′′, at least
one of which, say g′′, contains x on its boundary. We then obtain the embedding G by
merging the faces g′ and g′′ into a single face.

Observe that computing the non-local H-bridges K and for each non-local H-bridge
K ∈ K the face fK can be done in polynomial time. Afterwards, the second and third

94 Chapter 6: Testing Planarity of Partially Embedded Graphs

conditions of Lemma 6.4 can be easily checked in polynomial time.
Next, we focus on disconnected Pegs, that is the instances (G,H,H) of Pep in which

G is not connected. The possibility of solving the subinstances of (G,H,H) induced by the
connected components of G does not guarantee that the instance (G,H,H) of Pep has a
solution. However, we show that solving Pep for an instance (G,H,H) can be reduced
to solving the subinstances induced by the connected components of G and to checking
additional conditions that guarantee that the partial solutions can be combined into a full
solution for G.

Lemma 6.5. Let (G,H,H) be an instance of Pep. Let G1, . . . , Gt be the connected
components of G. Let Hi be the subgraph of H induced by the vertices of Gi, and let Hi be
H restricted to Hi. Then G has an embedding extending H if and only if:

1) each Gi has an embedding extending Hi, and

2) for each i, for each facial cycle ~C of Hi and for every j 6= i, no two vertices of Hj are
separated by ~C.

Proof. Clearly, the two conditions of the lemma are necessary. To show that they are also
sufficient, assume that the two conditions are satisfied and proceed by induction on the
number t of connected components of G.

If t = 1 then G is connected and there is nothing to prove. Assume now that G has
t ≥ 2 connected components G1, . . . , Gt. Let Hi and Hi be defined as in the statement of
the lemma. Note that the graphs Hi may consist of several connected components. Let
CF be the component-face tree of H, rooted at a node that represents an arbitrary face
of H. We say that a face fi of H is the outer face of Hi if at least one child of fi in CF is
a component of Hi, but the parent of fi is not a component of Hi. Observe that, due to
the second condition of the lemma, each Hi has exactly one outer face fi. We thus have a
sequence of (not necessarily distinct) outer faces f1, . . . , ft of G1, . . . , Gt.

Let us now assume, without loss of generality, that in the subtree of CF rooted at f1,
there is no outer face fi 6= f1. This implies that f1 is the only face of H that is incident
both to H1 and to H − H1. By induction, the embedding H − H1 can be extended to
an embedding G≥2 of the graph G−G1. By the first condition of the lemma, H1 can be
extended into an embedding G1 of G1. The two embeddings H−H1 and H1 share a single
face f1.

When extending the embedding H1 into G1, the face f1 of H1 can be subdivided into
several faces of G1. Let f ′ be any face of G1 obtained by subdividing f1. Analogously,
in the embedding G≥2 the face f1 can be subdivided into several faces, among which we
choose an arbitrary face f ′′.

We then glue the two embeddings G1 and G≥2 by identifying the face f ′ of G1 and the
face f ′′ of G≥2 into a single face whose boundary is the union of the boundaries of f ′ and f ′′.
This yields an embedding of G that extends H.

Note that the second condition of Lemma 6.5 can be easily tested in polynomial time.
Thus, we can use the characterization to directly prove that PartiallyEmbeddedPla-
narity is solvable in polynomial time. In the rest of the chapter, we describe a more
sophisticated algorithm that solves Pep in linear time.

6.4 Linear-Time Algorithm 95

6.4. Linear-Time Algorithm
In this section we devise a linear-time algorithm for solving Pep. The algorithm basically
follows the outline of the characterization. The first milestone is a linear-time algorithm
for biconnected Pegs. Afterwards, we show that the additional conditions for connected
and disconnected Pegs can be checked in linear time.

Essentially, to solve the biconnected case, it is sufficient to give a linear-time implementa-
tion of the algorithm sketched at the end of Section 6.1. In fact, most of the steps sketched
there are fairly easy to implement in linear time. The problem of finding a compatible
embedding of a P-node, however, is tricky.

One P-node µ may contain a linear number of facial cycles that project to cycles in
skel(µ). Further, a linear number of edges may have no H-edge adjacent to the poles
of skel(µ). Hence, the positions at which they have to be inserted in the cyclic orderings
around the poles of skel(µ) depend on the cycle containment constraints. To process a
P-node skel(µ) in time proportional to its size, we would need to find for each virtual edge
of P a position where it is contained in exactly the cycles it needs to be in and outside of
all other cycles.

Hence, the main problem for reaching linear running time stems from the cycle com-
patibility constraints, that is condition 2 of Lemma 6.1. The constraints stemming from
rotation scheme consist of an ordering of a subset of the incident edges of each vertex. Thus,
the total size of these constraints is linear, and, additionally, the constraints are very local.
In light of these two properties, it is not surprising that the rotation scheme constraints are
relatively simple to handle in linear total time. The same does, however, not hold for the
cycle containment constraints. As specified in condition 2 of Lemma 6.1, these constraints
specify for each directed facial cycle ~C of H and each vertex v of H − C whether v is to
the left or to the right of ~C. Note that the graph H may contain a linear number of facial
cycles, and thus this amounts to quadratically many cycle–vertex constraints. Further,
these constraints do not exhibit any locality on G. Evidently, a lot of the information
encoded in the cycle containment constraints is redundant, as the set of cycles involved in
these constraints is the set of facial cycles of a planar graph.

We use two different approaches to handle the cycle containment constraints in linear
time. One is to ignore them; we prove that this yields a correct solution if H is connected,
as in this case the cycle containment constraints are implied by the rotation scheme. The
second consists in considering restricted instances, where the constraints can easily be
expressed in linear space. Suppose we have a Peg (G,H,H), with a face f of H such
that all vertices of H are part of at least one facial cycle of f . This implies that each
facial cycle of H has f on the left side and the right side does not contain any vertices
of H. In this case, the cycle containment constraints of each facial cycle ~C of f can be
expressed as V right

H (~C) = ∅, thus yielding a set of constraints whose size is linear. Moreover,
in the SPQR-tree it is sufficient to keep track which virtual edges contain vertices of H,
and which do not. This information is much easier to aggregate than information about
individual vertices and all their cycle containment constraints.

First, we tackle the case in which G is biconnected. The algorithm solving this case,
presented in Section 6.4.3, uses the algorithms presented in Sections 6.4.1 and 6.4.2 as
subroutines to solve more restricted subcases. Then, we deal with the case in which
G is singly connected and with the general case, where G may be disconnected, in
Subsection 6.4.4. The algorithm we present exploits several auxiliary data structures,
namely block-cutvertex trees, SPQR-trees, enriched block-cutvertex trees, block-face trees,

96 Chapter 6: Testing Planarity of Partially Embedded Graphs

component-face trees, and vertex-face incidence graphs. Note that all these data structures
can be easily computed in linear time [GM00].

6.4.1. G Biconnected, H Connected
In this section we show how to solve Pep in linear time for biconnected Pegs (G,H,H)
with H connected. We first show that in this case the rotation scheme alone is sufficient
for finding an embedding extension.

Lemma 6.6. Let (G,H,H) be Peg such that G is biconnected and H is connected. Let
G be any planar embedding of G satisfying condition 1 of Lemma 6.1. Then, G satisfies
condition 2 of Lemma 6.1.

Proof. Suppose, for a contradiction, that a planar embedding G of G exists such that G
satisfies condition 1 and does not satisfy condition 2 of Lemma 6.1. Then, there exists a
facial cycle ~C of H such that either there exists a vertex x ∈ V left

H (~C) with x ∈ V right
G (~C)

or there exists a vertex x ∈ V right
H (~C) with x ∈ V left

G (~C). Suppose that we are in the former
case, as the latter case can be discussed analogously. Since H is a planar embedding and
H is connected, there exists a path P = (x1, x2, . . . , xk) ∈ H such that x1 is a vertex of
~C, xi ∈ V left

H (~C), for each i = 2, . . . , k, and xk = x. Denote by x−1 and by x+
1 the vertex

preceding and following x1 in the oriented cycle ~C, respectively. Consider the placement of
x2 with respect to ~C in G. As x2 /∈ ~C, either x2 ∈ V left

G (~C) or x2 ∈ V right
G (~C). In the first

case, the path (x2, . . . , xk) crosses ~C, since x2 ∈ V left
G (~C), xk ∈ V right

G (~C), and no vertex vi
belongs to ~C, for i = 2, . . . , k, thus contradicting the planarity of the embedding G. In the
second case, the clockwise order of the edges incident to x1 in H is (x1, x

−
1), (x1, x2), and

(x1, x
+
1), while the clockwise order of the edges incident to x1 in G is (x1, x

−
1), (x1, x

+
1), and

(x1, x2), thus contradicting the assumption that G satisfies condition 1 of Lemma 6.1.

By Lemma 6.6, testing whether a planar embedding G exists satisfying conditions 1
and 2 of Lemma 6.1 is equivalent to testing whether a planar embedding G exists satisfying
condition 1 of Lemma 6.1. Due to Lemma 6.2, testing whether a planar embedding G
exists satisfying condition 1 is equivalent to testing whether the skeleton of each node of
the SPQR-tree of G has a planar embedding that is edge-compatible with H. We now
describe an algorithm, called Algorithm BC (for G Biconnected and H Connected), that
achieves this in linear time.

Algorithm BC. Construct the SPQR-tree T of G and root it at an arbitrary internal
node. This choice determines for each node µ its pertinent graph and also determines one
special virtual edge in each skeleton, namely the one that skel(µ) shares with its parent.
A bottom-up visit of T is performed, such that after a node µ of T has been visited, an
embedding of skel(µ) that is edge-compatible with H is selected, if it exists. For each
virtual edge uv of the skeleton skel(µ) of a node µ, in order to find a cycle-compatible
embedding, we need to know whether its expansion graph contains H-edges incident to u
and v. Due to the bottom-up traversal, all pertinent graphs of all children have already
been processed by the algorithm, and we can thus aggregate this information for all edges,
except the one the skel(µ) shares with its parent.

In order to keep track of the edges of H that belong to pert(µ) and that are incident to
the pole u(µ), define the first edge fu(µ) and the last edge lu(µ) as the edges of H such that
exactly the edges between fu(µ) and lu(µ) in the counterclockwise order of the edges incident
to u(µ) in H belong to pert(µ). The first and last edge of v(µ) are defined analogously.

6.4 Linear-Time Algorithm 97

After a node µ of T has been visited by the algorithm, edges fu(µ), lu(µ), fv(µ), and lv(µ)
are associated with µ. We can then also refer to them as fu(e) and lu(e) (respectively fv(e)
and lv(e)) where e is the virtual edge corresponding to µ in the skeleton of the parent of µ.

If µ is a Q- or an S-node, no check is needed. As skel(µ) is a cycle, the only planar
embedding of skel(µ) is edge-compatible with H. The edges fu(µ), lu(µ), fv(µ), and lv(µ) are
easily computed.

If µ is an R-node, then skel(µ) has only two planar embeddings. For each of them, verify
if it is edge-compatible with H by performing the following check. For each vertex x of
skel(µ) restrict the circular list of its incident virtual edges to the virtual edges e1, . . . , eh
that contain an edge of H incident to x. Check if lx(ei) precedes fx(ei+1) (for i = 1, . . . , h,
where eh+1 = e1) in the list of the edges incident to x in H. If x is a pole, do an analogous
check on the linear list of its incident virtual edges obtained by removing the virtual
edge corresponding to the parent of µ from the circular list. If one of the tests succeeds,
then select the corresponding embedding for skel(µ). Set fu(µ) = fu(f1), lu(µ) = lu(fp),
fv(µ) = fv(g1), and lv(µ) = lv(gq), where f1 and fp (g1 and gq) are the first and the last
virtual edge in the linear list of the virtual edges containing an edge of H and incident to
u(µ) (respectively to v(µ)).

If µ is a P-node, an embedding of skel(µ) is a counterclockwise order of its virtual edges
around u(µ). We describe how to verify if an embedding of skel(µ) exists edge-compatible
with H. Consider the virtual edges containing edges of H incident to u(µ). We show how to
construct a list Lu of such edges corresponding to the ordering they have in any embedding
of skel(µ) edge-compatible with H. Insert any of such edges, say ei, into Lu. Repeatedly
consider the last element ej of Lu and insert as new last element of Lu the edge ej+1 such
that l(u(ej)) immediately precedes f(u(ej+1)) in the counterclockwise order of the edges
incident to u(µ) in H. If ej+1 = ei, then Lu is the desired circular list. If ej+1 does not
exist, then the edge following l(u(ej)) belongs to the virtual edge corresponding to the
parent of µ. Then, consider the first edge ei. Repeatedly consider the first element ej of
Lu and insert as new first element of Lu edge ej−1 such that f(u(ej)) immediately follows
l(u(ej−1)) in the counterclockwise order of the edges incident to u(µ) in H. If ej−1 does
not exist, then check whether all the virtual edges containing edges of H incident to u(µ)
have been processed and in this case insert the virtual edge corresponding to the parent of
µ as first element of Lu. Analogously, construct a list Lv. Let Luv be the sublist obtained
by restricting Lu to those edges that appear in Lv. Let Lvu be the corresponding sublist
of Lv. Check whether Luv and Lvu are the reverse of each other. If this is the case, a list
L of the virtual edges of skel(µ) containing edges of H incident to u(µ) or to v(µ) can be
easily constructed compatible with both Lu and Lv. Finally, arbitrarily insert into L the
virtual edges of skel(µ) not in Lu and not in Lv, thus obtaining an embedding of skel(µ)
edge-compatible with H. Denote by f1 and fp (by g1 and gq) the virtual edges containing
edges of H incident to u(µ) (respectively to v(µ)) following and preceding the virtual edge
representing the parent of µ in L. Set fu(µ) = fu(f1), lu(µ) = lu(fp), fv(µ) = fv(g1), and
lv(µ) = lv(gq).

Theorem 6.2. Let (G,H,H) be an n-vertex instance of Pep such that both G and H are
biconnected. Algorithm BC solves Pep for (G,H,H) in O(n) time.

Proof. We show that Algorithm BC processes each node µ of T in O(kµ) time, where kµ
is the number of children of µ in T .

First, observe that the computation of fu(µ), lu(µ), fv(µ), and lv(µ) is trivially done in
O(1) time once the embedding of skel(µ) has been decided.

98 Chapter 6: Testing Planarity of Partially Embedded Graphs

If µ is a Q-node or an S-node, Algorithm BC does not perform any check or embedding
choice.

If µ is an R-node, Algorithm BC computes the two planar embeddings of skel(µ) in
O(kµ) time. For each of these embeddings, Algorithm BC processes each vertex x of
skel(µ) separately, considering the list of the virtual edges incident to x (which is trivially
constructed in O(t) time, where t is the number of such edges), and restricting the list to
those virtual edges containing an edge of H incident to x (for each virtual edge, it suffices
to check whether the first edge incident to x is associated with an edge of H, which is done
in O(1) time). Checking whether lx(ei) precedes fx(ei+1) in the list of the edges incident to
x in H is done in O(1) time. Hence, the total time spent for each node x is O(t). Summing
up over all the nodes of skel(µ) results in a total O(kµ) time, as every edge is incident to
two nodes and the total number of edges in skel(µ) is O(kµ).

If µ is a P-node, extracting the virtual edges of skel(µ) containing edges of H incident to
u(µ) or to v(µ) can be done in O(kµ) time, as in the R-node case. For each of such edges,
equipping fu(e), lu(e), fv(e), and lv(e) with a link to e is done in constant time. Determining
an ordering of the virtual edges containing edges of H incident to u(µ) can be done in
O(kµ) time, as the operations performed for each virtual edge ei are accessing the first and
the last edge of ei, accessing the edge following the last edge of ei (preceding the first edge
of ei) in the counterclockwise order of the edges incident to u(µ) in H, and accessing a
virtual edge linked from a first or last edge; each of these operations is trivially done in
O(1) time. Marking the virtual edges in Lu and in Lv is done in O(kµ) time, as Lu and
Lv have O(kµ) elements. Then, obtaining Luv and Lvu, and checking whether they are
the reverse of each other is done in O(kµ) time. Finally, extending Luv to L is also easily
done in O(kµ) time; namely, if Luv is empty, then let L be the concatenation of Lu and Lv
(where such lists are made linear by cutting them at any point). Otherwise, start from an
edge ei of Luv; ei is also in Lu and in Lv; insert ei into L; insert into L all the edges of
Lu following ei till the next edge ei+1 of Luv has been found; insert into L all the edges
of Lv preceding ei till the next edge ei+1 of Luv has been found; insert ei+1 into L, and
repeat the procedure. Each element of Luv, Lu, and Lv is visited once, hence such a step
is performed in O(kµ) time.

As ∑µ∈T kµ = O(n), the total running time of the algorithm is O(n).

Note that, although Algorithm BC relies only on the assumptions that G is biconnected
and H is connected, we will only use it in the more special case where H is also biconnected.

6.4.2. G Biconnected, All Vertices and Edges of G Lie in the
Same Face of H

The Pegs considered in this section are denoted by (G(f), H(f),H(f)). Such instances
are assumed to satisfy the following properties: (i) G(f) is biconnected, (ii) G(f) and H(f)
have the same vertex set, (iii) all the vertices and edges of H(f) are incident to the same
face f of H(f), and (iv) no edge of G(f) \H(f) connects two vertices of the same block of
H(f). Algorithm BF, that deals with such a setting, is used as a subroutine by Algorithm
BA, to be shown later, dealing with the instances of Pep in which G is biconnected and
H arbitrary. First, we show that the structure of the cycles in H(f) is very special.

Property 6.3. Every simple path of H(f) belongs to at most one simple cycle of H(f).

Proof. Suppose that there exists a path (that can possibly be a single edge) of H(f)
belonging to at least two simple cycles of H(f). Then, such cycles define at least three

6.4 Linear-Time Algorithm 99

regions of the plane. Not all the edges of the two cycles can be incident to the same region,
contradicting the fact that all the edges of H(f) are incident to the same region of the
plane in H(f).

Since all vertices and edges are incident to f , the only relevant cycles for which cycle–
vertex constraints have to be checked, are the facial cycles of f . We exploit this particular
structure of the input to simplify the test of cycle-compatibility with H(f) for the skeleton
of a node µ of T (f).

Lemma 6.7. Consider any node µ of T (f). Then, an embedding of skel(µ) is cycle-
compatible with H(f) if and only if, for every facial cycle ~C of H(f) whose edges project
to a cycle ~C ′ of skel(µ), no vertex and no edge of skel(µ) is to the right of ~C ′, where ~C ′ is
oriented according to the orientation of ~C.

Proof. By assumption (iii) of the input, all the vertices and edges of H(f) are incident to
the same face f of H(f). By construction, every facial cycle ~C of H(f) is oriented in such
a way that f and hence all the vertices of H(f) are to the left of ~C. Then, by Lemma 6.3,
if the edges of ~C determine a cycle ~C ′ of virtual edges of skel(µ), all the vertices of skel(µ)
that are not in ~C and all the virtual edges of skel(µ) that are not in ~C ′ and that contain
vertices of G(f) have to be to the left of ~C ′. Finally, all the virtual edges that are not in
~C ′ and that do not contain any vertex of G(f) (that is, virtual edges corresponding to
Q-nodes) have one end-vertex that is not in ~C, by assumption (iv) of the input. Such an
end-vertex forces the edge to be to the left of ~C ′.

In order to find compatible embeddings for the skeletons, we again need to find edge-
compatible embeddings, which can be done as in Algorithm BC. Further, to check cycle-
compatibility, we need to quickly find the projections of facial cycles of f in the skeletons
of the nodes of the SPQR-tree. Since every edge (and every path) can be contained in at
most one such cycle, the presence of such a path can be encoded in a single flag. Like
Algorithm BC, Algorithm BF starts with the construction of the SPQR-tree T (f) of G(f),
roots it at an arbitrary internal node, and visits T (f) in bottom-up order in such a way
that after a node µ of T (f) has been visited, an embedding of skel(µ) that is compatible
with H(f) is selected, if it exists. In order to ensure edge compatibility, Algorithm BF
maintains edges fu(µ), lu(µ), fv(µ), and lv(µ) for each node µ of T (f) (and of a virtual edge
e) as in Algorithm BC.

Additionally, in order to keep track of paths in H that are part of a facial cycle of f ,
the algorithm maintains a flag p(µ) for each node µ of T (f) such that p(µ) is set to true
if and only if there exists a traversing path P , that is, a path between u(µ) and v(µ) that
is composed of edges of H(f), that belongs to pert(µ), and that is part of a facial cycle ~C
of f not entirely contained in pert(µ); flag p(µ) is set to false, otherwise. Additionally, to
encode the direction of the path the algorithm maintains a flag uv(µ). If p(µ) = true, the
flag uv(µ) is set to true if P is oriented from u(µ) to v(µ) according to the orientation of
~C, and it is set equal to false, otherwise. We also refer to these flags as p(e) and uv(e),
where e is the virtual edge corresponding to µ in the skeleton of the parent of µ.

Now, we state lemmas specifically dealing with S-, R-, and P-nodes of T (f). For S-nodes
the flags can easily be computed from the flags of its children.

Lemma 6.8. Let µ be an S-node of T (f) with children µ1, µ2, . . . , µk. Then, p(µi) =
true for some 1 ≤ i ≤ k if and only if p(µj) = true for all 1 ≤ j ≤ k.

100 Chapter 6: Testing Planarity of Partially Embedded Graphs

Proof. If p(µj) = true for all 1 ≤ j ≤ k, then trivially p(µi) = true. If p(µi) = true
for some 1 ≤ i ≤ k, there exists a traversing path of µi that is part of a simple cycle ~C of
H(f) not entirely contained in pert(µi); however, as µ is an S-node, ~C does not entirely
lie inside pert(µ), as otherwise it would entirely lie inside pert(µi). Then, ~C consists of a
traversing path of pert(µj), for all 1 ≤ j ≤ k, and of a traversing path of the virtual edge
of skel(µ) corresponding to the parent of µ in T (f), thus proving the lemma.

Next, we derive a simple criterion for an embedding of an R-node to be cycle-compatible.
By Lemma 6.7 an embedding of a skeleton skel(µ) is cycle-compatible if for each facial
cycle ~C of f that projects to a cycle ~C ′ in skel(µ), the right side is empty. For an R-node µ
this condition can be reformulated: each such cycle must have a face on its right side.

Lemma 6.9. Let µ be an R-node of T (f). If an edge e of skel(µ) has a traversing path
belonging to a facial cycle ~C, let us orient e in the direction determined by the projection
of ~C in skel(µ). An embedding of skel(µ) is cycle-compatible with H(f) if and only if, for
each face g of the embedding of skel(µ), either (i) every virtual edge e on the boundary of
g is oriented so that g is to the right of e, or (ii) none of the virtual edges on the boundary
of g is oriented in a way that g is to the right of it.

Proof. Suppose that an embedding of skel(µ) is cycle-compatible with H(f). Let g be a
face of the embedding. Assume that on the boundary of g there is an edge e containing a
traversing path P , such that g is to the right of e. Let ~C be the facial cycle of H(f) that
contains P . By Lemma 6.7, ~C projects to a directed cycle ~C ′ in skel(µ), and no vertex or
edge of skel(µ) is embedded to the right of ~C ′. Thus, ~C ′ corresponds to the boundary of
the face g, and hence g satisfies condition (i).

Suppose now that in an embedding of skel(µ), every face satisfies condition (i) or
condition (ii). We claim that the embedding of skel(µ) is cycle-compatible with H(f). To
prove it, we use Lemma 6.7. Let ~C be a facial cycle of H(f) that projects to a simple
cycle ~C ′ in skel(µ). Let e be any edge of ~C ′ and let g be the face to the right of e in
the embedding of skel(µ). Necessarily, g satisfies condition (i). Hence, each edge on the
boundary of g has a traversing path. The union of these paths forms a cycle in H(f),
and by Property 6.3, this cycle is equal to ~C. Thus, the boundary of g coincides with the
cycle ~C ′. In particular, no vertex and no edge of skel(µ) is embedded to the right of ~C ′. By
Lemma 6.7, this means that the embedding of skel(µ) is cycle-compatible with H(f).

It remains to deal with the P-nodes. The special structure of the Pegs (G(f), H(f),H(f))
implies that for each P-node µ there exists at most one facial cycle ~C of f that projects to
a cycle in skel(µ).

Lemma 6.10. Let µ be a P-node of T (f). There exist either zero or two virtual edges of
skel(µ) containing a traversing path.

Proof. If there exists one virtual edge ei of skel(µ) containing a traversing path that is
part of a simple cycle ~C of H(f) not entirely contained in pert(ei), another virtual edge
of skel(µ) containing a traversing path that is part of ~C exists, as otherwise ~C would
not be a cycle. Further, if there exist at least three virtual edges of skel(µ) containing
traversing paths, then each of such paths belongs to three simple cycles, thus contradicting
Property 6.3.

Hence, the skeleton of every P-node contains at most one such cycle, whose right side
must by empty by Lemma 6.7. This considerably simplifies the problem of finding a

6.4 Linear-Time Algorithm 101

cycle-compatible embedding of a P-node. We are now ready to exhibit the main steps of
Algorithm BF.

Algorithm BF As stated above, Algorithm BF performs a bottom-up traversal on
the rooted SPQR-tree T (f) of G(f), such that for each processed node µ a compatible
embedding of skel(µ) is computed, if it exists. It computes the edges fu(µ), lu(µ), fv(µ), and
lv(µ) for each node µ of T (f) (and of a virtual edge e) as in Algorithm BC, in order to
find edge-compatible embeddings. Further, it computes the flags p(µ) and uv(µ) for each
processed node, in order to identify facial cycles of f that project to a cycle in skel(µ). We
now give a detailed description how Algorithm BF processes a node µ, assuming that all
flags and edges for all children have already been computed.

If µ is a Q- or an S-node, no check is needed. As skel(µ) is a cycle, the only planar
embedding of skel(µ) is compatible with H(f). Edges fu(µ), lu(µ), fv(µ), and lv(µ), and flags
p(µ) and uv(µ) can be easily computed.

If µ is an R-node, for each of the two planar embeddings of skel(µ), check if it is
edge-compatible with H(f) and set values for fu(µ), lu(µ), fv(µ), and lv(µ) as in Algorithm
BC. In order to check if any of the two embeddings is cycle-compatible with H(f), we
check if Lemma 6.7 is satisfied. To perform this test, we need for each virtual edge e = uv
of skel(µ) the corresponding flags p(e) and uv(e). This information is already known for
all virtual edges, except the virtual edge ep of skel(µ) representing the parent of µ in T (f).
To compute the flags for ep, we need to determine whether the virtual edge ep contains a
traversing path Pp and, in case it does, determine its orientation. By definition of traversing
path, Pp exists if and only if there exists a traversing path in pert(µ). Restrict skel(µ) to
those edges ei 6= ep with p(ei) = true and denote by skel′(µ) the obtained graph. Check
if the degree of u(µ) and v(µ) in skel′(µ) is even or odd. In the former case, Pp does not
exist; set p(µ) = false and p(ep) = false. In the latter case, Pp exists; set p(µ) = true
and p(ep) = true; the orientation of Pp is the only one that makes the number of edges ei
incident to u(µ) with uv(ei) = true equal to the number of edges ei incident to u(µ) with
uv(ei) = false; this determines uv(µ) and uv(ep).

Now, p(ei) and uv(ei) are defined for every virtual edge ei of skel(µ). Consider every
face g of skel(µ) and denote by ej = (uj , vj) any edge incident to g. Suppose, without loss
of generality, that g is to the right of ej when traversing such an edge from uj to vj . Then,
check if p(ej) = false, or p(ej) = true and uv(ej) = false, for all edges ej incident to g,
and check whether p(ej) = true and uv(ej) = true, for all edges ej incident to g. If one
of the two checks succeeds, the face does not violate Lemma 6.7, otherwise it does.

If µ is a P-node, check if an embedding of skel(µ) exists that is compatible with H(f) as
follows. By Lemma 6.10, there exist either zero or two virtual edges of skel(µ) containing
a traversing path. Then, consider the children µi of µ such that p(µi) = true. If zero or
two such children exist, then the edge of skel(µ) corresponding to the parent ν of µ in T
has no traversing path; if one such a child exists, then the edge of skel(µ) corresponding to
ν has a traversing path. Denote by ei and ej the edges of skel(µ) containing a traversing
path, if such edges exist, where possibly ej corresponds to ν (in this case, set p(ej) = true,
and set uv(ej) = true if uv(ei) = false and uv(ej) = false otherwise). If there exists no
edge ei of skel(µ) such that p(ei) = true, then construct an embedding of skel(µ) that is
edge-compatible with H(f), if possible, as in Algorithm BC; as there exists no facial cycle
of H(f) whose edges belong to distinct virtual edges of skel(µ), then an edge-compatible
embedding is also cycle-compatible with H(f). Edges fu(µ), lu(µ), fv(µ), and lv(µ) are
computed as in Algorithm BC. Flag p(µ) = false. If there exist two edges ei and ej such
that p(ei) = true, p(ej) = true, and p(el) = false for every edge el 6= ei, ej , suppose

102 Chapter 6: Testing Planarity of Partially Embedded Graphs

that uv(ei) = true and uv(ej) = false, the case in which uv(ei) = false and uv(ej) =
true being analogous. Then, by Lemma 6.7, ej has to immediately precede ei in the
counterclockwise order of the edges incident to u(µ). Then, construct Lu and Lv as in
Algorithm BC; check whether Lu and Lv, restricted to the edges that appear in both lists,
are the reverse of each other; further, check whether ej precedes ei in Lu and whether ei
precedes ej in Lv; if the checks are positive construct the list L of all the edges of skel(µ)
as in Algorithm BC, except for the fact that the edges of skel(µ) not in Lu and not in Lv
are not inserted between ej and ei. Edges fu(µ), lu(µ), fv(µ), and lv(µ) are computed as in
Algorithm BC. Set p(µ) = false if ej corresponds to a child µj of µ and p(µ) = true if
ej corresponds to the parent of µ in T ; in the latter case, uv(µ) = true if uv(µi) = true
and uv(µ) = false otherwise. We get the following theorem.

Theorem 6.3. Let (G(f), H(f),H(f)) be a biconnected Peg with n vertices such that
G(f) and H(f) have the same vertex set, all the vertices and edges of H(f) are incident
to the same face f of H(f), and no edge of G(f) \H(f) connects two vertices belonging to
the same block of H(f). Algorithm BF solves Pep for (G(f), H(f),H(f)) in O(n) time.

Proof. We show that Algorithm BF processes each node µ of T (f) in O(kµ) time, where
µ1, . . . , µkµ are the children of µ in T (f).

Observe that the computation of fu(µ), lu(µ), fv(µ), and lv(µ) and the check of edge-
compatibility are done as in Algorithm BC, hence they take O(kµ) time. We describe how
to check the cycle-compatibility of an embedding of skel(µ) in O(kµ) time.

If µ is a Q-node or an S-node, Algorithm BF neither performs any check nor any
embedding choice.

If µ is a P-node, then Algorithm BF performs the same checks and embedding choices
as Algorithm BC, plus the check that the two edges ei and ej with p(ei) = true and
p(ej) = false (notice that one of such edges could be the virtual edge corresponding to the
parent of µ) are consecutive (with the right order) in Lu and Lv. This is done in constant
time. Flags p(µ) and uv(µ) are computed in O(kµ) time, by simply checking the flags p(µi)
and uv(µi), for i = 1, . . . , k.

Suppose that µ is an R-node. The construction of skel′(µ) can be easily done in O(kµ)
time, as such a graph can be obtained from skel(µ) by simply checking flag p(ei), for each
edge ei in skel(µ). Then, the degree of u(µ) and v(µ) in skel′(µ), and the flags p(µ), uv(µ),
p(ep) and uv(ep) can be computed in total O(kµ) time. The test on each face takes time
linear in the number of edges incident to the face. Namely, such a test consists of two
checks, each of which requires to consider a constant number of flags associated with each
edge of the face. As every edge is incident to two faces of skel(µ) and the number of edges
in skel(µ) is O(kµ), the total time spent for the test on the faces of skel(µ) is O(kµ).

As ∑µ∈T kµ = O(n), the total running time of the algorithm is O(n).

6.4.3. G Biconnected
In this section we show how to solve Pep for general biconnected Pegs, that is Pegs
(G,H,H) where G is biconnected and H is arbitrary. The algorithm employs the algorithms
from the previous two sections as subroutines. The general outline is as follows. First,
compute a subgraph H+ of G with the following properties: (i) H+ is biconnected; (ii)
H is a subgraph of H+; (iii) H+ contains every non-local H-bridge of G. Second, solve
instance (H+, H,H) obtaining an embedding H+ of H+ extending H, if H+ admits one.
We will show that this step can reduced to several applications of Algorithm BF. Finally,

6.4 Linear-Time Algorithm 103

solve instance (G,H+,H+) with Algorithm BC – we will see that H+ is connected (even
biconnected) and hence the algorithm can be applied.

In a first step, we ensure that all non-local H-bridges of G are trivial. Recall that every
non-trivial non-local H-bridge K has at most one candidate face fK of H, where it can be
embedded. We obtain the graph H’ with embedding H′ as in Definition 6.4 by adding the
vertices the K − V (H) to H and embedding them into the face fK for each non-trivial
non-local H-bridge K of G.

Let H+ be the graph obtained from G by removing the vertices and edges (but not the
attachments) of all the local H-bridges of G. Notice that H+ has the same vertex set as
H ′ and that any embedding of H+ that extends H also extends H′ and vice versa.

Each H ′-bridge K of H+ is non-local and therefore there exists a unique face fK , where
it needs to be embedded. Since H-bridges that are embedded in distinct faces of H do not
interact, we can solve the instances stemming from the faces of H independently, which
enables us to use Algorithm BF to find an embedding extension of H+. This motivates the
following definitions, which take a more local view at the Peg (H+, H ′,H′). Let f be a
face of H′ and let V (f) be the set of vertices of H ′ that are incident to f . Let H(f) be the
subgraph of H ′ induced by V (f), let H(f) be H′ restricted to H(f), and let G(f) be the
subgraph of H+ induced by V (f). By construction, in any embedding of H+ that extends
H, the edges of G(f) not belonging to H(f) are embedded inside f .

Our approach is to first find an embedding H+ of H+ that extends H′ (that is solve
Pep for (H+, H ′,H′)) and then find an embedding G for (G,H+,H+) (that is solve Pep
for (G,H+,H+)). The latter step is actually simple, since H+ is biconnected and thus
connected. Therefore Algorithm BC can be used to solve this subproblem.

Lemma 6.11. H+ is biconnected.

Proof. By construction of H+, each H+-bridge of G has all its attachment vertices in the
same block of H, and hence in the same block of H+, as H is a subgraph of H+. Therefore,
the number of blocks of H+ is not modified by the addition of the H+-bridges of G. Since
such an addition produces G, which is biconnected, H+ is biconnected.

Clearly, if (G,H,H) is planar, then an an embedding G of G extending H exists, and the
restriction of G to H+ yields an intermediate embedding H+ of H+ extending H′, which
can then be extended to an embedding of G extending H. We show that the choice of H+

does not change the possibility of finding such an embedding extension. In particular, if
H+

1 and H+
2 are two embeddings of (H+, H,H) then the Peg (G,H+,H+

1) is planar if and
only if (G,H+,H+

2) is planar.

Lemma 6.12. A biconnected Peg (G,H,H) is planar if and only if (a) the Peg (H+, H,H)
admits a planar embedding and (b) for every such embedding H+, (G,H+,H+) is planar.

Proof. Clearly, if conditions (a) and (b) hold, then G has an embedding extending H.
To prove the converse, assume that G has an embedding G extending H. Clearly, G

contains a sub-embedding H+ of H+ that extends H, so condition (a) holds. It remains to
prove that condition (b) holds, too.

First, we introduce some terminology: Let f be any face of H and let H+ be any
embedding of H+ that extends H. In H+, the face f can be partitioned into several faces,
which we will call the subfaces of f . A set of vertices S ⊆ V (H) is said to be mutually
visible in f with respect to H+ if H+ has a subface of f that contains all the vertices of S
on its boundary.

104 Chapter 6: Testing Planarity of Partially Embedded Graphs

The proof that condition (b) holds is based on two claims. The first one shows that for
the vertices that belong to the same block of H, mutual visibility is independent of the
choice of H+.
Claim 1. Let ~C be a facial cycle of f and let S ⊆ V (~C) be a set of vertices of ~C. If the
vertices in S are mutually visible in f with respect to at least one embedding of H+ that
extends H, then they are mutually visible in f with respect to every embedding of H+ that
extends H.

Note that the mutual visibility of S in f only depends on the embedding H+ restricted
to G(f). Let T be the SPQR-tree of G(f). By Theorem 6.1, the embeddings of G(f) that
extend H(f) are exactly obtained by specifying a compatible embedding for each skeleton
of T . Assume that G1 and G2 are two embeddings of G(f) that extend H. Assume that
the vertices of S are mutually visible in f with respect to G1. We will show that they are
also mutually visible with respect to G2. In view of Theorem 6.1, we may assume that G2
was obtained from G1 by changing the embedding of the skeleton of a single node µ ∈ T .

Let us distinguish two cases, depending on whether the cycle ~C is contained in the
pertinent graph of a single edge of µ, or whether it projects to a cycle in µ. If ~C is part of
the pertinent graph of a single virtual edge e = {x, y} ∈ µ, then let Ge be the embedded
graph obtained as the union of the pertinent graph of e and a single edge connecting x
and y, embedded in the outer face of the pertinent graph. We easily see that the vertices
S are mutually visible in f if and only if they share the same face of Ge, other than the
face that is to the right of ~C. Since Ge does not depend on the embedding of µ, we see
that S are mutually visible in G2.

Assume now that the cycle ~C projects to a cycle ~C ′ in µ. By Lemma 6.7, in any
compatible embedding of µ, all the vertices and edges of µ that do not belong to ~C ′ are
embedded to the left of ~C ′. In particular, if µ is an R-node, it only has a single compatible
embedding. Thus, µ must be a P-node. Let e and e′ be the two virtual edges of µ that
form ~C ′. In each compatible embedding of µ, these two edges must be embedded next to
each other, and in the same order. It easily follows that any two compatible embeddings of
µ yield embeddings of G(f) in which the vertices from S have the same mutual visibility.
This completes the proof of the claim.

Let us proceed with the proof that condition (b) holds. We need more terminology: Let
K and K ′ be a pair of local H-bridges of G whose attachments all appear on a facial cycle
~C of a face f in H. We say that K and K ′ have a three-vertex conflict on ~C if they share
at least three attachments, and that they have a four-vertex conflict on ~C if there are four
vertices x, x′, y, y′ that appear on ~C in this cyclic order, and x, y are attachments of K,
while x′, y′ are attachments of K ′.

Claim 2. Assume that a face fK of H has been assigned to every local H-bridge K of
G so that all the attachments of K are on the boundary of fK . Let H+ be an embedding
of H+ extending H. There is an embedding G of G extending H+, with the additional
property that each local H-bridge K is embedded inside a subface of fK , if and only if:

1. For any local H-bridge K, all the attachments of K are mutually visible in fK with
respect to H+.

2. If K and L are distinct local H-bridges assigned to the same face fK = fL, such that
the attachments of K and L appear on a common facial cycle ~C of H+, then K and
L have no conflict on ~C.

Clearly, the two conditions are necessary. In order to prove that they are also sufficient,
assume that both the conditions hold. Construct an embedding of G with the desired

6.4 Linear-Time Algorithm 105

properties as follows. Let f be any face of H and let f ′ be a face of H+ that is a subface
of f . Let K1, . . .Ks be all the local H-bridges that were assigned to f and such that all
their attachments appear on the boundary of f ′. Observe that the first condition of the
claim guarantees that every H-bridge Ki can be assigned to a face f ′ such that all the
attachments of Ki are mutually visible in f ′. We show that all the bridges K1, . . .Ks can
be embedded inside f ′.

First, observe that the boundary of f ′ is a simple cycle C ′, because H+ is biconnected.
Observe also that no two bridges Ki and Kj have a conflict on C ′, by the second condition
of the claim. To show that all the bridges K1, . . . ,Ks can be embedded inside C ′, proceed
by induction on s. If s = 1 the statement is clear. Assume that s ≥ 2 and that the bridge
K1 has been successfully embedded into f ′. The embedding of K1 partitions f ′ into several
subfaces f ′1, . . . , f ′t . Such subfaces are again bounded by simple cycles, otherwise G would
not be biconnected. We claim that, for every bridge Ki, with i ≥ 2, there is a subface f ′j
containing all the attachments of Ki. Consider any bridge Ki. Assume first that Ki has
an attachment x that is not an attachment of K1. Then, x belongs to a unique subface f ′j .
Hence, if Ki has another attachment not belonging to f ′j , there is a four-vertex conflict of
K1 and Ki on ~C ′, contradicting the second condition of the claim. Assume next that each
attachment of Ki is also an attachment of K1. Then, Ki has exactly two attachments and,
if such attachments do not share a face f ′j , a four-vertex conflict of K1 and Ki on ~C ′ is
created, again contradicting the second condition of the claim.

We can thus assign to each Ki a subface f ′j that contains all its attachments. By
induction, all the Ki’s can be embedded into their assigned faces, thus proving the second
claim.

The proof that condition (b) holds easily follows from the two claims. Namely, assume
that G has an embedding G extending H. Let H+ be G restricted to H+. For every local
H-bridge K of G, let fK be the face of H inside which K is embedded in G. Clearly, H+

satisfies the two conditions of the second claim, since it can be extended into G. Then,
every embedding of H+ that extends H satisfies the two conditions of the second claim:
For the first condition, this is a consequence of the first claim and for the second condition
this is obvious. We conclude that every embedding of H+ that extends H can be extended
into an embedding of G, thus proving condition (b) and hence the lemma.

As stated above, for each H ′ bridge K of (H+, H ′,H′) is non-local and we therefore
know into which face fK it needs to be embedded. Since H ′-bridges that are embedded
in different faces do not interact, we can solve the subinstance (G(f), H(f),H(f)) arising
from each face, separately. Clearly, if one of the instances fails, then G does not have an
embedding extension. If all instances admit an embedding extension, gluing them together
yields an embedding H+ of H+ extending embH ′. The previous lemma then implies that
(G,H,H) is planar if and only if (G,H+,H+) is planar. We are now ready to describe
Algorithm BA (for G Biconnected and H Arbitrary).

Algorithm BA Starting from an instance (G,H,H) of Pep, graphs G(f) and H(f),
and embedding H(f), for every face f of H, are computed as follows. For each H-bridge
K of G, determine whether it is local to a block of H or not. In the former case, K is
not associated to any face f of H. In the latter case, we compute the unique face f of
H in which K has to be embedded in any solution of instance (G,H,H) of Pep and
we associate K with f . These computations involve checks on the CF-tree of H, on the
BF-tree of H, on the VF-graph of H, and on the enriched block-cutvertex tree of each
connected component of H. However, all these computations can be performed in time

106 Chapter 6: Testing Planarity of Partially Embedded Graphs

linear in the size of K, as shown in the following.

Lemma 6.13. Let (G,H,H) be any instance of Pep. Let K be an H-bridge of G. There
is an algorithm that checks whether K is local to any block of H in time linear in the size
of K. Further, if K is non-local, the algorithm computes the only face of H incident to all
the attachment vertices of K, if such a face exists, in time linear in the size of K.

Proof. Compute the component-face tree CF of H, rooted at any node, the vertex-face
incidence graph VF of H, the block-face tree BF of H, rooted at any node, and, for
each connected component Ci of H, the enriched block-cutvertex tree B+

i of Ci, rooted
at any node. These computations can be performed in linear time (as shown in the Data
Structures section, Section 6.2.3).

Consider the attachment vertices a1, a2, . . . , ah ofK. If h = 1, thenK is local. Otherwise,
h ≥ 2. In order to decide whether K is local for some block of H, we perform the following
check. Consider the attachment vertices a1 and a2. If a1 and a2 belong to distinct
connected components, then K is not local to any block. Otherwise, they belong to the
same connected component Ci. Check whether a1 and a2 have distance 2 in B+

i , that is,
whether they belong to the same block B. This can be done in constant time [KK03]. If
the check fails, then K is not local to any block. Otherwise, B contains both a1 and a2. In
the latter case, check whether B is also adjacent in B+

i to all the other attachment vertices
a3, . . . , ah of K. Again, each such a check is performed in constant time [KK03]. If the test
succeeds, then K is local to block B. Otherwise, there exists a vertex aj , with 3 ≤ j ≤ h,
that is not incident to B, and K is not local to any block.

If K is non-local, we compute the unique face f of H to which all the attachment vertices
of K are incident. First, we choose two attachment vertices ap and aq, with 1 ≤ p, q ≤ h,
that do not belong to the same block. If a1 and a2 do not belong to the same block, then
we take ap = a1 and aq = a2. If the check failed on an attachment vertex aj in a3, . . . , ah,
then either a1 and aj , or a2 and aj do not belong to the same block. In the former case set
ap = a1 and aq = aj , in the latter one ap = a2 and aq = aj . Since the vertex-face incidence
graph VF is planar, we may use the approach of [KK03] to determine in constant time
whether ap and aq are connected by a path of length two in VF , and find the middle vertex
of such a path. This middle vertex corresponds to the unique common face f of ap and aq.
Check whether all the attachments of K are adjacent to f in VF . If the test fails, then
no face of H contains all the attachments of K. Otherwise, f is the only face of H whose
boundary contains all the attachments of K.

For each face f of H, consider every H-bridge K associated with f . Add the vertices and
the edges of K to G(f), and add the vertices of K to H(f) inside f . Let H+ = ⋃

f∈H G(f).
For each face f of H call Algorithm BF with input (G(f), H(f),H(f)). If Algorithm BF
succeeds for every instance (G(f), H(f),H(f)) (thus providing an embedding H+(f) of
G(f) whose restriction to H(f) is H(f)), merge the embeddings H+(f) of G(f) into a
planar embedding H+ of H+. Finally, call Algorithm BC with (G,H+,H+).

Theorem 6.4. Let (G,H,H) be an n-vertex instance of Pep such that G is biconnected.
Algorithm BA solves Pep for (G,H,H) in O(n) time.

Proof. The correctness of the algorithm descends from Lemma 6.12.
By Lemma 6.13, determining whether an H-bridge K is local or not can be done in

time linear in the size of K. Further, if K is non-local, the only face of H incident to all
the attachment vertices of K can be computed, if it exists, in time linear in the size of K.

6.4 Linear-Time Algorithm 107

Then, the construction of graphs G(f), H(f), H+ and of embeddings H(f) takes O(n)
time, as it only requires to perform the union of graphs that have total O(n) edges.

By Theorem 6.3, Algorithm BF runs in time linear in the number of edges of G(f), hence
all the executions of Algorithm BF take a total O(n) time. By Theorem 6.2, Algorithm
BC runs in O(n) time, hence the total running time of Algorithm BA is O(n).

This concludes the case of biconnected Pegs.

6.4.4. G Connected or Disconnected
In this section we give an algorithm that decides the planarity of general Pegs. First, we
deal with instances (G,H,H) of Pep in which G is connected, every non-trivial H-bridge
of G is local, and H is arbitrary. We show that the three conditions of Lemma 6.4 can be
checked in linear time. The first condition can be checked in linear time by Lemma 6.13.
The second and the third conditions can be checked in linear time by the following two
lemmas.

Lemma 6.14. Let (G,H,H) be a connected Peg. Let G1, . . . , Gt be the blocks of G, and
let Hi be the subgraph of H induced by the vertices of Gi. There is a linear-time algorithm
that checks whether any two distinct graphs among H1, . . . ,Ht alternate around a vertex
of H.

Proof. Let us describe the algorithm that performs the required checks. We assume that
every edge e of H has an associated label indicating the block of G that contains e. We
also associate to each block two integer counters which will be used in the algorithm.

We now describe a procedure TEST(x) which, for a given vertex x ∈ V (H), checks
whether any two graphs Hi, Hj alternate around x. Let us use the term x-edge to refer to
any edge of H incident to x, and let x-block refer to any block of G that contains at least
one x-edge.

The procedure TEST(x) proceeds as follows: first, for every x-block Gi, it determines
the number of x-edges in Gi and stores this in a counter associated with Gi. This is
done by simply looking at every edge incident to x and incrementing the counter of the
corresponding block. Next, TEST(x) visits all the x-edges in the order determined by the
rotation scheme σH(x), starting at an arbitrary x-edge. For each x-block it maintains in a
counter the number of its x-edges that have been visited so far. An x-block is active if
some but not all of its x-edges have already been visited.

The procedure TEST(x) also maintains a stack containing the active x-blocks. At the
beginning of the procedure the counters of visited edges of each x-block are set to zero and
the stack is empty.

For every edge e that TEST(x) visits, it performs the following steps:

1. Let Gi denote the block containing e. Increment the counter of visited x-edges of Gi.

2. If no other edge of Gi has been visited so far, push Gi on the stack.

3. If some x-edge of Gi has been visited before e, we know that Gi is currently somewhere
on the stack. Check whether Gi is on the top of the stack. If the top of the stack
contains an x-block Gj different from Gi, output that Hi and Hj alternate around x
and stop.

108 Chapter 6: Testing Planarity of Partially Embedded Graphs

4. Check whether e is the last x-edge of Gi to be visited (comparing its counter of
visited x-edges to the counter of total x-edges), and if it is, pop Gi from the stack.
(Note that if Gi has only one x-edge, it is pushed and popped during the visit of this
edge.)

If TEST(x) visits all the x-edges without rejecting, it outputs that there is no alternation
around x.

The procedure TEST(x) takes time proportional to the number of x-edges. Thus, we
can call TEST(x) for all the vertices x ∈ V (H) in linear time to test whether there is any
alternation in H.

Let us now argue that the procedure TEST(x) is correct. Assume that TEST(x) outputs
an alternation of Hi and Hj . This can only happen when Gj is on the top of the stack
while an x-edge e ∈ Gi is visited, and furthermore, e is not the first edge of Gi to be visited.
It follows that the first edge of Gi was visited before the first edge of Gj , and Gj is still
active when e is visited. This shows that Hi and Hj indeed alternate around x.

Conversely, assume that there is a pair of graphs Hi and Hj that alternate around x,
and the alternation is witnessed by two pairs of x-edges e, e′ ∈ Hi and f, f ′ ∈ Hj . For
contradiction, assume that TEST(x) outputs that there is no alternation. Without loss of
generality, assume that at least one x-edge of Hi is visited before any x-edge of Hj , that e
is visited before e′, and that f is visited before f ′. Thus, the four x-edges are visited in
the order e, f, e′, f ′. When the procedure visits e′, both Gi and Gj are active, and Gj is
on the stack above Gi, since we assumed that the first x-edge of Gi is visited before the
first x-edge of Gj . This means that when TEST(x) visited e′, Gi was not on the top of the
stack and an alternation should have been reported.

This contradiction completes the proof of the lemma.

The next lemma shows that the third condition of Lemma 6.4 can also be tested in
linear time, assuming the first and second conditions of the lemma hold.

Lemma 6.15. Let (G,H,H) be a connected Peg. Let G1, . . . , Gt be the blocks of G, and
let Hi be the subgraph of H induced by the vertices of Gi. Let Hi be H restricted to Hi.
Assume that the following conditions hold.

1) each non-trivial H-bridge of G is local,

2) each Gi has an embedding that extends Hi, and

3) no two of the graphs H1, . . . ,Ht alternate around any vertex of H.

There is a linear-time algorithm that decides whether there exists a facial cycle ~C of H
that separates a pair of vertices x and y such that x and y are connected by a path of G
that has no vertex in common with ~C.

Proof. Let P be a path in G with end-vertices in H and let ~C be a facial cycle of H. If P
and ~C are vertex-disjoint and the end-vertices of P are separated by ~C, we say that P and
~C form a PC-obstruction. A PC-obstruction (P, ~C) is called minimal if no proper subpath
P ′ ⊂ P forms a PC-obstruction with ~C. Observe that, in a minimal PC-obstruction, all
the internal vertices of P belong to V (G) \ V (H).

We want to show that the existence of a PC-obstruction can be tested in linear time.
Of course, it is sufficient to test the existence of a minimal PC-obstruction. Before we
explain how this test is done, we make some more observations concerning the structure of
minimal PC-obstructions.

6.4 Linear-Time Algorithm 109

Let (P, ~C) be a minimal PC-obstruction, and let x and y be the end-vertices of P . As
the internal vertices of P belong to V (G) \ V (H), then P is a subset of an H-bridge K,
and x and y are among the attachments of K. Let us now distinguish two cases, depending
on whether K is local to some block or not.

First, assume that K is local to a block B of H. Then, both B and P are part of the
same block Gi of G. Hence, ~C belongs to a different block of G, because if it belonged to
Gi, then Gi would contain the whole PC-obstruction (P, ~C) and it would be impossible
to extend the embedding Hi to Gi, thus contradicting condition 2 of the lemma. Then,
let Gj be the block of G that contains ~C. Since x and y belong to a common block B of
H, they are connected by a path Q ⊆ B. Since x and y are separated by ~C, Q shares a
vertex z with ~C (otherwise the embedding H would not be planar). Since Q and ~C belong
to distinct blocks, z is their unique common vertex. Hence, in the rotation scheme of z,
the two edges that belong to Q alternate with the two edges that belong to ~C, because ~C
separates x and y. Thus, Gi alternates with Gj around z, contradicting condition 3 of the
lemma. Then, K cannot be a local bridge.

Second, assume that K is non-local. By condition 1 of the lemma, K consists of a single
edge of E(G) \ E(H).

We conclude that any minimal PC-obstruction (P, ~C) has the property that P is a
single edge that forms a non-local H-bridge of G.

Observe that two vertices x and y belonging to distinct blocks of H are separated by a
facial cycle of H if and only if there is no face of H to which both x and y are incident.

We are now ready to describe the algorithm that determines the existence of a minimal
PC-obstruction. The algorithm tests all the edges of E(G) \ E(H) one by one. For any
such an edge e, it determines in constant time whether it is an H-bridge, i.e., whether its
endpoints x and y belong to H. If it is an H-bridge, it checks whether it is non-local in
constant time, by using Lemma 6.13. For a non-local bridge, the algorithm then checks
in constant time whether there is a face f of H into which this bridge can be embedded,
again using Lemma 6.13. Such a face f , if it exists, is uniquely determined. Finally the
algorithm checks whether both x and y are incident to f , using the vertex-face incidence
graph VF .

Overall, for any edge e, the algorithm determines in constant time whether this edge
is a non-local bridge that is part of a minimal PC-obstruction. Thus, in linear time, we
determine whether G has any PC-obstruction.

Combining Lemmas 6.4, 6.13, 6.14 and 6.15 with Theorem 6.4, we obtain the following
result.

Theorem 6.5. Pep can be solved in linear time when restricted to instances (G,H,H)
where G is connected.

Proof. By Lemma 6.13, an instance of Pep where G is connected can be reduced in linear
time to an equivalent instance that has the additional property that all the non-trivial
H-bridges are local. Namely, whether an H-bridge K is non-local and, in such a case,
which is the face of H in which K has to be embedded can be computed in time linear in
the size of K, by Lemma 6.13. We may thus assume that (G,H,H) is an instance of Pep
where G is simply connected and all non-trivial H-bridges in G are local to some block.

To solve Pep for (G,H,H), we present an algorithm based on the characterization of
Lemma 6.4. First, we generate all the subinstances (Gi, Hi,Hi) for i = 1, . . . , t, induced by
the blocks of G. It is not difficult to see that the subinstances can be generated in linear

110 Chapter 6: Testing Planarity of Partially Embedded Graphs

time. We then solve these subinstances using Algorithm BA, which takes linear time, by
Theorem 6.4, since the total size of the subinstances is linear. If any of the subinstances
does not have an embedding extension, we reject (G,H,H), otherwise we continue.

In the next step, we check whether there is a pair of graphs Hi, Hj that have an
alternation around a vertex of H. If there is an alternation, we reject the instance,
otherwise we continue. This step can be implemented in linear time, due to Lemma 6.14.

Finally, we check the existence of PC-obstructions, which by Lemma 6.15 can be done
in linear time. We accept the instance if and only if we find no PC-obstruction. The
correctness of this algorithm follows from Lemma 6.4.

Next, we deal with the instances (G,H,H) of Pep in which G is disconnected and H
arbitrary. We use Lemma 6.5 directly, and show that the two conditions of the lemma can
be checked in linear time. The first condition of Lemma 6.5 can be checked in linear time
by Theorem 6.5. To check the second condition, the CF tree of H is considered and rooted
at any node representing a face; then, the embedding Hi is considered as H restricted to
the subgraph Hi of H induced by the vertices of Gi; then, for every i, each node of CF
that represents a face of H incident to a component of Hi and whose parent represents a
component of H not in Hi is considered; if there is more than one such node for some i,
then (G,H,H) admits no solution, otherwise it does. The correctness of this argument
and an efficient implementation of it are in the proof of the following theorem.

Theorem 6.6. Pep can be solved in linear time.

Proof. Let (G,H,H) be an instance of Pep. Let G1, . . . , Gt be the connected components
of G, let Hi be the subgraph of H induced by the vertices of Gi, and let Hi be H restricted
to Hi.

By Lemma 6.5, (G,H,H) has an embedding extension if and only if each instance
(Gi, Hi,Hi) has an embedding extension and, for i 6= j, no facial cycle of Hi separates a
pair of vertices of Hj . By Theorem 6.5, we can test in linear time whether all the instances
(Gi, Hi,Hi) have an embedding extension.

It remains to test the existence of a facial cycle of Hi that separates vertices of Hj . For
this test, we use the component-face tree CF of H. Assume that CF is rooted at any node
representing a face of H; call this face the root face of H. A face f is an outer face of Hj if
at least one child of f in CF is a component of Hj , but the parent of f does not belong to
Hj (which includes the possibility that f is the root face).

We claim that a pair of vertices of Hj is separated by a facial cycle belonging to another
component of H if and only if there are at least two distinct outer faces of Hj in CF . To
see this, assume first that Hj has two distinct outer faces f1 and f2, and let C1 (or C2) be
a component of Hj which is a child of f1 (or f2, respectively). Any path from C1 to C2 in
CF visits the parent of f1 or the parent of f2. These parents correspond to components
of H not belonging to Hj , and at least one facial cycle determined by these components
separates C1 from C2.

Conversely, if C1 and C2 are components of Hj separated by a facial cycle belonging to
a component C3 of Hi (i 6= j), then the path in CF that connects C1 to C2 visits C3, and
in such a case it is easy to see that Hj has at least two outer faces.

We now describe the algorithm that tests the second condition of Lemma 6.5. We
assume that each connected component of H has associated its corresponding subgraph Hi

in CF . We then process the components of H one by one and, for each component C,
we check whether its parent node is an outer face of the embedding Hi of the subgraph

6.4 Linear-Time Algorithm 111

Hi containing C. We accept (G,H,H) if and only if each Hi has one outer face. This
algorithm clearly runs in linear time.

The algorithms for Pep we presented in this section, the ones for handling 1-connected
and disconnected graphs, are non-constructive. For simplicity, we preferred to first present
a shorter, non-constructive version. We now briefly sketch how the algorithms can be
extended to constructive linear-time algorithms.

Sketch of Constructive Algorithms. For the reduction from disconnected to connected
Pegs this is rather simple. Let (G,H,H) be a Peg and let G1, . . . , Gt be the connected
components of G. Assume we already have an embedding Gi for each instance (Gi, Hi,Hi),
where Hi is the subgraph of H contained in Gi and Hi is the restriction of H to Hi. Once
the checking algorithm has been run, we for each connected component of Gi its unique
outer face fi in H. Let f be any face of H that is an outer face of connected components
G1, . . . , Gk and possibly has parent Gk+1 in the rooted component-face tree CF , if f is not
the root of CF . We find a subface gi of f in any of the embedding G1, . . . ,Gk, and possibly
Gk+1, which is clearly possible in time linear in the size of Gi. We obtain the embedding
by merging the boundaries of the faces gi, i = 1, . . . , k, and possibly gk+1. Since every
connected components occurs at most once with its outer face and at most once as the
parent of an outer face, the total running time is linear.

For the case of 1-connected Pegs, observe that the procedure TEST(x) described in
the proof of Lemma 6.14 not just checks whether around each cutvertex x the blocks
containing an H-edge incident to x have a parenthetical structure, but the algorithm can
actually be employed to find an ordering of these incident blocks B1, . . . , Bt of G such that
when removing these blocks one by one, the H-edges of Bi form an interval at the time
of its removal. Further the check whether a trivial H-bridge is part of a PC-obstruction
actually reveals a unique face of H into which the block containing the H-bridge has to be
embedded. We use an arbitrary such H-bridge to determine the correct face for blocks
that do not contain an H-edge incident to the cutvertex x. This either gives a correct
embedding or one of the conditions of Lemma 6.14 or Lemma 6.15 is violated, in which
case an embedding does not exist. In the following, we assume that we have a feasible
instance.

Our procedure for handling 1-connected graphs is as follows. We first compute the
block-cutvertex tree of G and use Lemma 6.13 to make all non-local H-bridges trivial.
Let G1, . . . ,Gt be the blocks of G and let H1, . . . ,Ht be the subgraphs of H induced by
G1, . . . , Gt, together with the embeddings H1, . . . ,Ht induced by H. First, we compute
in linear time an embedding extension for each instance (Gi, Hi,Hi). Next, we merge
these embeddings into a single embedding G extending H, if possible. To this end, we
need to merge the rotation schemes of the embeddings at the cutvertices of G. In a first
step, we iteratively remove all leaf blocks in the block-cutvertex tree that do not contain a
vertex of H distinct from their (unique) cutvertex. Clearly, these blocks can later easily
be embedded as they are not subject to any constraints. The remaining instance is still
connected by the assumption that all non-local H-bridges are trivial, all cutvertices of the
remaining instance belong to H. Therefore, every block contains at least two vertices of H
(every non-leaf has at least two cutvertices, and a leaf with only one H-vertex would be
removed).

Let x be a cutvertex of the remaining graph with incident blocks B1, . . . , Bt. For each
of them we already have embedding extensions B〉. Assume that the ordering of the
blocks is such that B1, . . . , Bk contain an H-edge incident to x, while Bk+1, . . . , Bt do not.

112 Chapter 6: Testing Planarity of Partially Embedded Graphs

We embed the blocks B1, . . . , Bk by using a modified version of the procedure TEST(x),
described in the proof of Lemma 6.14. For each i in k + 1, . . . , t, let e = xy be any edge
incident to x in Bi. Since Bi contains an H-vertex distinct from x, the vertex y belongs
to H as well, otherwise e would be part of a non-trivial non-local H-bridge. Hence x and y
belong to distinct connected components of H. We use the component face tree CF to
find in O(1) time the unique face i of H that is shared by x and y. We associate Bi with
fi. Although the choice of e is arbitrary, either all edges of Bi incident to x yield the same
face, or at least one of them is part of a PC-obstruction, which we can rule out by first
running the checking algorithm.

We now construct the global (cyclic) ordering of all edges incident to x by a single
traversal of σH(x), similar to the procedure TEST(x), except that we alternatingly visit
edges and faces as they occur in counterclockwise order around x in H.

When the procedure visits a face f , it appends the edges of all blocks associated with
this face in the order as they occur in the embedding of the block. More precisely, let
Bi be any block associated with f , let e be any edge of Bi incident to x and let e′ be
the predecessor of e in the counterclockwise cyclic ordering of x in B〉. Then, the cyclic
ordering of x in B〉 forms a sequence e, . . . , e′, which we append to our global ordering of x.
We do this for all blocks associated with f in an arbitrary order. When the procedure
encounters the first H-edge of a block Bi, it appends this edge to the global ordering
of x, and stores the last encountered H-edge of Bi as ei. Whenever, it encounters another
H-edge e′ of Bi, it appends all edges between ei and e′, excluding ei and including e′, to
the global ordering of x in B〉, and then updates ei to e′. When the procedure encounters
the last H-edge of a block, it also inserts all the remaining edges of B〉 between the last
encountered H-edge and the first H-edge of Bi. As the H-edges incident to x occur in
the embedding B〉 of each block Bi in the same order as in σH(x), each edge is inserted
exactly once into the cyclic ordering. Considering the output sequence as a cyclic sequence,
we have found a cyclic ordering of all incident edges of x. Clearly, the running time of
the procedure is proportional to the number of edges incident to x. Clearly, the ordering
is such that its restriction to H yields σH(x), no two blocks alternate, and the ordering
of the edges of each incident block Bi are compatible with B〉. Finally, also the blocks
that do not have an H-edge incident to x are embedded into the right face, since this face
exists and thus is uniquely determined. The previously removed blocks containing at most
one H-vertex, can be embedded into arbitrary faces incident to their cutvertices in reverse
order of removal. Clearly, the total running time of this procedure is linear. The following
theorem summarizes our results.

Theorem 6.7. Let (G,H,H) be a Peg. There is a linear-time algorithm that either finds
an embedding extension G of H or concludes that such an embedding does not exist.

6.5. Applications and Extensions
In this section we discuss several extension of the problem PartiallyEmbeddedPla-
narity. Additionally, we show that Pep has some connections to the problem of finding a
simultaneous embedding with fixed edges of a pair graphs. In particular, the results of this
chapter can be used to solve this problem for a restricted class of inputs.

Problem extensions. Several generalizations of the PartiallyEmbeddedPlanarity
problem naturally arise. For the following two we readily conclude that they are NP-

6.5 Applications and Extensions 113

complete (since they contain as special cases Crossing number and Maximum planar
subgraph, respectively): (i) deciding if an embedding H can be extended to a planar
drawing of G with at most k crossings; and (ii) deciding if at least k edges of E(G) \E(H)
can be added to H preserving planarity.

Two additional problems that generalize Pep in different directions are the following:
(iii) deciding whether G has a planar embedding G in which at least k edges of H are
embedded the same as in H; and (iv) deciding whether a set F of at most k edges can be
deleted from H, so that G \ F has a planar embedding G in which the induced embedding
of H \ F coincides with H \ F . We show that even these two problems, called Minimum
Rerouting Partially Embedded Planarity and Maximum Preserved Partially
Embedded Planarity, respectively, are NP-hard.

Theorem 6.8. Minimum Rerouting Partially Embedded Planarity and Maximum
Preserved Partially Embedded Planarity are NP-hard.

Proof. The proof is by reduction from SteinerTree in planar graphs, which is known to
be NP-hard [GJ77]. Let G = (V,E) be a planar graph and let T ⊆ V be a set of terminals.
Choose an embedding G of G and let H be the dual of G with embedding H. For each
terminal t ∈ T we add a new vertex vt to H and prescribe it inside the face t? that is dual
to t. Moreover let S be the edge set of any connected graph on the vertices vt. We set
G′ := H + S.

Now consider the problem of identifying a set F of edges of H such that G′ − F can be
drawn planar and such that the subgraph H − F has embedding H− F . Clearly S can be
drawn if and only if we remove edges of H such that all vertices vt lie in the same face.
This is equivalent to the property that the set F ? of edges dual to F is a Steiner Tree in G
with terminal set T .

This shows that Maximum Preserved Partially Embedded Planarity is NP-hard.
Moreover, as the vertices vt form a separate connected component, we can reinsert the
edges of F without crossings into the drawing, i.e., it is sufficient to reroute the edges in F .
This shows that Minimum Rerouting Partially Embedded Planarity is NP-hard
as well.

In the case of Maximum Preserved Partially Embedded Planarity we can
even make H connected as follows. We connect each vertex vt to an arbitrary vertex of
its prescribed face and for S we choose the edge set of a star graph on the vertices vt.
Thus, Maximum Preserved Partially Embedded Planarity is NP-hard even if the
prescribed graph H is connected. This does, however, not hold for Minimum Rerouting
Partially Embedded Planarity, as the reduction relies on the property that every
edge of each face can be removed and reinserted after drawing S. This is not the case if
H is connected. We leave open the question whether Minimum Rerouting Partially
Embedded Planarity is NP-hard if the prescribed graph H is connected.

Application to simultaneous embedding with fixed edges. Moreover, the results
presented in this chapter can be used to solve special cases of the problem simultaneous
embedding with fixed edges, Sefe for short, to which we also contribute in Chapter 8
of this thesis. A simultaneous embedding with fixed edges (in the following called Sefe,
for short) of a pair (G1 = (V,E1), G2 = (V,E2) of graphs on the same vertex set is a
pair (Γ1,Γ2) of drawings such that: (i) Γi is a planar drawing of Gi, for each i = 1, 2; (ii)
each vertex v ∈ V is drawn on the same point in Γi, for every i = 1, 2; (iii) each edge

114 Chapter 6: Testing Planarity of Partially Embedded Graphs

(u, v) ∈ E1 ∩ E2 is represented by the same Jordan curve in Γ1 and in Γ2. The problem
can also be generalized to simultaneous embedding of multiple graphs.

The Sefe problem is a well-studied problem in graph drawing. A lot of research has
been devoted to pairs of graph classes that always admit a Sefe and to find out, how
many bends are necessary in this case [EK04, DL07a, Fra06, FJKS08]. Additionally, a lot
of work is concerned with the algorithmic aspects of the Sefe problem. In particular, it is
known that Sefe is NP-hard for two geometric graphs, where the edges are restricted to be
straight-line segments [EBGJ+07a] and that general Sefe is NP-hard for three (or more)
graphs [GJP+06]. There also exist polynomial-time algorithms, but until now only for
rather restricted cases, such as when the union of the graphs is homeomorphic to K5 or to
K3,3 [FJKS08], or if one of the two graphs has at most one cycle [FGJ+08b]. Despite this
large amount of research, the question about the complexity status of the Sefe problem
remains open.

The results presented in this chapter yield to solve in linear time the problem of deciding
whether two graphs admit a simultaneous embedding with fixed edges, if one of the graphs
has a fixed embedding. Jünger and Schulz [JS09] showed that two graphs G1 = (V,E1)
and G2 = (V,E2) admit a Sefe if and only if they admit embeddings E1 and E2 of G1
and G2, respectively, that coincide on the intersection graph. As a consequence of the
results we presented on the Pep problem, deciding whether two graphs have a Sefe is a
linear-time solvable problem if one the graphs has a fixed embedding.

Theorem 6.9. Let G1 and G2 be two graphs with the same n vertices, let G2 be a planar
embedding of G2 and let G1∩2 be the restriction of G2 to G1 ∩G2. Then G1 and G2 have
a Sefe in which the planar embedding of G2 is G2 if and only if (G1, G1 ∩G2,G1∩2) is a
Yes-instance of Pep.

More generally, the Sefe problem is linear-time solvable, if the embedding of the
intersection graph G1∩2 := G1 ∩G2 is fixed to an embedding G1∩2. In this case, (G1, G2)
is a Yes-instance of Sefe if and only if (G1, G1∩2,G1∩2) and (G2, G1∩2,G1∩2) are both
Yes-instances of Pep. In particular, this contains all the cases where one of the graphs is
triconnected, or if the intersection graph consists of a single triconnected component and
possibly some isolated vertices, as in these cases the embedding of the intersection graph is
fixed. In Chapter 8, we will have a closer look at the Sefe problem. There, we give an
efficient algorithm for solving the case where the intersection graph G1∩2 is biconnected,
and further consider the case where it is only connected, but not necessarily biconnected.

6.6. Concluding Remarks
In this chapter we have shown that PartiallyEmbeddedPlanarity (Pep), that is,
the problem of deciding whether a partial drawing can be extended to a planar drawing
of the entire graph, is solvable in linear time. To derive this result, we first presented
a combinatorial characterization of planar Pegs in terms of conditions on the structure
of the triconnected, biconnected, and connected components of the input graph. This
characterization immediately implies a polynomial-time algorithm for testing the planarity
of a given Peg. The second part of the chapter is devoted to a careful implementation
of the algorithm following from the characterization, resulting in an algorithm for Pep
with optimal linear running time. While edge-compatibility exhibits a very local behavior,
and is hence not too difficult to enforce in linear time, quite some steps are necessary to

6.6 Concluding Remarks 115

handle cycle-compatibility as well. Finally, we showed that our testing algorithm can also
be made constructive, that is, it finds an embedding extension for the input Peg, if one
exists. Altogether, from a purely algorithmic point of view, this completely settles the
problem Pep.

We further considered related problems and showed that several generalizations of Pep
are NP-hard and showed that there are connections to another well-known graph drawing
problem, the Sefe problem. The results in this chapter immediately imply a linear-time
algorithm for solving Sefe when the embedding of the intersection graph is fixed, which
holds for example if one of the input graphs or the intersection is triconnected. We will
further study this problem in Chapter 8.

In light of the connection to the Sefe problem, for which we still lack a fundamental
understanding, it seems to be important to understand the structure of the Pegs that
admit an embedding and also the ones that do not. A systematic understanding of the
structure of these Pegs might help to reduce the search space of the Sefe problem, as
it may allow to find necessary conditions on the embedding of the intersection graph of
a Sefe instance, and hence to reject a large portion of the possible embeddings of the
intersection graph. Another motivation to further study the structure of planar Pegs is
the objective to construct a certifying algorithm. A certifying algorithm is an algorithm
that not just outputs the solution to a problem, but also a certificate for the correctness of
the solution, which a user can then verify, usually using a much simpler procedure than
the algorithm itself.

One prominent example of certifying algorithms are planarity tests. For the case that
the input graph is planar, we expect the algorithm to also find a planar embedding, that is
a rotation scheme of the vertices corresponding to a planar embedding. Testing whether
such a rotation scheme actually corresponds to a planar embedding is much simpler, it
is even possible to compute the genus of such an embedding efficiently by traversing the
boundaries of all faces in order to compute their total number. Afterwards, the generalized
Euler formula n−m+ f = 2− 2g allows the computation of the genus. An embedding
is planar if and only if its genus is 0. For the negative case, where a graph is non-planar,
these algorithms usually find a subdivision of K5 or K3,3 as a certificate of non-planarity.
Again, given a subgraph of the input graph, it is not difficult to check that it actually is a
subdivision of a Kuratowski graph. Thus, the correctness of the outputs of a certifying
algorithm can easily be checked.

In particular, for very complicated algorithms, such as many planarity tests, this is
very helpful. Indeed the shortcomings of the first implementations of linear-time planarity
tests were one of the main motivations to construct certifying algorithms, to enable users
to at least check whether the decision of the algorithm was correct [MMNS10]. In the
next chapter we study the planarity of Pegs further in this sense, and propose a way to
construct such certificates of non-planarity, by characterizing the class of planar Pegs in
terms of forbidden substructures, similar to the Kuratowski theorem, which characterizes
the class of planar graphs by the forbidden minors K3,3 and K5. The ultimate goal is of
course a certifying algorithm that for a given Peg (G,H,H) either outputs an embedding
extension, if one exists, or finds a forbidden substructure that enables the user to check
that an embedding extension does not exist.

Much unlike the previous chapters, this chapter has revealed a vastly different face of
planarity. Planarity is a strong property and SPQR-trees allow for a succinct representation
of all planar embeddings of biconnected planar graphs. This helps a lot to make embedding
problems of planar graphs tractable. Nevertheless, it is quite surprising that Pep is even

116 Chapter 6: Testing Planarity of Partially Embedded Graphs

linear-time solvable, although typically problems asking to extend a given partial solution
are much more difficult than their counterpart without a partial input. In particular, the
result that the choice of embedding can be performed independently for each skeleton of
the SPQR-tree to yield a global solution, enables us to add the constraint that a subgraph
has to have a certain embedding as an afterthought to many other embedding problems
using the SPQR-tree. For example, in Chapter 9 we consider the problem of finding an
orthogonal drawing with at most one bend per edge. The algorithm essentially performs
dynamic programming on the SPQR-tree. By restricting the consideration to compatible
embeddings of the skeletons, one can easily enforce a certain combinatorial embedding on
a subgraph.

Open Problems. The problem Pep asks for the extendability of combinatorial planar
embeddings, which corresponds to topological drawings of planar graphs. An obvious
question is to consider other drawing styles. It is known that completing partial straight-line
drawings is NP-hard [Pat06], and it seems that the NP-hardness proof easily generalizes
to poly-line drawings that admit a fixed number of bends per edge. However, it may be
interesting to consider the problems of extending for example orthogonal drawings, or
drawings in the Manhattan-geodesic style, as introduced by Katz et al. [KKRW10].

Another way to generalize Pep is to relax the strict condition that the subgraph H
has to have a fixed embeddings. Mutzel et al. [GKM08] consider embedding constraints
that are expressed in terms of PQ-trees, restricting the orders of the incident edges of each
vertex. The common generalization of Pep and this problem assumes that only a subgraph
is constrained by such PQ-trees and the remaining edges can be inserted arbitrarily. Is it
possible to decide planarity of a partially PQ-constrained graph in polynomial time?

Chapter 7

A Kuratowski-Type Theorem for
Planarity of Partially Embedded
Graphs

In this chapter, we complement the work on planarity of partially embedded graphs from
the previous chapter with a characterization of planar partially embedded graphs via
forbidden substructures.

To this end, we introduce a containment relation of Pegs analogous to graph minor
containment, and characterize the minimal non-planar Pegs with respect to this relation.
We show that all the minimal non-planar Pegs except for finitely many belong to a
single easily recognizable and explicitly described infinite family. We also describe a more
complicated containment relation that only has a finite number of minimal non-planar
Pegs. Furthermore, by extending the planarity test for Pegs presented in Chapter 6,
we obtain a polynomial-time algorithm that, for a given Peg, either produces a planar
embedding or identifies a minimal obstruction, that is, a certificate of non-planarity.

The chapter is based on joint work with Vít Jelínek and Jan Kratochvíl [JKR11].

7.1. Introduction
Recall that a partially embedded graph (Peg) is a triplet (G,H,H), where G is a graph,
H is a subgraph of G, and H is a planar embedding of H. The problem PartiallyEm-
beddedPlanarity (Pep) asks whether a Peg (G,H,H) admits a planar (non-crossing)
embedding of G whose restriction to H is H. In this case we say that the Peg (G,H,H)
is planar. Despite of this being a very natural generalization of planarity, this approach
has not been considered until recently. It should be mentioned that all previous planarity
testing algorithms have been of little use for Pep, as they all allow flipping of already
drawn parts of the graph, and thus are not suitable for preserving an embedding of a given
subgraph.

In this chapter we complement the algorithm from the previous chapter by a study of
the combinatorial aspects of the question which Pegs are planar. In particular, we provide
a complete characterization of planar Pegs via a small set of forbidden substructures,
similar to the celebrated Kuratowski theorem [Kur30] that characterizes planarity via
the forbidden minors K5 and K3,3. Our characterization can then be used to modify the

118 Chapter 7: A Kuratowski-Type Theorem for Planarity of Partially Embedded Graphs

existing planarity test for partially embedded graphs into a certifying algorithm that either
finds a solution or finds a certificate, that is, a forbidden substructure, that shows that the
instance is not planar.

As we have already seen in the conclusion of Chapter 6, the planarity of Pegs also has
some connections to the problem simultaneous embedding with fixed edges, or Sefe for
short, which also is the topic of Chapter 8. It asks whether two graphs G1 and G2 on the
same vertex set V admit two drawings Γ1 and Γ2 of G1 and G2, respectively, such that
(i) all vertices are mapped to the same point in Γ1 and Γ2, (ii) each drawing Γi is a planar
drawing of Gi for i = 1, 2, and (iii) edges common to G1 and G2 are represented by the
same Jordan curve in Γ1 and Γ2. Jünger and Schulz [JS09] show that two graphs admit
a SEFE if and only if they admit planar embeddings that coincide on the intersection
graph. Once an embedding H of the intersection graph H has been fixed, it remains to
check whether the Pegs (G1, H,H) and (G2, H,H) are both planar. Understanding the
forbidden substructures for planarity of Pegs may be particularly beneficial in studying
this problem since our obstructions give an understanding of which configurations should
be avoided when searching for a feasible embedding of the intersection graph.

For the purposes of our characterization, we introduce a set of operations that preserve
the planarity of Pegs. Note that it is not possible to use the usual minor operations,
as sometimes, when contracting an edge of G not belonging to H, it is not clear how to
modify the embedding of H. Our minor-like operations are defined in Section 7.2.

Our goal is to identify all minimal non-planar Pegs in the minor-like order determined
by our operations; such Pegs are referred to as obstructions. Our main theorem says that
all obstructions are depicted in Figure 7.1 or belong to a well described infinite class of
so-called alternating chains (the somewhat technical definition is postponed to Section 7.2).
It can be verified that each of them is indeed a minimal obstruction, that is, it is not
planar, but applying any of the Peg-minor operations results in a planar Peg.

We say that a Peg avoids a PegX if it does not containX as a Peg-minor. Furthermore,
we say that a Peg is obstruction-free if it avoids all Pegs of Figure 7.1 and all alternating
chains of lengths k ≥ 4. Then our main theorem can be expressed as follows.

Theorem 7.1. A Peg is planar if and only if it is obstruction-free.

Since our Peg-minor operations preserve planarity, and since all the listed obstructions
are non-planar, any planar Peg is obstruction-free. The main task is to prove that an
obstruction-free Peg is planar.

Having identified the obstructions, a natural question is whether the Peg-planarity
testing algorithm of Chapter 6 can be extended so that it provides an obstruction if the
input is non-planar. This is indeed so.

Theorem 7.2. There is a polynomial-time algorithm that for an input Peg (G,H,H)
either constructs a planar embedding of G extending H, or provides a certificate of non-
planarity, that is, identifies an obstruction present in (G,H,H) as a Peg-minor.

Outline. The chapter is organized as follows. In Section 7.2, we first recall some basic
definitions and results on Pegs and their planarity, and then define the Peg-minor order
and the alternating chain obstructions. In Section 7.3, we show that the main theorem
holds for instances where G is biconnected. We extend the main theorem to general
(not necessarily biconnected) Pegs in Section 7.4. In Section 7.5, we present possible
strengthenings of our Peg-minor relations, and show that when more complicated reduction
rules are allowed, the modified Peg-minor order has only finitely many non-planar Pegs.

7.1 Introduction 119

K5 K3,3 1

2 3 4

5
6

7

8 9 10

11 12 13

14 15 16

17 18 19

20 21 22

Figure 7.1.: The minimal obstructions not equal to the k-fold alternating chains for k ≥ 4. The
black solid edges belong to H, the light dashed edges to G, but not to H. All the
vertices belong to both G and H, except for K5 and K3,3, where H is empty.

120 Chapter 7: A Kuratowski-Type Theorem for Planarity of Partially Embedded Graphs

In Section 7.6 we briefly provide an argument for Theorem 7.2 and then conclude with
some open problems.

7.2. Preliminaries and Notation
In this section we introduce basic definitions that we use throughout this chapter. Since
the graphs we consider in this chapter are not necessarily connected, we again use the more
general notion of an embedding on the sphere, where an embedding is described by the
rotation scheme and the face boundaries. As in the combinatorial part of Chapter 6, we
use the unrooted version of the SPQR-tree for handling biconnected Pegs. We further
assume that the reader is familiar with the basic concepts of partially embedded graphs,
as introduced in Chapter 6.

Minor-like operations for partially embedded graphs. We first introduce a set of
operations that preserve planarity when applied to a Peg I = (G,H,H). The set of
operations is chosen so that the resulting instance I ′ = (G′, H ′,H′) is again a Peg (in
particular, the prescribed graph H ′ is a subgraph of G′ and H′ is a planar embedding
of H ′). It is not possible to use the usual minor operations, as sometimes, when contracting
an edge of G−H, the embedding of the modified graph H is not unique and some of the
possible embeddings lead to planar Pegs, while some do not.

We will consider seven minor-like operations, of which the first five are straightforward.

1. Vertex removal: Remove from G and H a vertex v ∈ V (G) with all its incident edges.
2. Edge removal: Remove from G and H an edge e ∈ E(G).
3. Vertex relaxation: For a vertex v ∈ H remove v and all its incident edges from H,

but keep them in G. In other words, vertex v no longer has a prescribed embedding.
4. Edge relaxation: Remove an edge e ∈ E(H) from H, but keep it in G.
5. H-edge contraction: Contract an edge e ∈ E(H) in both G and H, update H

accordingly.

The contraction of G-edges is tricky, as we have to care about two things. First, we
have to take care that the embedding induced by H on the modified subgraph H ′ remains
planar and second, even if it remains planar we do not want to create a new cycle C in H
as in this case the relative positions of the connected components of H with respect to
this cycle may not be uniquely determined. We therefore have special requirements for
the G-edges that may be contracted and we distinguish two types, one of which trivially
ensures the above two conditions and one that explicitly ensures them.

6. Simple G-edge contraction: Assume that e = uv is an edge of G, such that at least
one of the two vertices u and v does not belong to H. Contract e in G, and leave H
and H unchanged.

7. Complicated G-edge contraction: Assume that e = uv is an edge of G, such that u
and v belong to distinct components of H, but share a common face of H. Assume
further that both u and v have degree at most 1 in H. This implies that we may
uniquely extend H to an embedding H+ of the graph H+ that is obtained from H
by adding the edge uv. Afterwards we perform an H-edge contraction of the edge uv
to obtain the new Peg.

7.2 Preliminaries and Notation 121

vP2

P3

P4

P5

u

P1

C

u v

P1

P2

P3 P4

P5
C

Figure 7.2.: Two non-isomorphic 5-fold alternating chains.

If a contraction produces multiple edges, we only preserve a single edge from each such
set of multiple edges, so that G and H remain simple.

Note that the resulting embedding H may depend on which edge we decide to preserve.
The extra conditions in the G-edge contractions ensure that the embedding H of

the modified graph H is uniquely determined from the initial embedding of H. The
conditions on vertex degrees in H ensure that the rotation scheme of the H-edges around
the resulting vertex is unique. In the complicated G-edge contraction, the requirement that
the endpoints need to lie in distinct connected components of H that share a face ensures
that the contraction does not create a new cycle in H and that the resulting graph H has
a unique planar embedding induced by H.

Let (G,H,H) be a Peg and let (G′, H ′,H′) be the result of one of the above operations
on (G,H,H). It is not hard to see that an embedding G of G that extends H can be
transformed into an embedding G′ of G′ that extends H′, as in fact all of them can be
expressed as usual minor operations on G. Therefore, all the above operations preserve
planarity of Pegs. If a Peg A can be obtained from a Peg B by applying a sequence
of the above operations, we say that A is a Peg-minor of B or that B contains A as a
Peg-minor.

Alternating chains. Apart from the obstructions in Figure 7.1, there is an infinite
family of obstructions, which we call alternating chains. To describe them, we need some
terminology. Let C be a cycle of length at least four, and let u, v, x and y be four distinct
vertices of C. We say that the pair of vertices {u, v} alternates with the pair {x, y} on C,
if u and v belong to distinct components of C − x− y.

Intuitively, an alternating chain consists of a prescribed cycle C and a sequence of
internally disjoint paths P1, . . . , Pk of which only the endpoints belong to C, in such
a way that the endpoints of Pi alternate exactly with the endpoints of Pi+1 on C for
i = 1, . . . , k− 1. Now assume that P1 contains a vertex that is prescribed inside C. Due to
the fact that the endpoints of consecutive paths alternate this implies that all Pi with i
odd must be embedded inside C, while all Pi with i even must be embedded outside. A
k-fold alternating chain is such that the last path Pk is prescribed in a way that contradicts
this, that is, it is prescribed inside C if k is even and outside, if k is odd. Generally it is
sufficient to have paths of length 1 for P2, . . . , Pk−1 and to have a single vertex (for the
prescription) in each of P1 and Pk. We now give a precise definition.

Let k ≥ 3 be an integer. A k-fold alternating chain is a Peg (G,H,H) of the following
form:

• The graph H consists of a cycle C of length k + 1 and two isolated vertices u and v.

122 Chapter 7: A Kuratowski-Type Theorem for Planarity of Partially Embedded Graphs

If k is odd, then u and v are embedded on opposite sides of C in H, otherwise they
are embedded on the same side.

• The graph G has the same vertex set as H, and the edges of G that do not belong to
H form k edge-disjoint paths P1, . . . , Pk, whose endpoints belong to C. The path P1
has two edges and contains u as its middle vertex, the path Pk has two edges and
contains v as its middle vertex, and all the other paths have only one edge.

• The endpoints of the path Pi alternate with the endpoints of the path Pj on C if
and only if j = i+ 1 or i = j + 1.

• All the vertices of C have degree 4 in G (that is, each of them is a common endpoint
of two of the paths Pi), with the exception of two vertices of C that have degree
three. One of these two vertices is an endpoint of P2, and the other is an endpoint of
Pk−1.

Let Achk denote the set of k-fold alternating chains. It can be checked that for each
k ≥ 4, the elements of Achk are minimal obstructions; we will prove this in Lemma 7.15.
Obstruction 4 from Figure 7.1 is actually the unique member of Ach3, and is a minimal
obstruction as well. However, we prefer to present it separately as an ‘exceptional’
obstruction, because we often need to refer to it explicitly. Note that for k ≥ 5 we
may have more than one non-isomorphic k-fold chain; see Figure 7.2.

7.3. Biconnected Pegs
In this section we prove Theorem 7.1 for biconnected Pegs. We first recall a characterization
of biconnected planar Pegs via SPQR-trees from Chapter 6.

Definition 7.1 (Definitions 6.1, 6.2, and 6.3 of Chapter 6.). Let (G,H,H) be a biconnected
Peg. A planar embedding of the skeleton of a node of the SPQR-tree of G is edge-compatible
with H if, for every vertex x of the skeleton and for every three edges of H incident to x
that project to different edges of the skeleton, their order determined by the embedding of
the skeleton is the same as their order around x in H.

A planar embedding of the skeleton S of a node µ of the SPQR-tree of G is cycle-
compatible with H if, for every facial cycle ~C of H whose edges project to a simple cycle ~C ′

in S, all the vertices of S that lie to the left of ~C and all the skeleton edges that contain
vertices that lie to the left of ~C in H are embedded to the left of ~C ′; and analogously for
the vertices to the right of ~C.

A planar embedding of a skeleton of a node of the SPQR-tree of G is compatible if it is
both edge- and cycle-compatible.

In Chapter 6 we have shown that a biconnected Peg is planar if and only if the skeleton
of each node admits a compatible embedding; see Theorem 6.1. We use this characterization
and show that any skeleton of a biconnected Peg that avoids all obstructions admits a
compatible embedding. Since S-nodes have only one embedding, and their embedding is
always compatible, we consider P- and R-nodes only. The two types of nodes are handled
separately in Subsections 7.3.1 and 7.3.2, respectively.

The following lemma will be useful in several parts of the proof.

Lemma 7.1. Let (G,H,H) be a Peg, let u be a vertex of a skeleton S of a node µ of the
SPQR-tree of G, and let e be an edge of S with endpoints u and v. Let F ⊆ E(H) be the

7.3 Biconnected Pegs 123

set of edges of H that are incident to u and project into e. If the edges of F do not form
an interval in the rotation scheme of u in H then (G,H,H) contains obstruction 2.

Proof. If F is not an interval in the rotation scheme, then there exist edges f, f ′ ∈ F and
g, g′ ∈ E(H) \ F , all incident to u, and appearing in the cyclic order f, g, f ′, g′ around u
in H. Let x and x′ be the endpoints of f and f ′ different from u and let y and y′ be the
endpoints of g and g′ different from u. For a skeleton edge e, we let Ge be the expansion
graph of e.

If µ is an S-node, then g and g′ project to the same skeleton edge uw with v 6= w. Note
that Guv and Guw share only the vertex u and moreover, they are both connected even
after removing u. Therefore, there exist disjoint paths P in Guv and Q in Guw connecting
x to x′ and y to y′, respectively. We may relax all internal vertices and all edges of P
and Q, and then perform simple edge contractions to replace each of the two paths with a
single edge. This yields obstruction 2.

If µ is an R-node, then Guv − u is connected, and hence it contains a path P from x to
x′. Moreover, since G−Guv is connected, it has a path Q from y to y′. As in the previous
case, contraction of P and Q yields obstruction 2.

If µ is a P-node, then Ge−{u, v} is connected, and therefore there is a path P connecting
x to x′ in Ge − {u, v}. Analogous to the previous cases, a path Q from y to y′ exists that
avoids u and P . Again their contraction yields obstruction 2.

In the following, we assume that the H-edges around each vertex of a skeleton that
project to the same skeleton edge form an interval in the rotation scheme of this vertex.

7.3.1. P-Nodes
Throughout this section, we assume that (G,H,H) is a biconnected obstruction-free Peg.
We fix a P-node µ of the SPQR-tree of G, and we let P be its skeleton. Let u and v
be the two vertices of P, and let e1, . . . , ek be its edges. Let Gi be the pertinent graph
of ei. As we know, each graph Gi is either a single edge connecting u and v, or it does not
contain the edge uv and Gi − {u, v} is connected (otherwise the SPQR-tree would have
two adjacent P-nodes which could be simplified into a single P-node).

The goal of this section is to prove that P admits a compatible embedding. We first
deal with edge-compatibility.

Lemma 7.2. The P-skeleton P has an edge-compatible embedding.

Proof. If P has no edge-compatible embedding, then the rotation scheme around u conflicts
with the rotation scheme around v. This implies that there is a triplet of skeleton edges
ea, eb, ec, for which the rotation scheme around u imposes a different cyclic order than the
rotation scheme around v. We distinguish two cases.

Case 1. The graph H has a cycle C whose edges intersect two of the three skeleton
edges, say ea and eb. Then the edge ec must contain a vertex x whose prescribed embedding
is to the left of C, as well as a vertex y whose prescribed embedding is to the right of C.
To see this, note that the expansion graph of ec cannot be a single edge, as this would
imply that H is not embedded in a planar way. Hence x and y can be taken as the other
endpoint of H-edges belonging to ec, incident to u and v, respectively. Since x and y are
connected by a path in Gc − {u, v}, we obtain obstruction 1.

Case 2. The graph H has no cycle that intersects two of the three P-edges ea, eb, ec.
Each of the three P-edges contains an edge of H adjacent to u as well as an edge of H

124 Chapter 7: A Kuratowski-Type Theorem for Planarity of Partially Embedded Graphs

adjacent to v. Since Gi − {u, v} is connected for each i, it follows that each of the three
skeleton edges contains a path from u to v, such that the first and the last edge of the path
belong to H. Fix such paths Pa, Pb and Pc, projecting into ea, eb and ec, respectively.

Moreover, at least two of these paths (Pa and Pb, say) also contain an edge not belonging
toH, otherwise they would form a cycle ofH intersecting two skeleton edges. By relaxations
and simple contractions, we may reduce Pa to a path of length three, whose first and last
edge belong to E(H) and the middle edge belongs to E(G) \E(H). The same reduction
can be performed with Pb. The path Pc can then be contracted to a single vertex, to obtain
obstruction 2.

Next, we consider cycle-compatibility. Assume that H has at least one facial cycle
whose edges intersect two distinct skeleton edges. It follows that u and v belong to the
same connected component of H; denote this component by Huv. We call uv-cycle any
facial cycle of H that contains both u and v. Note that any uv-cycle is also a facial cycle
of Huv, and a facial cycle of Huv that contains both u and v is a uv-cycle. Following the
convention of Chapter 6, we assume that all facial cycles are oriented in such a way that a
face is to the left of its facial cycles. The next lemma shows that the vertices of Huv cannot
violate any cycle-compatibility constraints without violating edge-compatibility as well.

Lemma 7.3. Assume that C is a uv-cycle that intersects two distinct P-edges ea and eb,
and that x is a vertex of Huv not belonging to C. In any edge-compatible embedding of P,
the vertex x does not violate cycle-compatibility with respect to C.

Proof. The vertex x belongs to a skeleton edge ex different from ea and eb, otherwise it
cannot violate cycle-compatibility. Note that since x is in Huv, ex must contain a path
P of H that connects x to one of the poles u and v. In the graph H, all the vertices of
P must be embedded on the same side of C as the vertex x. The last edge of P may not
violate edge-compatibility, which forces the whole edge ex, and thus x, to be embedded on
the correct side of the projection of C, as claimed.

The next lemma shows that for an obstruction-free Peg, all vertices of H projecting
to the same P-edge impose the same cycle-compatibility constraints for the placement
of this edge. The basic idea of the proof is that two vertices x and y projecting into the
same skeleton edge must be connected by a G-path that projects into this edge as well.
Therefore, if x and y had different positions with respect to a cycle of H, we would obtain
obstruction 1.

Lemma 7.4. Let x and y be two vertices of H, both distinct from u and v. Suppose that
x and y belong to the same P-edge ea. Let C be a cycle of H that is edge-disjoint from Ga.
Then x and y are embedded on the same side of C in H.

Proof. Since Ga−{u, v} is a connected subgraph of G, there is a path P in G that connects
x to y and avoids u and v. Since C is edge-disjoint from Ga, the path P avoids all the
vertices of C. If x and y were not embedded on the same side of C, we would obtain
obstruction 1 by contracting C and P .

We are now ready to prove the main result of this subsection.

Proposition 7.1. Let (G,H,H) be a biconnected obstruction-free Peg. Then every P-
skeleton P of the SPQR-tree of G admits a compatible embedding.

7.3 Biconnected Pegs 125

u

v

x

P
D

(a)

u

v

eD

P QR

eS

S
x

T

(b)

Figure 7.3.: Illustrations of Case 1 (a) and Case 2.a (b) in the proof of Proposition 7.1. The relevant
edges of the skeleton are shown as shaded regions.

Proof. Fix an edge-compatible embedding that minimizes the number of violated cycle-
compatibility constraints; more precisely, fix an embedding of P that minimizes the number
of pairs (C, x) where C is a facial cycle of H projecting to a cycle C ′ of P, x is a vertex of
H −{u, v} projecting into a skeleton edge ex not belonging to C ′, and the relative position
of C ′ and ex in the embedding of P is different from the relative position of C and x in H.
We claim that the chosen embedding of P is compatible.

For contradiction, assume that there is at least one pair (C, x) that violates cycle-
compatibility in the sense described above. Let ex be the P-edge containing x. Note that
ex does not contain any edge of H adjacent to u or v. If it contained such an edge, it
would contain a vertex y from the component Huv, and this would contradict Lemma 7.3 or
Lemma 7.4. Thus, the edge ex does not participate in any edge-compatibility constraints.

It follows that x does not belong to the component Huv. That means that in H, the
vertex x is embedded in the interior of a unique face F of Huv. We distinguish two cases,
depending on whether the boundary of F contains both poles u and v of P or not.

Case 1. The boundary of F contains at most one of the two poles u and v. Without
loss of generality, the boundary does not contain u. Thus, F has a facial cycle D that
separates u from x. The pertinent graph Gx of ex contains a path P from x to u that
avoids v. The path P does not contain any vertex of Huv except u, and in particular, it
does not contain any vertex of D; see Fig 7.3a. Contracting D to a triangle and P to an
edge yields obstruction 1, which is a contradiction.

Case 2. The boundary of F contains both poles u and v of the skeleton. In this case,
since u and v belong to the same block of H, the face F has a unique facial cycle D that
contains both u and v. The cycle D is the only uv-cycle that has x to its left (that is,
inside its corresponding face).

The cycle D may be expressed as a union of two paths P and Q connecting u and v,
where P is directed from u to v and Q is directed from v to u. We distinguish two subcases,
depending on whether the paths P and Q project to different P-edges.

Case 2.a Both P and Q project to the same skeleton edge eD. Then each of the two
paths has at least one internal vertex. Since all these internal vertices are inside a single
skeleton edge, there must be a path R in G connecting an internal vertex of P to an
internal vertex of Q and avoiding both u and v. By choosing R as short as possible, we may
assume that no internal vertex of R belongs to D. Furthermore, since P has at least one
cycle-compatibility constraint, it must contain at least two edges that contain an H-path
from u to v. In particular, there must exist a P-edge eS different from eD that contains
an H-path S from u to v. Necessarily, the path S is embedded outside the face F , that
is, to the right of D. And finally, the edge ex must contain a G-path T from u to v that

126 Chapter 7: A Kuratowski-Type Theorem for Planarity of Partially Embedded Graphs

contains x. Note that ex is different from eD and eS , because ex has no H-edge incident to
u or v. Thus, the paths P , Q, S, T are all internally disjoint; see Figure 7.3b. The five
paths P , Q, R, S, and T can then be contracted to form obstruction 3.

Case 2.b The two paths P and Q belong to distinct skeleton edges eP and eQ. That
means that the facial cycle D projects to a cycle D′ of the skeleton, formed by the two
edges. Modify the embedding of the skeleton by moving ex so that it is to the left of D′.
This change does not violate edge-compatibility, because ex has no H-edge adjacent to u
or v.

We claim that in the new skeleton embedding, x does not participate in any violated
cycle-compatibility constraint. To see this, we need to check that x is embedded to the
right of any facial cycle B 6= D of Huv that projects to a cycle in the skeleton. Choose
such a cycle B and let B′ be its projection. Let e+ or e− denote the edges of D incident
to u with e+ being oriented towards u and e− out of u. Similarly, let f+ and f− be the
incoming and outgoing edges of B adjacent to u. In H, the four edges must visit u in the
clockwise order (e+, e−, f+, f−), with the possibility that e− = f+ and e+ = f−.

Since the embedding of the skeleton is edge-compatible, this means that any skeleton
edge embedded to the left of D′ is also to the right of B′, as needed. We conclude that in
the new embedding of P, the vertex x does not violate any cycle-compatibility constraint,
and by Lemma 7.4, the same is true for all the other H-vertices in ex. Moreover, the
change of embedding of ex does not affect cycle-compatibility of vertices not belonging to
ex, so the new embedding violates fewer cycle-compatibility constraints than the old one,
which is a contradiction. This proves that P has a compatible embedding.

7.3.2. R-Nodes
Let us now turn to the analysis of R-nodes. As in the case of P-nodes, our goal is to show
that if a skeleton R of an R-node in the SPQR-tree of G has no compatible embedding,
then the corresponding Peg (G,H,H) contains an obstruction. The skeletons of R-nodes
have a more complicated structure than the skeletons of P-nodes, and accordingly, our
analysis is more complicated as well. Similar to the case of P-nodes, we will first show that
an R-node of an obstruction-free Peg must have an edge-compatible embedding, and as a
second step show that in fact it must also have an edge-compatible embedding that also is
cycle-compatible. Unfortunately, both steps are considerably more complicated than in
the P-node case.

A skeleton of an R-node is a 3-connected graph. We therefore start with some preliminary
observations about 3-connected graphs, which will be used throughout this section. Let R
be a 3-connected graph with a planar embedding R+, let x be a vertex of R. A vertex y of
R is visible from x if x 6= y and there is a face of R+ containing x and y on its boundary.
An edge e is visible from x if e is not incident with x and there is a face containing both x
and e on its boundary. The vertices and edges visible from x form a cycle in R. To see
this, note that these vertices and edges form a face boundary in R+ − x, and every face
boundary in a 2-connected graph is a cycle. We call this cycle the horizon of x.

In the following we will consider a fixed skeleton R of an R-node. Since R is 3-connected
it has two planar embedding, denoted by R+ and R−. Suppose that neither of the
two embeddings is compatible. The constraints on the embedding either stem from a
vertices whose incident edges project to distinct edges of R or from a cycle of R that is
a projection of an H-cycle whose cycle-compatibility constraints demand exactly one of
the two embeddings. Since neither R+ nor R− are compatible, there must be two of such

7.3 Biconnected Pegs 127

objects, one requiring embedding R+, and the other one requiring R−. If these objects
are far apart in R, for example, if no vertex of the first object belongs to the horizon of a
vertex of the second object, it is usually not too difficult to find one of the obstructions.
However, if they are close together, a lot of special cases can occur. A significant part of
the proof therefore consists in controlling the distance of objects and showing that either
an obstruction is present or close objects cannot require different embeddings.

As before, we distinguish two main cases: first, we deal with the situation in which
both embeddings of R violate edge-compatibility. Next, we consider the situation in which
R has at least one edge-compatible embedding, but no edge-compatible embedding is
cycle-compatible.

R has no edge-compatible embedding
Let u be vertex of R that violates the edge-compatibility of R+, and let v be a vertex
violating edge-compatibility of R−. If u = v, that is, if a single vertex violates edge-
compatibility in both embeddings, the following lemma shows that we can find an occurrence
of obstruction 2 in (G,H,H).

Lemma 7.5. Assume that an R-node skeleton R has a vertex u that violates edge-
compatibility in both embeddings of R. Then (G,H,H) contains obstruction 2.

Proof. Let B1, . . . , Bm be the R-edges incident to u that contain at least one H-edge
incident to u. Assume that these edges are listed in their clockwise order around u in the
embedding R+. Let ei be an H-edge incident with u projecting into Bi. By Lemma 7.1
if a triplet of edges Bi, Bj , Bk violates edge-compatibility in R+, then this violation is
demonstrated by the edges ei, ej , ek.

Choose a largest set I ⊆ {1, . . . ,m} such that the edges {ei, i ∈ I} do not contain any
violation of edge-compatibility when embedded according to R+. Clearly, 3 ≤ |I| < m.
Choose an index i ∈ {1, . . . ,m} not belonging to I. By maximality of I, there are distinct
j, k, ` ∈ I, different from i, such that (ei, ej , ek, e`) appear clockwise in R+ and (ej , ei, ek, e`)
appear clockwise in H (recall that (ej , ek, e`) have the same order in R+ and H, by the
definition of I).

For a ∈ {1, . . . ,m} let xa be the endpoint of the skeleton edge Ba different from u. The
horizon of u in R+ contains two disjoint paths P and Q joining xi with x` and xj with xk.
By obvious contractions we obtain obstruction 2.

Let us concentrate on the more difficult case when u and v are distinct. To handle
this case, we introduce the concept of wrung obstructions. A wrung obstruction is a Peg
(G,H,H) with the following properties.

• G is a subdivision of a 3-connected planar graph, therefore it has two planar embed-
dings G+, G−.

• H has two distinct vertices u and v of degree 3. Any other vertex of H is adjacent
to u or v, and any edge of H is incident to u or to v. Hence, H has five or six edges,
and at most eight vertices.

• H is not isomorphic toK2,3 or toK−4 (that is,K4 with an edge removed). Equivalently,
H has at least one vertex of degree 1.

• The embedding H of H is such that its rotation scheme around u is consistent with G+

and its rotation scheme around v is consistent with G−. Note that such embeddings
exists due to the previous condition.

128 Chapter 7: A Kuratowski-Type Theorem for Planarity of Partially Embedded Graphs

Clearly, a wrung obstruction is not planar, because neither G+ nor G− is an extension
of H. A minimal wrung obstruction is a wrung obstruction that does not contain a smaller
wrung obstruction as a Peg-minor. A minimal wrung obstruction is not necessarily a
minimal planarity obstruction—it may contain a smaller obstruction that is not wrung.
However, it turns out that minimal wrung obstructions are close to being minimal planarity
obstructions. The key idea in using wrung obstructions is that they are characterized by
being subdivisions of 3-connected graphs, a property that is much easier to control than
non-embeddability ofPegs.

The following proposition summarizes the key property of wrung obstructions. In
particular, it shows that there only exist finitely many minimal wrung obstructions.

Proposition 7.2. If (G,H,H) is a minimal wrung obstruction, then every vertex of G
also belongs to H and the graph H is connected.

The proof of this proposition relies heavily on the notion of contractible edge, which
is an edge in a 3-connected graph whose contraction leaves the graph 3-connected. This
notion has been intensely studied [Kri00, Kri02], and we are able to use powerful structural
theorems that guarantee that any ‘sufficiently large’ wrung obstruction must contain an
edge that can be contracted to yield a smaller wrung obstruction.

Proof. Let G? be the 3-connected graph whose subdivision is G. A subdivision vertex is a
vertex of G of degree 2. A subdivided edge is path in G of length at least two whose every
internal vertex is a subdividing vertex and whose endpoints are not subdividing vertices.
Therefore, each edge of G? either represents an edge of G or a subdivided edge of G.

The proof of the proposition is based on several claims.

Claim 7.1. Every subdividing vertex of G is a vertex of H. Every subdivided edge of G
contains at most one vertex adjacent to u and at most one vertex adjacent to v. If H is
disconnected then G has at most one subdivided edge, which (if it exists) connects u and
v and is subdivided by a single vertex.

If G had a subdividing vertex x not belonging to H we could contract an edge of G
incident to x to get a smaller Peg, which is still wrung. Two vertices adjacent to u in
the same subdivided edge would imply the existence of a loop or a multiple edge in G?.
If H is disconnected, then every vertex of H except for u and v has degree 1 in H. If a
subdividing vertex adjacent to u were also adjacent to an H-neighbor of v, then the edge
between them could be contracted. This proves the claim.

A fundamental tool in the analysis of minimal wrung obstructions is the concept of
contractible edges. An edge e in a 3-connected graph F is contractible if F.e is also
3-connected, where F.e is the graph obtained from F by contracting e. Note that an edge
in a 3-connected graph F is contractible if and only if F − {x, y} is biconnected.

The following fact can be derived from a theorem by Kriesell [Kri00], see also [Kri02,
Theorem 3].
Fact 1. If F is a 3-connected graph and w a vertex of F that is not incident with any
contractible edge and such that F − w is not a cycle, then w is adjacent to four vertices
x1, x2, y1, y2, all having degree 3 in F , which induce two disjoint edges x1y1 and x2y2 of F ,
and both these edges are contractible.

We are now ready to show that every vertex of G also belongs to H. Suppose for
a contradiction that G has a vertex w not belonging to H. By Claim 7.1, w is not a
subdivision vertex, so w is also a vertex of G?. If w were incident to a contractible edge of

7.3 Biconnected Pegs 129

G?, we could contract this edge to obtain a smaller wrung obstruction. Hence, w is not
incident to any contractible edge of G?. Fix now the four vertices from Fact 1, and let
e1 = x1y1 and e2 = x2y2 be the two contractible edges. Necessarily all the four endpoints
of e1 and e2 belong to H, otherwise we could contract one of them to get a smaller wrung
obstruction. Moreover, the edges e1 and e2 cannot contain u or v, because their endpoints
have degree three and are adjacent to the vertex w not belonging to H. Therefore, each
endpoint of e1 and e2 is adjacent to either u or v in G? (and also in G and in H).

Assume without loss of generality that x1 is adjacent to u. Then y1 cannot be adjacent
to u, because then u and w would form a separating pair in G?, hence y1 is adjacent to v.
Analogously, we may assume that x2 is adjacent to u and y2 is adjacent to v. The graph
H must be connected, otherwise we could contract e1 or e2. This means that H, together
with e1 and e2 and the two edges wx1 and wx2 form a subdivision of K4, and therefore
they form a wrung obstruction properly contained in (G,H,H). Therefore any vertex of G
also belongs to H.

It remains to prove that H is connected. For this we need another concept for dealing
with subdivisions of 3-connected graphs. Let F be a 3-connected graph and let e = xy be
an edge of F . The cancellation of e in F is the operation that proceeds in the three steps
1) Remove e from F , to obtain F − e 2) If the vertex x has degree 2 in F − e, then replace
the subdivided edge containing x by a single edge. Do the same for y as well. 3) Simplify
the graph obtained from step 2 by removing multiple edges.

Let F 	 e denote the result of the cancellation of e in F . Note that F 	 e may contain
vertices of degree 2 if they arise in step 3 of the above construction. An edge e is cancellable
if F 	 e is 3-connected. It is called properly cancellable if it is cancellable, and moreover,
the first two steps in the above definition produce a graph without multiple edges.

Claim 7.2. A cancellable edge e in a 3-connected graph F is either properly cancellable
or contractible.

Suppose that e = xy is cancellable, but not properly cancellable. We show that it is
contractible. Since e is not properly cancellable, one of its endpoints, say x has degree 3
in F and its two neighbors x′ and x′′ besides y are connected by an edge. We show that
between any pair of vertices a and b of F − {x, y} there are two vertex-disjoint paths. In
F there exist three vertex-disjoint a− b-paths P1, P2 and P3. If two of them avoid x and
y then they are also present in F − {x, y}. Therefore, we may assume that P1 contains
x and P2 contains y. Then P1 contains the subpath x′xx′′ which can be replaced by the
single edge x′x′′. Again at most one of the paths contains vertices of {x, y} and therefore
we again find two vertex-disjoint a− b-paths in F − {x, y}. This shows that F − {x, y} is
biconnected and therefore e = xy is contractible. This concludes the proof of the claim.

Moreover, we need the following result by Holton et al. [HJSW90].
Fact 2. If F is a 3-connected graph with at least five vertices, then every triangle in F has
at least two cancellable edges.

We are now ready to show that H is connected. Suppose for a contradiction that H is
disconnected, and let Hu and Hv be its two components containing u and v. Let x1, x2 and
x3 be the three neighbors of u in H, and y1, y2 and y3 the three neighbors of v. Recall from
Claim 7.1 that G has at most one subdividing vertex, and that the possible subdivided
edge connects u and v.

Since G? is 3-connected, it has three disjoint edges e1, e2 and e3 connecting a vertex
of Hu to a vertex of Hv. At least one of them avoids both u and v. Assume without loss
of generality that e1 = x1y2 is such an edge. If e1 were a contractible edge of G?, we

130 Chapter 7: A Kuratowski-Type Theorem for Planarity of Partially Embedded Graphs

would get a smaller wrung obstruction. Therefore the graph G? − {x1, y1} has a cutvertex
w. Note that w is either u or v. Otherwise, Hu − {x1, y1, w} would be connected, and
also the graph Hv − {x1, y1, w} and at least one of the edges e2, e3 avoids w, showing that
G? − {x1, y1, w} is connected.

So, without loss of generality, G? has a separating triplet {x1, y1, u}. Since at least one of
the two edges e2, e3 avoids this triplet, we see that one of the components of G?−{x1, y1, u}
consists of a single vertex x′ ∈ {x2, x3}. Since each vertex in a minimal separator must be
adjacent to each of the components separated by the separator, G? contains the two edges
x′x1 and x′y1. Consequently, x′, x1 and y1 induce a triangle in G? (and in G), and by
Fact 2, at least one of the two edges x1y1 and x′y1 is cancellable, and by Claim 7.2, at least
one of the two edges is contractible or properly cancellable, contradicting the minimality
of (G,H,H). This completes the proof of Proposition 7.2.

Proposition 7.2 implies that a minimal wrung obstruction has at most seven vertices.
Therefore, to show that each wrung obstruction contains one of the minimal obstructions
from Figure 7.1 is a matter of a finite (even if a bit tedious) case analysis. We remark that
a minimal wrung obstruction may contain any of the exceptional obstructions of Figure 7.1,
except obstructions 18–22, obstruction 3, K5, and K3,3. A minimal wrung obstruction does
not contain any k-fold alternating chain for k ≥ 4. As the analysis requires some more
techniques, we defer the proof to Lemma 7.8.

Let us show how the concept of wrung obstruction can be applied in the analysis of
R-skeletons. Consider again the skeleton R, with two distinct vertices u and v, each of
them violating edge-compatibility of one of the two embeddings of R. This means that u
is incident to three H-edges e1, e2, e3 projecting into distinct R-edges e′1, e′2, e′3, such that
the cyclic order of ei’s in H coincides with the cyclic order of e′i’s in R−, and similarly v is
adjacent to H-edges f1, f2, f3 projecting into R-edges f ′1, f ′2, f ′3, whose order in R+ agrees
with H.

It all the e′i and f ′i for i = 1, 2, 3 are distinct, then it is fairly easy to see that G must
contain a wrung obstruction, obtained simply by replacing each edge of R with a path of
G, chosen in such a way that all the six edges ei and fi belong to these paths. Such a
choice is always possible and yields a wrung obstruction. In particular, this is always the
case if u and v are not adjacent in R.

If, however, u and v are connected by anR-edge g′, and if, moreover, we have e′i = g′ = f ′j
for some i and j, the situation is more complicated, because there does not have to be
a path in G that contains both edges ei and fj and projects into g′. In such a situation,
we do not necessarily obtain a wrung obstruction. This situation is handled separately in
Lemma 7.7. Altogether we prove the following proposition.

Proposition 7.3. Let (G,H,H) be a biconnected obstruction-free Peg, and let R be the
skeleton of an R-node of the SPQR-tree of G. Then R has an edge-compatible embedding.

This essentially concludes our treatment of the case when R has no edge-compatible
embedding. We already know that if R does not have an edge-compatible embedding,
then it either contains obstruction 2, or two distinct vertices u and v requiring different
embeddings of R. In this case (G,H,H) either contains a wrung obstruction, or it does
not, and u and v are connected by an edge.

In the remainder of this subsection, we prove that in either case (G,H,H) contains one
of the obstructions from Figure 7.1. We first show that if R does not contain a wrung
obstruction, then it contains one of the obstructions 4,5 and 6; see Lemma 7.7. Finally, we
also present a detailed analysis showing that any minimal wrung obstruction (for which

7.3 Biconnected Pegs 131

we already know that there are only finitely many) contains one of the obstructions from
Figure 7.1; see Lemma 7.8.

The following technical lemma is a useful tool, which we employ in both proofs. To state
the lemma, we use the following notation: let x1, x2, . . . , xk be (not necessarily distinct)
vertices of a graph F . We say that a path P in F is a path of the form x1 → x2 → · · · → xk,
if P is a path obtained by concatenating a sequence of internally disjoint simple paths
P1, P2, . . . , Pk−1, where Pi is a path connecting xi to xi+1 (note that if xi = xi+1, then Pi
consists of a single vertex).

Lemma 7.6. Let R be a 3-connected graph with a fixed planar embedding R+. Let u and
v be two vertices of R connected by an edge B. Let u1 and u2 be two distinct neighbors
of u, both different from v, such that (v, u1, u2) appears counter-clockwise in the rotation
scheme of u. Similarly, let v1 and v2 be two neighbors of v such that (u, v1, v2) appears
clockwise around v. (Note that we allow some of the ui to coincide with some vj.) Then at
least one of the following possibilities holds:

1. The graph R contains a path of the form v → u1 → u2 → v1 → v2 → u.
2. The graph R contains a path of the form u → v1 → v2 → u1 → u2 → v. (This is

symmetric to the previous case.)
3. The graph R has a vertex w different from u2 and three paths of the forms w →

u2 → v2, w → u1 and w → v1, respectively. These paths only intersect in w, and
none of them contains u or v.

4. The graph R has a vertex w different from v2 and three paths of the forms w → v2 →
u2, w → v1 and w → u1, respectively. These paths only intersect in w, and none of
them contains u or v. (This is again symmetric to the previous case.)

Proof. Let Cu be the horizon of u and Cv the horizon of v. Orient Cu counterclockwise
and split it into three internally disjoint oriented paths v → u1, u1 → u2 and u2 → v,
denoted by C1

u, C2
u, and C3

u respectively. Similarly, orient Cv clockwise, and split it into
C1
v = u→ v1, C2

v = v1 → v2, and C3
v = v2 → u.

Let F1 and F2 be the two faces of R incident with the edge uv, with F1 to the left of
the directed edge ~uv. Note that each vertex on the boundary of F1 except u and v appears
both in C1

u and in C1
v . Similarly, the vertices of F2 (other than u and v) appear in C3

u

and C3
v . There may be other vertices shared between Cu and Cv and we have no control

about their position. However, at least their relative order must be consistent, as shown
by the following claim.

Claim. Suppose that x and y are two vertices from Cu∩Cv, at most one of them incident
with F1 and at most one of them incident with F2. Then (v, x, y) are counter-clockwise on
Cu if and only if (u, x, y) are clockwise on Cv; see Figure 7.4.

Proof. Draw two curves γx and γy connecting u to x and to y, respectively. Draw similarly
two curves δx and δy from v to x and to y. The endpoints of each of the curves appear
in a common face of R+, so each curve can be drawn without intersecting any edge of R.
Also, the assumptions of the claim guarantee that at most two of these curves can be in a
common face of R+, and this happens only if they share an endpoint, so the curves can be
drawn internally disjoint. Consider the closed curve formed by γx, δx, and the edge uv,
oriented in the direction u → x → v → u. Suppose, w.l.o.g., that y is to the left of this
closed curve. Then γy is also to the left of it, and (uv, γx, γy) appear in counter-clockwise
order around u, so (v, x, y) are counter-clockwise on Cu. By analogous reasoning, (u, x, y)
are clockwise around v. The claim is proved.

132 Chapter 7: A Kuratowski-Type Theorem for Planarity of Partially Embedded Graphs

v u1 u2 v

u v1 v2 u

C1
u C2

u C3
u

C1
v C2

v C3
v

x y

xy

Figure 7.4.: The two directed horizontal lines represent Cu and Cv. A vertex x appearing on both
Cu and Cv is represented by a dotted line connecting its position on Cu with its position
on Cv. Here is an example of a situation forbidden by the Claim, where two shared
vertices x and y appear in different order on the directed cycles Cu and Cv.

v u1 u2 v

u v1 v2 u

C1
u C2

u C3
u

C1
v C2

v C3
v

x

x

Figure 7.5.: Case A of the proof of Lemma 7.6. The red line represents the constructed walk.

We now consider several cases depending on whether various parts of Cu share vertices
with parts of Cv.

Case A. C3
u shares a vertex x with C1

v . Consider a walk starting in v, following Cu
counter-clockwise through u1 and u2 until x, then following Cv clockwise from x through
v1 and v2 till u; see Figure 7.5. The above Claim guarantees that this walk is actually a
path (note that x cannot belong to either F1 or F2). This path corresponds to the first case
in the statement of the lemma. Similarly, if C1

u ∩ C3
v is nonempty, a symmetric argument

yields the second case of the lemma.
Assume for the rest of the proof that C3

u ∩ C1
v = ∅ = C1

u ∩ C3
v .

Case B. No internal vertex of C2
u belongs to C1

v ∪ C3
v . Define a walk in R by starting

in v1, following Cv counter-clockwise until we reach the first vertex (call it x) that belongs
to Cu, then following Cu counter-clockwise through u1 and u2, until we reach the first
vertex y from C3

u ∩Cv, then following Cv from y towards v2 while avoiding v1 and u. Note
that the vertices x and y must exist, because F1 and F2 each have at least one vertex from
Cu ∩ Cv. Note also that x ∈ C1

u and y 6∈ C1
v , otherwise we are in Case A.

The walk defined above is again a path, it avoids u and v, and by putting w := u1, we
are in the situation of the third case of the lemma. Symmetrically, if no internal vertex of
C2
v belongs to C1

u ∪ C3
u, we obtain the fourth case of the lemma.

Suppose that none of the previous cases (and their symmetric variants) occurs. What is

v u1 u2 v

u v1 v2 u

C1
u C2

u C3
u

C1
v C2

v C3
v

x

x y

y

Figure 7.6.: Case B of the proof of Lemma 7.6. Note that the vertex y may also belong to C3
v .

7.3 Biconnected Pegs 133

v u1 u2 v

u v1 v2 u

C1
u C2

u C3
u

C1
v C2

v C3
v

x

x y

yz

zw

w

Figure 7.7.: Case C of the proof of Lemma 7.6. The red line is W1, the blue line is W2.

left is the following situation.
Case C. C2

u has an internal vertex x belonging to C1
v ∪ C3

v , and C2
v has an internal

vertex y belonging to C1
u∪C3

u. We cannot have x ∈ C1
v and y ∈ C1

u as that would contradict
the Claim above. So assume that x ∈ C1

v and y ∈ C3
u, the other case being symmetric.

Consider a walk W1 from u1 along Cu counter-clockwise through u2, and let z be the first
vertex on Cu after u2 that belongs to Cv. We must have z ∈ C2

v , otherwise z and y violate
the Claim. Continue W1 from z till v2 clockwise along Cv. Start another walk W2 from
v1 counterclockwise along Cv and let w be the first vertex of Cu encountered. Necessarily
w ∈ C2

u, otherwise x and w violate the Claim. Therefore, w ∈W1 ∩W2, and w is the only
such vertex. This results in case 3 from the lemma.

A straightforward case analysis based on Lemma 7.6 shows that if (G,H,H) has no
wrung obstruction, then it must contain obstruction 4, 5, or 6.

Lemma 7.7. Let (G,H,H) be a Peg and let R be the skeleton of an R-node of G such
that R has two distinct vertices u and v, each violating edge-compatibility of one of the
embeddings of R. If G does not have a wrung obstruction where u and v have H-degree 3,
then (G,H,H) contains obstruction 4, 5, or 6.

Proof. As we have seen, u must be incident to three H-edges e1 = ux1, e2 = ux2, e3 = ux3
projecting to distinct R-edges e′1 = uu1, e2 = uu′2, e3 = uu′3, such that the cyclic order of
the ei’s in H coincides with the cyclic order of e′1, e′2, e′3 in R+. Similarly, v is incident to
three H-edges f1 = vy1, f2 = vy2, f3 = vy3 projecting to distinct R-edges f ′1 = vv1, f

′
2 =

vv2, f
′
3 = vv3 whose order in R− agrees with H. As we have seen, we obtain a wrung

obstruction if all the edges e′1, e′2, e′3 and f ′1, f ′2, f ′3 are distinct. Hence, one edge e′i must
coincide with an edges f ′j . After possibly renaming the edges, we can assume e′3 = f ′3, and
hence u3 = v and v3 = u. We consider the embedding R+ of R where without loss of
generality the counterclockwise around u is (e′1, e′2, e′3).

We now distinguish several cases, based on whether some of the ui and vj for 1 ≤ i, j ≤ 2
coincide. The general structure of the analysis is as follows.

I) The vertices u1, u2, v1, and v2 are not distinct.
After possibly swapping u and v and/or mirroring the embedding, we may assume
that u1 coincides with one of the other vertices.
a) u1 = v1

1) Additionally, we have u2 = v2.
We show that if H contains the edges uu1, uu2, vv1 and v, v2, then we find
obstruction 4. Otherwise we get obstruction 4.

2) If the vertices u2 and v2 are distinct we obtain obstruction 5.

134 Chapter 7: A Kuratowski-Type Theorem for Planarity of Partially Embedded Graphs

b) If u1 coincides with v2, then u2 and v1 must be distinct and we obtain obstruction 6.

II) If the vertices u1, u2, v1 and v2 are distinct, we obtain obstruction 6.

We now present the details of this analysis. As a first step, we unprescribe all H-edges,
except for the ei and fi, for i = 1, 2, 3. Let P be a path from x3 to v in G that projects
to uv in R. Analogously, let Q be a path from v3 to u in G, projecting to uv. The paths P
and Q are disjoint, otherwise there would be a path connecting x to y, while avoiding u
and v, which would imply the existence of a wrung obstruction. In the following we will
always contract P and Q to single edges, hence all obstructions we consider will contain
the edges x3v and y3u. Let A be a path of length at least 2 in R connecting two vertices a
and b. A representative path of A is a path A′ in G such that all edges and vertices of A′
belong to an edge of A. Additionally, if the first edge of A contains an H-edge incident
to a, we require that A′ starts with an H-edge. Analogously, if the last edge of A contains
an H-edge incident to b, we require that A′ ends with an H-edge. The properties of the
SPQR-tree decomposition imply that for any path A in R a representative path exists. An
internal edge of a path A is an edge of A that is neither the first nor the last edge of A.

Case I: The vertices u1, u2, v1 and v2 are not distinct. As stated above, we can assume
without loss of generality that u1 coincides with one of the other vertices. Since u1 and u2
are endpoints of distinct edges sharing the endpoint u, they cannot coincide, and hence we
either have u1 = v1 or u1 = v2.

Case Ia: We now assume that u1 = v1. The next case distinction is on whether u2 and
v2 are distinct or not.

Case Ia1: We have u1 = v1 and u2 = v2. Since R is 3-connected, it contains a path T
from u1 to u2 that avoids both u and v. Let T ′ be a representative path of T .

Assume now that H contains the edges uu1, uu2, vu1, vu2, that is they form a cycle of
length 4. We denote this cycle by C. We remove from G all vertices that are not part
of P , Q, T ′ or C. The incompatibility of the rotation schemes of u and v imply that x3
and y3 are embedded on distinct sides of C in H. Hence, after contracting P,Q and T to a
single G-edge, each, we obtain obstruction 4.

Now assume that not all the above edges are part of H. Without loss of generality we
can assume that the edge uu2 is not in H. Let A be a representative path of uu1v, and
hence starting with e1 and ending with f1. Analogously, let B be a representative path
of uu2v, starting with e2 and ending with f2. We now remove from G all vertices that do
not belong to any of the paths P,Q, T ′, A and B. We then contract T ′ to a single edge,
using only simple G-edge contractions.

Since the edge uu2 is not in H, we know that B has at least three edges, we contract
its internal edges to the single edge x2y2. The path A starts with the edge ux1 and ends
with y1v. If it has length at least 3, we first contract its internal edges to the single
edge x1y1, using simple G-edge contractions. Since in this case, x1 and y1 belong to distinct
components of H, and both have degree 1, we may additionally contract the edge x1y1
to a single vertex using the complicated G-edge contraction. Hence, after these steps the
path A consists of the two H-edges ux1 and x1v. Contracting P and Q to single edges
yields obstruction 5.

Case Ia2: We have u1 = v1, but u2 and v2 are distinct. Let again A be a representative
path of uu1v. Since R is 3-connected and planar, it is not hard to see that it must contain
a path T from u2 to v2 that avoids u, v and u1. Moreover, since R is 3-connected there
exists a path S from a vertex t ∈ T to u1 that avoids u and v and is internally disjoint
from T . Since u2 6= v2 it holds that t 6= u2 or t 6= v2 (or both). We assume that t 6= u2,

7.3 Biconnected Pegs 135

the other case is symmetric. Let T ′ be a representative path of the path obtained by
concatenating uu2, T and v2v, and let S′ be a representative path of S.

To obtain an obstruction, we first remove all vertices of G that do not belong to either
of A,P,Q, S′ and T ′. As above, we contract A to the path ux1v, which is allowed since x1
and y1 are in distinct connected components of H, if A has any internal edges. Further, we
contract the subpath of T ′ from t to v2 to the single vertex v2 (this is allowed since t /∈ H,
unless t = v2) and then we contract the subpath of T ′ from u2 to t = v2 to the single edge
u2v2 (recall that u2 6= t). Finally, we contract the path S′ to the single edge u1v2 (recall
that t = v2 after the previous contractions). Contracting the paths P and Q to a single
edge, each, yields obstruction 5.

Case Ib: The two vertices u1 and v2 coincide. The rotation schemes of u and v imply
that u2 and v1 are embedded on different sides of the cycle uu1v in R+, and can therefore
not coincide. Since R is 3-connected it contains disjoint paths from u2 to each of u1, v,
avoiding u. Analogously, R contains disjoint paths from v1 to u, v2, avoiding v and since u2
and v1 are on different sides of the cycle uu1v, these paths are all disjoint. We define the
path A as before and contract it to the two prescribed edges ux1v. Further, we take a
representative of each of the above paths and contract it to a single G-edge. Together with
contracting P and Q to single edges, this yields obstruction 6.

Case II: Assume that the vertices u1, v1, u2 and v2 are distinct. We now apply
Lemma 7.6 (the naming of the vertices is chosen as in the lemma).

If case 1 of the lemma applies, we obtain a simple path T in R visiting the ver-
tices v, u1, u2, v1, v2 and u in this order. Let A be a representative path composed of uu2,
the subpath of T from u2 to v1 and v1u. Let T be a representative path of the path com-
posed of uu1 and the subpath of T from u1 to v. Symmetrically, let C be a representative
path of the path composed of vv2 and the subpath of T from v2 to u. Further, let C and D
be representative paths of the subpaths of T from u1 to v1 and from u2 to v2, respectively
(if one of the subpaths of T consists of only one edge, we simply take any G-path between
the endpoints that is contained in the corresponding subgraph of G). We now remove
from G all vertices that are not part of one of these paths or the paths P and Q. As
above the vertices x2 and y1 belong to distinct components of H, therefore we can contract
the internal edges of A to the single vertex u2 = x2 = y1 = v1, so that A becomes ux1v.
Next, we contract the internal edges of B to a single edge, so that B becomes ux1v, and in
particular we get u1 = x1. Analogously, we contract C to vy2u such that v2 = y2. Finally,
we contract C and D to the single edges x1x2 and y1y2, respectively, and contract P and Q
to single edges. This yields obstruction 6. Case 2 of Lemma 7.6 is completely symmetric.

If case 3 of the lemma applies, there exists a vertex w 6= u2 of R that has internally
disjoint paths A,B, and C from w to u1, from w to v1 and from w via u2 to v2, respectively,
and all of them avoid u and v. Note that Lemma 7.6 guarantees u2 6= w 6= v2.

Let A′ be a representative of the path composed of uu1 and A, and let B′ be a
representative path of the path composed of vv1 and B. Let C ′ be a representative path
the path obtained by concatenation of uu2, the subpath of C from u2 to v2 and v2v,
and let D′ be a representative of the subpath of C from w to u2. Again, we remove all
vertices of V (G) \ V (H) that are not part of any of our paths. We contract the internal
edges of C ′ to a single vertex, so that it becomes the path ux2y2v, and in particular
we get x2 = u2 = v2 = y2. We contract A′ to the path ux1w (we get x1 = u1), and
analogously B′ to vy1w (with u1 = y1). Note that we may have w = x1 or w = y1,
but not both. Finally, we contract C ′ to the edge wx2 and P and Q to single edges.
If w = u1 of w = u2 this directly yields obstruction 5, otherwise we obtain obstruction 5

136 Chapter 7: A Kuratowski-Type Theorem for Planarity of Partially Embedded Graphs

by contracting u1w to a single vertex, which is allowed since w is not in H.
Since case 4 of Lemma 7.6 is completely symmetric to case 3 this finishes the case

analysis and thus concludes the proof.

The following lemma shows that any minimal wrung obstruction contains one of the
obstructions in Figure 7.1. Although the analysis is straight-forward, there exist many
different cases. For the sake of completeness, we provide a detailed proof.

Lemma 7.8. A minimal wrung obstruction contains one of the obstructions 1,2, or 4–17.

Proof. Let (G,H,H) be a minimal wrung obstruction, and let R+ be a planar embedding
of G. By the definition of a wrung obstruction, the graph H contains a vertex u with three
adjacent vertices x1, x2, x3 occurring in this counterclockwise order around u both in R+

and in H. Similarly, there exists a second vertex v distinct from u that has three adjacent
vertices y1, y2, y3 that occur in this clockwise order in R+ but in the reverse clockwise
order in H. All other edges and vertices belong to G. Moreover, G is a subdivision of a
3-connected graph.

By Proposition 7.2 the graph H is connected, and all vertices of G also belong to H.
The proof itself is split into two parts. In the first part, we assume that H contains the
edge uv, whereas in the second we assume that this edge does not belong to H. Each of
these two parts consists of a case analysis for which we will first give a sketch and then a
detailed description of each individual case.

In the first part, we assume that the edge uv is in H. Then, since u and v have degree 3
in H, we may, after possibly renaming the vertices, assume that x3 = v and y3 = u. We
now distinguish several cases based on which of the other vertices coincide. The outline of
the case analysis is as follows.

I) Some of the vertices x1, x2, y1 and y2 coincide.
After renaming and possibly exchanging the embedding R+ with R−, we may assume
that x1 coincides with one of the other vertices. Since x1 and x2 are distinct neighbors
of u they cannot coincide and therefore we either have x1 = y1 or x1 = y2. We
distinguish these cases.

a) If x1 = y1, we show that (G,H,H) contains obstruction 1.
b) If x1 = y2, we show that (G,H,H) contains obstruction 17.

II) The vertices x1, x2, y1 and y2 are distinct.
In this case, we make a case distinction on whether one of these vertices is a subdivision
vertex, that is, it has degree 2 in G. Again, we may assume that if any vertex is a
subdivision vertex, then u1 is one.

a) One of the above vertices is a subdivision vertex, without loss of generality x1.
Note that if x1 is a subdivision vertex then its two incident edges may not be part
of a triangle, as this would create parallel edges when replacing the subdivided
edge with a single one. Hence, x1 must be connected either to y1 or to y2. We
claim that y1 cannot be a subdivision vertex, too. Assume this is the case. Then G
cannot contain the edge x1y1, as this would be a subdivision of the edge uv, which
already is in the graph. Therefore it must contain x1y2. However, since y1 is also
assumed to be a subdivision vertex, it must also contain one of the edges x1y1
or x2y1. The former is not allowed since x1 is a subdivision vertex and the latter
would violate the planarity of R+. Therefore this case can be excluded.

7.3 Biconnected Pegs 137

1) If the vertices x1 and x2 are subdivision vertices, we find obstruction 2.
2) If the vertices x1 and y2 are subdivision vertices, we find obstruction 2.
3) If only x1 is a subdivision vertex, we obtain either obstruction 2 or 10.

b) None of the above vertices is a subdivision vertex.
In this case we apply Lemma 7.6, and obtain either obstruction 2 or 7.

We now present a detailed analysis of these cases.
Case I: In this case, we assume that some of the vertices x1, x2, y1 and y2 coincide. As

argued above, we can assume without loss of generality that x1 coincides with either y1 or
with y2.

Case Ia: We have x1 = y1. Note that x2 and y2 must be distinct since H has at least
one vertex of degree 1 and that further the rotation schemes of u and v imply that x2
and y2 lie on the same side of the H-cycle ux1v in R+, and thus on different side in H.
We now argue that G must contain the edge x2y2. If x2 was a subdivision vertex, then it
could not be connected to either of u, x1 and v as this would form a triangle. Hence in
this case x2 must be connected to y2. A symmetric argument holds if y2 is a subdivision
vertex. Therefore, if x2y2 is not in the graph, both vertices must have degree at least 3.
However, since x2 and y2 are embedded on the same side of the triangle ux1v in the planar
embedding R+, it cannot contain all the edges x2u, x2x1, x2v, y2u, y2x1 and y2v (otherwise
inserting a new vertex w on the other side of the triangle ux1v and connecting it to all
vertices of the triangle would yield a planar drawing of K3,3). Hence, in order for x2 and y2
to have degree 3, the edge x2y2 must belong to G. Recall that since x2 and y2 are one
the same side of the triangle ux1v in R+, they are on different sides in H, and hence the
triangle ux1v together with the edge x2y2 form obstruction 1.

Case Ib: We have x1 = y2. Let T denote the triangle ux1v. The rotation schemes
of u and v imply that y2 and y2 are embedded on different sides of T in R+. This implies
that none of them can be a subdivision vertex, as their incident edges would be part of a
triangle. Hence G must contain the edges x2x1, x2v, y2u and y1y2. The vertices x2 and y2
are embedded on different side of T in H, and hence after unprescribing the edges x2u
and y2v, the triangle T together with the remaining edges forms obstruction 17. This
concludes the cases where x1 coincides with one of the other vertices.

Case II: The vertices x1, x2, y1 and y2 are all distinct. We distinguish cases based on
whether any of them is a subdivision vertex.

Case IIa: One of x1, x2, y1 and y2 is a subdivision vertex. We may assume without
loss of generality that x1 is one. As argued above, the graph G must contain one of the
edges x1y1 or x1y2.

Case IIa1: Both x1 and x2 are subdivision vertices. The vertices x1 and x2 must be
connected to one of the vertices y1 or y2, each. If they were connected to the same vertex,
they would form different subdivisions of the same edge. Hence, they must be connected
to distinct vertices. The edge x1y2 would not allow for such a connection in a planar way,
therefore G must contain x1y1 and x2y2. After contracting uv, this yields obstruction 2.

Case IIa2: Both x1 and y2 are subdivision vertices. The graph G cannot contain the
edge x1y2 as this would be a subdivision of an edge parallel to uv, which is already in G.
Therefore G contains the edge x1y1. Since y2, as a subdivision vertex, must be adjacent
to x1 or x2, and the former case is excluded as x1 is a subdivision vertex, G contains the
edge x2y2. Again, contracting uv yields obstruction 2.

Case IIa3: Only x1 is a subdivision vertex. We distinguish whether x1y1 or x1y2 is
in G.

138 Chapter 7: A Kuratowski-Type Theorem for Planarity of Partially Embedded Graphs

Assume that x1y1 is in G. The rotation schemes of u and v imply that x2 and y2 are on
the same side of the cycle formed by ux1y1vu in R+. As in case Ia) we can argue that x2y2
must belong to G, too. As in the previous case this yields obstruction 2.

Now assume that x1y2 ∈ E(G). By the rotation schemes of u and v the vertices x2
and y1 lie on distinct side of the cycle formed by ux1y2v. Further, they must have degree 3
and therefore the edges x2v, x2y2, y1u, and y1y2 must be in G. Altogether this forms
obstruction 10.

This finishes the cases where the vertices x1, x2, y1 and y2 are distinct and one of them
is a subdivision vertex.

Case IIb: The vertices x1, x2, y1 and y2 are distinct and each of them has degree at
least 3. In particular G does not have subdivision vertices, and thus is 3-connected. We
can therefore apply Lemma 7.6 (the naming of the vertices is chosen as in the lemma). We
distinguish, which of the cases of the lemma applies.

If case 1 (or symmetrically case 2) of the lemma applies, G contains the path v → x1 →
x2 → y1 → y2 → u forming obstruction 7.

If case 3 (or symmetrically case 4) of the lemma applies, we obtain a vertex w 6= x2 and
paths w → x2 → y2, w → x1, and w → y1. Since G has only six vertices, w and all edges
avoid u and v, it follows that w must coincide with x1 or y1. In both cases G contains
the two edges x1y1 and x2y2, which yields obstruction 2. This concludes the analysis of
minimal wrung obstructions where u and v are adjacent.

In the second part of the proof we consider minimal wrung obstructions where u and v
are not adjacent in H. Since H is connected, one of the xi must coincide with one of the
yj and after renumbering them, we may assume that x3 = y3. To obtain a more symmetric
notation where this vertex is not notationally biased towards u or v, we denote it by w. We
now make a case distinction, based on which of the vertices x1, x2, y1 and y2 are distinct
and which ones are subdivision vertices. The overall case analysis works as follows.

I) Some of the vertices x1, x2, y1, y2 coincide.
Similar to before, by symmetry we can assume that x1 coincides with one of y1 or y2.

a) If x1 = y1, then (G,H,H) contains obstruction 1 or 4.
b) If x1 = y2, then (G,H,H) contains obstruction 16.

II) The vertices x1, x2, y1, y2 are all distinct and the wrung obstruction has a vertex of
degree 2. Note that w may not be a subdivision vertex, otherwise we could contract
its incident edges to the edge uv to obtain a smaller wrung obstruction. Therefore
one of the vertices x1, x2, y1 and y2 must be a subdivision vertex. By symmetry we
may again assume that x1 is a subdivision vertex. We consider several subcases.

a) If the vertex y1 is also subdividing and G contains the edge x1y1, then (G,H,H)
contains obstruction 2.

b) If the vertex y2 is also subdividing and G contains the edge x1y2, then (G,H,H)
contains obstruction 12.
By symmetry these two cases cover all situations in which two subdivision vertices
are connected by an edge.

c) The graph G contains the edge x1v.
Here we distinguish several subcases, depending on which other vertices are
subdividing.

7.3 Biconnected Pegs 139

1) If x2 is also subdividing and adjacent to y1, then (G,H,H) contains obstruc-
tion 13.

2) If x2 is also subdividing and adjacent to y2, (G,H,H) contains obstruction 5.
3) If y1 is subdividing and adjacent to x2, (G,H,H) contains obstruction 13.
4) If y2 is subdividing and adjacent to x2, (G,H,H) contains obstruction 5.

Note that x2 may not be subdividing and adjacent to v, as it would be parallel
to the edge subdivided by x1. For the same reason, y1 (respectively y2) may
not be subdividing and adjacent to u. Hence this covers all the subcases where
another vertex except for x1 is a subdivision vertex.

5) If no other vertex is subdividing, (G,H,H) contains one of the obstruc-
tions 5,9,13 and 14.

d) The vertex x1 is subdividing and adjacent to y1, but y1 is not subdividing. Again,
we consider subcases, based on other subdividing vertices and their adjacencies.
1) If x2 is subdividing and adjacent to y2, we find obstruction 2.
2) If y2 is subdividing and adjacent to y2, we find obstruction 2.

Note that this covers all the cases where any other vertex is subdividing. If x2
was subdividing and adjacent to v, we could exchange x2 with x1 to obtain
an instance of case IIb. Analogously for y2 subdividing and adjacent to u.
Further, x2 cannot be subdividing and adjacent to y1 as this would create
parallel subdivided edges ux1y1 and ux2y1. Therefore this covers all subcases
where another vertex except x1 is a subdivision vertex.

3) If no vertex besides x1 is subdividing, we find obstruction 5 or 15.
e) If x1 is subdividing and adjacent to y2, but y2 is not subdividing, we find obstruc-

tion 9 or 13.
This does not need specific subcases, as no other vertex can be subdividing. If x2
was subdividing, it would be adjacent to v and by mirroring the embedding and
exchanging x1 with x2 and y1 with y2, we would arrive in case IIc. Analogously
for y2, which would have to be adjacent to u. Hence we can assume that x1 is the
only subdivision vertex.

III) The vertices x1, x2, y1, y2 are all distinct and all vertices in the wrung obstruction
have degree at least 3.

a) G contains the edge uv.
We distinguish cases, based on the embedding of the edge uv, by considering the
relative positions of the cycle C = uwvu and the vertices x1, x2, y1 and y2.
1) If all these vertices are on the same side of C, we find obstruction 2,7,8 or 15.
2) If one of these vertices is on one side and the others are on the other side,

we obtain obstruction 5,9 or 13. In this case, we may assume without loss of
generality that C separates x1 from the other vertices.

3) If the cycle C separates x1 and x2 from the other vertices, we find obstruction 11.
4) If the cycle C separates x1 and y1 from the other vertices, we find obstruction 2.

All other cases are symmetric to one of these.

140 Chapter 7: A Kuratowski-Type Theorem for Planarity of Partially Embedded Graphs

b) G does not contain the edge uv.
Here, we use the fact that G is 3-connected, and thus contains three vertex-disjoint
paths p1, p2 and p3 from {x1, u, x2} to {y1, v, y2}. We distinguish cases, based on
which vertex is connected to which.
1) The path p1 connects x1 to y1, p2 connects u to v; we obtain obstruction 2.
2) The path p1 connects x1 to y1, p2 connects u to y2; we obtain obstruction 2,5

or 9.
3) The path p1 connects x1 to v, p2 connects x2 to y1; we obtain obstruc-

tion 2,9,11,12 or 13.
This covers all cases where the paths connect x1 to y1 or to v. However, in the
case where x1 is connected to y2, it is necessary that u connects to y2 and x2
to v, which after renaming the vertices is symmetric to the last case.

Now we treat the above cases individually. Note that w may not be a subdivision vertex,
as otherwise we could contract its incident edges to the edge uv to obtain a smaller wrung
obstruction. We will use this argument on several occasions.

Case I: Some of the vertices x1, x2, y1 and y2 coincide. Since x1 6= x2 and y1 6= y2 and
because H has at least one vertex of degree 1, at most two of these vertices can coincide.
By symmetry, we can assume that x1 coincides with one of the vertices y1 or y2.

Case Ia: We have x1 = y1. The rotation schemes at u and v imply that x2 and y2 are
embedded on the same side of the cycle C formed by ux1vw, and therefore are embedded
on different sides of C in H. Hence, if G contains the edge x2y2, we obtain obstruction 1.

Now assume that x2y2 is not in G. Note that not both x2 and y2 can be subdivision
vertices, as both would be part of a subdivision of the edge uv. Without loss of generality,
we assume that x2 is not a subdivision vertex. Assume first that G has the edge y2u.
Then x2 must connect to two vertices in the set {x1, v, w}. The embedding of the edge y2u
implies that x2 cannot be adjacent to both w and x1, and hence we either have edges x2x1
and x2v or x2w and x2v. In both cases, the fact that {u, v} is not a separator implies that
the edge wx1 is in G. The cycle C together with the edges uy2, y2v, ux2, x2v, and wx1
then forms obstruction 4.

We can therefore assume that y2u is not an edge of G, and hence y2 is not a subdivision
vertex. It follows that y2 is adjacent to w and x1. Planarity then implies that x2 cannot be
adjacent to v, so x2 is adjacent to w and to x1. To prevent {x1, w} from being a separator,
G must contain the edge uv. The cycle C together with the edges x1y2, y2w, x1x2, x2w
and uv again forms obstruction 4. This closes the case x1 = y1.

Case Ib: We have x1 = y2. We again distinguish two cases, based on whether one
of x2 or y1 is a subdivision vertex.

Case Ib1: One of x2 or y1 is a subdivision vertex. Since both cases are symmetric we
only treat the case that x2 is a subdivision vertex. The only possibility is that x2v is in G,
otherwise x2 would be part of a triangle.

We claim that G must contain x1y1 and y1w. Note that neither of x1, y1 and w may
be a subdivision vertex, as they would form a subdivision of the same edge uv, which is
already represented by ux2v. Now consider the graph consisting of H and the edge x2v.
The set uv is a separator of this graph with connected components x1, y1 and w. Since G
is a subdivision of a 3-connected graph and neither of these vertices is a subdivision
vertex G must contain two of the three possible edges between these vertices. If it contains
both desired edges we are done. Otherwise G contains the edge x1w. Planarity and the

7.3 Biconnected Pegs 141

presence of the edge x2v requires that x1w must be embedded on the same side of the
cycle C = ux1vwu as y1, thus enclosing y1 in the triangle formed by x1, v and w. Since y1
has degree 3 in G it must be adjacent to x1 and w, as claimed.

Since x2 and y1 are on distinct sides of C in R+ they are embedded on the same
side in H. The graph consisting of the cycle C and the unprescribed edges ux2, x2v, x1y1
and y1w forms obstruction 16.

Case Ib2: We have x1 = y2 and none of the vertices is a subdivision vertex. We make
a case distinction, based on the adjacencies of x2, which must be connected to at least two
vertices from the set {x1, v, w}. Note that similarly, y1 must be connected to at least two
of the vertices in {u, x1, w}.

Assume first that x2 is connected to all three of these vertices. If G contains the
edge y1u, then the cycle ux1vwu together with the edges x2x1, x2w, vy1 and y1u would form
obstruction 16. Otherwise it must contain y1x1 and y1w, in which case the cycle ux1vwu
together with edges ux2, x2v, y1x1 and y1w forms obstruction 16. This concludes the case
were x2 is adjacent to all three vertices in {x1, v, w}.

Next, we treat the case that x2 is adjacent to x1 and to w, but not to v. Now the
set {x1, w} is a separator in the graph consisting of H and the edges constructed so far.
Since G is 3-connected and planar, it must contain either uy1 or x2v. Since the latter
is excluded, it contains uy1. Again, the cycle and the edges uy1, y1v, x1x2 and x2w form
obstruction 16.

The remaining cases are that x2 is not adjacent to one of x1 and w. Since these cases are
symmetric we only consider the case that x2 is not adjacent to w, and thus G contains x2x1
and x2v. As in case Ib1, we argue that G must contain x1y1 and y1w, which can again be
used to form obstruction 16. This concludes the treatment of the cases where x1, x2, y1
and y2 are not distinct.

Case II: The vertices x1, x2, y1 and y2 are distinct and one of the vertices is subdividing.
Without loss of generality we assume that x1 is subdividing, and we consider subcases
based on the adjacencies of x1.

Case IIa: The vertex y1 is also subdividing, and G contains the edge x1y1. If x2
was a subdivision vertex, it could not be adjacent to v, as the corresponding edge would
be parallel to the edge subdivided by x1. Therefore it would have to be adjacent to y2,
which would give obstruction 2, by contracting the path uwv to a single vertex. Hence, we
can assume that x2 is not subdividing, and by a symmetric argument also that y2 is not
subdividing. Hence, each of them needs degree 3 and since they are embedded on the same
side of the cycle ux1y1vu, they must be adjacent, which again results in obstruction 2.

Case IIb: The vertex y2 is also subdividing and G contains the edge x1y2. As in the
previous case it can be seen that neither of x2 and y1 may be subdividing. Since they must
be embedded on different sides of the cycle ux1y2vwu in R+, the graph G must contain
the edges x2w, x2v, y1u and y1w, in order for them to have degree 3. Altogether, this yields
obstruction 12.

Case IIc: The vertex x1 is subdividing and adjacent to v. Here, we consider several
subcases based on which of the other vertices are subdividing.

Case IIc1: The vertex x2 is also subdividing and adjacent to y1. Again we can see that
neither of y1 and y2 may be subdividing, as this would cause parallel edges. Hence they
need degree 3. In particular, y1 must be adjacent to two of the vertices u,w, y2. However,
the edge y1u would be parallel to the subdivided edge ux2y1, and is thus excluded, and we
have edges y1y2 and y1w. Planarity and the degree of y2 imply that also y2w is in G. The
constructed edges together with H form obstruction 9.

142 Chapter 7: A Kuratowski-Type Theorem for Planarity of Partially Embedded Graphs

Case IIc2: The vertex x2 is also subdividing and adjacent to y2. Note that neither y1
nor y2 can be subdividing, as this would either cause parallel subdivided edges. Here, we
distinguish two cases, based on how the edge x1v is embedded. It can either be embedded
so that y1 and y2 are on the same of on different sides of the cycle ux1vwu.

In the latter case, since y1 and y2 both need degree 3, we obtain the edge y1u, y1w, y2u
and y2w. Then H and the edges x2y2, y2u, y1u, and x1v form obstruction 5.

Now assume that y1and y2 are embedded on the same side. In particular, y1 is embedded
on one side of the cycle ux1vy2x2u, while all other vertices are on the cycle or embedded
on the other side. Since the cycle only contains three non-subdividing vertices, namely u, v
and y2, y1 must be connected to all of them, in particular G contains the edge y1u.
Further, w needs degree 3 and the only planar option is wy2, which therefore also must be
present. Then H and the edges x1v, x2y2, y2w and y1u gives obstruction 5.

Case IIc3: The vertex x1 is subdividing and adjacent to v, and additionally y1 is also
subdividing and adjacent to x2. Again, none of the other vertices may be subdividing,
because this would either cause parallel subdivided edges or would be symmetric to a
previous case. The rotation schemes of u and v in R+ imply a unique embedding of these
edges, where x2 and y2 are on the same side of the cycle ux1vwu. Both need degree 3, and
the only attachments on the cycle are u, v and w. The edge x2v would be parallel to the
edge subdivided by y1, hence x2 is adjacent to w and y2. Now, y2 needs one more adjacency
and by planarity the only option is the edge y2w. Together H and the edges x1v, y1x2, x2y2
and y2w form obstruction 13.

Case IIc4: The vertex x1 is subdividing and adjacent to v, and further y2 is subdividing
and adjacent to x2. Again, none of the other vertices may be subdividing, because of
parallel edges. The rotation schemes of u and v in R+ allow two different embeddings.
Either, y1 and x2 are embedded on the same or on different sides of the cycle ux1vwu.

If they are embedded on different sides, then since y1 needs degree 3, it must be
adjacent to u and w. Further, x2 needs another adjacency. By planarity, the only
options are x2w and x2v. The latter would be parallel to the edge subdivided by y2, and
therefore x2w ∈ E(G). Now H and x1v, x2y2, x2w and y1u form obstruction 5.

Now assume that y1 and x2 are embedded on the same side of ux1vwu. Vertex w needs
degree 3 and the only planar option is the edge wx2. Further, y1 must have degree 3 and
the only possibly adjacent vertices are u and x2, in particular y1u ∈ E(G). The graph H
and the edges x1v, x2w, x2y2 and y1u form obstruction 5.

Case IIc5: Finally, there is the case where x1 is subdividing and adjacent to v, but no
other vertex is subdividing. We distinguish cases, based on the embedding, in particular
on the relative position of the vertices x2, y1 and y2 with respect to the cycle C = ux1vwu.
It can either happen that all three of them are embedded on the same side of C, it can
be that y1 is embedded on one side and x2 and y2 on the other one, and finally it can be
that y1 and y2 are on the same side and x2 is on a different one.

We start with the latter case. Assume that x2 is embedded on one side of C and x2
and y2 are on the other side. Since x2 is not subdividing, x2 must be adjacent to w and v.
Further, y1 and y2 lie on the same side of C, and both need two attachments. Hence, the
edge y1y2 must be in G. If y1u is in G, then, since {u, v} would form a separator otherwise,
also y1w must be in G, and for degree reasons of y2 also the edge y2u. Then the Peg
contains obstruction 14. Assume that y1u is not in G. Then y1w must be in G since y1 has
degree at least 3. Further, since {w, v} may not be a separator, we also find the edge y2u,
and thus again obstruction 14.

Next, assume that y1 is on one side of the cycle C and x2 and y2 are on the other side.

7.3 Biconnected Pegs 143

Since y1 has degree 3, it must in particular be adjacent to u. Further, since x2 and y2 both
need degree 3 and are embedded on the same side of C, which only contains three non-
subdividing vertices, they must also be adjacent. Finally, in the graph consisting of H and
the edges constructed so far, the set {u, v} forms a separator. Planarity and 3-connectivity
of G imply that either x2w or y2w is in G. In either way, we obtain obstruction 5.

It remains to deal with the case where the vertices x2, y1 and y2 are on the same side
of C. We apply Lemma 7.6 with vertices u and v corresponding to u and v of the lemma
and u1 = x2, u2 = w, v1 = y1 and v2 = y2. We now treat the four cases that can arise in
Lemma 7.6.

If case 1 of Lemma 7.6 applies, we obtain edges vx2, x2w, wy1, y1y2 and y2u. However,
with the fixed embedding of x1v, it can be seen that y1w and y2u cannot be added in a
planar way, so this case cannot occur.

If case 2 of the lemma applies, we obtain edges uy1, y1y2, x2y2, x2w. Now, H and the
edges x2y2, x2w, x1v and uy1 form obstruction 5.

If case 3 of the lemma applies, we obtain a vertex w′ 6= w, y2, u, v with paths w′ →
w → y2, w′ → y1 and w′ → x2. Since G has only seven vertices, w′ must coincide with x2
or y1. Suppose that w′ = x2. If y1y2 ∈ E(G), we obtain obstruction 9. Hence, assume
that y1y2 /∈ E(G). This implies that x2y2 ∈ E(G) since y2 has degree 3 in G. Then H
with edges x2y1, x2y2, y2w and x1v forms obstruction 13. This closes the case w′ = x2.

Now suppose that w′ = y1. Thus, in addition to the edge x1v,we have edges y1w,wy2
and y1x2. The facts that y2 has degree 3 in G and that G is planar, with the embedding
of x1v already fixed, implies y1y2 ∈ E(G). Now H together with the constructed edges,
except for wy1, forms obstruction 9.

Now, assume that case 4 of the lemma applies. In addition to the already embedded
edge x1v, we obtain a vertex w′ 6= w, y2, u, v and paths w′ → y2 → w, w′ → y1 and w′ → x2.
Again, w′ coincides with x2 or y1. If w′ = x2, this forms obstruction 13, and if w′ = y1, it
forms obstruction 9.

Case IId: The vertex x1 is subdividing and adjacent to y1, but y1 is not subdividing.
We distinguish subcases based on whether other vertices are subdividing.

Case IId1: The vertex x2 is subdividing and adjacent to y2, then by contracting the
path uwv to a single vertex, we obtain obstruction 2.

Case IId2: The vertex y2 is subdividing and adjacent to x2. As in the previous case,
we obtain obstruction 2. As argued in the description of the case analysis, this covers all
instances, where a vertex besides x1 is subdividing.

Case IId3: The vertex x1 is subdividing and adjacent to y1, and no other vertex is
subdividing. Clearly, if x2y2 ∈ G, we obtain obstruction 2. We can therefore assume that
this is not the case. Hence, x2 must be adjacent to at least two vertices in the set {w, v, y1}.

First, assume that x2w and x2v are in G. The edge x2v admits two distinct embeddings,
however in one of them the cycle x2wvx2 would enclose only the vertex y2, which would
imply the existence of the excluded edge x2y2. We can therefore assume that all vertices
that do not belong to the cycle are on the same side of it. Since y2 has degree 3 in G, this
implies the existence of the edges y1y2 and y2u. Since {u, v} still would form a separating
pair, the edge wy1 must also be present. Omitting the edge x2w yields obstruction 5.

Next, assume that x2w and x2y1 are in G. Since y2 has degree 3, and y1y2 is excluded,
G must contain the edges y1y2 and y2w. Until now {w, y1} would still form a separating
pair. Since x2y2 is excluded G contains the edge uv. Altogether, this is obstruction 15.

Finally, assume that x2v and x2y1 are in G. Again, only one of the embeddings of x2v
does not force the edge x2y2 to be present. Since y2 has degree 3, it must be adjacent to u

144 Chapter 7: A Kuratowski-Type Theorem for Planarity of Partially Embedded Graphs

and w. As {u, v} would still be a separating pair, we also obtain the edge wy1. Omitting
the edges y2w and x2y1 yields obstruction 5. This finishes the case where x1 is subdividing
and adjacent to y1.

Case IIe: The vertex x1 is subdividing and adjacent to y2, which is not subdividing.
No other vertex may be subdividing, as this would be symmetric to case IIc. Clearly, y1
must be adjacent to two vertices in the set {u,w, y2}. We consider several cases.

Assume that y1 is adjacent to y2 and w. If G contains x2v, this forms obstruction 9.
Therefore, assume that x2v is not in G. It follows that x2 is adjacent to w and y2.
Since {w, y2} still forms a separator, we also get edge y1u. By omitting y1y2 and y1w, we
obtain obstruction 13.

Next, assume that y1 is adjacent to y2 and u but not w. Then x2 must be adjacent
to y2, otherwise uv would form a separator or x2 would have degree 2. Also, w must be
adjacent to x2, otherwise x2 or w would have degree 2. This yields obstruction 13.

Finally, assume that y1 is adjacent to u and to w, and not to y2 (otherwise one of the
previous cases would apply). Clearly, x2 must be adjacent to two of the three vertices w, v
and y2. It is not possible that x2 is only adjacent to w and v, since {u, v} would still form
a separating pair. Hence x2y2 ∈ E(G). Also x2 must be adjacent to w, otherwise uv would
be a separator or x2 would have degree 2. This gives obstruction 13.

This closes the case where x1 is subdividing and adjacent to y2, and thus all cases
where G has a subdividing vertex.

Case III: The graph G does not have any subdividing vertices, and thus is 3-connected.
We distinguish two subcases, based on whether G contains the edge uv.

Case IIIa: The graph G is 3-connected and contains the edge uv. The edge uv
can be embedded in a variety of different ways in R+. We distinguish cases, based
on this embedding, in particular, the relative position of the cycle C = uwvu and the
vertices x1, x2, y1 and y2.

Case IIIa1: First, assume that all these vertices are embedded on the same side of C.
We apply Lemma 7.6 on the vertices u and v with ui = xi and vi = yi for i = 1, 2. Suppose
that case 1 of the lemma applies. Then we obtain a simple path v → x1 → x2 → y1 → y2 →
u. If w is not contained in any of the subpaths, we can contract wv and obtain obstruction 7.
Further, by planarity, w cannot subdivide any of the subpaths x1 → x2, y1 → y2 or x2 → y2.
Hence, it must subdivide x1 → v or y2 → u, which is completely symmetric, and we assume
without loss of generality that w subdivides the path x1 → v and all other subpaths consist
of a single edge, each. Again, contracting wv yields obstruction 7.

Case 2 of the lemma is completely symmetric, we therefore continue with case 3. We
obtain a vertex w′ 6= x2, y2, u, v and paths w′ → x2 → y2, w

′ → x1, w
′ → y1. Further, w

may subdivide one of these paths. First of all, w′ must coincide with either of x1, y1 or w.
If w′ = x1, we obtain obstruction 2, unless w subdivides the subpath x1 → y1 (or

symmetrically x2 → y2). We therefore assume that w subdivides x1y1, and thus all other
paths consist of single edges. Since y1 must have degree at least 3, at least one of the three
edges y1y2, y1x2 or y1x1 must be present, resulting in obstructions 8, 15 and 2, respectively.

If w′ = y1, we again obtain obstruction 2, unless w subdivides either x1 → y1 or x2 → y2.
Again these cases are symmetric, and we assume w subdivides x1 → y1. Since x1 has
degree 3, it is either adjacent to y1 or to x2. This leads to obstructions 2 and 15, respectively.

If w′ = w, x1x2 must be in G because of planarity and since x1 has degree at least 3.
Further, y1 has degree at least 3 and therefore G either contains y1y2 or y1x2, which yields
obstructions 8 and 15, respectively.

Since case 4 of the Lemma 7.6 is completely symmetric, this closes the case where the

7.3 Biconnected Pegs 145

cycle C = uwvu bounds an empty triangle.
Case IIIa2: The graph G is 3-connected, contains the edge uv and the cycle C = uwvu

is embedded such that it separates x1 from the vertices x2, y1 and y2. In this case, x1 must
be adjacent to v and w in G. We apply Lemma 7.6 to vertices u and v with u1 = x2, u2 =
w, v1 = y1 and v2 = y2.

In case 1 of the lemma, we obtain a path v → x2 → w → y1 → y2 → u, which cannot
be embedded in a planar way into G, so this case does not occur.

In case 2 of the lemma, we obtain edges uy1, y1y2, y2x2, x2w and wv. Together with the
edge x1v, this forms an instance of obstruction 5.

In case 3 of the lemma, we obtain a vertex w′ 6= w paths w′ → w → y2, w′ → x2
and w′ → y1. The vertex x1 cannot subdivide any of these paths and also w′ = x1 is not
possible by planarity.

Suppose that w′ = x2, we thus obtain edges x2w, y2w and x2y1. We already know that
x1v is an edge of G. Further, y2 must have another adjacency, which can either be y1 or x2.
In the former case, we find obstruction 9, in the latter obstruction 13.

Suppose that w′ = y1, we then have edges x2y1, y2w and y1w. Planarity and the degree
of y2 imply that y1y2 is in G, and as above x1v is in G. Together, this yields obstruction 9.

In case 4 of the lemma, we obtain a vertex w′ 6= y2 and paths w′ → y2 → w,w′ → y1
and w′ → x2. Again, by planarity, x1 may neither coincide with w′ nor subdivide any of
the paths.

Suppose that w′ = x2, and we thus have edges x2y2, y2w and x2y1. As above we find
the edge x1v. This gives obstruction 13.

Suppose that w′ = y1. This yields edges x2y1, y2w and y1y2. As above we find edge x1v,
and thus obstruction 9. This closes the case where exactly one of the vertices is enclosed
by the cycle uwvu.

Case IIIa3: The edge uv is embedded such that the cycle C = uwvu separates x1
and x2 from y1 and y2. We may assume that x1 and x2 are to the right of the directed
cycle u→ v → w → u, while y1 and y2 are to its left. Note that in this case, the vertices
x1 and x2 must be adjacent, because otherwise both of them would have to be adjacent to
u, v and w, contradicting planarity. By 3-connectedness, both v and w must be adjacent
to at least one of x1 and x2, and each xi must be adjacent to at least one of v and w.
Planarity implies that x1w and x2v must both be edges of G. An analogous argument for
y1 and y2 implies that uy1, y1y2 and y2w are all edges of G. This forms obstruction 11.

Case IIIa4: The edge uv is embedded such that the cycle C = uwvu separates x1
and y1 from x2 and y2. Clearly, x1 and y1 both need degree 3. However, C has only
vertices u,w and v, and not both x1 and y1 can be connected to all vertices of C in a
planar way (otherwise we could find a planar drawing of K3,3). Hence, G must contain the
edge x1y1, and by a symmetric argument also x2, y2, which results in obstruction 2.

Case IIIb: The graph G is 3-connected and does not contain the edge uv. Since G is 3-
connected it contains three vertex-disjoint paths p1, p2 and p3 from {x1, u, x2} to {y1, v, y2}.
We distinguish cases, based on which endpoints are connected by the paths.

Case IIIb1: The path p1 connects x1 to y1 and p2 connects u to v. Clearly, p3 must
then connect x2 to y2. Since G does not contain the edge uv, p2 must contain the vertex w,
which implies that p1 and p3 consist of a single edge, each. This yields obstruction 2.

Case IIIb2: The path p1 connects x1 to y1 and p2 connects u to y2. Clearly, p3 must
then connect y2 to v. We distinguish cases, based on whether w is contained in one of
these paths.

First, suppose that none of these paths contains w, that is each of them consists of a

146 Chapter 7: A Kuratowski-Type Theorem for Planarity of Partially Embedded Graphs

single edge. The edges x2v and y2u admit two different embeddings that are completely
symmetric. We therefore assume that uwvy2u bounds a face in the graph consisting of H
and the paths pi, i = 1, 2, 3 with the embedding inherited from R+. Then the cycle x2vwux2
separates y2 from x1 and y1. Since y2 needs degree at least 3, we either have x2y2 or y2w
in G. The former would yield obstruction 2, thus we assume the latter. However, still {u, v}
would form a separating pair, thus implying that w needs to be adjacent to either x1 or
to y1. In both cases we obtain obstruction 5. Hence, we can assume that w is contained in
one of the paths.

First, assume that w is contained in p1. Again, the embedding choices offered by
the edges x2v and y2u are completely symmetric, and as above we assume that the
cycle x2vwux2 separates y2 from x1 and y1. If x1y1 was in G, we could replace the path p1
by this edge and the previous case would apply; we therefore assume that this is not the
case. If x1v was in G, then the fact that y1 needs another adjacency would again imply
that x1y1 is in G. Since x1 needs one more adjacency, the only option is the edge x1x2.
Similarly, for y1 the only option is the edge y1x2. The graph then contains obstruction 9.

Second, assume that w is contained in p2. We then have edges x1y1, y2w and x2v,
which have a unique embedding, in which the cycle x2vwux2 separates y2 from x1 and y1.
Since y2 needs degree at least 3, it must be adjacent to either x2 or to u. In the former
case, we again get obstruction 2. In the latter case, we can replace the path p2 with the
edge uy2 and we are in the case that w is not contained in any of the three paths.

Finally, the case that w is contained in p3 is completely symmetric to the previous case.
This closes the case, where p1 connects x1 to y1 and p2 connects u to y2.

Case IIIb3: The path p1 connects x1 to v, p2 connects u to y2, and thus p3 connects x2
to y1. Again, we consider cases based on whether w is contained in one of these paths.
First, suppose that w is not contained in any of these paths. Then we have edges x2y1, x1v
and y2u, which have a unique planar embedding in R+. Since w has degree 3 it must be
connected to x1 or y2. Both are completely symmetric, and we assume wy2 is in G. So
far, the set {u, v} would still form a separating pair. Hence G contains at least one of the
edges y1y2, y2x2 and wx1, resulting in obstruction 9, 13 and 12, respectively.

We can therefore assume that w subdivides one of the paths. Suppose that w subdi-
vides p1, that is, we have edges x1w, uy2 and x2y1. Clearly, x1 must be adjacent to one
of x2, v and y1. However, x1x2 produces obstruction 9, x1y1 produces obstruction 13, and
if x1v is in G, we replace the path p2 by x1v and are in the case where w is not contained
in any of the three paths.

The case that w is contained in p2 is completely symmetric, we therefore assume it is
contained in p3, and we thus have edges x1v, y2u, x2w and y1w. There are two possible
planar embeddings. One, in which x1v comes after vw and before vy2 in counter-clockwise
direction around v, and one in which x1v comes after vy2 and before vy1 in counter-clockwise
direction.

We start with the first case. Suppose that G contains the edge x1y2. The vertex x2
needs another adjacency, which can either be x1 or v. Analogously, y1 needs to be
adjacent to either u or y2. The combination x1x2 and y1y2 gives obstruction 11, any of the
combination x2v, y1y2 and x1x2, y1u gives obstruction 9, and the combination x2v and y2u
gives obstruction 12.

Now assume that G does not contain the edge x1y2. Then x1 needs to be adjacent to x2;
its only options are x2 and v, but in the latter case x2 still needs an edge and the only
possibility is x1. Analogously, y1y2 must be in G. Together this forms obstruction 11.

Now suppose that the second embedding applies, and x1v comes after vy2 and before vy1

7.3 Biconnected Pegs 147

in counter-clockwise direction around v. If G contains x1y1, then it cannot contain x2y2
as well, otherwise we would get obstruction 2. Hence, x2 must be adjacent to v. Since y2
is not adjacent to x2, it must be adjacent to x1, and we thus obtain obstruction 13. We
can hence assume that G does not contain x1y1, and symmetrically also not x2y2. We
hence get edges x2v and y1u. But then still {u, v} forms a separator, which shows that
either x1y1 or x2y2 is in G; a contradiction. This finishes the last case, and thus concludes
the proof.

R has an edge-compatible embedding
Assume now that the embedding R+ of the skeleton R is edge-compatible but not cycle-
compatible. We first give a sketch of our general proof strategy. Our analysis of this
situation strongly relies on the concept of C-bridges, which has been previously used by
Juvan and Mohar in the study of embedding extensions on surfaces of higher genus [JM05],
and which is also employed (under the term fragment) by Demoucron, Malgrange and
Pertuiset in their planarity algorithm [DMP64].

Let F be a graph and C a cycle of F . A C-bridge is either a chord of C or a connected
component of F − C, together with all vertices that connect it to C, which are known as
attachments of the bridge. A vertex of C that is an endpoint of an edge of a C-bridge X is
called an attachment of X. Let att(X) denote the set of attachments of X. A bridge that
consists of a single edge is trivial. We will mostly be interested in bridges formed in the
graph R with respect to cycles that are projections of cycles of H. Notice that in this case
any nontrivial bridge in R has at least three attachments, because R is 3-connected. It
is not hard to verify that in a 3-connected graph, once we select the position of a single
C-bridge with respect to C, the positions of all the remaining C-bridges are uniquely
determined.

In our argument, we focus on cycles in R that are projections of cycles in H. If R+

violates cycle-compatibility, it means that H must contain a cycle C ′ that projects to a
cycle C of R, and R+ has a C-bridge that is embedded on the ‘wrong’ side of C. We
concentrate on the substructures that enforce such ‘wrong’ position for a given C-bridge,
and use them to locate planarity obstructions.

Let us describe the argument in more detail. Suppose again that C ′ is a cycle of H that
projects to a cycle C of R. Let x be a vertex of H that does not belong to any R-edge
belonging to C. We say that x is happy with C ′, if its embedding in R+ does not violate
cycle-compatibility with respect to the cycle C ′, that is, x is to the left of C ′ in H if and
only if x is to the left of C in R+. Otherwise we say that x is unhappy with C ′. We say
that a C-bridge B of R is happy with C ′ if there is a vertex x happy with C ′ that projects
into B, and similarly for unhappy bridges. A C-bridge that is neither happy nor unhappy
is indifferent.

In our analysis of cycle-incompatible skeletons, we establish the following facts.

• With C and C ′ as above, if a single C-bridge is both happy and unhappy with C ′,
then (G,H,H) contains obstruction 1 or 4 (Lemma 7.16).

• Let us say that the cycle C ′ is happy if at least one C-bridge is happy with C ′, and
it is unhappy if at least one C-bridge is unhappy with C ′. If C ′ is both happy and
unhappy, then (G,H,H) contains obstruction 4, obstruction 16, or an alternating-
chain obstruction (Lemma 7.17).

• Assume that the situation described above does not arise. Assume further that C ′ is
an unhappy cycle of H. Then any edge of H incident to a vertex of C ′ must project

148 Chapter 7: A Kuratowski-Type Theorem for Planarity of Partially Embedded Graphs

into an R-edge belonging to C, unless (G,H,H) contains obstruction 3 or one of the
obstructions from the previous item. Note that this implies, in particular, that the
vertices of C impose no edge-compatibility constraints (Lemma 7.19).

• If C ′1 and C ′2 are two facial cycles of H whose projection is the same cycle C of R,
then any C-bridge is happy with C ′1 if and only if it is happy with C ′2, unless the
graph G is non-planar, or the Peg (G,H,H) contains obstruction 1 (Lemma 7.20).

• If H contains a happy facial cycle as well as an unhappy one, we obtain obstruction
18 (Lemma 7.21).

• If H contains an unhappy facial cycle, and if at least one vertex of R imposes
any non-trivial edge-compatibility constraints, then (G,H,H) contains one of the
obstructions 19–22 (Lemma 7.22).

Moreover, in each of the above claims, the corresponding obstructions can be found
efficiently. Note that these facts guarantee that if (G,H,H) is obstruction-free then R
has a compatible embedding. To see this, assume that R+ is an edge-compatible but not
cycle-compatible embedding of R. This means that at least one facial cycle of H is unhappy.
This in turn implies that no cycle may be happy, and no vertex of R may impose any
edge-compatibility restrictions. Consequently, the embedding R− is compatible. Before
we can prove the above claims, we first need some technical machinery, in particular the
conflict graph of C-bridges and its properties.

Conflict graph of a cycle and minimality of alternating chains. For a cycle C and
two distinct vertices x and y of C, an arc of C with endvertices x and y is a path in C
connecting x to y. Any two distinct vertices of a cycle determine two arcs. Let u, v, x, y
be four distinct vertices of a cycle C. We say that the pair {x, y} alternates with {u, v} if
each arc determined by x and y contains exactly one of the two vertices {u, v}. If U and
X are sets of vertices of a cycle C, we say that X alternates with U if there are two pairs
of vertices {u, v} ⊆ U and {x, y} ⊆ X that alternate with each other.

Let now F be a graph containing a cycle C. Intuitively, a bridge represents a subgraph
whose internal vertices and edges must all be embedded on the same side of C in any
embedding of F . Thus, a C-bridge may be embedded in two possible positions relative to C.
Moreover, if two bridges B1 and B2 have three common attachments, or if the attachments
of B1 alternate with the attachments of B2, then in any planar embedding, B1 and B2
must appear on different sides of C. This motivates the definition of two types of conflicts
between bridges. We say that two C-bridges X and Y of F have a three-vertex conflict
if they share at least three common attachments, and they have a four-vertex conflict if
att(X) alternates with att(Y). Two C-bridges have a conflict if they have a three-vertex
conflict or a four-vertex conflict. This gives rise to a conflict graph of F with respect
to C. For a cycle C, define the conflict graph KC to be the graph whose vertices are the
C-bridges, and two vertices are connected by an edge of KC if and only if the corresponding
bridges conflict. Define the reduced conflict graph K−C to be the graph whose vertices are
bridges of C, and two bridges are connected by an edge if they have a four-vertex conflict.

As a preparation, we first derive some basic properties of conflict graphs.

Lemma 7.9. If F is a planar graph, then for any cycle C of F the conflict graph KC is
bipartite (and hence K−C is bipartite as well).

Proof. In any embedding of F , each C-bridge must be completely embedded on a single
side of C. Two conflicting bridges cannot be embedded on the same side of C.

7.3 Biconnected Pegs 149

Consider now the situation when C is a cycle of length at least 4 in a 3-connected
graph F . The goal is to show that in this case also the reduced conflict graph K−C is
connected. To prove this we need some auxiliary lemmas. The first states that if the
attachments of a set of bridges alternate with two given vertices x and y of C, then the set
must contain a C-bridge whose attachments alternate with x and y, provided that the set
of bridges is connected in the reduced conflict graph K−C .

Lemma 7.10. Let F be a graph and let C be a cycle in F . Let K be a connected subgraph
of the reduced conflict graph K−C and let att(K) be the set of all attachment vertices of the
C-bridges in K, that is, att(K) = ⋃

X∈K att(X). If {x, y} is a pair of vertices of C that
alternates with att(K), then there is a bridge X ∈ K such that the pair {x, y} alternates
with att(X).

Proof. Let α and β be the two arcs of C with endvertices x and y. Let Kα be the set of
C-bridges from K whose all attachments belong to α, and let Kβ be the set of bridges
from K with all their attachments in β. Note that both Kα and Kβ are proper subsets of
K, because {x, y} alternates with att(K).

Since no bridge in Kα conflicts with any bridge in Kβ, and since K is a connected
subgraph in the reduced conflict graph, there must exist a bridge X ∈ K that belongs to
K \ (Kα ∪Kβ). Clearly, X has at least one attachment in the interior of α as well as at
least one attachment in the interior of β. Thus, att(X) alternates with {x, y}.

Next, we show that in a 3-connected graph, unless C is a triangle, its reduced conflict
graph K−C is connected.

Lemma 7.11. Let C be a cycle of length at least 4 in a 3-connected graph F . Then the
reduced conflict graph K−C is connected (and hence KC is connected as well).

Proof. We first show that for a cycle C of length at least 4 and a set of C-bridges K that
form a connected component in K−C , every vertex of C is an attachment of at least one
bridge in K.

Claim 7.3. Let C be a cycle of length at least four in a 3-connected graph F . Let K be
a connected component of the graph K−C , and let att(K) be the set ⋃X∈K att(X). Then
each vertex of C belongs to att(K).

Suppose that some vertices of C do not belong to att(K). Then there is an arc α of C
of length at least 2, whose endvertices belong to att(K), but none of its internal vertices
belongs to att(K). Let x and y be the endvertices of α. Let β be the other arc determined
by x and y. Notice that β also has length at least 2.

Since F is 3-connected, F −{x, y} is connected, and in particular, there is a C-bridge Y
that has at least one attachment u in the interior of the arc α and at least one attachment
v in the interior of β. Clearly Y 6∈ K, since Y has an attachment in the interior of α.

Since the pair {u, v} alternates with {x, y} ⊆ att(K), Claim 7.10 shows that there is a
bridge X ∈ K whose attachments alternate with {u, v}. Then X and Y have a four-vertex
conflict, which is impossible because K is a connected component of K−C not containing Y ,
and the claim holds.

We are now ready to prove the lemma. Let K and K ′ be two distinct connected
components of K−C . Choose a bridge X ∈ K. Let u and v be any two attachments of X
that are not connected by an edge of C. By Claim 7.3, each vertex of C is in att(K ′), so
att(K ′) alternates with {u, v}, and hence by Claim 7.10, the set K ′ has a bridge Y whose

150 Chapter 7: A Kuratowski-Type Theorem for Planarity of Partially Embedded Graphs

attachments alternate with the attachments of X. Hence, X and Y have a four-vertex
conflict and belong to the same connected component in K−C .

Next, we show that if we have an induced path in the conflict graph, then we can
find a corresponding sequence of bridges and pairs of their attachment vertices such that
consecutive pairs alternate. This lemma will be the main working tool for extracting
alternating chains from non-planar Pegs.

Lemma 7.12. Let C be a cycle of length at least 4 in a 3-connected graph F and let P be
an induced path with k ≥ 2 vertices in the graph K−C . Let X1, X2, . . . , Xk be the vertices
of P , with Xi adjacent to Xi+1 for each i = 1, . . . , k − 1. Then for each i ∈ {1, . . . , k} we
may choose a pair of vertices {xi, yi} ⊆ att(Xi), such that for each i = 1, . . . , k− 1 the pair
{xi, yi} alternates with the pair {xi+1, yi+1}.

Proof. For each j ≤ k, select a set Sj ⊆ att(Xj) in such a way that for each i < k the set
Si alternates with Si+1. Such a selection is possible, for example, by taking Sj = att(Xj).
Assume now that we have selected {Sj , j = 1, . . . , k} so that their total size ∑j≤k |Sj | is as
small as possible. We claim that each set Sj consists of a pair of vertices {xj , yj}.

Assume for contradiction that this is not the case. Since obviously each Sj has at
least two vertices, assume that for some j we have |Sj | ≥ 3. Clearly, this is only possible
for 1 < j < k. Select a pair of vertices {xj−1, yj−1} ⊆ Sj−1 and a pair of vertices
{xj+1, yj+1} ⊆ Sj+1 such that both these pairs alternate with Sj . Since the sets Sj−1 and
Sj+1 do not alternate, there is an arc α of C with endvertices {xj−1, yj−1} that has no
vertex from Sj+1 in its interior, and similarly there is an arc β with endvertices {xj+1, yj+1}
and no vertex of Sj−1 in its interior.

Since both {xj−1, yj−1} and {xj+1, yj+1} alternate with Sj , there must be a vertex
xj ∈ Sj that belongs to the interior of α, and a vertex yj ∈ Sj belonging to the interior
of β. The pair {xj , yj} alternates with both Sj−1 and Sj+1, contradicting the minimality
of our choice of Sj .

Our next goal is to link the conflict graph with the elements of Achk. Note that for
all elements of Achk, the conflict graph forms a path of length k. To establish a link, we
consider pairs of a graph and a cycle such that the conflict graph forms a path. Let F be a
graph, and let C be a cycle in F . We say that the pair (F,C) forms a conflict path, if each
C-bridge of F has exactly two attachments and the conflict graph KC is a path. (Note
that if each C-bridge has two attachments, then the conflict graph is equal to the reduced
conflict graph.)

By definition, every element of Achk forms a conflict path. The converse, is however not
true. Suppose that (F,C) forms a conflict path. Let e = uv be an edge of C. The edge
e is called shrinkable if no C-bridge attached to u conflicts with any C-bridge attached
to v. (The idea is that a shrinkable edge may be contracted without modifying the conflict
graph.)

Before we can show that the elements of Achk are minimal non-planar Pegs, we first
need a more technical lemma about conflict paths.

Lemma 7.13. Assume that (F,C) forms a conflict path. Then each vertex of C is an
attachment for at most two C-bridges.

Proof. Suppose that (F,C) forms a conflict path, and a vertex v ∈ C is an attachment of
three distinct bridges X, Y and Z. These three bridges do not alternate, so there must be
at least five bridges to form a path in KC . Let x, y and z be the attachments of X, Y and

7.3 Biconnected Pegs 151

Z different from v. The three vertices x, y and z must be all distinct, because a pair of
bridges with the same attachments would share the same neighbors in the conflict graph,
which is impossible if the conflict graph is a path with at least five vertices.

Choose an orientation of C and assume that the four attachments appear in the order
(v, x, y, z) with respect to this orientation. Let αvx, αxy, αyz, and αzx be the four internally
disjoint arcs of C determined by consecutive pairs of these four attachments.

Let Pxz be the subpath of KC that connects X to Z. At least one bridge of Pxz must
have an attachment in the interior of αvx and at least one bridge of Pxz must have an
attachment in the interior of αzv. So the attachments of Y alternate with the attachments
of Pxz and by Lemma 7.10, at least one bridge in Pxz conflicts with Y . This means that Y
is an internal vertex of Pxz.

Consider now the graph Pxz − Y . It consists of two disjoint paths Px and Pz containing
X and Z respectively. Px has a vertex adjacent to X as well as a vertex adjacent to Y ,
but no vertex adjacent to Z. In particular, Px has at least one attachment in the interior
of αvx and at least one attachment in the interior of αyz. Similarly, Pz has an attachment
in the interior of αxy and in the interior of αzv. Hence, the attachments of Px alternate
with the attachments of Pz. Using Lemma 7.10, we easily deduce that at least one bridge
of Px must conflict with a bridge of Pz, which is a contradiction.

Next, we show that the structure of the attachment vertices on the cycle C of a conflict
path (F,C) without shrinkable edges has a structure very similar to that of an alternating
chain.

Lemma 7.14. Assume that (F,C) forms a conflict path with k ≥ 4 C-bridges. Let
X1, . . . , Xk be the C-bridges, listed in the order in which they appear on the path KC . Let
{xi, yi} be the two attachments of Xi. Assume that C has no shrinkable edge. Then

1. The two attachments {x1, y1} of X1 determine an arc α1 of length 2, and the unique
internal vertex z1 of this arc is an attachment of X2 and no other bridge.

2. The two attachments {xk, yk} of Xk determine an arc αk of length 2 different form
α1, and the unique internal vertex zk of this arc is an attachment of Xk−1 and no
other bridge.

3. All the vertices of C other than z1 and zk are attachments of exactly two bridges.

Proof. We know from Lemma 7.13 that no vertex of C is an attachment of more than two
bridges.

Let α and β be the two arcs of C determined by {x1, y1}. The bridges X3, . . . , Xk do
not alternate with X1, so all their attachments belong to one of the two arcs, say β. The
arc α then has only one attachment z1 in its interior, and this attachment belongs to X2
and no other bridge. It follows that α has only one internal vertex. This proves the first
claim; the second claim follows analogously.

To prove the third claim, note first that any vertex of C must be an attachment of
at least one bridge. Suppose that there is a vertex v that is an attachment of only one
bridge Xj . Let u and w be the neighbors of v on C. By assumption, both u and w are
attachments of at least one bridge that conflicts with Xj .

Assume first, that a single bridge Y conflicting with Xj is attached to both u and w.
Since the arc determined by u and w and containing v does not have any other attachment
in the interior, this means that Y conflicts only with the bridge Xj . Then Y ∈ {X1, Xk}
and v ∈ {z1, zk}. Next, assume that the bridge Xj−1 is attached to u but not to w, and

152 Chapter 7: A Kuratowski-Type Theorem for Planarity of Partially Embedded Graphs

the bridge Xj+1 is attached to w but not u. We then easily conclude that Xj−1 conflicts
with Xj+1, which is a contradiction.

This directly implies that non-planar Pegs that form a conflict path and do not have
shrinkable edges are k-fold alternating chains.

Corollary 7.1. Let (G,H,H) be a non-planar Peg for which H consists of a single
cycle C of length at least 4 and two additional vertices u and v that do not belong to C,
such that (G,C) forms a conflict path with bridges X1, . . . , Xk along the path, each with
attachments {xi, yi}. Let further Xi consist of the single edge xiyi for i = 2, . . . , k − 1
and let X1 consist of x1uy1 and Xk of xkvyk. If C does not contain shrinkable edges
then (G,H,H) is an element of Achk.

Proof. The non-planarity of G implies that u and v must be embedded on different sides
of C if k is even, and on the same side if k is odd.

Clearly, the graphs G and H have the same vertex set. By assumption, each bridge Xi

forms a path Pi, which satisfy the properties for k-fold alternating chains; they have the
right lengths and contain the right vertices. Further, since (G,C) forms a conflict path
their endpoints alternate in the required way.

Finally, as C has no shrinkable edges, Lemma 7.14 implies that all vertices of C have
degree 4, with the exception of one of the attachments of X2 and Xk−1, which have degree 3.
This also implies that the length of the cycle is k+ 1, and thus (G,H,H) thus is an element
of Achk.

We now employ the observations we made so far to show that every element of Achk is
indeed a minimal obstruction.

Lemma 7.15. For each k ≥ 3, every element of Achk is a minimal obstruction.

Proof. As observed before, Ach3 contains a single element, which is the obstruction 4.
Assume k ≥ 4, and choose (G′, H ′,H′) ∈ Achk. Let C be the unique cycle of H, and let u
and v be the two isolated vertices of H. Observing that (G′, H ′,H′) is not planar is quite
straightforward: since no two conflicting bridges can be embedded into the same region
of C, all the odd bridges X1, X3, X5, . . . must be in one region while all the even bridges
must be in the other region, and this guarantees that u or v will be on the wrong side of C.

Let us prove that (G′, H ′,H′) is minimal non-planar. The least obvious part is to show
that contracting an edge of a cycle C always gives a planar Peg. If the cycle C contained
a shrinkable edge e = xy, we might contract the edge into a single vertex xe. After the
contraction, the new graph still forms a conflict path, but the vertex xe is an attachment
of at least three bridges, which contradicts Lemma 7.13. We conclude that C has no
shrinkable edge.

By contracting a non-shrinkable edge C, we obtain a new Peg (G′′, H ′′,H′′) where H
consists of a cycle C ′ and two isolated vertices. The conflict graph of C ′ in G′′ is a proper
subgraph of the conflict graph of C in G′. In particular, the bridges containing u and v
belong to different components of the conflict graph of C ′. We may then assign each bridge
to one of the two regions of the cycle C ′, in such a way that the bridges containing u and v
are assigned consistently with the embedding H′′, and the remaining bridges are assigned
in such a way that no two bridges in the same region conflict.

It is easy to see that any collection of C ′-bridges that does not have a conflict can be
embedded inside a single region of C ′ without crossing. Thus, (G′′, H ′′,H′′) is planar.

7.3 Biconnected Pegs 153

x

y

u

v

P

Q

R

S

T ′

Figure 7.8.: Illustration of Lemma 7.16, the bridge embedded in the cycle contains a happy vertex u
and an unhappy vertex v that are not connected by a path avoiding x and y. In this
case, the Peg contains obstruction 4.

By analogous arguments, we see that removing or relaxing an edge or vertex of H ′
yields a planar Peg. Contracting an edge incident to u or v yields an planar Peg as well.
Thus, (G′, H ′,H′) is a minimal obstruction.

At least one of the embeddings is edge-compatible. Finally, we use all this prepa-
ration to analyze the skeletons of R-nodes. Suppose that (G,H,H) is a 2-connected
obstruction-free Peg, and that R is an R-skeleton of G with at least one edge-compatible
embedding. Let us assume that we have fixed an edge-compatible embedding R+ for R.

Let C be a cycle of R that is a projection of a cycle C ′ of H. Recall that a vertex x
of H that does not belong to an edge of C is happy with C ′ if it is embedded on the correct
side of C in R+ and that it is unhappy, otherwise. Recall further that a C-bridge is happy
with C ′, if it contains a happy vertex, and it is unhappy if it contains an unhappy vertex
and that a bridge that is neither happy nor unhappy is indifferent. We first show that a
C-bridge cannot be happy and unhappy at the same time.

Lemma 7.16. If C is a cycle of R that is a projection of a cycle C ′ of H, then no C-bridge
can be both happy and unhappy with C ′.

Proof. Assume a C-bridge X contains a happy vertex u and an unhappy vertex v.
If there exists a G-path from u to v that avoids all the vertices of C ′, then we obtain

obstruction 1. Assume then that there is no such path. This easily implies that the bridge
X is a single R-edge B with two attachments x and y. Figure 7.8 shows this situation and
illustrates the following steps. Since the graph represented by B is biconnected, there is a
cycle D of G containing both u and v, and which is contained in B. Since every G-path
from u to v inside B intersects x or y, we conclude that D can be expressed as a union of
two G-paths P and Q from x to y, with u ∈ P and v ∈ Q.

Similarly, the cycle C of R can be expressed as a union of two R-paths R and S, each
with at least one internal vertex. The paths R and S are projections of two H-paths R′
and S′. Since R is 3-connected, it has a path T that connects an internal vertex of R to
an internal vertex of S, and whose internal vertices avoid C. The path T is a projection of
a G-path T ′. The paths P , Q, R′, S′ and T ′ can be contracted to form obstruction 4.

Recall that a cycle C in R that is a projection of a cycle C ′ of H, is happy, if there is
at least one C-bridge that is happy with C ′ and it is unhappy, if at least one C-bridge is
unhappy with C ′. Again, as the following lemma shows, cycles cannot be both happy and
unhappy at the same time.

154 Chapter 7: A Kuratowski-Type Theorem for Planarity of Partially Embedded Graphs

Lemma 7.17. If C ′ is a cycle of H whose projection is a cycle C of R, then C ′ cannot be
both happy and unhappy.

Proof. Suppose C has a happy bridge X containing a happy vertex u, and an unhappy
bridge Y with an unhappy vertex v.

If C is a triangle, then X and Y cannot be chords of C and therefore they have three
attachments, each. This implies that they are embedded on different sides of the triangle
and all vertices of the triangle are attachments of both X and Y . Since Y is unhappy, it
contains a vertex that is prescribed on the same side of C ′ as X. This yields obstruction 17.
Otherwise, C has length at least 4, and we know that the reduced conflict graph K−C is
connected by Lemma 7.11. We find a shortest path X1, . . . , Xk in K−C connecting X = X1
to Y = Xk. If the path is a single edge, we obtain obstruction 16. Otherwise we use
Lemma 7.12 to choose for each Xi a pair of attachments {xi, yi} ⊆ att(Xi), such that
{xi, yi} alternates with {xi+1, yi+1}.

Since each C-bridge of the skeleton represents a connected subgraph of G, we know
that for every i = 2, . . . , k− 1 the graph G has a path from xi to yi whose internal vertices
avoid C ′ and which projects to the interior of Xi. We also know that there is a G-path Q1
from x1 to u, and a G-path R1 from y1 to u whose internal vertices avoid C ′ and which
project into X1. Similarly, there are G-paths Qk and Rk from xk to v and from yk to v,
internally disjoint with C ′ and projecting into Xk. Performing contractions if necessary,
we may assume that all these paths are in fact single edges.

Consider the sub-Peg (G′, H ′,H′), where H ′ consists of the cycle C ′ and the two vertices
u and v, and G has in addition all the edges obtained by contracting the paths defined
above. If C ′ has shrinkable edges, we may contract them, until no shrinkable edges are left.
Then we either obtain obstruction 4 (if k = 3), or Corollary 7.1 implies that have obtained
an occurrence of Achk for some k ≥ 4.

Next, we would like to show that it is not possible that one cycle is happy and another
one is unhappy. However, this is complicated if the cycles are too close in R, in particular
if they share vertices. Therefore, we first show that an unhappy cycle C ′ projecting to a
cycle C may not have an incident H-edge that does not belong to C. Such an edge e, if it
existed, would either be a chord of C ′, or it would be part of a bridge containing a vertex
of H (for example, the endpoint of e not belonging to C ′). The next two lemmas exclude
these two cases separately.

In the former case, where e in a chord of C ′ that hence projects to a chord of C, we
also call e a relevant chord. Note that if B is an edge of R containing a relevant chord,
then in an edge-compatible embedding of R, B must always be embedded on the correct
side of C. For practical purposes, such an edge B behaves as a happy bridge, as shown by
the next lemma.

Lemma 7.18. Let C ′ be a cycle of H that projects to a cycle C of R. Let e be a relevant
chord of C ′ that projects into an R-edge B. Then C ′ cannot be unhappy.

Proof. Let u and v be the two vertices of e, which are also the two poles of B. Let α′ and
β′ be the two arcs of C ′ determined by the two vertices u and v, and let α and β be the
two arcs of C that are projections of α′ and β′, respectively. Note that each of the two
arcs α and β has at least one internal vertex, otherwise e would not be relevant.

Suppose for contradiction that C has an unhappy bridge X containing an unhappy
vertex x. We distinguish two cases, depending on whether B is part of X or not.

7.3 Biconnected Pegs 155

vx

X = B

u

β

α

Q
e

P

(a)

v

B
u

β

α

e

X Cα

Y

(b)

Figure 7.9.: Illustration of Lemma 7.18. The edge e is a relevant chord of the shown cycle, and the
bridge X is assumed to be unhappy. If the skeleton edge of e also contains an unhappy
vertex x, we obtain obstruction 3 (a). Otherwise, the skeleton edge of e together with
the arc between its attachments forms a smaller cycle Cα, for which X is still unhappy,
but the remainder of the cycle is part of a happy bridge (b), which contradicts the fact
that a cycle cannot be both happy and unhappy.

First, assume that the bridge X contains the R-edge B. Then X is a trivial bridge
whose only edge is B; see Figure 7.9a. The edge B then contains a G-path P from u to v
containing x. The graph Gs also has a path Q connecting an internal vertex of α to an
internal vertex of β and avoiding both u and v. Together, the edge e, the paths P and Q,
and the arcs α and β can be contracted to form obstruction 3.

Assume now that the bridge X does not contain B. Consider two H-cycles C ′α = α′ ∪ e
and C ′β = β′ ∪ e, and their respective projections Cα = α ∪B and Cβ = β ∪B. It is not
hard to see that the vertex x must be unhappy with at least one of the two cycles C ′α
and C ′β. Let us say that X is unhappy with C ′α; see Figure 7.9b. Thus, Cα has at least
one unhappy bridge. We claim that Cα also has a happy bridge. Indeed, let Y be the
bridge of Cα that contains β. Since β has at least one internal vertex, the bridge Y is not
indifferent. The bridge Y must be happy, otherwise the vertices u and v would violate
edge-compatibility. This means that Cα has both a happy bridge and an unhappy bridge,
contradicting Lemma 7.17.

Lemma 7.19. Let C ′ be a cycle of H that projects to a cycle C of R. If C ′ is unhappy,
then every edge of H that is incident to a vertex of C must project into an R-edge that
belongs to C.

Proof. For contradiction, assume that an edge e = uv of H is incident to a vertex u ∈ C,
but projects into an R-edge B 6∈ C. If v is also a vertex of C, then e is a relevant chord
and C may not have any unhappy bridges by Lemma 7.18. If v 6∈ C, then v is an internal
vertex of a C-bridge, and from edge-compatibility it follows that v is happy with C ′. Thus
C has both happy and unhappy bridges, contradicting Lemma 7.17.

The previous two lemmas show that for an unhappy cycle C ′ of H projecting to a
cycle C of R+, none the C-bridges contains an H-edge incident to a vertex of C. In
particular, the projection of any happy H-cycle is either disjoint from C (that is they are
far apart) or it is identical to C. We now exclude the latter case.

156 Chapter 7: A Kuratowski-Type Theorem for Planarity of Partially Embedded Graphs

Lemma 7.20. Let C ′1 and C ′2 be two distinct facial cycles of H, which project to the same
(undirected) cycle C of R. Then any C-bridge that is happy with C ′1 is also happy with C ′2.

Proof. Let F1 and F2 be the faces ofH corresponding to facial cycles C ′1 and C ′2, respectively.
Suppose for contradiction that at least one C-bridge X is happy with C ′1 and unhappy

with C ′2. In view of Lemma 7.16, we may assume that X contains in its interior a vertex
x ∈ H, such that x is happy with C ′1 and unhappy with C ′2.

Suppose that the two facial cycles C ′1 and C ′2 are oriented in such a way that their
corresponding faces are to the left of the cycles. Note that any vertex of C is a common
vertex of C ′1 and C ′2. This shows that the two facial cycles have at least three common
vertices, which implies that they correspond to different faces of H.

Let a, b and c be any three distinct vertices of C, and assume that these three vertices
appear in the cyclic order (a, b, c) when the cycle C ′1 is traversed according to its orientation.
The interior of the face F2 lies to the right of the cycle C ′1, and in particular, the three
vertices a, b, c appear in the cyclic order (c, b, a) when the boundary of F2 is traversed
in the orientation of C ′2. Thus, C ′1 and C ′2 induce opposite orientations of their common
projection C. Since x is happy with exactly one of the two cycles C ′1 and C ′2, it means
that in the graph H with embedding H, the two cycles either both have x on their right,
or both have x on their left. It is impossible that both facial cycles have x on their left,
because they are facial cycles of different faces. Hence x is to the right of C ′1 and C ′2.

Let HC be the connected component of H containing the vertices of C, and let HC be
its embedding inherited from H. By Lemma 7.19, the bridge X contains no edge of H
adjacent to C, so x 6∈ HC . Let F3 be the face of HC that contains x in its interior. Note
that F3 is distinct from F1 and F2, as x is contained in it, which is not the case for F1
and F2. All the attachments of the bridge X must belong to the boundary of F3 (as well
as F1 and F2), otherwise we would obtain obstruction 1, using the fact that X contains a
G-path from x to any attachment of X. If X has at least three attachments, this leads to
contradiction, because no three faces of a planar graph can share three common boundary
vertices — to see this, imagine inserting a new vertex into the interior of each of the three
faces and connecting the new vertices by edges to the three common boundary vertices, to
obtain a planar drawing of K3,3.

Suppose now that X only has two attachments u and v, which means that X is a trivial
bridge. Each of the two arcs of C determined by u and v must have an internal vertex.
Let y and z be such internal vertices of the two arcs. To get a contradiction, insert a new
vertex w into the interior of face F1 in H and connect it by edges to all the four vertices
u, v, y, z. Then draw an edge uv inside face F3 and an edge yz inside F2. The new edges
together with the cycle C ′1 form a subdivision of K5.

We are now ready to show that R+ may not have a happy and an unhappy cycle.

Lemma 7.21. Let C ′1 and C ′2 be two cycles of H that project to two distinct cycles C1
and C2 of R. If C ′1 is unhappy, then C ′2 cannot be happy.

Proof. Suppose that C ′1 is unhappy and C ′2 is happy. By Lemma 7.19, this means that no
C1-bridge may contain an edge of H incident to a vertex of C1. Consequently, the two cycles
C1 and C2 are vertex-disjoint. Since R is 3-connected, it contains three disjoint paths P1,
P2 and P3, each connecting a vertex of C1 to a vertex of C2. Each path Pi is a projection
of a G-path P ′i connecting a vertex of C ′1 to a vertex of C ′2. Note that C1 is inside a happy
bridge of C2, and C2 is inside an unhappy bridge of C1. Thus, contracting the cycles C ′1
and C ′2 to triangles and contracting the paths P ′i to edges, we obtain obstruction 18.

7.3 Biconnected Pegs 157

The next lemma shows that if any vertex u of R that requires the embedding R+, then
no cycle can be unhappy.

Lemma 7.22. Assume that H has three edges e1, e2 and e3 which are incident to a
common vertex u and project into three distinct R-edges B1, B2 and B3 of R. Then no
cycle of H that projects to a cycle of R can be unhappy.

Proof. Proceed by contradiction. Assume that there is an unhappy cycle C ′ of H, which
projects to a cycle C of R. From Lemma 7.19 it then follows that u does not belong to C,
and hence u must belong to an unhappy C-bridge. From the same lemma we also conclude
that the vertex u and the three edges ei belong to a different component of H than the
cycle C ′.

For i ∈ {1, 2, 3}, suppose that the H-edge ei connects vertex u to a vertex vi, and is
contained in an R-edge Bi that connects vertex u to a vertex wi. These vertices, H-edges
and R-edges are distinct, except for the possibility that vi = wi.

Since R is 3-connected, all the vertices of R that share a face with u belong to a common
cycle D of R. The three vertices w1, w2 and w3 split D into three internally disjoint arcs
α12, α13 and α23, where αij has endvertices wi and wj .

As R is 3-connected, it contains three disjoint paths P1, P2 and P3, where Pi connects
wi to a vertex of C. We now distinguish two cases, depending on whether the paths Pi can
avoid u or not.

First, assume that it is possible to choose the paths Pi in such a way that all of them
avoid the vertex u. We may then add Bi to the path Pi to obtain three paths from u to
C, which only share the vertex u. It follows that the graph G contains three paths R′1,
R′2 and R′3 from u to C ′ which are disjoint except for sharing the vertex u, and moreover,
each R′i contains the edge ei. This yields obstruction 19.

Next, assume that it is not possible to choose P1, P2 and P3 in such a way that all the
three paths avoid u.

For i ∈ {1, 2, 3}, let xi be the last vertex of Pi that belongs to D, assuming the path Pi
is traversed from wi towards C. Let Qi be the subpath of Pi starting in xi and ending in a
vertex of C (so Qi is obtained from Pi by removing vertices preceding xi). Let y1, y2 and
y3 be the endvertices of P1, P2 and P3 that belong to C. We may assume that yi is the
only vertex of Pi belonging to C, otherwise we could replace Pi with its proper subpath.

We claim that one of the three arcs α12, α13, and α13 must contain all the three vertices
xi, possibly as endvertices. If the vertices xi did not belong to the same arc, we could
connect each xi to a unique vertex wj by using the edges of D, and we would obtain three
disjoint paths from wi to C that avoid u. Assume then, without loss of generality, that
α12 contains all the three vertices xi.

We may also see that if the cycles C and D share a common vertex y, then y belongs to
α12. If not, we could connect w3 to y by an arc of D that avoids w1 and w2, and we could
connect w1 and w2 to two distinct vertices xi and xj by disjoint arcs of D, thus obtaining
three disjoint paths from wi to C avoiding u.

Fix distinct indices p, q, r ∈ {1, 2, 3} so that the three vertices x1, x2 and x3 are
encountered in the order xp, xq, xr when α12 is traversed in the direction from w1 to w2.
Let β be the arc of D contained in α12 whose endpoints are xp and xr. Clearly xq is an
internal vertex of β.

We claim that at least one internal vertex of β is connected to u by an edge of R.
Assume that this is not the case. Then we may insert into the embedding R+ a new edge
f connecting xp and xr and embedded inside the face of R+ shared by xq and u. Let γ be

158 Chapter 7: A Kuratowski-Type Theorem for Planarity of Partially Embedded Graphs

w1

w2

w3xp

xr

xq

C
v1

v2

v3

z1

z2

z3

u

R1

R2

R3

S1

S2

(a)

w1

w2

v1

v2

v3

z1

z2

z3

(b)

Figure 7.10.: Illustration of Lemma 7.22, the paths constructed in the proof (a) and an intermediate
step in obtaining one of the obstructions 20, 21 or 22 (b).

the arc of C with endvertices yp and yr that does not contain yq. The arc γ, the paths Qp
and Qr and the edge f together form a cycle in the (multi)graph R ∪ {f}. The vertex xq
and the vertex wq are separated from each other by this cycle. Thus, the path Pq must
share at least one vertex with this cycle, but that is impossible, since Pq is disjoint from
Qp, Qr and γ. We conclude that R has an R-edge B4 connecting u to a vertex x4 in the
interior of β.

We define three paths R1, R2 and R3 of the graph G as follows. The path R1 starts
in the vertex u, contains the edge e1 = uv1, proceeds from v1 to w1 inside B1, then goes
from w1 to xp inside the arc α12, then follows Qp until it reaches the vertex yp. Similarly,
the path R2 starts in u, contains the edge e2, follows from v2 to w2 inside B2, from w2 to
xr inside α12, and then along Qr to yr. The path R3 starts at the vertex w3, proceeds
towards v3 inside B3, then using the edge e3 it reaches u, proceeds from u to x4 inside
B4, then from x4 to xq inside β, then from xq towards yq along Qq. If any of the three
paths Ri contains more than one vertex of C ′, we truncate the path so that it stops when
it reaches the first vertex of C ′.

We also define two more paths S1 and S2 of G, where each Si connects the vertex wi
to the vertex w3 and projects into the arc αi3; see Figure 7.10a for an illustration of the
constructed paths.

Note that the three paths Ri only intersect in the vertex u, a path Si may only intersect
Rj at one of the vertices w1, w2 or w3, and the cycle C ′ may intersect Si only in the
vertex wi.

Consider the Peg (G′, H ′,H′) formed by the union of the cycle C ′, the three paths Ri,
and the two paths Sj , where only the cycle C ′ and the three edges e1, e2 and e3 with their
vertices have prescribed embedding, and their embedding is inherited from H.

It can be easily checked that the graph G′ is a subdivision of a 3-connected graph, so it
has a unique edge-compatible embedding G′. Consider the subgraph R′ of R formed by
all the vertices of R belonging to G′ and all the R-edges that contain at least one edge
of G′. The graph G′ is a subdivision of R′. Thus, the embedding of R′ inherited from R+

must have the same rotation schemes as the embedding G′. Let zi be the endpoint of Ri
belonging to C ′. Orient C ′ so that z1, z2, z3 appear in this cyclic order on C ′. Suppose that
e1, e2 and e3 appear in this clockwise order in H. Then the four vertices u, v1, v2 and v3
are to the left of C ′ in G′, and hence also in R+. Since the four vertices are in an unhappy
C-bridge of R, they are to the right of C ′ in H′. This determines (G′, H ′,H′) uniquely.

7.4 Disconnected and 1-Connected Pegs 159

We now show that (G′, H ′,H′) contains one of the obstructions 20, 21 or 22. First, we
contract each of S1 and S2 to a single edge. We also contract the cycle C ′ to a triangle
with vertices z1, z2 and z3. We contract the subpath of R3 from w3 to v3 to a single vertex,
and we contract the subpath of R3 from u to z3 to a single edge. After reversing the order
of the vertices on the cycle to make it happy, we essentially obtain the Peg shown in
Figure 7.10b, except that for i = 1, 2 it may be that wi = vi or wi = zi, but not both since
vi 6= zi. This is already very close to obstructions 20–22.

To contract R1, we distinguish two cases. First, assume that w1 belongs to C ′. This
means that z1 = w1 6= v1, because we know that v1 is not in the same component of H
as C ′. In this case, we contract the subpath of R1 from v1 to w1 to a single edge. On the
other hand, if w1 does not belong to C, we contract the subpath of R1 from v1 to w1 to a
single vertex, and we contract the subpath from w1 to z1 to a single edge.

The contraction of R2 is analogous to the contraction of R1, and it again depends on
whether w2 belongs to C or not. After these contractions are performed, we end up with
one of the three obstructions 20, 21, or 22.

With the lemmas proven so far, we are ready to prove the following proposition.

Proposition 7.4. Let (G,H,H) be an obstruction-free Peg, with G biconnected. Let R
be a skeleton of an R-node of the SPQR tree of G. If R has at least one edge-compatible
embedding, then it has a compatible embedding.

Proof. Let R+ be an edge-compatible embedding. If the embedding R+ is not cycle-
compatible, then H has an unhappy facial cycle C ′ projecting to a cycle C of R. The
previous lemmas then imply that every facial cycle of H projecting to a cycle of R can
only have unhappy or indifferent bridges. Besides, Lemma 7.22 implies that no vertex u of
R can be incident to three R-edges, each of them containing an edge of H incident to u.
Hence, the skeleton R has no edge-compatibility constraints. Consequently, we may flip
the embedding R+ to obtain a new embedding that is compatible.

This conclude our treatment of R-nodes and thus also the proof of the main theorem for
biconnected Pegs. We now turn to 1-connected Pegs, that is, Pegs that are connected
but not necessarily biconnected and to disconnected Pegs.

7.4. Disconnected and 1-Connected Pegs
We have shown that a biconnected obstruction-free Peg is planar. We now extend this
characterization to arbitrary Pegs. To do this, we will first show that an obstruction-
free Peg (G,H,H) is planar if and only if each connected component of G induces a
planar sub-Peg. Next, we provide a more technical argument showing that a connected
obstruction-free Peg (G,H,H) is planar, if and only if all the elements of a certain
collection of 2-connected Peg-minors of (G,H,H) are planar.

Reduction to G connected Here, we again make use of the combinatorial characteri-
zation we have established in Chapter 6. There we have proven the following lemma.

Lemma 7.23 (cf. Lemma 6.5 of Chapter 6). Let (G,H,H) be a Peg. Let G1, . . . , Gt
be the connected components of G. Let Hi be the subgraph of H induced by the vertices
of Gi, and let Hi be H restricted to Hi. Then (G,H,H) is planar if and only if 1) each

160 Chapter 7: A Kuratowski-Type Theorem for Planarity of Partially Embedded Graphs

(Gi, Hi,Hi) is planar, and 2) for each i, for each facial cycle ~C of Hi and for every j 6= i,
no two vertices of Hj are separated by ~C, in other words, all the vertices of Hj are embedded
on the same side of C.

A Peg that does not satisfy the second condition of the lemma must contain obstruction 1.
Thus, if Theorem 7.1 holds for Pegs with G connected, it holds for all Pegs.

Reduction to G biconnected Next, we consider connected Pegs (G,H,H), that is
Pegs where G is connected. In contrast to planarity of ordinary graphs, it is not in
general true that a Peg is planar if and only if each sub-Peg induced by a biconnected
component of G is planar. However, for Pegs satisfying some additional assumptions, a
similar characterization is possible.

Let (G,H,H) be a connected Peg and let v be a cutvertex of G. We say that v is
H-separating if at least two connected components of G− v contain vertices of H.

Let (G,H,H) be a connected Peg that avoids obstruction 1. Let v be an H-separating
cutvertex of G that does not belong to H. Let x and y be two vertices of H that belong
to different connected components of G − v, chosen in such a way that there is a path
in G connecting x to y whose internal vertices do not belong to H. The existence of
such a path implies that x and y share a face F of H, otherwise H would contain a cycle
separating x from y, creating obstruction 1. The face F is unique, because x and y belong
to distinct components of H. It follows that any planar embedding of G that extends H
must embed the vertex v in the interior of the face F . We define H ′ = H ∪ v and let H′ be
the embedding of H ′ obtained from H by inserting the isolated vertex v into the interior
of the face F . As shown above, any planar embedding of G that extends H also extends
H′. We say that (G,H ′,H′) is obtained from (G,H,H) by fixing the cutvertex v.

Let (G,H+,H+) be a Peg that is obtained from (G,H,H) by fixing all the H-separating
cut-vertices of G not belonging to H. Note that each H+-separating cutvertex is also
H-separating, and vice versa. A planar embedding of G that extends H also extends H+

and in particular, (G,H,H) is planar if and only if (G,H+,H+) is planar. We now show
that this operation cannot create a new obstruction in (G,H+,H+).

Lemma 7.24. Let (G,H,H) be a connected Peg that avoids obstruction 1, and let
(G,H+,H+) be the Peg obtained by fixing all the H-separating cut-vertices of G. Then
(G,H,H) contains a minimal obstruction X if and only if (G,H+,H+) contains X.

Moreover, given an occurrence of X in (G,H+,H+), an occurrence of X in (G,H,H)
can be found efficiently.

Proof. First, note that since (G,H,H) is a Peg-minor of (G,H+,H+), it suffices to prove
that if (G,H+,H+) contains an obstruction X = (GX , HX ,HX) then we can efficiently
find the same obstruction in (G,H,H). This clearly holds in the case when HX does
not contain isolated vertices, because then any sequence of deletions, contractions and
relaxations that produces X inside (G,H+,H+) will also produce X inside (G,H,H).

Suppose now that HX contains isolated vertices. Assume first that GX is 2-connected.
Let G1, . . . Gt be the 2-connected blocks of G, let Hi be the subgraph of H induced by
the vertices of Gi, let Hi be the embedding of Hi inherited from H, and similarly for H+

i

and H+
i . If (G,H+,H+) contains X, then for some i, (Gi, H+

i ,H
+
i) contains X as well

(here we use the fact that each H+-separating cutvertex of G belongs to H+). However,
each (Gi, H+

i ,H
+
i) is a Peg-minor of (G,H,H) — this is because any vertex v of H+

i that
is not a vertex of Hi is connected to a vertex of H by a path that internally avoids Gi.
By contracting all such paths, we obtain a copy of (Gi, H+

i ,H
+
i) inside (G,H,H). Since

7.4 Disconnected and 1-Connected Pegs 161

(Gi, H+
i ,H

+
i) contains X, so does (G,H,H). We can also easily see that an occurrence of

X in (G,H,H) can be efficiently obtained from its occurrence in (G,H+,H+).
It remains to deal with the case when X is not 2-connected and HX contains an isolated

vertex. This means that X is obstruction 1. By assumption, (G,H,H) does not contain
obstruction 1. Suppose for contradiction that (G,H+,H+) contains obstruction 1. This
means that H+ contains a cycle C and a pair of vertices v and w separated by this cycle,
and that there exists a path P of G that connects v and w and has no vertex in common
with C.

If v is not a vertex of H, then v is an H-separating cutvertex. Therefore, there are two
vertices x and y of H in distinct components of G − v that both share a face F with v
and are connected to v by paths Px and Py of G which do not contain any other vertex
of H. Since x and y are in distinct components of H, at least one of them, say x, does not
belong to the cycle C. Since x shares a face with v, it must be on the same side of C as v.
By the same reasoning, the vertex w either belongs to H or there is a vertex z ∈ H that
appears on the same side of C as w and is connected to w by a G-path Pz whose internal
vertices do not belong to H. In any case, we find a pair of vertices of H that are separated
by C and are connected by a G-path that avoids C. This shows that (G,H,H) contains
obstruction 1, which is a contradiction.

Note that it is possible to determine whether a given Peg contains obstruction 1
efficiently.

Lemma 7.24 shows that we can without loss of generality restrict ourselves to Pegs
(G,H,H) in which every H-separating cutvertex belongs to H. For Pegs having this
property, we can show that planarity can be reduced to planarity of biconnected components.

First, we need a definition. Let H be a graph with planar embedding H, let v be a
vertex of H, and let H1 and H2 be two edge-disjoint subgraphs of H. We say that H1 and
H2 alternate around v in H, if there exist edges e, e′ ∈ E(H1) and f, f ′ ∈ E(H2) which are
all incident with v and appear in the cyclic order (e, f, e′, f ′) in the rotation scheme of v in
the embedding H.

The following lemma is analogous to Lemma 6.4 from Chapter 6, except that the
assumption “every non-trivial H-bridge is local” is replaced with the weaker condition
“every H-separating cutvertex of G is in H”. This new assumption is weaker, because
a separating cutvertex not belonging to H necessarily belongs to a non-local H-bridge.
However, the proof in Chapter 6 uses only this weaker assumption and therefore we have
the following lemma.

Lemma 7.25. Let (G,H,H) be a connected Peg with the property that every H-separating
cutvertex of G is in H. Let G1, . . . , Gt be the blocks of G, let Hi be the subgraph of H
induced by the vertices of Gi and let Hi be H restricted to Hi. Then, (G,H,H) is planar
if and only if 1) (Gi, Hi,Hi) is a planar Peg for each i, 2) no two distinct graphs Hi and
Hj alternate around any vertex of H, and 3) for every facial cycle ~C of H and for any two
vertices x and y of H separated by ~C, any path in G connecting x and y contains a vertex
of ~C.

The (already proven) main theorem for connected Pegs implies that the first condition
holds for any obstruction-free Peg. Note that the last two conditions are always satisfied
when (G,H,H) avoids obstructions 1 and 2. Hence, this concludes the proof of Theorem 7.1.
For the latter two conditions we can also efficiently test whether they are satisfied and
produce an occurrence of an obstruction when one of them fails.

162 Chapter 7: A Kuratowski-Type Theorem for Planarity of Partially Embedded Graphs

x

C

y

z
F

(G,H,H)

C2

x

y

e

F1

F2

C1

(G′, H ′,H′)

Figure 7.11.: A reduction rule transforming (G,H,H) into (G′, H ′,H′).

7.5. Other Minor-Like Operations
Let us remark that our definition of Peg-minor operations is not the only one possible.
In this chapter, we preferred to work with a weaker notion of Peg-minors, since this
makes the resulting characterization theorem stronger. However, in many circumstances,
more general minor-like operations may be appropriate, providing a smaller set of minimal
obstructions.

For example, the G-edge contraction rules may be relaxed to allow contractions in more
general situations. Here is an example of such a relaxed G-edge contraction rule: given a
Peg (G,H,H), assume e = uv is an edge of G but not of H, assume that u and v have a
unique common face F of H, and assume furthermore that each of the two vertices is visited
only once by the corresponding facial walk of F . If u and v are in distinct components
of H, or if the graph H is connected, we embed the edge uv into F and then contract it,
resulting in a new Peg (G′, H ′,H′).

It is not hard to see that this relaxed contraction preserves the planarity of a Peg, and
that H′ is uniquely determined. It also subsumes the ‘complicated G-edge contraction’
we introduced. With this stronger contraction rule, most of the exceptional minimal
obstructions can be further reduced, leaving only the obstructions 1, 2, 3, 4, 11, 14, 16,
and 17, as well as K5 and K3,3. However, even this stronger contraction cannot reduce the
obstructions from Achk.

To reduce the minimal obstructions to a finite set, we need an operation that can be
applied to an alternating chain. We now present an example of such an operation. See
Figure 7.11.

Suppose that (G,H,H) is a Peg, let F be a face of H, let C be a facial cycle of F
oriented in such a way that the interior of F is to the left of C, let x and y be two vertices
of C that are not connected by an edge of G, and let z be a vertex of H not belonging
to C. Assume that the following conditions hold.

1. The vertex z is adjacent to x and to y in G.

2. The vertex z is embedded to the left of C in the embedding H, and is incident to the
face F .

3. Any connected component of H that is embedded to the left of C in H is connected
to a vertex of C \ {x, y} by an edge of G.

7.6 Concluding Remarks 163

4. Any edge of H that is incident to x or to y and does not belong to C is embedded
outside of F (that is, to the right of C) in H.

We define a new Peg by the following steps.

• Remove vertex z and all its incident edges from G and H.

• Add to G, H and H a new edge e = xy. The edge e is embedded inside F . (Note
that the position of e in the rotation schemes of x and y is thus determined uniquely,
because of condition 4 above.)

• The edge e splits the face F into two subfaces F1 and F2. Let C1 and C2 be the facial
cycles of F1 and F2 such that C1 ∪ C2 = C ∪ {e}. For any connected component B
of H that is embedded to the left of C in H, let w be a vertex of C \ {x, y} adjacent
to a vertex of B. Such a vertex w exists by condition 3 above. If there are more such
vertices, we choose one arbitrarily for each B. If w belongs to C1, then B will be
embedded inside F1, otherwise it will be embedded inside F2.

Let (G′, H ′,H′) be the resulting Peg. We easily see that if (G,H,H) was planar, then
(G′, H ′,H′) is planar as well. In fact, if the vertex z has degree 2 in G, then we may even
say that (G,H,H) is planar if and only if (G′, H ′,H′) is planar.

The operation described above allows to reduce each k-fold alternating chain with k ≥ 4
to a smaller non-planar Peg which contains a (k−1)-fold alternating chain. It also reduces
obstruction 4 to obstruction 3, and obstruction 16 to a Peg that contains obstruction 1.
Therefore, when the above operation is added to the permissible minor operations, there
will only be a finite number of minimal non-planar Pegs.

Let us point out that the obstructions from the infinite family ⋃k≥4 Achk only play a role
when cycle-compatibility is important. For certain types of Pegs, cycle-compatibility is
not a concern. For instance, if the graph H is connected, it can be shown that (G,H,H) is
planar if and only if all the skeletons of G have edge-compatible embeddings, and therefore
such a Peg is planar if and only if it avoids the finitely many exceptional obstructions.

7.6. Concluding Remarks
In this chapter we have shown that planar Pegs can be characterized by a finite set of
forbidden obstructions, very similar to Kuratowski’s characterization of planar graphs via
the forbidden minors K5 and K3,3. The usual minor operations cannot directly be applied
to Pegs. Therefore the results of this chapter lies outside the usual graph minor theory,
and the powerful structural results of Robertson and Seymour [RS04] do not apply in this
context. We therefore defined a set of Peg-minor operations and showed that with the
right set of operations, the number of non-planar Pegs that are minimal with respect to
these operations is finite.

It should be noted that Theorem 7.1 together with the linear-time algorithm for testing
planarity of Pegs from Chapter 6 immediately implies Theorem 7.2, which states that a
polynomial-time algorithm exists that, for a given Peg, either produces a planar embedding
or an obstruction contained in it. In any non-planar instance I = (G,H,H) only linearly
many Peg-minor operations are possible. We test each one individually and use the
linear-time testing algorithm to check whether the result is still non-planar. In this way
we either find a smaller non-planar Peg I ′ resulting from I by one of the operations, or

164 Chapter 7: A Kuratowski-Type Theorem for Planarity of Partially Embedded Graphs

we have found a minimal obstruction, which by Theorem 7.1 is contained in our list. The
running time of this algorithm is at most O(n3).

In fact, in many cases, as indicated in several places, obstructions can be found much
more efficiently, often in linear time. In particular, the linear-time testing algorithm gives an
indication of which property of planar Pegs is violated for a given instance. In fact, almost
all the proofs are constructive and can easily be implemented to run in linear time. The only
exception is Proposition 7.2, which states that in a minimal wrung obstruction (G,H,H)
we have V (G) = V (H). A linear-time algorithm for producing a wrung obstruction with
this property from an arbitrary wrung obstruction would immediately imply a certifying
Peg-planarity test with linear running time.

Open problems. Is it possible to find a minimal obstruction in a non-planar Peg in
linear time? In general, given a fixed Peg (G,H,H), what is the complexity of determining
whether a given Peg contains (G,H,H) as a Peg-minor? Here, the answer may depend
on the set of Peg-minor operations we allow.

It is not known whether the results on planar Pegs can be generalized to graphs that
have a partial embedding on a higher-genus surface. In fact, even the complexity of
recognizing whether a graph partially embedded on a fixed higher-genus surface admits a
crossing-free embedding extension is still an open problem.

Chapter 8

Simultaneous Embedding with Fixed
Edges

In this chapter we study the time complexity of the problem Simultaneous Embedding with
Fixed Edges (Sefe) that takes two planar graphs G1 = (V,E1) and G2 = (V,E2) as input
and asks whether a planar drawing Γ1 of G1 and a planar drawing Γ2 of G2 exist such
that: (i) each vertex v ∈ V is mapped to the same point in Γ1 and in Γ2; and (ii) every
edge e ∈ E1 ∩ E2 is mapped to the same Jordan curve in Γ1 and Γ2.

The Sefe problem was already mentioned in Chapter 6. The results there can be
used to decide Sefe if the intersection of the two graphs has a fixed embedding. This
happens, for example, when the intersection graph is triconnected. In this chapter, we
study the Sefe problem in the more general cases when the intersection graph is connected
or biconnected, but not necessarily triconnected.

First, we give a linear-time algorithm for Sefe when the intersection graph of G1 and
G2, that is the planar graph G1∩2 = (V,E1 ∩ E2), is biconnected. Second, we show that
Sefe, when G1∩2 is connected, is equivalent to a suitably-defined book embedding problem.
Based on this equivalence and on recent results by Hong and Nagamochi, we show a
linear-time algorithm for the Sefe problem when G1∩2 is a star. The chapter is based
on joint work with Patrizio Angelini, Fabrizio Frati, Giuseppe Di Battista and Maurizio
Patrignani [ADF+10b].

8.1. Introduction
Let G1 = (V,E1), . . . , Gk = (V,Ek) be k graphs on the same set of vertices. A simultaneous
embedding of G1, . . . , Gk consists of k planar drawings Γ1, . . . ,Γk of G1, . . . , Gk, respectively,
such that any vertex v ∈ V is mapped to the same point in every drawing Γi. Because
of the applications to several visualization tasks and because of the interesting related
theoretical problems, constructing simultaneous graph embeddings has recently grown up
as a distinguished research topic in Graph Drawing.

The two main variants of the simultaneous embedding problem are the geometric
simultaneous embedding and the simultaneous embedding with fixed edges. The former
requires straight-line drawings of the input graphs, while the latter relaxes this constraint
by just requiring the edges that are common to distinct graphs to be represented by the
same Jordan curve in all the drawings.

166 Chapter 8: Simultaneous Embedding with Fixed Edges

Related work. Geometric simultaneous embedding turns out to have limited usability,
as testing whether two planar graphs admit a geometric simultaneous embedding is NP-
hard [EBGJ+07b] and as geometric simultaneous embeddings do not always exist if the
input graphs are three paths [BCD+07], if they are two outerplanar graphs [BCD+07], if
they are two trees [GKV09], and even if they are a tree and a path [AGKN10].

On the other hand, a simultaneous embedding with fixed edges (Sefe) always exists for
much larger graph classes. Namely, a tree and a path always have a Sefe with few bends
per edge [EK05], an outerplanar graph and a path or a cycle always have a Sefe with few
bends per edge [DL07b], and a planar graph and a tree always have a Sefe [Fra06].

The main open question about the Sefe problem is whether testing the existence of
a Sefe of two planar graphs is doable in polynomial time or not. A number of known
results are related to this problem. Namely, Gassner et al. proved that testing whether
three planar graphs admit a Sefe is NP-hard and that the Sefe problem is in NP for
any number of input graphs [GJP+06]. Fowler et al. characterized the planar graphs that
always have a Sefe with any other planar graph and have an efficient algorithm for testing
whether two outerplanar graphs admit a Sefe [FJKS08]. Further, Fowler et al. showed
how to test in polynomial time whether two planar graphs admit a Sefe if one of them
contains at most one cycle [FGJ+08a]. Jünger and Schulz characterized the graphs G1∩2
that allow for a Sefe of any two planar graphs G1 and G2 whose intersection graph is
G1∩2 [JS09]. Moreover, the results from Chapter 6 show how to test whether two planar
graphs admit a Sefe if one of them has a fixed embedding.

Contribution and Outline. In this chapter, we show the following results. In Section 8.3
we present a linear-time algorithm for the Sefe problem when the intersection graph G1∩2
of G1 and G2 is biconnected. Our algorithm exploits the SPQR-tree decomposition of G1∩2
in order to test whether a planar embedding of G1∩2 exists that allows the edges of G1 and
G2 not in G1∩2 to be drawn in such a way that no two edges of the same graph intersect.
Haeupler et al. [HJL10] simultaneously and independently found a different linear-time
algorithm for the same problem, based on PQ-trees.

In Section 8.4 we show that the Sefe problem, when G1∩2 is connected, is equivalent to a
suitably-defined book embedding problem. Namely, we show that for every instance (G1, G2)
of Sefe such that G1∩2 is connected, there exists a graph G′, whose edges are partitioned
into two sets E′1 and E′2, and a set of hierarchical constraints on the vertices of G′, such
that G1 and G2 have a Sefe if and only if G′ admits a 2-page book embedding in which
the edges of E′1 are in one page, the edges of E′2 are in another page, and the order of
the vertices in V ′ along the spine respects the hierarchical constraints. Based on this
characterization and on recent results by Hong and Nagamochi [HN09] concerning 2-page
book embeddings with the edges assigned to the pages in the input, we prove that linear
time suffices to solve the Sefe problem when G1∩2 is a star.

8.2. Preliminaries
The graphs we consider in this chapter are connected, and we will consider embeddings in
the plane, not on the sphere. Therefore embeddings in this chapter are described by the
rotation scheme of the vertices and an outer face.

For a subgraph H of a graph G with planar embedding E we denote by E|H the
embedding of H induced by E and by ∂H the set of vertices of H that are adjacent to a

8.2 Preliminaries 167

Figure 8.1.: A Sefe of two planar graphs. The edges that belong to both graphs are represented
by solid fat segments, while the edges that belong to only one of the two graphs are
represented by thin solid and dashed segments, respectively.

vertex of G−H. The following lemma is a very basic tool for manipulating embeddings.

Lemma 8.1 (Patching Lemma). Let G = (V,E) be a biconnected planar graph with
embedding E and let G1 = (V1, E1) and G2 = (V2, E2) be two edge-disjoint biconnected
subgraphs of G with G1 ∪G2 = G and with the property that all the vertices of G2 are in a
single face f of E|G1 (vertices in V1 ∩ V2 are on the boundary of f). Further, let E ′2 be an
embedding of G2 with the property that all the vertices of ∂G2 are incident to the outer
face of E ′2 and appear in the same order as in E|G2 . Then there exists a planar embedding
E ′ of G with E ′|G1 = E|G1 and E ′|G2 = E ′2.

Proof. We prove the statement by induction on the number of vertices in V1 ∩ V2.
For the base case, suppose that V1 ∩ V2 = ∅. Let E′ be the set of edges having one

endvertex in V1 and the other one in V2. Remove from G all the edges of E′ and change
the embedding of G2 to E ′2. Since the order of the vertices along the outer face of E|G2 and
along the outer face of E ′2 is the same, the edges in E′ can be reinserted in a planar way,
thus yielding an embedding E ′ of G with E ′|G1 = E|G1 and E ′|G2 = E ′2.

For the inductive case, suppose that V1 ∩V2 6= ∅ and let u ∈ V1 ∩V2. By the assumption
that all the vertices of G2 are in a single face of E|G1 , the edges connecting u to the vertices
of G1 (respectively of G2) form an interval in the cyclic ordering of the edges incident to u.
We can therefore split u into two vertices u1 and u2 connected by the edge u1u2 such that
ui is connected to all the neighbors of u in Gi for i = 1, 2. Call G′′ the resulting graph
and modify G1 and G2 by renaming vertex u to ui in Gi for i = 1, 2. Graphs G1 and
G2 share one vertex less than before and hence, by induction, there exists an embedding
E ′′ of G′′ with E ′′|G1 = E|G1 and E ′′|G2 = E ′2. We now undo the splitting operation by
contracting the edge u1u2. This results in an embedding E ′ of G such that E ′|G1 = E|G1

and E ′|G2 = E ′2.

Simultaneous embeddings. A Simultaneous Embedding with Fixed Edges (Sefe) of
k planar graphs G1 = (V,E1), G2 = (V,E2), . . . , Gk = (V,Ek) consists of k drawings
Γ1,Γ2, . . . ,Γk such that: (i) Γi is a planar drawing of Gi, for 1 ≤ i ≤ k; (ii) any vertex
v ∈ V is mapped to the same point in every drawing Γi, for 1 ≤ i ≤ k; (iii) any edge
e ∈ Ei ∩ Ej is mapped to the same Jordan curve in Γi and in Γj , for 1 ≤ i, j ≤ k. The
problem of testing whether k graphs admit a Sefe is called the Sefe problem. A Sefe of
two planar graphs is depicted in Figure 8.1.

Given two planar graphs G1 = (V,E1) and G2 = (V,E2), the intersection graph of G1
and G2 is the planar graph G1∩2 = (V,E1 ∩ E2); further, the exclusive subgraph of G1
(resp. of G2) is the graph G1\2 = (V,E1 \ E2) (resp. G2\1 = (V,E2 \ E1)). The exclusive

168 Chapter 8: Simultaneous Embedding with Fixed Edges

edges of G1 (of G2) are the edges in G1\2 (resp. in G2\1). The inclusive edges of G1 and
G2 are the edges in G1∩2.

Jünger and Schulz [JS09] show that the Sefe problem can be equivalently stated in
terms of embeddings. Namely, G1 and G2 admit a Sefe if and only if there exist planar
embeddings E1 and E2 of G1 and G2, respectively, such that E1|G1∩2 = E2|G1∩2 holds, that
is, the two embeddings coincide when restricted to the intersection graph.

Book embeddings. A book embedding of a graph G = (V,E) consists of a total
ordering ≺ of the vertices in V and of an assignment of the edges in E to pages of a book,
in such a way that no two edges ab and cd are assigned to the same page if a ≺ c ≺ b ≺ d.
A k-page book embedding is a book embedding using k pages. A constrained k-page book
embedding is a k-page book embedding in which the assignment of edges to the pages is
part of the input.

SPQR-tree. The main tool for handling the embeddings of the intersection graph
will be the SPQR-tree. In this chapter, we will assume that any SPQR-tree of a graph
G is rooted at one edge of G, called reference edge. Hence, the notion of the pertinent
graph of a node and the parent of a node (except for the root node) are defined. We will
show in Section 8.3 that the choice of this reference edge does not alter the possibility of
constructing a Sefe.

In the following, we will only refer to the SPQR-tree of the intersection graph G1∩2
of two graphs G1 and G2. For a node µ we denote its pertinent graph by G1∩2(µ), and
we denote by G1(µ) (by G2(µ)) the subgraph of G1 (of G2) induced by the vertices in
G1∩2(µ) and by G(µ) the graph G1(µ) ∪ G2(µ). Note that the intersection graph G1∩2
of two graphs G1 = (V,E1) and G2 = (V,E2), and its SPQR-tree T can be computed in
linear time [GM00]. We say that a vertex v of G1∩2 belongs to a node µ, if it is a vertex
of G1∩2(µ). In this case we also say that µ contains v.

8.3. Computing a Sefe When the Intersection Graph
is Biconnected

In this section we show an algorithm for deciding whether a Sefe of two planar graphs
G1 and G2 whose intersection graph G1∩2 is biconnected exists. The description of the
algorithm consists of two parts. In Section 8.3.1 we give combinatorial results characterizing
the embeddings of G1∩2 that allow for a Sefe in terms of conditions on the embeddings of
the skeletons of its SPQR-tree. This yields a simple polynomial-time algorithm for testing
the existence of a Sefe of G1 and G2. In Section 8.3.2 we use dynamic programming to
improve the algorithm’s running time to linear.

8.3.1. A Polynomial-Time Algorithm
Let G1 = (V,E1) and G2 = (V,E2) be two planar graphs whose intersection graph G1∩2 is
biconnected. Denote by T the SPQR-tree of G1∩2.

To ease the description of the algorithm, we assume that T is rooted at any edge e
of G1∩2. This implies that e is adjacent to the outer face of any computed embedding of
G1∩2. Observe that this does not preclude the possibility of finding a Sefe of G1 and G2.
Namely, consider any Sefe in the plane; “wrap” the Sefe around a sphere; project the

8.3 Computing a Sefe When the Intersection Graph is Biconnected 169

ρ1,1

ρ1,2

ρ1,3

ρ1,4

ρ1,5

ρ2,1

ρ2,2

ρ2,3

ρ2,4

ρ2,5

ν3

e1
e2

e3

e5

f1 f2 f3 f4

z

e4

e6

Figure 8.2.: A Sefe of graphs G1(µ) and G2(µ) when µ is a P -node with three children ν1, ν2, and
ν3. Also, ν1 and ν2 have children ρ1,1, . . . , ρ1,5 and ρ2,1, . . . , ρ2,5, respectively. For each
visible node τ of µ, the interior of the cycle delimiting the outer face of G1∩2(τ) is gray.
Solid (dotted) edges are exclusive edges of G1 (G2). The dashed edge represents the
rest of the graph.

Sefe back to the plane from a point in a face incident to e, thus obtaining a Sefe of G1
and G2 in which e is incident to the outer face of the embedding of G1∩2. Further, if e
is adjacent in T to an S-node, subdivide the edge of T connecting e to its only child by
inserting a P -node. Observe that the described insertion of an artificial P -node ensures
that the parent of any S-node is either an R-node or a P -node.

An exclusive edge e of G1 or of G2 is an internal edge of a node µ ∈ T if both endpoints
of e belong to µ, at least one of them is not a pole of µ, and there exists no descendant
of µ containing both the endpoints of e. An exclusive edge e of G1 or of G2 is an outer
edge of a node µ ∈ T if exactly one endpoint of e belongs to µ and this endpoint is not a
pole of µ. An exclusive edge e of G1 or of G2 is an intra-pole edge of a node µ ∈ T if its
endpoints are the poles of µ. Observe that an exclusive edge e of G1 or of G2 can be an
outer edge of a linear number of nodes of T ; also, e is an internal edge of at most one node
of T ; moreover, e can be an intra-pole edge of a linear number of nodes of T ; however, e
can be an intra-pole edge of at most one P -node of T . In Figure 8.2, edge e1 is an internal
edge of µ and an outer edge of ρ1,2, of ρ2,2, of ν1, and of ν2; edge e2 is an internal edge of
ν2 and an outer edge of ρ2,2 and ρ2,4; edge e3 is an internal edge of µ and an outer edge of
ρ1,3, ν1, and ν2; edge e4 is an intra-pole edge of ρ2,5; edge e5 is an outer edge of ρ1,2, of ν1,
and of µ.

The algorithm performs a bottom-up traversal of T . When it visits a node µ of T ,
either it concludes that a Sefe of G1 and G2 does not exist, or it determines a Sefe Γ(µ)
of G1(µ) and G2(µ) such that, if a Sefe of G1 and G2 exists, there exists one in which the
Sefe of the subgraphs G1(µ) and G2(µ) is Γ(µ). The rest of the graph, that is, the union
of the graphs obtained from G1 and G2 by respectively removing the vertices of G1(µ) and
G2(µ), except for the poles u(µ) and v(µ) of µ, and their incident edges, will be placed
in the same connected region of Γ(µ). This region is called the outer face of Γ(µ). The

170 Chapter 8: Simultaneous Embedding with Fixed Edges

computed Sefe Γ(µ) of G1(µ) and G2(µ) has the property that all the outer edges of µ
can be drawn towards the outer face, that is, a vertex z can be inserted into the outer face
of Γ(µ) and all the outer edges of µ can be drawn with z replacing their endpoints not
in µ, still maintaining the planarity of the drawings of G1(µ) and G2(µ). An example of
the insertion of z in a Sefe of G1(µ) and G2(µ) is shown in Figure 8.2. Note that if we
have found such a Sefe Γ(µ) of G1(µ) and G2(µ), then also its flip (obtained by mirroring
the drawing) forms such a Sefe. To use this degree of freedom, our algorithm fixes the
embedding of the pertinent graph of a processed node only up to a flip. The choice of the
flip is then deferred until later, when processing the parent node (or even the parent of the
parent) since this decision requires more global information that is available only later.

The algorithm does not process any S-node directly. First, an S-node does not offer
embedding choices, and second, it also does not deliver enough information to decide on the
flips of its children. Therefore choices of the flips of the children of a node µ are deferred to
the step in which the parent of µ is processed. Then, for every P-node and every R-node µ
of T , the visible nodes of µ are the children of µ that are not S-nodes plus the children of
each child of µ that is an S-node. Intuitively, the visible nodes of a P-node or R-node µ
are the descendants ν of µ such that, when µ is processed, an embedding of G(ν) has been
already decided up to a flip. In fact, when processing an R-node µ a flip for the embedding
of the pertinent graph G(ν) of each visible node ν is determined and when processing a
P-node µ an ordering of the children of µ around its poles and a flip for the embedding of
the pertinent graph G(ν) of each visible node ν are determined.

Some of the embedding choices that are taken when processing a P-node or an R-node µ
are forced by the existence of exclusive edges connecting different visible nodes of µ, as will
be stated in Lemmas 8.2 and 8.3. Some other embedding choices are arbitrary. However,
such arbitrary choices do not alter the possibility of finding a Sefe of G1 and G2. Namely,
we will prove that for any P-node or R-node µ any Sefe Γ(µ) of G1(µ) and G2(µ) can
be extended to a Sefe of G1 and G2 if the latter Sefe exists, provided that Γ(µ) allows
for drawing the outer edges of µ towards the outer face without creating crossings. Thus,
when processing a P-node or an R-node µ there is no need for looking at the rest of the
graph in order to decide an embedding of G(µ) such that the possibility of finding a Sefe
of G1 and G2 is not precluded. We start with two necessary conditions on the embeddings
of the skeletons of the nodes of T .
Lemma 8.2. Let E1∩2(µ) be an embedding of G1∩2(µ), with µ ∈ T , and let e be an internal
edge of µ. Then, G1 and G2 have a Sefe in which the embedding of G1∩2(µ) is E1∩2(µ)
only if both endpoints of e are incident to the same face of E1∩2(µ).
Proof. The statement directly follows from the observation that, in any embedding E1∩2(µ)
of G1∩2(µ) in which the endpoints of e are not both incident to the same face, the edge
e crosses at least one edge of G1∩2(µ). As the edges of G1∩2(µ) belong to both G1 and
G2, either two edges of G1 or two edges of G2 cross (depending on whether e ∈ G1
or e ∈ G2).

Lemma 8.3. Let E1∩2(µ) be an embedding of G1∩2(µ), with µ ∈ T , and let e be an outer
edge incident to µ in a vertex u(e). Then, G1 and G2 have a Sefe in which the embedding
of G1∩2(µ) is E1∩2(µ) only if u(e) is on the outer face of E1∩2(µ).
Proof. Similar to Lemma 8.2, the statement follows from the observation that, in any
embedding E1∩2(µ) of G1∩2(µ) in which u(e) is not incident to the outer face, edge e crosses
at least one edge of G1∩2(µ). As the edges of G1∩2(µ) belong to both G1 and G2, either
two edges of G1 or two edges of G2 cross (depending on whether e ∈ G1 or e ∈ G2).

8.3 Computing a Sefe When the Intersection Graph is Biconnected 171

We now prove (in Lemma 8.4) that, in any Sefe Γ of G1 and G2 and for any node
µ ∈ T that is not an S-node, the outer face of G(µ) is (almost) the same. This will allow
us to prove (in Lemma 8.5) that, if a Sefe of G1 and G2 exists, then (almost) any Sefe
of G1(µ) and G2(µ) can be extended to a Sefe of G1 and G2.

Consider a Sefe Γ = (E1, E2) of G1 and G2, and, for a node µ of T , the outer face
of G1∩2(µ) in Γ. This face is delimited by a clockwise cycle C containing u(µ) and v(µ).
Denote by C1(Γ, µ) the circular list containing u(µ), v(µ), and all the vertices that are
incident to exclusive edges of G1 that are outer edges of µ, in the same order as they
appear in C. Intuitively, C1(Γ, µ) consists of the vertices of ∂G1(µ) in their clockwise order
of appearance along the outer face of G1∩2(µ). List C2(Γ, µ) is defined analogously, with
G1 replaced by G2. We claim that, in each Sefe of G1 and G2 and for any node µ ∈ T
that is not an S-node, the lists C1(Γ, µ) and C2(Γ, µ) are essentially the same. Denote by
Crev the reverse of a circular list C.

Lemma 8.4. For any two Sefe Γ and Γ′ of G1 and G2 and for any node µ ∈ T that is not
an S-node, either C1(Γ, µ) = C1(Γ′, µ) and C2(Γ, µ) = C2(Γ′, µ), or C1(Γ, µ) = Crev

1 (Γ′, µ)
and C2(Γ, µ) = Crev

2 (Γ′, µ) hold.

Proof. Suppose, for a contradiction, that there exists two Sefes Γ and Γ′ and a node µ of
T that is not an S-node for which the statement does not hold. We show that this implies
that Γ or Γ′ is actually not a Sefe of G1 and G2. Suppose, without loss of generality, that
the statement holds for all the descendants of µ in T .

If µ is a Q-node then C1(Γ, µ) = C1(Γ′, µ) = C2(Γ, µ) = C2(Γ′, µ) = [u(µ), v(µ)] and
the statement holds, thus obtaining a contradiction.

Suppose that µ is an R-node. Since the statement holds for every visible node of µ and
since skel(µ) has exactly one planar embedding, up to a reversal of the adjacency lists of
all the vertices, there exists a visible node of µ that is flipped differently in Γ and Γ′ and
that has an outer edge e that is also an outer edge of µ. Denote by u(e) the endpoint of
e belonging to µ. Suppose that u(e) is incident to the outer face of G1∩2(µ) in Γ. Then,
u(e) is not incident to the outer face of G1∩2(µ) in Γ′. It follows that the edge e crosses
G1∩2(µ) in Γ′, a contradiction.

Suppose that µ is a P-node. Then at most two children νx and νy of µ contain vertices
of ∂G1∩2 different from u(µ) and from v(µ), as otherwise a vertex of ∂G1∩2 would not be
incident to the outer face of G1∩2(µ) in Γ and in Γ′ and any outer edge of µ incident to
such a vertex would cross G1∩2(µ), thus contradicting the assumption that Γ and Γ′ are
Sefes of G1 and G2. The flips of νx and νy in Γ (if νx and νy are not S-nodes) or the flips
of the children of νx and νy in Γ (if νx and νy are S-nodes) determine circular lists C1(Γ, µ)
and C2(Γ, µ). An analogous statement holds with Γ′ replacing Γ. Then, analogously to
the R-node case, if a visible node of µ has an outer edge e that is also an outer edge of µ
and such a node is flipped differently in Γ and Γ′, then the endpoint u(e) of e in µ is not
incident to the outer face of G1∩2(µ) either in Γ or in Γ′. It follows that the edge e crosses
G1∩2(µ) in Γ or in Γ′, a contradiction.

Lemma 8.4 proves that the choice of an embedding E1∩2(µ) for G1∩2(µ) does not restrict
the possibility of finding a Sefe of G1 and G2 as long as the vertices in ∂G1(µ) and ∂G2(µ)
are incident to the outer face of the computed Sefe of G1∩2(µ). However, the condition
that the vertices of ∂G1(µ) and ∂G2(µ) are incident to the outer face of E1∩2(µ) is not
sufficient to guarantee that a Sefe of G1(µ) and G2(µ) can be extended to a Sefe of G1
and G2, if a Sefe of G1 and G2 exists. Namely, it is also necessary that all the vertices of
∂Gi(µ) are incident to the outer face of Gi(µ), for i = 1, 2, as otherwise the outer edges of

172 Chapter 8: Simultaneous Embedding with Fixed Edges

µ could not be drawn towards the outer face. A Sefe of G1(µ) and G2(µ) such that all the
vertices of ∂Gi(µ) are incident to the outer face of Gi(µ), for i = 1, 2, is called extendable.
We now show that any extendable Sefe of G1(µ) and G2(µ) can be extended to a full
Sefe of G1 and G2, provided that a Sefe of G1 and G2 exists. In fact, we show a more
general result, which is as follows. Denote by G1 \G1(µ) (by G2 \G2(µ)) the subgraph
obtained from G1 (resp. from G2) by removing all the edges in G1(µ) (resp. in G2(µ)) and
all the vertices in G1(µ) (resp. in G2(µ)), except for the poles u(µ) and v(µ) of µ.

Lemma 8.5 (Simultaneous Patching Lemma). Let G1 and G2 be two planar graphs such
that G1∩2 is biconnected, let T be the SPQR-tree of G1∩2, and let µ be a node of T that is
not an S-node. Let (Eµ1 , E

µ
2) be an extendable Sefe of G1(µ) and G2(µ) and let (E1, E2) be

a Sefe of G1 and G2. Then there exists a Sefe (E ′1, E ′2) of G1 and G2 such that:

1. E ′1|G1\G1(µ) and E ′2|G2\G2(µ) coincide with E1|G1\G1(µ) and E2|G2\G2(µ), and

2. E ′1|G1(µ) and E ′2|G2(µ) coincide either with Eµ1 and Eµ2 or with their flips.

Proof. First, G1(µ) and G1 \ G1(µ) are edge-disjoint subgraphs of G1 by construction.
Second, the union of the vertex sets of G1(µ) and G1 \G1(µ) is the vertex set of G1, by
construction. Third, all the vertices of G1(µ) are in a single face of E1|G1\G1(µ), with the
common vertices (that is, u(µ) and v(µ)) on the boundary of such a face. Fourth, all the
vertices of ∂G1(µ) are on the outer face of Eµ1 since (Eµ1 , E

µ
2) is an extendable Sefe of G1(µ)

and G2(µ). Finally, the vertices of ∂G1(µ) appear on the outer face of Eµ1 with the same
or with the reverse order as in E1|G1(µ), by Lemma 8.4.

Clearly, the same applies for G2(µ) and G2 \G2(µ) with embedding E2. Hence, after
possibly flipping Eµ1 and Eµ2 , the vertices of ∂G1(µ) (of ∂G2(µ)) appear on the outer face
of Eµ1 (respectively of Eµ2) with the same order as in E1|G1(µ) (respectively as in E2|G2(µ)).

Therefore, Lemma 8.1 applies to G1 (to G2), that is, an embedding E ′1 (respectively
E ′2) of G1 (respectively of G2) exists such that E ′1|G1\G1(µ) = E1|G1\G1(µ) and E ′1|G1(µ) = Eµ1
(respectively E ′2|G2\G2(µ) = E2|G2\G2(µ) and E ′2|G2(µ) = Eµ2). Since (E ′1|G1\G1(µ), E ′2|G2\G2(µ))
is a Sefe of (G1 \G1(µ), G2 \G2(µ)) (given that (E1, E2) is a Sefe of G1 and G2) and since
(E ′1|G1(µ), E ′2|G2(µ)) is a Sefe of (G1(µ), G2(µ)) (given that (Eµ1 , E

µ
2) is a Sefe of G1(µ) and

G2(µ)), then (E ′1, E ′2) is a Sefe of G1 and G2 with the required properties.

As a corollary we that any extendable Sefe of the subgraphs induced by a non-S-nide
can be extended to a complete Sefe of the two graphs, provided that one exists.

Corollary 8.1. Let G1 and G2 be two planar graphs such that G1∩2 is biconnected, let T
be the SPQR-tree of G1∩2, and let µ be a node of T that is not an S-node. If G1 and G2
admit a Sefe then any extendable Sefe of G1(µ) and G2(µ) or its flip can be extended to
a Sefe of G1 and G2.

Corollary 8.1 implies that, for a non-S-node µ ∈ T with visible nodes µ1, . . . , µk, we can
fix up to a flip extendable Sefes (E(G1(µ1)), E(G2(µ1))), . . . , (E(G1(µk)), E(G2(µk))) of
(G1(µ1), G2(µ1)), . . . , (G1(µk), G2(µk)) without altering the possibility of finding a Sefe of
(G1(µ), G2(µ)). Therefore, when processing µ we assume that the visible nodes µ1, . . . , µk
have fixed extendable Sefes (E(G1(µ1)), E(G2(µ1))), . . . , (E(G1(µk)), E(G2(µk))) and we
want to test whether an extendable Sefe of (G1(µ), G2(µ)) exists. Observe that the
computation of an extendable Sefe of µ implies choosing an embedding of skel(µ) and
a flip for the Sefes (E(G1(µ1)), E(G2(µ1))), . . . , (E(G1(µk)), E(G2(µk))). Lemmas 8.2
and 8.3 give necessary conditions that the embedding of skel(µ) has to satisfy to lead to an

8.3 Computing a Sefe When the Intersection Graph is Biconnected 173

extendable Sefe of (G1(µ), G2(µ)). We call compatible an embedding of skel(µ) satisfying
these conditions. We now show that given a compatible embedding E(skel(µ)) of skel(µ),
if G1(µ) and G2(µ) admit an extendable Sefe, then they admit an extendable Sefe in
which the embedding of skel(µ) is E(skel(µ)).

Theorem 8.1. Let G1 and G2 be two planar graphs whose intersection graph G1∩2 is
biconnected and let T be the SPQR-tree of G1∩2. Let µ be any node of T that is not
an S-node and let µ1, . . . , µk be the visible nodes of µ. Assume that an extendable Sefe
(E(G1(µi)), E(G2(µi))) of (G1(µi), G2(µi)) exists, for each i = 1, . . . , k, and assume that
a compatible embedding E(skel(µ)) of skel(µ) exists. Then, if G1(µ) and G2(µ) admit an
extendable Sefe, they admit an extendable Sefe in which the embedding of skel(µ) is
E(skel(µ)) and the Sefe of (G1(µi), G2(µi)) is either (E(G1(µi)), E(G2(µi))) or its flip, for
each i = 1, . . . , k.

Proof. If (G1(µ), G2(µ)) do not admit an extendable Sefe then there is nothing to prove.
Hence, assume that (G1(µ), G2(µ)) admit an extendable Sefe (E ′(G1(µ)), E ′(G2(µ))). Let
E ′(skel(µ)) be the embedding of skel(µ) in (E ′(G1(µ)), E ′(G2(µ))).

We show how to transform the given extendable Sefe (E ′(G1(µ)), E ′(G2(µ))) into
an extendable Sefe (E(G1(µ)), E(G2(µ))) of (G1(µ), G2(µ)) such that the embedding of
skel(µ) in (E(G1(µ)), E(G2(µ))) is E(skel(µ)) and the Sefe of (G1(µi), G2(µi)) is either
(E(G1(µi)), E(G2(µi))) or its flip, for each i = 1, . . . , k.

If µ is an R-node, then the embedding of skel(µ) is unique up to a flip, hence E ′(skel(µ))
and E(skel(µ)) coincide up to a flip of (E ′(G1(µ)), E ′(G2(µ))). Moreover, by Lemma 8.5, the
Sefe of (G1(µi), G2(µi)) can be set to be either (E(G1(µi)), E(G2(µi))) or its flip, without
changing the rest of the graph. Thus, after the Sefe of (G1(µi), G2(µi)) is set to be either
(E(G1(µi)), E(G2(µi))) or its flip, for i = 1, . . . , k, the claimed Sefe is obtained.

If µ is a P-node, then an embedding of skel(µ) is a clockwise ordering of the virtual edges
e1, . . . , e` of skel(µ). Consider the graph O whose vertices are e1, . . . , e` and that contains
an edge (ei, ej) if the children of µ corresponding to ei and ej share an outer edge. Observe
that, by Lemmas 8.2 and 8.3, ei and ej are adjacent in any compatible embedding of skel(µ).
Since a Sefe of (G1(µ), G2(µ)) exists, the graph O is either a cycle or a disjoint union
of paths and isolated vertices. If O is a cycle, then the clockwise ordering of e1, . . . , e` in
E ′(skel(µ)) and in E(skel(µ)) is the same up to a flip of (E ′(G1(µ)), E ′(G2(µ))). Otherwise,
denote by O1, . . . , Or the connected components of O and, for i = 1, . . . , r, let G1(Oi),
G2(Oi), and G1∩2(Oi) be the corresponding subgraphs of G1, G2, and G1∩2, respectively.
The virtual edges of skel(µ) belonging to the same connected component Oi of O form an
interval both in the clockwise ordering of e1, . . . , e` defining E(skel(µ)) and in the clockwise
ordering of e1, . . . , e` defining E ′(skel(µ)). Hence, E ′(skel(µ)) and E(skel(µ)) may differ
only for the clockwise order in which the different components of O occur and for the
flip of the Sefe of (G1(Oi), G2(Oi)), for each connected component Oi of O. However,
for j 6= i, G1(Oi) and G2(Oi) share with G1(Oj) and G2(Oj) only vertices u(µ) and v(µ).
Therefore, the Sefes of (G1(O1), G2(O1)), . . . , (G1(Or), G2(Or)) in (E ′(G1(µ)), E ′(G2(µ)))
can be ordered and independently flipped as in E(skel(µ)), therefore obtaining a Sefe of
(G1(µ), G2(µ)) in which the embedding of skel(µ) is E(skel(µ)). Finally, by Lemma 8.5, the
Sefe of (G1(µi), G2(µi)) can be set to be either (E(G1(µi)), E(G2(µi))) or its flip, without
changing the rest of the graph. Thus, after the Sefe of (G1(µi), G2(µi)) is set to be either
(E(G1(µi)), E(G2(µi))) or its flip, for i = 1, . . . , k, the claimed Sefe is obtained.

Theorem 8.1 suggests a very simple polynomial-time algorithm to test the existence
of a Sefe of two planar graphs G1 and G2 whose intersection graph is biconnected.

174 Chapter 8: Simultaneous Embedding with Fixed Edges

Namely, bottom-up traverse the SPQR-tree T of G1∩2 and compute an extendable Sefe
(E(G1(µ)), E(G2(µ))) of (G1(µ), G2(µ)) for each node µ ∈ T that is not an S-node. When
processing a node µ ∈ T that is not an S-node, an extendable Sefe (E(G1(µi)), E(G2(µi)))
of G1(µi) and G2(µi) is already fixed up to a flip for each visible node µi of µ.

A compatible embedding E(skel(µ)) of skel(µ) is then found as follows: If µ is an R-node,
then E(skel(µ)) is (up to a flip) the only planar embedding of skel(µ); if µ is a P-node,
then E(skel(µ)) is defined by a circular ordering O of the virtual edges of skel(µ) such that
two virtual edges whose corresponding children of µ share an outer edge are consecutive
in O; observe that if such an ordering O does not exist, then G1 and G2 have no Sefe.

Next, we determine flips for the Sefes (E(G1(µi)), E(G2(µi))), for each visible node
µi of µ, and we determine for each outer edge of µ, for each internal edge of µ, for the
(possible) intra-pole edge of µ, and for each internal edge of any S-node child of µ a face
of E(skel(µ)) in which is embedded. Observe that such choices completely specify a Sefe
(E(G1(µ)), E(G2(µ))) of (G1(µ), G2(µ)). It is not hard to see that any internal edge of µ
and of its children S-nodes, and any external edge of µ can be embedded in at most two
different faces. On the other hand, this does not hold for intra-pole edges. In particular,
an intra-pole edge of a P-node could possibly be embedded in a linear number of faces.
The following lemma shows that intra-pole edges do not impose any additional embedding
constraints and can thus be handled separately.

Lemma 8.6. Let (G1, G2) be an instance of Sefe with G1∩2 biconnected and let (G′1, G′2)
be the instance obtained from (G1, G2) by removing all the exclusive edges that are intra-pole
edges. Let Γ′ = (E ′1, E ′2) be a Sefe of (G′1, G′2). Then, there exists a Sefe of (G1, G2) if
and only if the intra-pole edges can be reinserted into (E ′1, E ′2) without creating crossings.
Moreover, the reinsertion can be done in linear time.

Proof. Let e? be an intra-pole edge belonging to G1. If the endpoints of e? share a face in
E ′1 we simply embed e? into this face. Note that this procedure never causes a crossing
between two intra-pole edges of G1. We proceed analogously for E ′2 and the intra-pole
edges belonging to G2. This either results in the claimed Sefe of G1 and G2 or we find an
intra-pole edge e? belonging to G1 (to G2), whose endponts do not share a common face
in E ′1 (in E ′2).

We prove that in the latter case G1 and G2 do not admit a Sefe. Assume that e? is
such an intra-pole edge, belonging without loss of generality to G1. Let µ the top-most
node of the SPQR-tree T of G1∩2 for which e? is an intra-pole edge.

If µ is a Q-node then e? is parallel to the edge e represented by µ and e? can be
embedded parallel to e in E ′1.

If µ is an S-node, its parent µ′ must be an R-node; otherwise we would have two adjacent
S-nodes in T or e? would also be an intra-pole edge of the parent. Therefore the edge e?
can be embedded in at most two possible faces f1 and f2 of skel(µ′) with the embedding
induced by E ′1. It follows that there exist outer edges e1 and e2 of µ belonging to G1 that
are embedded in f1 and f2, respectively. The edges e1 and e2 are therefore either internal
edges or outer edges of µ′ and hence the embeddings of e1 into f1 and of e2 into f2 is forced
and the endpoints of e? do not share a face in any Sefe of G′1 and G′2, contradicting the
assumption that G1 and G2 admit a Sefe.

If µ is an R-node, consider the embedding of skel(µ) induced by E ′1. Again, e? must be
embedded into one of the two faces f1 and f2 of skel(µ) that are incident to the edge that
µ shares with its parent as these are the only two faces its endpoints share in E ′1|G1 . Since
neither of these choices is possible there exist outer edges e1 and e2 of µ, both belonging

8.3 Computing a Sefe When the Intersection Graph is Biconnected 175

to G1, that are embedded in f1 and f2, respectively. Again there is no choice for these
edges and therefore a Sefe does not exist.

Finally, if µ is a P-node, then e? can potentially be embedded into any face of skel(µ)
with the embedding induced by E ′1. Let e1, . . . , ek be the virtual edges of skel(µ) in the
order around u(µ) and such that e1 is the virtual edge that µ shares with its parent.
Assume that there is a pair ei, ei+1 with 1 < i < k that are not connected by an internal
edge of µ. Then there is no edge of G1 that connects ei to ei+1 and therefore the endpoints
of e? share a face in E ′1. Analogously, the face between ek and e1 and the face between e1
and e2 must contain an outer edge of µ belonging to G1. Again, all embedding choices for
these edges are forced and therefore a Sefe of G1 and G2 does not exist.

Since the insertion process only requires identifying a common face of two vertices for
each intra-pole edge, it can be implemented to run in linear total time.

In the following, we therefore assume that (G1, G2) has no intra-pole edges. Once a
Sefe for such an instance has been found possible intra-pole edges can easily be reinserted
in total linear time.

We now show how to find flips of the visible nodes of µ and embeddings of the internal
and outer edges of µ and of its visible nodes into faces of skel(µ) that result in an extendable
Sefe of G1(µ) and G2(µ). Let skel′(µ) be the graph obtained from skel(µ) by replacing
each virtual edge corresponding to an S-node ν with a path whose edges correspond to the
children of ν. Let E(skel′(µ)) be the embedding of skel′(µ) obtained from E(skel(µ)) by
replacing each virtual edge corresponding to an S-node with its associated path.

Note that some of the exclusive edges must be embedded in a unique face, in particular
all internal and outer edges of µ. Doing so possibly restricts the flips of the visible nodes
containing their attachment points. Observe that constraints stemming from different
edges may enforce different flips on the same visible node; in this case we conclude that a
Sefe does not exist. Fixing the flip of a node may in turn restrict the possible faces for
other edges. If an edge has no candidates left, we conclude that a Sefe does not exist. If it
has only one face left, we embed it there, again possibly fixing the flips of the visible nodes
containing its endpoints. This process stops when either all exclusive edges are embedded
or each remaining visible node has two possible flips and each remaining edge has two
possible faces into which it can be embedded. In the former case we can arbitrarily choose
the flips of the visible nodes that have not yet been fixed and obtain an extendable Sefe of
G1(µ) and G2(µ). For the latter case, we give a 2SAT formula whose satisfying assignments
are in one-to-one correspondence with the flips and embeddings of the not-yet-fixed visible
nodes and edges that yield an extendable Sefe of G1(µ) and G2(µ). Note that each of
these nodes has two possible flips and each edge can possibly be embedded into two faces.

We introduce one variable xν for each visible node of µ whose flip is not yet fixed. For
each exclusive edge that is not yet embedded and may be embedded in two faces f1 and f2
of skel′(µ) we introduce the variables xf1

e and xf2
e . The meaning of the variables is that

xν = true iff the Sefe of (G1(ν), G2(ν)) is (E(G1(ν)), E(G2(ν))) and its flip otherwise.
The variable xfe is true iff e is embedded in the face f . The formula consists of two
parts. First, for each edge e that can be embedded in faces f1 and f2 we introduce the
constraints xf1

e∗ ∨ x
f1
e∗ and x

f1
e∗ ∨ x

f1
e∗ to ensure that e is embedded into exactly one of these

faces. Moreover, if embedding an edge e into a face f implies a certain flip of a visible node
of µ that contains an endpoint of e we express this as an implication, which is a single
2SAT clause. Analogously, we express implications that certain flips of visible nodes may
have on the embedding of an edge. This part is called consistency part and it expresses the

176 Chapter 8: Simultaneous Embedding with Fixed Edges

uµ

vµ

uµ

vµ

`µ
rµ

Figure 8.3.: The gadget of a node of µ that is not an S-node, represented as a thick gray edge. The
thin edges attaching to µ are the exclusive edges of µ. After the transformation they
are attached to either `µ or rµ.

constraints arising from the fact that embedding an exclusive edge into a face may require
a certain flip of the visible nodes containing its endpoints and vice versa. It is not hard to
see that the consistency part of the formula has size linear in the size of skel′(µ) and the
number of exclusive edges that need to be embedded.

The second part expresses that the resulting embedding should be planar, and is
therefore called the planarity part. For each pair of non-embedded edges e1 and e2 of G1
(of G2) that would cross if they were embedded into the same face f we add the constraint
xfe1 ∨ x

f
e2 to express that at least one of them must not be embedded in f . Clearly, the

planarity part has polynomial (in fact at most quadratic) size.
By construction the formula is satisfiable if and only if G1(µ) and G2(µ) admit an

extendable Sefe and such a Sefe can be constructed from a satisfying truth assignment.
Since 2SAT can be solved efficiently [APT79], in fact in linear time, this yields a polynomial-
time algorithm. The main bottleneck concerning the running time is that the constructed
formula may be quadratic in the size of skel′(µ). We will improve on this in the next
section.

8.3.2. A Linear-Time Algorithm
We now show how to improve the running time of the algorithm described in Section 8.3.1
to linear.

We start with some further definitions. First, we remark that, when a node µ is processed
during the bottom-up traversal of the SPQR-tree T of G1∩2, an embedding of the pertinent
graph G1∩2 of µ is fixed, up to a flip of the whole graph. This embedding determines a
partition of the outer edges of µ into left and right edges, according to the position of their
endpoint on the outer face, which can either lie on the counterclockwise path from u(µ)
to v(µ) or on the counterclockwise path from v(µ) to u(µ). Lemma 8.4 shows that the
partition into left and right edges of any node that is not an S-node is unique, although
flipping the embedding swaps left and right edges.

Let µ be a node that is not an S-node with an embedding E(G1∩2(µ)) that allows for
an extendable Sefe of (G1(µ), G2(µ)). Let the gadget of µ be a graph with four vertices,
namely its poles uµ, vµ and two vertices `µ and rµ, called attachment vertices, and with
five edges, namely uµ`µ, uµrµ, `µvµ, rµvµ, and `µrµ; see Figure 8.3. Note that the gadget
of µ describes the behavior of the pertinent graph of µ when its embedding has been fixed
up to a flip, in the sense that the only embedding choice for the gadget concerns its flip
and, regardless of this choice, the two attachment vertices `µ and rµ lie on opposite sides
of the outer face (when considering the outer face as the union of two paths connecting uµ
and vµ), representing the fact that the outer face of E(G1∩2(µ)) has two sides (that are the
paths connecting uµ and vµ) where the left and the right outer edges of µ can be attached.

8.3 Computing a Sefe When the Intersection Graph is Biconnected 177

In order to handle the process of finding an embedding of the skeleton of each non-
S-node µ and of finding flips of the embeddings (E(G1(µi)), E(G2(µi))) for each visible
node µi of µ, we introduce, for each node µ of T , the model of µ, denoted by M(µ), which
contains all the information that is necessary to choose an embedding of skel(µ) and the
flip of (E(G1(µi)), E(G2(µi))) for each visible node µi of µ. The model M(µ) consists of
(1) a frame that is composed of the gadgets of the visible nodes of µ arranged as in the
skeleton of µ, and of (2) the exclusive edges that occur in µ, that is, the internal edges, the
intra-pole edge, the outer edges of µ, and the internal edges of the S-node children of µ.

We construct the frame starting from skel(µ) and replacing each virtual edge of skel(µ)
that corresponds to an S-node child ν of µ with a path of length equal to the number of
children of ν. Moreover, we subdivide the virtual edge of skel(µ) representing the rest
of the graph with a vertex z representing the outer face. Finally, we replace each edge
corresponding to a visible node ν of µ with its gadget. Note that the modelM(µ) is defined
also when µ is an S-node and that the gadgets of the nodes that are children of µ appear
both in M(µ) and in the model of the parent of µ. However, we will use such two models
in different steps of the algorithm, in such a way that the embedding choices are coherent.

In order to explain how to handle the exclusive edges that occur in µ we need some
more definitions. Let a be a vertex of G that is incident to an exclusive edge e occurring
in µ. We define the representative of a in M(µ) as follows. If a does not belong to µ, then
its representative is z. If a is a vertex of skel(µ) or a cutvertex of an S-node child of µ,
then its representative is a itself. If none of the previous cases applies, then a belongs
to the pertinent graph of a unique visible node ν of µ. In this case e is an outer edge
of ν and therefore a lies on the outer face of any embedding of G1∩2(ν) that allows for an
extendable Sefe of G1(ν) and G2(ν). If a lies on the clockwise path from u(ν) to v(ν)
along the outer face of an embedding of G1∩2(µ), then its representative is `ν , otherwise its
representative is rν . Note that the partition of the outer edges of ν into those having `ν as
representative and those having rν as representative is unique by Lemma 8.4, and it does
not depend on the actually chosen embedding of G1∩2(ν). Flipping the chosen embedding
of G1∩2(ν) maintains the same partition but swaps `ν with rν .

We now add the exclusive edges occurring in µ to the modelM(µ). For any exclusive edge
(u, v) of G1 or of G2 occurring in µ we add to M(µ) the edge between the representatives
of its endvertices. Figure 8.4 shows the model of the node µ depicted in Figure 8.2.

A Sefe of a model M(µ) is an embedding of the model such that crossings only occur
between pairs of exclusive edges where one edge stems from G1 and the other one from G2.
Notice that there is a one-to-one correspondence between the Sefes of M(µ) and the
extendable Sefes of G1(µ) and G2(µ). Namely, an embedding of the frame of µ corresponds
to an embedding of skel(µ) plus a possible flip of the Sefe (E(G1(µi)), E(G2(µi))), for
each visible node µi for which a Sefe (E(G1(µi)), E(G2(µi))) has already been decided;
an embedding in M(µ) of the edges that occur in µ corresponds to an embedding in an
extendable Sefe of (G1(µ), G2(µ)) of the edges that occur in µ. Moreover, if (G1(µ), G2(µ))
has an extendable Sefe (E(G1(µ)), E(G2(µ))), then the same embedding and flipping
choices lead to a Sefe of M(µ). The converse is, in general, not true. In fact, M(µ) may
allow for a Sefe, while the same embedding and flip choices do not lead to an extendable
Sefe of (G1(µ), G2(µ)). However, the next lemma shows that in this case (G1(µ), G2(µ)) do
not allow for an extendable Sefe at all. Hence, once a Sefe of M(µ) has been determined
for each µ, the algorithm has to check whether the resulting embedding for G1∩2 allows for
an extendable Sefe.

Lemma 8.7. Let G1 and G2 be two planar graphs whose intersection graph G1∩2 is

178 Chapter 8: Simultaneous Embedding with Fixed Edges

Figure 8.4.: The model of the node µ shown in Figure 8.2.

biconnected. Let µ be a non-S-node of the SPQR-tree T of G1∩2, let M(µ) be the model
of µ, and let EM(µ) be a Sefe of M(µ). Suppose that (G1, G2) has a Sefe. Then
the embedding and the flipping choices induced by EM(µ) lead to an extendable Sefe of
(G1(µ), G2(µ)).

Proof. Assume, for a contradiction, that the embedding of (G1(µ), G2(µ)) (together with
the edges towards the outer face) induced by EM(µ) has a crossing. Observe that such a
crossing can only involve two edges e1 and e2 that share an attachment vertex in M(µ),
but do not share any vertex in (G1(µ), G2(µ)), as otherwise such a crossing would appear
in M(µ) as well. Then, such edges are both incident to the same path that connects u(µi)
and v(µi) along the outer face of the embedding of (G1(µi), G2(µi)), for some visible node
µi of µ. First, this rules out the possibility that one of e1 and e2 is an intra-pole edge of µ.
Second, if one of the crossing edges is an internal or an outer edge of µ, then the face of the
embedding of skel(µ) into which it has to be embedded is fixed. By Lemma 8.4, the order
of the attachment vertices of all these edges around this face is fixed (up to a flip) and
therefore the crossing occurs in every embedding of (G1(µ), G2(µ)), thus contradicting the
assumption that (G1, G2) admits a Sefe. Third, if both the endpoints of e1 and both the
endpoints of e2 belong to the same S-node child ν of µ, then there are two faces into which
e1 and e2 can be embedded. Clearly, since both have endpoints on the same path from u(µi)
to v(µi), the two edges must be embedded in the same face. Again, by Lemma 8.4, for
each child µi of ν the clockwise order of attachment vertices of e1 and e2 is the same up
to reversal in each of the nodes µi, but also along the outer face of ν, as the order of the
children of ν is fixed. Hence, e1 and e2 cross in every embedding of (G1(µ), G2(µ)), thus
contradicting the assumption that (G1, G2) admits a Sefe.

Lemma 8.7 shows that, in order to find an extendable Sefe of G1(µ) and G2(µ), if one
exists, it is enough to deal with the models of the non-S-nodes of the SPQR-tree of G1∩2.
Moreover, note that it is not necessary to keep track of multiple edges of M(µ) stemming
from the same graph out of G1 and G2. Hence, even if a linear number of nodes of T might
exist, each with a linear number of outer edges, M(µ) only contains O(|M(µ)|) such edges

8.3 Computing a Sefe When the Intersection Graph is Biconnected 179

for each µ, and hence the total size of all the models is linear.
The linear-time implementation requires two ingredients. First, we need to compute in

linear total time the model of each node of T . Second, we have to show that, given the
model M(µ) of a node µ that is not an S-node, it is possible to compute a Sefe of M(µ)
in time linear in the size of M(µ).

For the computation of the models we require a data structure that, given a node µ and
a vertex v, allows us to find the vertex or the virtual edge representing v in the skeleton of
G1∩2(µ).

Lemma 8.8. Let G be an n-vertex biconnected planar graph and let T be its SPQR-tree.
When traversing T in bottom-up order, it is possible to maintain in total O(n) time a
data structure that, for every node µ of T , allows to query for a given vertex v of G the
representative of v in µ in constant time.

Proof. This can be done with a simple application of a union-find data structure. The
main observation that is required to achieve total O(n) time is that the sequence of union
operations only depends on T and is therefore known in advance. Hence, the O(n)-time
version of union-find by Gabow and Tarjan [GT85] applies.

We now show how to compute the models of all the non-S-nodes of T in total O(n)
time.

Lemma 8.9. Let G1 and G2 be two n-vertex planar graphs whose intersection graph G1∩2
is biconnected and let T be the SPQR-tree of G1∩2. It is possible to compute in total O(n)
time the models of all the non-S-nodes of T or to conclude that (G1, G2) does not admit
any Sefe.

Proof. Let T be rooted at an arbitrary Q-node. First, observe that the frame of each
non-S-node µ ∈ T can be easily computed by replacing each virtual edge representing
a visible node ν of µ in skel(µ) with the gadget of ν and by replacing the virtual edge
representing the rest of the graph with a path composed of two edges. Since the total
number of virtual edges in T is O(n) and since each gadget has constant size, the frames
of all the non-S-nodes of T can be computed in total O(n) time.

Let uv be an exclusive edge of G1 or of G2. Suppose that uv is an outer edge of some
node µ of T . Then, one of its endvertices, say u, belongs to G1∩2(µ), while v does not;
moreover, u is not a pole of µ.

We define the first node of u, denoted by F(u), as the lowest node of T such that G1∩2
contains u and u is not a pole of F(u). Observe that F(u) is the lowest common ancestor
of all the Q-nodes of T that represent edges incident to u. Further, any node µ of T that
has uv as an outer edge, with u in G1∩2(µ), lies on the path between F(u) and the root
of T . Similarly, any node µ that contains uv as an outer edge, with v in G1∩2(µ), lies on
the path between F(v) and the root of T . Finally, edge uv is an internal edge only in the
lowest node of T whose pertinent graph contains both u and v. Assuming that neither
u nor v is an endvertex of the edge at which T is rooted, such a node coincides with the
lowest common ancestor of F(u) and F(v), denoted by I(u, v).

Hence, edge uv appears as an outer edge at the first nodes F(u) and F(v) of u and v,
respectively, and it continues to appear as an outer edge when processing their parents
until the lowest common ancestor I(u, v) of F(u) and F(v) is considered, where uv occurs
as an internal edge. Note that it may happen that two or three of the nodes F(u), F(v),
and I(u, v) coincide. If F(u) coincides with I(u, v) and F(v) does not, edge uv does not

180 Chapter 8: Simultaneous Embedding with Fixed Edges

appear as an outer edge of F(u), while it appears as an outer edge of each node on the
path between F(v) and I(u, v), excluding the last node of this path. If F(u), F(v), and
I(u, v) coincide, then uv does not occur as an outer edge of any node of T . To handle the
case in which u is an endvertex of the edge e at which T is rooted, we simply exclude the
Q-node representing e when computing the first node of u. Note that an edge uv does
not necessarily occur as an internal edge in I(u, v). Namely, if the endpoints of uv are
both vertices of skel(I(u, v)) and skel(I(u, v)) contains the virtual edge uv, then e is an
intra-pole edge of the child of skel(I(u, v)) corresponding to the virtual edge uv. Notice
that, in such a case, uv is not an internal edge and is not an outer edge for any node of T .

We now describe how we can exploit the previous observations to quickly compute the
models of all the non-S-nodes of T in a bottom-up traversal of T . Note that, using Harel
and Tarjan’s lowest common ancestor data structure [HT84], we can compute the first
vertex F(u) of each vertex u in total O(n) time. Analogously, I(u, v) can be computed for
all the exclusive edges in total O(n) time. Each processed node of T whose parent has
not yet been processed stores a partition of its outer edges into two linked lists Lµ and
Rµ containing its left and right exclusive edges, respectively. These lists are implemented
intrusively, in such a way that each edge appears in two lists, one for each endpoint, and
any given edge can be removed in O(1) time from a list, without the need of finding its
location inside the list. We initialize the lists of all the Q-nodes to an empty list. In the
following we show how to construct Lµ and Rµ in total O(n) time for all the nodes µ of T .

To distribute the exclusive edges to the lists Lµ and Rµ, we maintain several lists. For
each node µ we keep a list Fµ of all the edges that have an endpoint whose first node is µ
and a list Iµ of all the edges uv for which I(u, v) is µ, that is, uv possibly occurs as an
internal edge of µ. Observe that, given that the first vertex F(u) of each vertex u can be
computed in total O(n) time and given that I(u, v) can be computed for all the exclusive
edges in total O(n) time, lists Fµ and Iµ can be constructed in total O(n) time for all the
nodes µ of T .

To process a node µ that is not an S-node, we first show how to construct the model
M(µ). In a second step we compute its lists Lµ and Rµ. Recall that the frame of µ has
already been computed; then initialize the model M(µ) to be the frame of µ. Next, we
identify the exclusive edges occurring in µ, except for the intra-pole edges of µ, which will
be identified in a subsequent step.

Essentially, for each edge e = uv that occurs in µ, we need to find the representatives of
its endpoints in the model. We could identify all internal edges by traversing the lists Iµ
and Iµ′ for each S-node child µ′ of µ. While the data structure from Lemma 8.8 allows us
to quickly find the visible child ν to which an endpoint u of an edge e belongs, it does not
help us in determining whether its representative is `ν or to rν . Basically, to find out this
information, we would like to traverse each of the lists Lν and Rν for all visible nodes ν
of µ. Edges e = uv in the list Lν have `ν as the representative of their attachment in ν,
and analogously edges in Rν have rν as representatives of their attachment in ν. However,
it is also not possible to simply traverse all these lists, as they may contain, in addition
to the internal edges, a linear number of external edges. And since a linear number of
skeletons may have a linear number of external edges, this would result in quadratic total
time.

Instead, we use the following observations in order to quickly identify the representatives
of all exclusive edges. First, for each visible node ν of µ only one of the vertices `ν and rν
can be incident to the outer face in any embedding of M(µ). Therefore, if M(µ) admits a
Sefe, at most one of the lists Lν and Rν may contain external edges. We can therefore

8.3 Computing a Sefe When the Intersection Graph is Biconnected 181

afford to traverse the list Rν , and thus identify the representative vertices of endpoints
of internal edges, until we meet the first external edge in Rν . We then stop the traversal
of Rν and do the same with Lν . During the traversal we remove from the lists all edges
that we process. If both traversals are aborted due to an occurrence of an external edge,
then M(µ) does not admit a Sefe, and we reject the instance. Therefore, after performing
this step for every visible node ν of µ, we have either rejected the instance, or, for each
visible node ν of µ one of the lists Lν and Rµ has become empty. Second, in this case,
we know that all further edges that may attach to ν must attach to the side whose list
is not yet empty and has possibly not been traversed completely. Thus, now we can use
the lists Iµ and Iµ′ for S-node children µ′ of µ and for all S-node children of ν, to find
all the exclusive edges that occur in M(µ), except for the external edges. Namely, when
traversing these lists, the representative of each endpoint of an edge e = uv has either been
previously determined, or using Lemma 8.8, the corresponding visible child ν of µ can
be found quickly, and by determining the non-empty list of this node, the representative
can be identified in constant time. Note that each edge belonging to one of such lists is
an internal edge of a visible node or an S-node child µ′ of µ, an internal edge of a visible
node µ, or an intra-pole edge of one of the visible nodes of µ. When we find an intra-pole
edge of a visible node ν of µ that is not a an S-node, we pass it down to the model M(ν).

We remove each edge that we process in such a way from all the remaining lists it is
contained in, in particular from the lists Lν and Rν of any child ν (recall that each edge
can be contained in only one of such lists for each endpoint, thus the removal can be done
in constant time). Hence, after this step, the only edges remaining in any of the lists Lν
and Rν are outer edges. Note that it is enough to know for each visible node whether it
has any outer edges and on which side they are, rather than to know their exact number.
Therefore, we insert only one of the remaining edges from ν to z in M(µ) if the lists Lν
and Rν are not both empty.

Finally, we traverse the lists Fν and Fµ to find the remaining edges starting at vertices
of the model. Again, the edges identified in this way may be intra-pole edges of a visible
node, in which case they are passed down to the corresponding model. Otherwise, we
add them either as an internal or as an outer edge to our model. If an edge is internal,
we remove it from Fν or Fµ, so that after this step only outer edges remain in these lists.
Observe that, after this step, we have identified all the edges of the model, except for
possibly an intra-pole edge, which might be added at a later step.

It remains to show how to construct Lµ and Rµ. First, we find a compatible embedding
of skel(µ). For an R-node this amounts to checking whether all the visible nodes that have
a non-empty list Lµ or Rµ and all the vertices v incident to edges in Fµ are incident to the
outer face. If this is not possible, then the instance does not admit a Sefe by Lemma 8.3.
For a P-node we reorder the virtual edges such that all the visible nodes with non-empty
lists Lµ or Rµ are adjacent to the outer face. If this is not possible, then the instance
does not admit a Sefe, by Lemma 8.3. To compute Lµ we traverse the boundary of the
outer face from uµ to vµ in counterclockwise order and concatenate all the non-empty lists
of visible nodes and vertices encountered on the way. We compute Rµ analogously by a
traversal along the counterclockwise boundary of the outer face from vµ to uµ.

It is not hard to see that the running time is linear in the size of the model and in the
sizes of Iµ, Fµ, and of Fν , for each visible node ν of µ. The total linear time follows from
the fact that each exclusive edge e occurs only in one of the lists Iµ and in two of the lists
Fµ of the whole SPQR-tree.

Now that we have computed the models of all non-S-nodes, it remains to find a Sefe

182 Chapter 8: Simultaneous Embedding with Fixed Edges

for each of them. We show that for each model this can be done in time proportional to
its size.

Lemma 8.10. Given a model M(µ) of a non-S-node µ of the SPQR tree T of G1∩2, it is
possible to find a Sefe of M(µ) or to decide that no Sefe of M(µ) exists in O(|M(µ)|)
time.

Proof. We remove all intra-pole edges from the model and reinsert them afterwards, as
described in Lemma 8.6. This step ensures that each exclusive edge can be embedded into
at most two different faces of the model. The first step is to find a compatible embedding
of skel(µ).

If µ is an R-node, we simply check for each exclusive edge whether its attachment points
share a common face.

If µ is a P-node, we first build two auxiliary graphs O1 and O2, both containing one
vertex for each virtual edge of skel(µ). Two vertices of Oi, with i = 1, 2, are connected
by an edge if there is an exclusive edge in Gi connecting two vertices belonging to the
nodes represented by the corresponding virtual edges. Let O be the union of O1 and O2.
A compatible embedding exists if and only if O is either a collection of disjoint paths or a
single cycle. Once O has been constructed, this can easily be checked, and a corresponding
embedding can be constructed, in O(|skel(µ)|) time.

In both cases the checking requires time proportional to the size of the skeleton and to
the number of exclusive edges traversing it.

Next, we describe how to flip the visible nodes in order to obtain a planar embedding of
G1 and G2. To this end, we fix a default flip for each visible node of µ and construct a
2SAT formula ϕµ similar to the previous section. In fact, we introduce the same variables
xν for all visible nodes of µ and variables xfe with the same meaning as before, that is,
xν = true means that ν must be flipped, while xν = false means that ν keeps its default
flip. Moreover, we also add the consistency part of the previous formula to handle the
implications between embeddings of edges into faces and flips of visible nodes containing
their endpoints.

Again our goal is to construct ϕµ in such a way that ϕµ is satisfiable if and only if the
visible nodes of µ can be flipped to planarly embed all the exclusive edges. Namely, ϕµ
is satisfiable if and only if there exists a flip of all the visible nodes such that for every
exclusive edge both the attachment points share a common face and no two exclusive edges
of a child S-node cross. Further, given a satisfying assignment of ϕµ, a flipping of the
visible nodes that allows a planar embedding of all the exclusive edge can be found by
considering the default flip for the nodes whose variable has been assigned the value false
and the other flip for the nodes whose variable has been assigned the value true. Note
that it may still be possible that internal edges of µ cross. However, we will see that in
this case these crossings cannot be avoided.

To construct the planarity part of formula ϕµ, we consider the exclusive edges occurring
in µ. First, we consider exclusive edges connecting vertices that belong to different virtual
edges. The embedding of such an edge e is restricted to a unique face f and we simply
add the clause xfe to encode this.

Second, we consider the exclusive edges occurring in one of the S-node children of µ. For
such edges, we have to ensure that there is no crossing among them. Of course we could
pick all pairs that would produce a crossing if they were embedded in the same face f and
explicitly specify clauses that require them to be embedded in different faces. However, this
would again result in a formula of quadratic size. Therefore, in order to get a linear-time

8.3 Computing a Sefe When the Intersection Graph is Biconnected 183

algorithm, we express the constraints on the flips stemming from the internal and the outer
edges of ν via the model M(ν), as described below. Note that the models M(ν) of all the
S-node children ν of µ can be computed in O(|M(µ)|) time from M(µ).

We show how to incorporate the constraints stemming from G1. Let ν be an S-node
child of µ. We take the model M(ν) and remove from it all the exclusive edges stemming
from G2, note that this since G1 is planar, this yields a planar graph. Now we consider
the SPQR-tree of this graph. Since each gadget is triconnected, we have that in any node
of this SPQR-tree either the five edges of a gadget are represented by five different edges
of the skeleton, that is, the gadget is part of the R-node, or they are represented by one
single virtual edge. Note that gadgets that are part of the same R-node need to be flipped
consistently. We therefore pick in each R-node a representative gadget and express the
consistency requirements for all the other gadgets that are part of the same R-node with
respect to this representative. We assume that the embedding of each R-node is chosen
such that the representative ν ′ has its default flip. Let ν ′′ be any visible node whose gadget
occurs in the same R-node as ν ′. If ν ′′ maintains its default flip when ν ′ has its default flip,
then we add the two clauses (xν′ ∨ xν′′) and (xν′ ∨ xν′′), expressing that these variables
must be assigned either both true or both false. Analogously, if ν ′′ does not maintain
its default flip when ν ′ has its default flip, we add the clauses (xν′ ∨ xν′′) and (xν′ ∨ xν′′),
expressing that exactly one of them needs to be flipped. We do this for any R-node in
the auxiliary graph and thus we add a number of 2SAT clauses to ϕµ that is linear in the
number of children of the S-node ν, while encoding all planarity constraints stemming from
ν. We incorporate the constraints stemming from G2 analogously and do the same for all
the S-node children of µ.

The resulting formula ϕµ is linear in the size of M(µ) and can be constructed in
O(|M(µ)|) time. Satisfiability of ϕµ and, in the positive case, a corresponding assignment
and the resulting flips can be found in O(|ϕµ|) time [APT79]. Clearly, if ϕµ is not satisfiable,
the constraints contradict each other and a Sefe does not exist. Otherwise, since ϕµ
encodes all the planarity constraints that can be met by flipping visible nodes, we can
conclude that if a planar embedding of G1(µ) and G2(µ) exists, then there is also one with
the chosen flips, that is, with the chosen embedding of G(µ) up to a flip.

To solve the Sefe problem for graphs G1 and G2 with biconnected intersection graph,
we now perform three steps. First, we compute the SPQR-tree T of G1∩2 and for each
non-S-node µ of T we compute in linear time its model M(µ), using Lemma 8.9. Next, we
construct embeddings for all models, each in time proportional to the model size using
Lemma 8.10. As the total size of all the models is linear, this step takes linear time, too.
Finally, we construct from the simultaneous embeddings of the models an embedding
of G1∩2 that allows for a Sefe of G1 and G2, if they admit one. Given this embedding
of G1∩2 we can then construct the actual Sefe by using the algorithm from Chapter 6. In
fact, a much simpler algorithm can be used, as the Sefe can be completely obtained from
the embeddings of the models as they not only specify the embedding of the intersection
graph but also for each exclusive edge the face into which it is embedded.

Theorem 8.2. Let G1 and G2 be two planar graphs whose intersection graph G1∩2 is
biconnected. It can be checked in linear time whether G1 and G2 admit a Sefe. In this
case a corresponding Sefe can be computed in the same time.

184 Chapter 8: Simultaneous Embedding with Fixed Edges

8.4. The Intersection Graph is Connected
In this section we show that the Sefe problem, when the intersection graph is connected,
is equivalent to a 2-page book embedding problem defined in the following.

Let G be a graph, let (E1, E2) be a partition of its edge set, and let T be a rooted tree
whose leaves are the vertices of G. Problem Partitioned T -coherent 2-page book
embedding with input (G,E1, E2, T) asks: Does a 2-page book embedding of G exist in
which the edges of E1 lie in one page, the edges of E2 lie in the other page, and, for every
internal vertex t ∈ T , the vertices of G in the subtree of T rooted at t appear consecutively
in the vertex ordering of G defined in the book embedding?

We now show how to transform an instance G1 = (V,E1), G2 = (V,E2) of Sefe in
which G1∩2 is connected into an instance of Partitioned T -coherent 2-page book
embedding. This transformation consists of three steps.

In the first step, we transform an instance (G1, G2) of Sefe such that G1∩2 is connected
into an equivalent instance (G′1, G′2) of Sefe such that G′1∩2 is a tree. To this end, start
with graphs G′1 and G′2 having the same vertex set as G1 and G2, and having no edges.
Partition the edges of G1∩2 into two sets E′1∩2 and E′′1∩2, in such a way that the edges of
E′1∩2 induce a spanning tree of G1∩2 and the edges of E′′1∩2 are the edges in G1∩2 not in
E′1∩2. The edges of E′1∩2 belong to G′1∩2, that is, they are added both to G′1 and to G′2.
Also, add to G′1 each exclusive edge of G1 and add to G′2 each exclusive edge of G2. Next,
for each edge uv in E′′1∩2, introduce new vertices u′, u′1, u′2, v′, v′1, and v′2 in G′1 and in G′2,
and introduce edges uu′, u′u′1, u′u′2, vv′, v′v′1, v′v′2 in G′1∩2, that is, add these edges both
to G′1 and to G′2. Finally, add the exclusive edge u′1v′1 to G′1 and the exclusive edge u′2v′2
to G′2; see Figure 8.5. The following lemma states that these two instances are equivalent.
Lemma 8.11. The pair (G1, G2) is a positive instance of Sefe if and only if (G′1, G′2) is
a positive instance of Sefe. Moreover, (G′1, G′2) is such that the intersection graph G′1∩2
is a tree with O(n) vertices.
Proof. We prove that G′1∩2 is a tree with O(n) vertices. The edges of E′1∩2 induce a
spanning tree of G1∩2. Moreover, the edges that are introduced in G′1∩2 for each edge in
E′′1∩2 induce two trees spanning the newly introduced vertices and each one attached to
exactly one vertex of E′1∩2. Since the number of vertices and edges introduced for each
edge in E′′1∩2 is constant, it follows that the intersection graph G′1∩2 has O(n) vertices.
Next, we prove that G1, G2 is a positive instance of Sefe if and only if G′1, G′2 is a positive
instance of Sefe.

First, suppose that G1, G2 is a positive instance of Sefe. Consider any Sefe Γ of
(G1, G2). Construct a Sefe Γ′ of G′1, G′2 as follows; see Figure 8.5. The edges that are
common to G′1, G′2 and to G1, G2 (that is, the edges in E′1∩2 plus the exclusive edges of
G1 and G2) have the same drawing in Γ′ as they have in Γ. The edges uu′, u′u′1, u′u′2,
vv′, v′v′1, v′v′2, u′1v′1, and u′2v

′
2 that replace the edge uv of E′′1∩2 have a drawing that is

arbitrarily close to the one of uv. As edge uv does not intersect any other edge in Γ, its
corresponding edges in Γ′ do not have any crossings, and hence Γ′ is a Sefe of G′1 and G′2.

Second, suppose that (G′1, G′2) is a positive instance of Sefe. Consider any Sefe Γ′ of
G′1, G

′
2. For each edge uv in E′′1∩2 consider the drawing of the edges uu′, u′u′1, u′u′2, vv′,

v′v′1, v′v′2, u′1v′1, and u′2v′2 in Γ′. Since edges uu′, u′u′1, u′u′2, vv′, v′v′1, and v′v′2 are inclusive
edges of G′1 and G′2, they do not cross any other edge in Γ′. On the other hand, edge u′1v′1
(respectively u′2v′2) could cross exclusive edges of G′2 (respectively of G′1).

We show that Γ′ can be modified into a Sefe of (G′1, G′2) such that u′1v′1 does not cross
any exclusive edge of G′2, except possibly for u′2v′2, and such that u′2v′2 does not cross any

8.4 The Intersection Graph is Connected 185

(a) (b)

Figure 8.5.: Reduction of a Sefe instance (G1, G2) whose intersection graph is connected to an
instance (G′1, G′2) whose intersection is a tree. (a) A Sefe Γ of G1, G2. (b) A Sefe Γ′
of G′1, G′2 constructed from Γ.

u′

v′

u′1

v

γ1(u, v)

γ2(u, v)

v′1
v′2

u′2
u

R1

R2

R3

R5
R4

R6

R7

R8

(a)

u′

v′

B2

B1

R∑

(b)

Figure 8.6.: Rerouting of the curves of a Sefe of the modified instance (G′1, G′2) in order to obtain
a Sefe of the original instance (G1, G2). (a) Curves γ1(u, v) and γ2(u, v) and regions
R1, R2, . . . , Rk. (b) Region R∑, bounding curves B1 and B2, and the curves in S.

exclusive edge of G′1, except possibly for u′1v′1. Consider the curve γ1(u, v) composed of
the inclusive edges u′u′1 and v′v′1 and of the exclusive edge (u′1, v′1). Also, consider the
curve γ2(u, v) composed of the inclusive edges u′u′2 and v′v′2 and of the exclusive edge u′2v′2;
see Figure 8.6(a). These curves subdivide the plane into closed regions R1, R2, . . . , Rk.
Observe that both u and v belong to the same region, say R1, as otherwise the path
connecting u and v composed of edges in E′1∩2 would intersect γ1(u, v) or γ2(u, v), thus
contradicting the assumption that Γ′ is a Sefe of (G′1, G′2). Also, observe that both u and
v are incident to R1, as otherwise the path composed of edge uu′, of edge vv′, and of the
path connecting u and v composed of edges in E′1∩2 would intersect γ1(u, v) or γ2(u, v),
thus contradicting the assumption that Γ′ is a Sefe of (G′1, G′2). Then, denote by R∑ the
closed region ⋃ki=2Ri; see Figure 8.6(b). The border of R∑ consists of a line segment B1

clockwise connecting u′ to v′ and of line segment B2 clockwise connecting v′ to u′. Observe

186 Chapter 8: Simultaneous Embedding with Fixed Edges

that R∑ contains no vertex w different from u′, u′1, u
′
2, v
′, v′1, and v′2, as otherwise the

path from w to u that is composed of edges in E′1∩2 would cross γ1(u, v) or γ2(u, v), thus
contradicting the assumption that Γ′ is a Sefe of (G′1, G′2). Since u′, u′1, u′2, v′, v′1, and v′2
have no incident exclusive edge other than u′1v′1 and u′2v′2, it follows that the intersection of
R∑ with the exclusive edges of G′1 different from u′1v

′
1 is a set S of curves whose endpoints

are on the border of R∑. If a curve s in S has one endpoint in B1 and the other endpoint
in B2 then s crosses γ1(u, v), thus contradicting the assumption that Γ′ is a Sefe of G′1
and G′2. Hence, all the curves in S have both endpoints on B1 or both endpoints on B2.
If a curve having both endpoints on B1 exists, then there exists a curve s having both
endpoints us and vs on B1, and such that the open curve that is the part B1(us, vs) of
B1 between us and vs contains no endpoint of a curve in S. Then, s can be replaced by
a curve lying in the interior of R1 arbitrarily close to B1. Since no exclusive edge of G′1
cuts B1(us, vs), the resulting drawing is still a Sefe of G′1, G′2 with one less line segment
in S. Thus, iterating such a modification we eventually get a Sefe of (G′1, G′2) in which no
exclusive edge of G′1 different from u′1v

′
1 intersects B1. Modifying analogously the curves

in S intersecting B2 and modifying analogously the drawings of the exclusive edges of G′2
different from u′2v

′
2, we eventually get a Sefe of (G′1, G′2) in which no exclusive edge of G′1

and G′2 different from u′1v
′
1 and from u′2v

′
2 crosses R∑; hence in such a Sefe no exclusive

edge of G′1 and G′2 different from u′1v
′
1 and from u′2v

′
2 crosses u′1v′1 or u′2v′2.

After the described modification has been done for all the edges corresponding to an
edge uv in E′′1∩2, we obtain a Sefe Γ′′ of (G′1, G′2) and we draw each edge uv as the
concatenation of the drawings of edges uu′, u′u′1, u′1v′1, v′1v′, v′v in Γ′′. Observe that no
edge of G′1 nor of G′2 crosses uu′, u′u′1, v′1v′, v′v, since Γ′′ is a Sefe. Moreover, no exclusive
edge of G′1 nor of G′2 different from u′2v

′
2 crosses u′1v′1 by the construction of Γ′′. Hence,

by removing from Γ′′ vertices u′, u′1, u′2, v′, v′1, and v′2 and removing edges uu′, u′u′1, u′u′2,
vv′, v′v′1, v′v′2, u′1v′1, and u′2v′2 we get a Sefe Γ of (G1, G2).

In the second step, we transform instance (G1, G2) of Sefe into an equivalent instance
(G′1, G′2) of Sefe such that G′1∩2 is a tree and all the exclusive edges of G′1 and of G′2 are
incident only to leaves of G′1∩2. To this end, we modify every edge uv ∈ G1\2 such that u
is not a leaf of G1∩2 as follows. We subdivide edge uv with a new vertex u′, and we add
the edge uu′ to E2, so that u′ is a leaf in the intersection graph of the two modified graphs.
Symmetrically, we subdivide every edge uv ∈ G2\1 such that u is not a leaf of G1∩2 with a
new vertex u′, and add edge uu′ to E1, again making u′ a leaf in the intersection graph of
the two modified graphs. Note that the exclusive edges of G1 and G2 that are incident to
two non-leaf vertices are subdivided twice. Denote by G′1 and by G′2 the resulting graphs.
We have the following.

Lemma 8.12. The pair (G1, G2) is a positive instance of Sefe if and only if (G′1, G′2) is
a positive instance of Sefe. Further, G′1∩2 is a tree and all the exclusive edges of G′1 and
of G′2 are incident only to leaves of G′1∩2. Moreover, G′1∩2 has O(n) vertices.

Proof. G1∩2 is a tree, by assumption. When an exclusive edge uv in G1 (respectively in
G2) such that u is not a leaf of G1∩2 is subdivided with a vertex u′ and edge uu′ is added to
E2 (respectively to E1), an edge is inserted into G1∩2 connecting an internal vertex of G1∩2
with a new leaf of G1∩2, namely u′. Hence, G1∩2 remains a tree after such a modification
and thus G′1∩2 is a tree. When an exclusive edge uv in G1 (respectively in G2) such that u
is not a leaf of G1∩2 is subdivided with a vertex u′ and edge (u, u′) is added to E2 (resp.
to E1), the number of incidences between exclusive edges and internal vertices of G1∩2

8.4 The Intersection Graph is Connected 187

(a) (b)

Figure 8.7.: Reduction of Sefe for instance (G1, G2) whose intersection graph is a tree to an
instance (G′1, G′2) whose intersection graph is a tree and all exclusive edges are incident
to leaves of the tree. (a) A Sefe Γ of G1, G2. (b) A Sefe Γ′ of G′1, G′2.

decreases by one. Hence, after all such modifications have been performed, all the exclusive
edges are incident only to leaves of G′1∩2. Each exclusive edge is subdivided at most twice.
Since the number of edges of G1\2 and G2\1 is O(n), then G′1∩2 has O(n) vertices. We
now prove that (G1, G2) is a positive instance of Sefe if and only if (G′1, G′2) is a positive
instance of Sefe.

First, suppose that a Sefe Γ of (G1, G2) exists. Modify Γ to obtain a Sefe Γ′ of (G′1, G′2)
as follows; see Figures 8.7(a) and 8.7(b). When an exclusive edge uv in G1 (respectively in
G2) such that u is not a leaf of G1∩2 is subdivided with a vertex u′ and edge uu′ is added
to E2 (respectively to E1), insert u′ in Γ along the drawing of the edge uv, arbitrarily close
to u. Since the drawing of G1 in Γ is not modified and since the drawing of G2 in Γ is
modified by inserting an arbitrarily small edge incident to a vertex, the resulting drawing
is a Sefe of the current graphs and hence Γ′ is a Sefe of (G′1, G′2).

Second, suppose that a Sefe Γ′ of (G′1, G′2) exists. A Sefe Γ of (G1, G2) can be obtained
by drawing each edge uv of G1 (respectively of G2) exactly as in Γ′. Observe that uv
is subdivided never, once, or twice in G′1 (respectively in G′2); then, its drawing in Γ is
composed of the concatenation of the one, two, or three curves representing the parts of
uv in Γ′. That no two edges of G1 (respectively of G2) intersect in the resulting drawing Γ
directly descends from the fact that no two edges of G′1 (respectively of G′2) intersect in Γ′.
Hence Γ is a Sefe of (G1, G2).

In the third step, we transform an instance (G1, G2) of Sefe such that G1∩2 is a tree
and all the exclusive edges of G1 and of G2 are incident only to leaves of G1∩2 into an
equivalent instance of Partitioned T -coherent 2-page book embedding.

The input of Partitioned T -coherent 2-page book embedding consists of the
graph G composed of all the vertices that are leaves of G1∩2, of all the exclusive edges
E1\2 of G1\2, and of all the exclusive edges E2\1 of G2\1. The partition of the edges of G
is (E1\2, E2\1). Finally, tree T is G1∩2. We have the following.

Lemma 8.13. The pair (G1, G2) is a positive instance of Sefe iff (G,E1\2, E2\1, T) is a
positive instance of Partitioned T -coherent 2-page book embedding.

188 Chapter 8: Simultaneous Embedding with Fixed Edges

`
`+

`−

(a)

`
`+

`−

(b)

Figure 8.8.: (a) A Partitioned T -coherent 2-page book embedding of (G,E1\2, E2\1, T). (b) The
Sefe of G1, G2 obtained from the book embedding of (G,E1\2, E2\1, T).

(a) (b)

Figure 8.9.: (a) A Sefe Γ of G1, G2. (b) Euler Tour E of G1∩2 and exclusive edges.

Proof. First, suppose that (G,E1\2, E2\1, T) is a positive instance of Partitioned T -
coherent 2-page book embedding; see Figure 8.8. An ordering of the vertices of G
along a line ` exists such that the edges in E1\2 are drawn on one side `+ of `, the edges in
E2\1 are drawn on the other side `− of `, no two edges in E1\2 cross, and no two edges in
E2\1 cross. Move all the edges in E2\1 to `+. Since such edges do not cross in `− and since
the ordering of the vertices of G is not modified, the edges in E2\1 still do not cross. Finally,
construct a planar drawing of G1∩2 in `−. This can always be done since, for each internal
vertex t of G1∩2, the vertices in the subtree of G1∩2 rooted at t appear consecutively on `.
The resulting drawing is hence a Sefe of (G1, G2).

Second, suppose that (G1, G2) is a positive instance of Sefe. Consider any Sefe Γ
of (G1, G2) and consider a planar Euler Tour E of G1∩2; see Figures 8.9(a) and 8.9(b).
Construct a planar drawing of E in Γ as follows. Each edge of E is drawn arbitrarily close
to the corresponding edge in G1∩2. Each endpoint t of an edge of E that is a leaf in G1∩2
is drawn at the same point where it is drawn in Γ. Each endpoint t of an edge of E that is
not a leaf in G1∩2 and that has two adjacent edges tt1 and tt2 in E (observe that t1 6= t2 as
t is an internal vertex of G1∩2) is drawn arbitrarily close to the point where t is drawn in
Γ, in the region “between” edges tt1 and tt2. Clearly, the resulting drawing of E is planar.

Further, all the leaf vertices of G1∩2 are drawn at the same point in Γ and in the
drawing of E . Moreover, all the exclusive edges of G1\2 and all the exclusive edges of G2\1
lie entirely outside E , except for their endpoints. Remove all the internal vertices and all
the edges of G1∩2 from the drawing. Move all the edges of G2\1 inside E . The resulting
drawing is a Partitioned T -coherent 2-page book embedding of (G,E1\2, E2\1, T). Namely,

8.5 Concluding Remarks 189

all the edges in E1\2 are on one side of E and all the edges in E2\1 are on the other side
of E . No two edges in E1\2 cross as they do not cross in Γ, and analogously for edges in
E2\1. Finally, all the leaf vertices in a subtree of G1∩2 rooted at an internal vertex t of
G1∩2 appear consecutively in E , as the drawing of G1∩2 in Γ is planar.

Given an instance (G,E1, E2, T) of Partitioned T -coherent 2-page book embed-
ding, it is possible to construct an equivalent instance of Sefe as follows. Let G1 be the
graph whose vertex set is composed of the vertices of G and of the internal vertices of T ,
and whose edge set is composed of the edges of E1 and of the edges of T . Analogously,
let G2 be the graph whose vertex set is composed of the vertices of G and of the internal
vertices of T , and whose edge set is composed of the edges of E2 and of the edges of T .
Analogous to Lemma 8.13, we can prove the following.

Lemma 8.14. (G,E1, E2, T) is a positive instance of Partitioned T -coherent 2-page
book embedding if and only if (G1, G2) is a positive instance of Sefe.

Since both reductions can easily be performed in linear time we obtain the following.

Theorem 8.3. Partitioned T -coherent 2-page book embedding and Sefe for two
graphs with connected intersection graph have the same time complexity.

The problem Partitioned T -coherent 2-page book embedding has been recently
studied by Hong and Nagamochi [HN09] when T is a star, that is, the graph has the edges
partitioned into two pages as part of the input, but there is no constraint on the order of
the vertices in the required book embedding. In this case, Hong and Nagamochi proved
that the problem is O(n)-time solvable [HN09]. While their motivation was a connection
to the c-planarity problem, Lemmas 8.11–8.13 together with Hong and Nagamochi’s result
imply that deciding whether a Sefe exists for two n-vertex graphs whose intersection
graph is a star is a linear-time solvable problem.

Theorem 8.4. The Sefe problem for two n-vertex graphs G1 and G2 is solvable in O(n)
time if the intersection graph G1∩2 of G1 and G2 is a star.

8.5. Concluding Remarks
In this chapter we have shown new results on the time complexity of the problem of
deciding whether two planar graphs admit a Sefe.

First, we have shown that the Sefe problem can be solved in polynomial time if the
intersection graph G1∩2 of the input graphs G1 and G2 is biconnected. Using dynamic
programming, we further refined our algorithm and gave a linear-time implementation.
More generally, with similar techniques it is also possible to solve in polynomial time the
Sefe problem if G1∩2 consists of one biconnected component plus a set of isolated vertices.

Second, we have shown that when G1∩2 is connected the Sefe problem can be equiv-
alently stated as a 2-page book embedding problem with edges assigned to the pages
and with hierarchical constraints. Hence, pursuing an NP-hardness proof for such a book
embedding problem is a possible direction for trying to prove NP-hardness for the Sefe
problem. Essentially, the 2-page book embedding problem with hierarchical constraints
can be seen as a book embedding problem with three pages: one for each of the two edge
sets and one into which the tree is embedded. Hence our results show that Sefe for graphs

190 Chapter 8: Simultaneous Embedding with Fixed Edges

whose intersection is connected, corresponds to a book embedding problem with three
pages, where two pages contain a matching and one contains a tree.

The problems treated in this chapter involve non-planar drawings of graphs, where
crossings are restricted to occur only between certain edges. Although the constraints
are still very strict, it can be seen that the arguments to handle such drawings are more
complicated than those for handling planar embeddings. One reason is that such drawings
are more difficult to describe combinatorially. The combinatorial description for such
drawings by Jünger and Schulz, who characterize Sefes as pairs of planar embeddings
whose restrictions to the intersection graph coincide, are more difficult to handle than
ordinary planar embeddings. A considerable amount of work went into trying to lift as
many statements and arguments of this chapter as possible from the level of drawings to
the more abstract level of embeddings, which often allow for simpler and cleaner arguments
and offer a broader theoretical toolbox. For some proofs, such as Lemma 8.11, we still
had to go down at the level of drawings and really manipulate individual curves in the
drawing to achieve the results. In our opinion, this shows that there is still a severe lack in
understanding of the combinatorial properties of simultaneous embeddings, which in turn
seems to be a prerequisite for giving efficient algorithms.

Open Problems. Clearly, the most important question, the complexity of the Sefe
problem, still remains open. In order to understand more about the combinatorial properties
of simultaneous embeddings, we suggest two more restricted problems.

First, the following generalization of the Sefe problem with G1∩2 biconnected seems
worth to be tackled. What is the time complexity of computing a Sefe when G1∩2 is
2-edge connected?

Second, to further investigate the book-embedding problem motivated by Sefe for
graphs whose intersection is connected, it may be useful to consider an even more restricted
version, for example by replacing the tree by a third matching. This leads to the following
problem, which we call k-PageBookMatching. Given a set V of n vertices and k (perfect)
matchings E1, . . . , Ek on V , does there exist a total ordering ≺ on V such that no two edges
ab, cd ∈ Ei with a ≺ c ≺ b ≺ d exist for i = 1, . . . , k, that is, each matching can be drawn
in a planar way on its own page with the ordering of the vertices along the spine fixed to ≺.
For k = 1, 2 this problem is in P by the result of Hong and Nagamochi [HN09], even if E1
and E2 are arbitrary edge sets, not just matchings. The complexity status of this problem
for k ≥ 3 is unclear. Hence this seems to be a good starting point for further research. The
main questions are the following. What is the complexity of k-PageBookMatching?
What is the complexity of the problem for fixed values of k, and if this turns out to be
tractable, is it fixed-parameter tractable with respect to parameter k? That is, is there
an algorithm with running time O(f(k)nc) where c is a constant and f is an arbitrary
function, depending only on k?

Chapter 9

Orthogonal Graph Drawing with
Flexibility Constraints

Until now, we have studied two different embedding styles of planar graphs, namely
geometric embeddings, where edges are drawn as straight lines and topological drawings
where curves are represented by arbitrary Jordan curves. In this chapter, we study another
drawing style, where edges are represented by curves that are piecewise axis-parallel,
so-called orthogonal drawings. Such a drawing can also be seen as an embedding of a graph
into a grid.

Traditionally, the quality of orthogonal planar drawings is quantified by either the total
number of bends, or the maximum number of bends per edge. However, this neglects that
in typical applications, edges have varying importance. In this chapter, we investigate an
approach that allows to specify the maximum number of bends for each edge individually,
depending on its importance.

Given a planar graph G = (V,E) on n vertices with maximum degree 4 and a function
flex : E −→ N0 that assigns a flexibility to each edge, does G admit a planar embedding
on the grid such that each edge e has at most flex(e) bends? Note that in our setting the
combinatorial embedding of G is not fixed.

We give an algorithm with running-time O(n2) for this problem when the flexibility of
each edge is positive. This includes, as a special case, the problem of deciding whether G
admits a drawing with at most one bend per edge.

The chapter is based on joint work with Thomas Bläsius, Marcus Krug, and Dorothea
Wagner [BKRW11].

9.1. Introduction
Orthogonal graph drawing is one of the most important techniques for the human-readable
visualization of complex data. Its æsthetic appeal derives from its simplicity and straight-
forwardness. Since edges are required to be straight orthogonal lines—which automatically
yields good angular resolution and short links—the human eye may easily adapt to the flow
of an edge. The readability of orthogonal drawings can be further enhanced in the absence
of crossings, that is, if the underlying data exhibits planar structure. Unfortunately, not
all planar graphs have an orthogonal drawing in which each edge may be represented by a
straight horizontal or vertical line. In order to be able to visualize all planar graphs with
maximum degree 4, nonetheless, we allow edges to have bends. Since bends obfuscate the

192 Chapter 9: Orthogonal Graph Drawing with Flexibility Constraints

(a) (b)

Figure 9.1.: Two orthogonal drawings of the same graph. The thickness of edges indicates their
importance. Although, the drawing in (a) has both fewer bends and fewer bends per
edge, drawing (b) is much clearer since important edges have fewer bends.

readability of orthogonal drawings, however, we are interested in minimizing the number
of bends on the edges. Previous approaches to orthogonal graph drawing in the presence
of bends focus on either the minimization of the maximum number of bends per edge or
the total number of bends in the drawing.

In typical applications, however, edges have varying importance for the readability
depending on their semantic and their importance for the application. Thus, it is convenient
to allow some edges to have more bends than others; see Figure 9.1 for an example.

We consider the following orthogonal graph drawing problem, which we call FlexDraw.
Given a 4-planar graph G, that is, G is planar and has maximum degree 4, and for each
edge e a non-negative integer flex(e), its flexibility, does G admit a planar embedding on
the grid such that each edge e has at most flex(e) bends? Such a drawing of G on the grid
is called a flex-drawing. For a graph with flex(e) > 0 for each edge e in G we shortly say
that G has positive flexibility.

Related work. The problem we consider generalizes a well-studied problem in orthogo-
nal graph drawing, namely the problem of deciding whether a given graph is β-embeddable
for some non-negative integer β. A 4-planar graph is β-embeddable if it admits an embedding
on the grid with at most β bends per edge.

Garg and Tamassia [GT01] show that it is NP-hard to decide 0-embeddability. The
reduction crucially relies on the construction of graphs with rigid embeddings. Later, we
show that this is impossible if we allow at least one bend per edge. This is a key observation,
which forms the basis for an efficient algorithm for recognizing 1-embeddable graphs. For
special cases, namely planar graphs with maximum degree 3 and series-parallel graphs,
Di Battista et al. [DLV98] gave an efficient algorithm that minimizes the total number of
bends and hence solves 0-embeddability. On the other hand, Biedl and Kant [BK94] show
that every 4-planar graph admits a drawing with at most two bends per edge, with the
only exception of the octahedron, which requires an edge with three bends. They present
a linear-time algorithm for connected—and not necessarily planar—graphs with maximum
degree 4 that computes an embedding on a grid of size n× n with at most two bends per
edge and at most 2n+ 2 bends in total. The resulting embeddings are plane for planar
graphs. Similar results are obtained by Liu et al. [LMS98].

Liu et al. [LMPS92] claim to have found a characterization of the planar graphs with
minimum degree 3 and maximum degree 4 that admit an orthogonal embedding with
at most one bend per edge. They also claim that this characterization can be tested in
polynomial time. Unfortunately, their paper does not include any proofs and to the best of

9.1 Introduction 193

our knowledge a proof of these results has not been published. Morgana et al. [MdMS04]
characterize the class of plane graphs (that is, planar graphs with a given embedding) that
admit a 1-bend embedding on the grid by forbidden configurations. They also present
a quadratic-time algorithm that either detects a forbidden configuration or computes a
1-bend embedding.

Similar questions have also been considered for the case that edges are not required to
be orthogonal. Kaufmann and Wiese [KW02] show that every 4-connected plane graph
can be embedded with at most one bend per edge on any given point set and that general
plane graphs can be embedded with at most two bends per edge in this drawing style.

If the combinatorial embedding of a 4-planar graph is given, Tamassia’s flow network
can be used to minimize the total number of bends [Tam87]. Note that this approach may
yield drawings with a linear number of bends for some of the edges. Given a combinatorial
embedding that admits a 1-bend embedding, however, the flow network can be modified in
a straightforward manner to minimize the total number of bends using at most one bend
per edge.

The problem we consider involves considering all embeddings of a planar graph. Many
problems of this sort are NP-hard. For instance, 0-embeddability is NP-hard [GT01], even
though it can be decided efficiently if we are given an embedding by minimizing the total
number of bends. On the other hand, some interesting problems have been shown to be
efficiently solvable, even if they involve optimization over all embeddings. Gutwenger et
al. [GMW01] show how to efficiently compute an embedding with the minimum number
of crossings for a planar graph with an additionally added edge. In a follow-up paper
Chimani et al. [CGMW09] show how to achieve the same for apex graphs, that is, planar
graphs that have been augmented by an additional vertex and an arbitrary number of
edges incident to this vertex. Also the results presented in Chapters 6 and 8 fall into this
category.

Contribution and Outline. In this chapter we give an efficient algorithm with running
time O(n2) that solves FlexDraw for graphs with positive flexibility. Since FlexDraw
contains the problem of 1-embeddability as a special case, this closes the complexity gap
between the NP-hardness result for 0-embeddability by Garg and Tamassia [GT01] and the
efficient algorithm for computing 2-embeddings by Biedl and Kant [BK94]. Note that once
we have found a feasible planar embedding, a corresponding drawing can be computed in
O(n2) time [MdMS04].

We present some preliminaries in Section 9.2. In Section 9.3 we study orthogonal
flex-drawings of graphs with a fixed embedding and introduce the maximum rotation of a
graph as a measure of how “flexible” it is. In Section 9.4 we show that replacing certain
subgraphs with graphs that behave similarly with respect to flexibility does not change the
maximum rotation. Based on this fact and the SPQR-tree we give an algorithm that solves
FlexDraw for biconnected 4-planar graphs with positive flexibility. In Section 9.5 we
improve the running time of our algorithm to O(n2). We extend our algorithm to arbitrary
4-planar graphs with positive flexibility in Section 9.6 and discuss some extensions and
possible directions for future work in Section 9.8.

194 Chapter 9: Orthogonal Graph Drawing with Flexibility Constraints

9.2. Preliminaries
In this section we introduce notations and preliminaries that are essential throughout this
chapter. These are mainly the orthogonal representation as a combinatorial description of
orthogonal drawings and Tamassia’s flow network as an algorithmic tool for handling such
descriptions in the context of a fixed embedding.

SPQR-tree and st-graphs. A weak st-graph is a 4-planar graph G = (V,E) with two
designated vertices s and t such that the graph G+ st is planar and has maximum degree 4.
An st-graph is a weak st-graph such that G+st is biconnected. An orthogonal representation
R of a (weak) st-graph with positive flexibility is valid if each edge e has at most flex(e)
bends and s and t are embedded on the outer face. A valid orthogonal representation of a
(weak) st-graph is tight if all angles at s and t in inner faces are 90◦.

We distinguish st-graphs with deg(s),deg(t) ≤ 2 by the degrees of s and t. An st-graph
is of Type (1,1) if deg(s) = deg(t) = 1, it is of Type (1,2) if one of them has degree 1 and
the other one has degree 2 and it is of Type (2,2) if deg(s) = deg(t) = 2.

Our algorithm for solving FlexDraw makes use of the SPQR-tree to handle all possible
embeddings. Since orthogonal drawings require special handling of the external face, we
use the rooted version of the SPQR-tree, which represents embeddings where the reference
edge, that is the edge at whose Q-node the tree is rooted, is incident to the outer face. Note
that the pertinent graph of a node always forms an st-graph with respect to the split pair
it shares with its parent and that for non-R-nodes, the pertinent graph is of Type (1,1),
(1,2) or (2,2).

Orthogonal representation. The orthogonal representation introduced by Tamassia de-
scribes orthogonal drawings of plane graphs by listing the faces as sequences of bends [Tam87].
As an advantage the orthogonal representation neglects the lengths of segments. Thus, it
is possible to manipulate drawings without the need to worry about the exact geometry.
Our orthogonal representation is always normalized, that is, each edge has only bends in
one direction; this slightly differs from the notion introduced by Tamassia. This is not a
restriction since every orthogonal representation can be normalized.

The orthogonal representation of a plane graph G is defined as a set of lists R containing
a list R(fi) for each face fi of G. For each face fi the list R(fi) is a circular list of edge
descriptions containing the edges on the boundary of fi in clockwise order(counter-clockwise
if fi is the external face). Each description r ∈ R(fi) contains the following information:
edge(r) denotes the edge represented by r, bends(r) is an integer whose absolute value is
the number of 90◦-bends of edge(r), where positive numbers represent bends to the right
and negative numbers bends to the left. For a given edge description r ∈ R(fi) we denote
its successor in R(fi) by r′ and represent the angle α between edge(r) and edge(r′) in fi
by their rotation rot(r, r′) = 2− α/90◦. Every edge has exactly two edge descriptions, if r
is one of them, the other is denoted by r̄. Since each face forms a rectilinear polygon, every
orthogonal representation R of an orthogonal drawing has the following three properties.

(I) Each edge description r is consistent with r̄, that is, bends(r̄) = −bends(r).

(II) The interior bends of any face f sum up to 4 and the exterior bends to -4:

∑
r∈R(f)

(
bends(r) + rot(r, r′)

)
=
{
−4, if f is the external face,
+4, if f is an internal face.

9.2 Preliminaries 195

(III) The angles around every node sum up to 360◦.

Given an orthogonal representation R of a graph, a corresponding orthogonal drawing
can be computed efficiently [Tam87]. Hence, it is sufficient to work with orthogonal
representations. An orthogonal representation is valid for a given flexibility function flex if
|bends(r)| ≤ flex(edge(r)) for each edge description r.

For a planar graph G = (V,E) with orthogonal representation R and two vertices s
and t on the outer face f1, we denote by πR(s, t) the unique simple path in R(f1) that
connects s and t in counter-clockwise direction. Such a path π = π(s, t) consists of
consecutive edge descriptions r1, . . . , rk. We define the rotation of π as

rotR(π) =
k∑
i=1

bends(ri) +
k−1∑
i=1

rot(ri, ri+1).

Moreover, for the vertex s we denote by rotR(s) the rotation value of the angle between
πR(s, t) and πR(t, s) at s. We define rotR(t) analogously. Note that, for a single edge
description r we have rotR(r) = bends(r). If it is clear from the context which orthogonal
representation is meant we omit the indices of π and rot. The concept of rotation is similar
to the spirality defined by Di Battista et al. [DLV98].

The value rot(π(s, t)) describes the shape of the path π(s, t) in the orthogonal repre-
sentation in terms of the angle between its start- and its endpoint. Fixing the rotation of
π(s, t), π(t, s) and the outer angles at s and t in a sense determines the shape of the outer
face. In Section 9.4, we will exploit this by replacing certain subgraphs of G with simpler
graphs whose outer faces have the same shapes.

Flows and Tamassia’s flow network. A flow network is a tuple N = (V,A, `, u, q)
where (V,A) is a directed (multi-)graph, ` : A −→ N0 and u : A −→ N0 ∪ {∞} are lower
and upper bounds for the amount of flow along the arcs in A with `(a) ≤ u(a) for all a ∈ A.
Finally, q : V −→ Z defines a demand for each vertex. Note that demands can be positive
or negative.

A flow is a function φ : A −→ N0 that maps a certain amount of flow to each arc such
that `(a) ≤ φ(a) ≤ u(a) holds for all arcs a ∈ A. A flow φ is feasible, if in addition the
difference of incoming and outgoing flow at each vertex equals its demand, that is,

q(v) =
∑

(u,v)∈A
φ(u, v)−

∑
(v,u)∈A

φ(v, u) for all v ∈ V.

The defect of a node v with respect to a flow φ is defined as

defφ(v) =

∣∣∣∣∣∣
∑

(u,v)∈A
φ(u, v)−

∑
(v,u)∈A

φ(v, u)− q(v)

∣∣∣∣∣∣ .
The defect of a flow φ is defined as def(φ) = ∑

v∈V defφ(v). Clearly, a flow has defect 0
if and only if it is feasible. It is not hard to see that given a flow φ, a flow φ′ with
minimum defect can be computed in time O(def(φ)|N |) using the algorithm of Ford and
Fulkerson [FF56].

Let G = (V,E) be a 4-planar graph together with a planar embedding E and let
F = {f1, . . . , fk} be the faces of G with respect to embedding E , where f1 is the outer face.
Further let ni be the number of vertices that are incident to fi.

Tamassia’s flow network consists of nodes V ∪ F with q(v) = −4 for all v ∈ V ,
q(fi) = 2ni + 4 for i ≥ 2 and q(f1) = 2n0 − 4. The flow network contains the following

196 Chapter 9: Orthogonal Graph Drawing with Flexibility Constraints

s

t

f` fr
e1

e2
a) e2

s

t

f` fr

b) s

t

f` fr

c)

Figure 9.2.: An st-graph with flexibility 1 for all edges with rot(π(s, t)) = 1 and its flex graph G×
(a), after removal of bridge e1 (b), and removal of edge e2 (c).

arcs. For each node v let Fv be the faces incident to v. Then, for each face f ∈ Fv
there is an arc a from v to f with `(a) = 1 and u(a) = 4. Further, for each edge e of
G with incident faces g and h there is an arc a1 from g to h and an arc a2 from h to g
with `(a1) = `(a2) = 0 and u(a1) = u(a2) =∞. The demands and capacities essentially
represent the distribution of 90◦-angles around vertices and faces. Tamassia showed that
there is a bijection between feasible flows in the network and orthogonal representations of
G with embedding E [Tam87]. FlexDraw with fixed embedding can easily be handled by
setting the upper bound of the arcs stemming from an edge e to flex(e) for all edges e ∈ E.

Let e be an edge of G with incident faces g and h and let a1 and a2 be the two arcs
stemming from e such that a1 is directed from g to h and a2 is directed from h to g. Note
that for a flow φ, by eliminating cycles with positive flow, we may assume that either
φ(a1) = 0 or φ(a2) = 0 holds. For ease of notation, we therefore identify these two arcs with
e and write φe(g, h) for the amount of flow from g to h via the arcs stemming from e. Note
that this value can be negative if there is flow from h to g and we have φe(g, h) = −φe(h, g).

Proof outline. We start out with an observation. Let G be a 4-planar graph with
positive flexibility and let {s, t} be a split pair of G that splits G into two subgraphs G1
and G2, and let eref be an edge of G1. Let ρ be the maximum rotation of π(s, t) over all
embeddings of G2 where s and t are on the outer face.

If G2 is of Type (1,1) then obviously the following holds. If G admits a valid orthogonal
drawing with the given flexibility such that eref is embedded on the outer face then also
the graph G′ where G2 is replaced by the single edge st with flexibility ρ admits such a
drawing. Graphs of Type (1,2) and (2,2) allow for similar substitutions.

Thus, we can substitute st-graphs of each type with a small gadget graph to obtain a
new graph G′ with the property that G′ has a valid drawing if G has one. We show that
the converse is also true, that is, if the graph G′ admits such an embedding then also G
does. We then exploit this characterization algorithmically, using the SPQR-tree of G to
successively replace subgraphs of G by simpler graphs.

9.3. The Maximum Rotation with a Fixed Embedding
The goal of this section is to derive a description of the valid orthogonal representations of
a given (weak) st-graph with positive flexibility and a fixed embedding. Namely, we prove
that the values that can be obtained for rot(π(s, t)) form an interval for these graphs. We
show that if there exists a valid orthogonal representation R with rotR(π(s, t)) ≥ 0 then
there exists an orthogonal representation R′ with rotR′(π(s, t)) = rotR(π(s, t))− 1, which
can be obtained from R by only altering the number of bends on certain edges.

To model the possible changes of an orthogonal representation R of a (weak) st-graph G

9.3 The Maximum Rotation with a Fixed Embedding 197

that can be performed by only changing the number of bends on edges we introduce the
flex graph G× of G with respect to R, which is based on the bidirected dual graph of
G. Thus, the flex graph is a directed multigraph; see Figure 9.2a for an illustration. We
start out by adding to G the edge st and embed it into the outer face of G, thus splitting
the outer face into two faces f` and fr, where f` is bounded by π(s, t) and the new edge
{s, t} and fr is bounded by π(t, s) and {s, t}. We denote this graph by Ḡ and its dual
graph by Ḡ∗. We set V × = V (Ḡ∗) and we define E× as follows. For each edge e of G
denote its incident faces in Ḡ by fu and fv and let ru and rv be the edge descriptions
of e in R(fu) and R(fv), respectively. We add the edge (fu, fv) if −flex(e) < bends(ru)
and, analogously, we add (fv, fu) if −flex(e) < bends(rv). Consider an edge (fu, fv) of
G× and let ru and rv be the edge descriptions of the corresponding edge e in G. The fact
that (fu, fv) ∈ E× indicates that it is possible to decrease bends(ru) (and thus increase
bends(rv)) by at least 1 without violating the flexibility of e.

Assume that there exists a simple directed path from f` to fr in G×. Let f` =
f1, f2, . . . , fk = fr be this path. We construct a new orthogonal representation R′ from
R as follows. For each edge fifi+1, i = 1, . . . , k − 1, let ei be the corresponding edge of
G and let ri ∈ R(fi), r̄i ∈ R(fi+1) be its edge descriptions. We obtain R′ from R by
decreasing bends(ri) by 1 and increasing bends(r̄i) by 1 for i = 1, . . . , k − 1. First, it is
clear that R′ satisfies Properties I and III since we increase and decrease the number of
bends consistently and we do not change any angles at vertices. Property II holds since
each face of G has either none of its edge descriptions changed or exactly one of them is
increased by 1 and exactly one of them is decreased by 1. Moreover, since the path starts
at f` and ends at fr we have that rotR′(π(s, t)) = rotR(π(s, t)) − 1. We now show that
such a path exists if rot(π(s, t)) ≥ 0.

Lemma 9.1. Let G be a weak st-graph with positive flexibility and let R be a valid
orthogonal representation of G with rotR(π(s, t)) ≥ 0. Then the flex graph G× contains a
directed path from f` to fr.

Proof. Assume that G is a minimal counter example such that G× does not contain such
a path. First, we show that in G× there exists at least one edge starting from f`. Let
π(s, t) be composed of the edge descriptions r1, . . . , rk in R(f), where f is the outer face
of G. Then, by assumption we have rot(π(s, t)) = ∑k

i=1 bends(ri) +∑k−1
i=1 rot(ri, ri+1) ≥ 0.

Since rot(ri, ri+1) ≤ 1 for i = 1, . . . , k− 1 we have that ∑k
i=1 bends(ri) ≥ −k+ 1 and hence

there is at least one rj with bends(rj) ≥ 0. Hence, G× contains an edge corresponding to
edge(rj) that starts at f`. This shows that there always exists an edge (f`, fu) in G×. We
distinguish three types of edges (f`, fu). If fu = fr, then (f`, fu) is the desired path.

If fu = f`, the corresponding edge e of G is a bridge whose removal does not disconnect s
and t; see Figure 9.2b. Then let H be the connected component of G − e containing s
and t and let S be the restriction of R to H. For the outer face of H we have that
rotS(π(s, t)) + rotS(s) + rotS(π(t, s)) + rotS(t) = −4. Since πR(t, s) = πS(t, s) we have
that rotS(π(t, s)) = rotR(π(t, s)). Moreover, since we only remove edges the angles at s
and t (and thus their rotations) do not decrease, that is, we have rotS(t) ≤ rotR(t) and
rotS(s) ≤ rotR(s). Hence, we have that rotS(π(s, t)) ≥ −4 − rotR(π(t, s)) − rotR(s) −
rotR(t) = rotR(π(s, t)) ≥ 0. Since H has fewer edges than G it is not a counter example
and its flex graph H× contains a path from f` to fr. Since H× is a subgraph of G× this
contradicts the assumption that G is a counter example.

Otherwise, fu is an internal face of G; see Figure 9.2c. Let e be the corresponding
edge of G. Let H := G − e and let S be the orthogonal representation R restricted to

198 Chapter 9: Orthogonal Graph Drawing with Flexibility Constraints

t

se2

e1f2

f1

(a)
t

s1s2

π(s1, s2)

(b)
t

s1
s2

(c)
t

s

f2

f1

(d)

Figure 9.3.: Orthogonal representation that is not tight since s has an angle of 180◦ in f2 (a).
Splitting s into s1 and s2 yields the path π(s1, s2) with rotation at least 4 (b), hence
the rotation can be reduced (c). Merging s1 and s2 back into s yields a tight orthogonal
representation (d).

H. Note that the flex graph of H× of H can be obtained from G× by removing all edges
between f` and fu and merging f` and fu into a single node f ′`. As above we obtain that
rotS(π(s, t)) ≥ 0 and hence in H× there exists a path from f ′` to fr. The corresponding
path in G× (after undoing the contraction of f` and fu) either starts at f` or at fu and
ends at fr. In the former case we have found our path, in the latter case the path together
with the edge (f`, fu) forms the desired path. Again this contradicts the assumption that
G is a counter example.

Recall that a valid orthogonal representation of a (weak) st-graph is tight if the inner
angles at s and t are 90◦. We show that a valid orthogonal representation can be made
tight without decreasing rot(π(s, t)). The proof is illustrated in Figure 9.3.
Lemma 9.2. Let G be a weak st-graph with positive flexibility and let R be a valid
orthogonal representation. Then there exists a valid orthogonal representation R′ of G
with the same planar embedding such that R′ is tight, rotR′(π(s, t)) ≥ rotR(π(s, t)) and
rotR′(π(t, s)) ≥ rotR(π(t, s)).
Proof. Let f1 be the outer face and assume that f2 is an inner face incident to s whose
inner angle at s is larger than 90◦. We show how to decrease this angle by 90◦ by only
changing the number of bends on certain edges. Hence, by applying the described operation
iteratively, we can reduce all internal angles at inner faces incident to s and t to 90◦.

Let e1 and e2 be the two edges incident to s such that e1 occurs before e2 when traversing
the boundary of f2 clockwise starting from s. Assume that e1 is incident to f1 (the case
that only e2 is incident to f1 can be treated analogously).

We split s into two vertices s1 and s2. We attach e1 to s1 and we attach to s2 the
remaining edges incident to s. Let the resulting graph be H and let S be the orthogonal
representation of H induced by R. Since f2 is an internal face its total rotation in R
is 4 and since the angle at s was at least 180◦ we have that rotS(π(s1, s2)) ≥ 4. By
Lemma 9.1 the flex graph H× of H contains a simple path that reduces the rotation
along π(s1, s2) by 1. This path either contains an edge stemming from π(s2, t) or an
edge of π(t, s1) and hence either increases rotS(π(s2, t)) or rotS(π(t, s1)) by 1, whereas
the other one remains unchanged. We obtain R′ by merging s1 and s2 back into s. Since
rotS(π(s1, s2)) was decreased we increase the rotation at s in f2 by 1 without decreasing
rotR(π(s, t)) = rotR(π(s2, t)) or rotR(π(t, s)) = rotR(π(t, s1)). Note that aside from
changing the number of bends on certain edges we did only change angles incident to s.

Let G be an st-graph with positive flexibility and fixed planar embedding E . Lemma 9.1
shows that the attainable values of rot(π(s, t)) for a given st-graph with a fixed embedding

9.3 The Maximum Rotation with a Fixed Embedding 199

s

t

f`
frr r̄

π(s, t)

Figure 9.4.: If rot(r) is maximized, rot(π(s, t)) is also maximized and the angles at s and t in f`
are both 90◦.

form an interval. Hence, the set of possible rotations can be described by the boundaries of
this interval and we define the maximum rotation of G with respect to E as maxrotE(G) =
maxR∈Ω rotR(π(s, t)) where Ω contains all valid orthogonal representations of G whose
embedding is E .

The following theorem states that indeed the maximum rotation essentially describes
the orthogonal representations of st-graphs with fixed embedding and positive flexibility.

Theorem 9.1. Let G be an st-graph with positive flexibility and fixed embedding E. Then
for each ρ ∈ {−1, . . . ,maxrotE(G)} there exists a valid and tight orthogonal representation
R of G with planar embedding E such that rotR(π(s, t)) = ρ.

Proof. Let ρ ∈ {−1, . . . ,maxrotE(G)}. We show how to construct an orthogonal representa-
tion R with rot(π(s, t)) = ρ. Let S be an orthogonal representation of G with embedding E
such that rotS(π(s, t)) = maxrotE(G). By Lemma 9.2 we can make S tight while preserving
its embedding and rot(π(s, t)). We then apply Lemma 9.1 to reduce rot(π(s, t)) to ρ. Note
that the representation remains tight as the angles around vertices are not changed by this
operation.

Using a variant of Tamassia’s flow network [Tam87] the maximum rotation can be
computed efficiently for st-graphs with a fixed embedding.

Theorem 9.2. Given an st-graph G = (V,E) with fixed embedding E with s and t on the
outer face one can either compute maxrotE(G) or decide that G does not admit a valid
orthogonal representation with embedding E in O(n3/2) time.

Proof. We use the flow network of Tamassia [Tam87] to check whether G admits a valid
orthogonal representation with its given embedding. Since this flow network is planar
and the in- and out-flow of each sink and source is fixed this can be done in O(n3/2)
time [MN95].

We add to G the edge st and embed it into the outer face such that we split the outer
face of G into two parts f` and fr where f` is bounded by π(s, t) and st and fr is the outer
face of G+ st.

We claim that in a valid orthogonal embedding of G+ st that maximizes rot(r) with its
embedding we have that maxrotE(G) = rot(r) + 2 where r is the edge description of st in
fr. Figure 9.4 illustrates this claim and its proof.

The equation maxrotE(G) ≥ rot(r) + 2 follows from the fact that in a valid orthogonal
embedding of G+ st the total rotation in the face f` is 4. Conversely, by Lemma 9.2 there
exists a tight orthogonal representation R of G with embedding E such that rot(π(s, t)) =
maxrotE(G). Since R is tight we can attach st in the outer face with rot(π(s, t))− 2 bends.
This shows the claim.

Now it remains to show that we can maximize rot(r) efficiently. We first use the flow
network of Tamassia [Tam87] to compute an arbitrary valid orthogonal representation

200 Chapter 9: Orthogonal Graph Drawing with Flexibility Constraints

of G + st. To maximize rot(r) we wish to modify the corresponding flow F in the flow
network of Tamassia such that the flow on the edge (fr, f`) is maximized while the flow on
(f`, fr) is 0, which corresponds to maximizing bends(r). This can be done by computing
a maximum flow from f` to fr in the residual graph of Tamassia’s flow network with
respect to F after removing the edges stemming from st. Since this network is planar and
the source and the sink lie at the same face a maximum flow can be computed in linear
time [HKRS97].

9.4. Biconnected Graphs
Until now the planar embedding of our input graph was fixed. Now, we assume that
this embedding is variable. Following the approach of the previous section we define the
maximum rotation of a (weak) st-graph G as maxrot(G) = maxE∈Ψ maxrotE(G) where Ψ
contains all planar embeddings of G such that s and t are embedded on the outer face.

In this section we show that maxrot(G) essentially describes all valid orthogonal repre-
sentations of G in the sense that substituting a subgraph H of G with a different graph
H ′ with maxrot(H) = maxrot(H ′) does not change maxrot(G). We further use this sub-
stitution to give an algorithm that computes maxrot by successively reducing the size of
the graph. To handle the different possible planar embeddings we use the SPQR-tree and
we substitute subgraphs with small graphs that have only one embedding. We need the
following technical lemma.

Lemma 9.3. Let G be an st-graph with deg(s), deg(t) ≤ 2 and let R be a tight orthogonal
representation of G. Then rot(π(s, t)) + rot(π(t, s)) = −x where x is 0,1 and 2 for graphs
of Type (1,1), (1,2) and (2,2), respectively.

Proof. By property II we have rot(π(s, t)) + rot(t) + rot(π(t, s)) + rot(s) = −4. If s has
degree 1, we have rot(s) = −2. If deg(s) = 2 holds, then s is incident to exactly one
inner face and by assumption it has an angle of 90◦ in this face. Hence, in the outer face
there is an angle of 270◦ and thus rot(s) = −1. As the same analysis holds for t the claim
follows.

The following theorem shows that indeed the maximum rotation describes all possible
rotation values of an st-graph.

Theorem 9.3. Let G be an st-graph with positive flexibility and let ρ be an integer. Then
there exists a tight orthogonal representation R of G with rot(π(s, t)) = ρ if and only if
−maxrot(G)− x ≤ ρ ≤ maxrot(G) where x depends on the Type of G and x = 0, 1, 2 for
Types (1,1), (1,2) and (2,2), respectively.

Proof. We first show the only if part. Let R be any embedding of G. By the definition
of maxrot(G) we clearly have that rotR(π(s, t)) ≤ maxrot(G). By definition we also have
that rotR(π(t, s)) ≤ maxrot(G) (otherwise by mirroring we could obtain an orthogonal
representation R′ with rotR′(π(s, t)) > maxrot(G)) and hence with Lemma 9.3 we obtain
− rot(π(s, t))− x ≤ maxrot(G).

It remains to show that for any given ρ in the range we can find a valid orthogonal
representation. If −1 ≤ ρ ≤ maxrot(G) we find an orthogonal representation as follows.
Let R be a valid orthogonal embedding of G with rot(π(s, t)) = maxrot(G). By Lemma 9.2

9.4 Biconnected Graphs 201

fr

f`

v

u

s

t

H

fr

f`
H

v

u

s

t

H ′

fr

f`

v

u

s

t

Figure 9.5.: Illustration of Lemma 9.4, st-graph G with split pair {u, v} splitting off H (left),
replacement of H with a tight orthogonal representation (middle) and replacement of
H with a graph H ′ with maxrot(H) = maxrot(H ′) = 3 (right).

we can reduce the inner angles at s and t to 90◦ without decreasing rot(π(s, t)). Then
Theorem 9.1 yields the desired orthogonal representation.

If ρ ≤ −2 holds, by Lemma 9.3 we need to find a valid orthogonal representation R
with rotR(π(t, s)) = −ρ− x =: ρ′. Note that by the definitions of ρ and x we have that
0 ≤ ρ′ ≤ maxrot(G). A valid orthogonal embedding R′ of G with rotR′(π(s, t)) = ρ′ can
be found as above. We obtain R by mirroring R′.

Note that if s (or t) has degree 1 then its incident edge allows for three different rotations
and hence the range of valid rotations contains at least three integers. This observation
together with the theorem yields the following.

Corollary 9.1. Let G be an st-graph with positive flexibility. If G admits a valid drawing
then maxrot(G) ≥ 1 if G is of Type (1,1) or (1,2) and maxrot(G) ≥ −1 if G is of
Type (2,2).

In particular, Theorem 9.3 shows that an st-graph G with deg(s) = deg(t) = 1 essentially
behaves like a single edge st with flexibility maxrot(G). The following lemma shows that
we can replace any st-graph with deg(s), deg(t) ≤ 2 in a graph G by a different st-graph
of the same type and with the same maximum rotation without changing maxrot(G).
Figure 9.5 illustrates the lemma and its proof.

Lemma 9.4. Let G = (V,E) be an st-graph with positive flexibility and let {u, v} be a
split pair of G that splits G into two components G− and H such that G− contains s and
t and H is an st-graph of Type (1,1), Type (1,2) or Type (2,2) (with respect to vertices u
and v). Let H ′ be an st-graph with designated vertices u′, v′ of the same type as H with
maxrot(H ′) = maxrot(H).

Then G admits a valid orthogonal representation R with rotR(π(s, t)) = ρ if and only if
the graph G′, which is obtained from G by replacing H with H ′ admits a valid orthogonal
representation R′ with rotR′(π(s, t)) = ρ.

Proof. Given a valid orthogonal representation R of G we wish to find a valid orthogonal
representation R′ of G′ such that rotR(π(s, t)) = rotR′(π(s, t)). The other direction is
symmetric.

We first treat the case that H is of Type (1,1). Let S be the restriction of R to
H. By Theorem 9.3 we have that rotS(π(u, v)) ∈ {−maxrot(H), . . . ,maxrot(H)} and
hence, again by Theorem 9.3, there exists a valid orthogonal representation S ′ of H ′ with
rot(π(u′, v′)) = rot(π(u, v)). Since H is of Type (1,1) we have that rotS′(u′) = rotS(u),
rotS′(v′) = rotS(v), rotS′(π(u′, v′)) = rotS(π(u, v)) and rotS′(π(v′, u′)) = rotS(π(v, u)).
Hence by plugging S ′ into the restriction of the orthogonal embedding R to G− we obtain
the desired embedding R′ of G′.

202 Chapter 9: Orthogonal Graph Drawing with Flexibility Constraints

ρ

s

t

a) Gρ1,1 ρ

1
1

s

t

v

b) Gρ1,2 ρ+ 2
s

t
ρ+ 2

c) Gρ2,2

Figure 9.6.: Gadgets for st-graphs with maximum rotation ρ depending on the Type.

In the case where H is of Type (1,2) we can assume that u has degree 2 and deg(v) = 1.
Then the angle at u in fi is 90◦ or 180◦ where fi is the inner face of H incident to u. If
this angle is 90◦, that is, S is tight, we replace it by a corresponding tight embedding of
H ′ with the same rotation, which exists by Theorem 9.3. For the case where we have an
angle of 180◦ at u in fi we show how to construct an orthogonal representation R′′ of G
having the same planar embedding as R such that rotR′′(π(s, t)) = rotR(π(s, t)) and the
angle at u in fi is 90◦. Then R′ can be constructed from R′′ as above.

By Theorem 9.3 there exists a valid and tight orthogonal representation S ′′ of H with
either rotS′′(π(u, v)) = rotS(π(u, v)) or rotS′′(π(v, u)) = rotS(π(v, u)). Without loss of
generality assume the former, the other case is symmetric. Since we have increased the outer
angle at u we have that rotS′′(u) = rotS(u)−1 and hence rotS′′(π(v, u)) = rotS(π(v, u))+1.
Let f` and fr be the faces in G whose boundaries contain π(u, v) and π(v, u), respectively.
Then we obtain R′′ by plugging S ′′ into the restriction of R to G− such that the angle
at u in fr is increased by 90◦ to 180◦. Since the angle at u in fi was decreased by 90◦
the sum of angles around u remains 360◦. Additionally, by increasing the angle at u in
fr, its rotation is decreased by 1 which compensates the increased rotation along π(v, u).
Hence R′′ is the claimed orthogonal representation. This finishes the treatment of graphs
of Type (1,2). Graphs of Type (2,2) can be treated analogously.

We now present three especially simple families of replacement graphs, called gadgets,
for st-graphs of Types (1,1), (1,2) and (2,2), respectively; see Figure 9.6. Let ρ be an
integer. The graph Gρ1,1 is simply an edge st with flex(st) = ρ. The graph Gρ1,2 has three
vertices s, v, t and two edges between s and v, both with flexibility 1, and the edge vt with
flexibility ρ. The gadget Gρ2,2 consists of two parallel edges between s and t, both with
flexibility ρ+ 2. Note that by Corollary 9.1 all edges of our gadgets have again positive
flexibility and that maxrot(Gρ1,1) = maxrot(Gρ1,2) = maxrot(Gρ2,2) = ρ. Moreover, each of
these graphs has a unique embedding with s and t on the outer face.

We now describe an algorithm that computes maxrot(G) for a given st-graph G with
positive flexibility or decides that G does not admit a valid orthogonal representation. We
use the SPQR-tree T of G+ st, rooted at the Q-node corresponding to st to represent all
planar embeddings of G with s and t on the outer face. Our algorithm processes the nodes
of the SPQR-tree in a bottom-up fashion and computes the maximum rotation of each
pertinent graph from the maximum rotations of the pertinent graphs of its children. For
each node µ we maintain a variable maxrot(µ). We will prove later that after processing
a node we have that maxrot(µ) = maxrot(pert(µ)). For each Q-node µ we initialize
maxrot(µ) to be the flexibility of the corresponding edge. We now show how to compute
maxrot(µ) from the maximum rotations of its children. We make a case distinction based
on the type of µ.

If µ is an R-node let µ1, . . . , µk be the children of µ. Each virtual edge in skel(µ)
represents at least one incidence of an edge of G to its poles. Since skel(µ) is 3-connected
each node has at least degree 3 and hence no virtual edge can represent more than two
incidences, that is, the nodes of skel(µ) have degree at most 2 in the subgraphs of G that

9.4 Biconnected Graphs 203

are represented by the virtual edges of µ. As we already know their maximum rotations
we can simply replace each of the graphs by a corresponding gadget; we call the resulting
graph Gµ. Since the embeddings of all gadgets are completely symmetric it is enough to
compute the maximum rotations of Gµ for the only two embeddings E1 and E2 induced by
the embeddings of skel(µ). We set

maxrot(µ) = max{maxrotE1(Gµ),maxrotE2(Gµ)}

if one of them admits a valid representation. Otherwise we stop and return “infeasible”.
If µ is a P-node we treat µ similar as in the case where µ is an R-node. Again, each

pole has degree at least 3 in skel(µ) and hence no virtual edge can represent more than
two edge incidences. We replace each virtual edge with the corresponding gadget and try
all possible embeddings of skel(µ), which are at most six, and store the maximum rotation
or stop if none of the embeddings admits a valid representation.

If µ is an S-node let µ1, . . . , µk be the children of µ. We set

maxrot(µ) =
k∑
i=1

maxrot(µi) + k − 1 .

Theorem 9.4. Given an st-graph G = (V,E) with positive flexibility it can be checked
in O(n3/2) time whether G admits a valid orthogonal representation. In the positive case
maxrot(G) can be computed within the same time complexity.

Proof. We prove that after the algorithm has processed node µ the invariant maxrot(µ) =
maxrot(pert(µ)) holds. The proof is by induction on the height h of the SPQR-tree T of
G+ st. Let µ be the node of T whose parent corresponds to st.

If h = 1 then G is a single edge e and µ its corresponding Q-node. Since maxrot(G)
equals flex(e) the claim holds. For h > 1 let µ1, . . . , µk be the children of µ. By induction
we have that maxrot(µi) = maxrot(pert(µi)) for i = 1, . . . , k. We make a case distinction
based on the type of µ.

If µ is an R- or a P-node, then by Lemma 9.4 we have maxrot(Gµ) = maxrot(pert(µ))
and since the gadgets have a unique embedding we consider all relevant embeddings of Gµ.
If none of the embeddings admits a valid orthogonal representation then obviously also
pert(µ) and thus G do not admit valid orthogonal representations.

If µ is an S-node and the pertinent graphs of its children admit a valid orthogonal
representation then there always exists a valid orthogonal representation of pert(µ). Let
H1, . . . ,Hk be the pertinent graphs of the children of µ and let v1, . . . , vk+1 be the vertices
in skel(µ) such that vi and vi+1 are the poles of Hi. By Theorem 9.3 there exist tight
orthogonal representations R1, . . . ,Rk of H1, . . . ,Hk with rot(π(vi, vi+1)) = maxrot(µi).
We put these orthogonal representations together such that the angles at the nodes
v2, . . . , vk on π(v1, vk+1) are 90◦. Hence we get an orthogonal representation of pert(µ)
with rot(π(v1, vk+1)) = ∑k

i=1 maxrot(µi)+k−1. On the other hand if we had an orthogonal
representation of pert(µ) with a higher rotation then at least one of its children µi would
need to have a rotation that is bigger than maxrot(µi).

This proves the correctness of the algorithm. For the running time note that the
SPQR-tree can be computed in linear time [GM00]. Computing maxrot(µ) for a given node
µ from the maximum rotations of its children takes O(|skel(µ)|3/2) time by Theorem 9.4
since skel(µ) has only a constant number of embeddings. The total running-time follows
from the fact that the total size of all skeletons is linear.

204 Chapter 9: Orthogonal Graph Drawing with Flexibility Constraints

This theorem can be used to solve FlexDraw for biconnected 4-planar graphs with
positive flexibility. Such a graph G admits a valid orthogonal representation if and only if
one of the graphs G− e, e ∈ E(G) (which is an st-graph with respect to the endpoints of e)
admits a valid orthogonal representation such that e can be added to this representation.
We claim that this is possible if and only if maxrot(G− e) + flex(e) ≥ 2. This can be seen
as follows. Let s and t be the endpoints of e. Adding e to G− e creates a new interior face
and the total rotation of this new face needs to be 4. We can have at most two 90◦ angles
at s and t, and we hence need to embed G− e and e such that rot(π(s, t)) + rot(e) = 2.
This implies that maxrot(G− e) + flex(e) ≥ 2 is a necessary condition.

On the other hand, it is not hard to see that it is possible to add e to a tight orthogonal
representation of G − e. First of all, if G − e has a valid orthogonal representation
with s and t on the outer face, then it also has a tight representation with this rotation.
This implies rot(s) ≤ 0 and rot(t) ≤ 0. We therefore have rot(π(s, t)) + rot(π(t, s) ≥
rot(π(s, t)) + rot(π(t, s) + rot(s) + rot(t) = −4, where the equality stems from the fact
that π(s, t) and π(t, s) together bound the outer face. Hence we have maxrot(G − e) ≥
max{rot(π(s, t)), rot(π(t, s)} ≥ −2. If flex(e) ≥ 4, the edge e can thus be added to a tight
representation with rot(π(s, t)) = −2.

If flex(e) ≤ 3, we get maxrot(G) ≥ 2 − flex(e) ≥ −1, and thus using Theorem 9.1 we
can find a tight orthogonal representation with rot(π(s, t)) = 2− flex(e), to which e can be
added so that the new internal face bounded by e and π(s, t) has a total rotation of 4, and
thus forms a valid orthogonal representation of G. We obtain the following theorem; the
running time is due to O(n) applications of the algorithm for st-graphs.

Theorem 9.5. FlexDraw can be solved in time O(n5/2) for biconnected 4-planar graphs
with positive flexibility.

9.5. Quadratic-Time Implementation
In this Section we improve the running time of the algorithm for the biconnected case
to O(n2). In the previous section we have shown that checking whether a biconnected
4-planar graph G admits a valid drawing with a given edge e on the external face can
be done in time O(n3/2). Recall that the running time stems from the fact that for each
embedding E of each skeleton µ of the SPQR-tree we have to compute the maximum
rotation of its pertinent graph with respect to this embedding. For a fixed embedding this
is done by a two-step process, as in Theorem 9.2. We first compute in O(|skel(µ)|3/2) time
an arbitrary feasible flow in an instance of Tamassia’s flow network for the skeleton where
some of the edges are replaced by gadgets. We call this a base flow. In a second step, we
then compute a maximum flow in the residual network with respect to the base flow in
O(|skel(µ)|) time. The running time is hence dominated by the computation of base flows.

To obtain an algorithm for the biconnected case, we simply try every edge as reference
edge that has to lie on the external face, resulting in O(n) applications of the above
algorithm. However, when we choose a new root of the SPQR-tree and perform the
traversal of the SPQR-tree, a lot of information that was already acquired in previous
iterations is recomputed. In this section we show that information computed in different
traversals of the SPQR-tree can be reused to improve the time that is required to compute
base flows to O(n2) total time, which improves the running time of the algorithm for the
biconnected case to O(n2).

9.5 Quadratic-Time Implementation 205

Let G be a biconnected 4-planar graph with a positive flexibility function flex and let µ
be a node of the SPQR-tree of G with embedding E . Note that in this section we consider
two embeddings to be equal if they differ only by the choice of the external face. Let
further e be the reference edge of skel(µ), that is, the edge that µ shares with its parent.
Then let G(µ, E , e) be the skeleton graph of G with embedding E where all edges except
for e are replaced by the corresponding gadget according to the maximum rotation of their
expansion graphs, as used by the algorithm of the previous section. Our goal is to reuse
computed flow information that was computed for G(µ, E , e) when processing G(µ, E , e′)
where e′ is a different edge of skel(µ) serving as the reference edge. To this end, we define
a set of operations on such graphs that allow us to transform G(µ, E , e) into G(µ, E , e′)
in time linear in the size of skel(µ). We show that while performing these operations a
flow φ in the flow network of G(µ, E , e) can be updated to a flow φ′ in the flow network of
G(µ, E , e′) such that the defects of φ and φ′ differ only by a constant. We will then use φ′
as a starting point to quickly check feasibility of the flow network of G(µ, E , e′).

We first show that given a flow network, the knowledge of a flow with small defect in
the network allows to quickly check whether a feasible flow exists and that a flow with
minimum defect in an instance of Tamassia’s flow network can be computed in time that
is quadratic in the size of the network.

Lemma 9.5. Given a flow network N = (V,A, `, u, q) together with a flow φ, a flow φ′ of
N with minimum defect can be computed in O(|N |def(φ)) time.

Proof. We simply apply the algorithm of Ford and Fulkerson [FF56]. We iteratively
augment the flow with augmenting path from a vertex with positive defect to a vertex
with negative defect. A single path of this type can be computed in O(|N |) time. The
algorithm stops when no such path exists. Since each such path decreases the defect of the
current flow by 2 the algorithm takes at most def(φ) iterations.

Corollary 9.2. Let G = (V,E) be a 4-planar graph with n vertices and a fixed embedding.
A flow with minimum defect in the corresponding flow network of Tamassia can be computed
in O(n2) time.

Proof. For each vertex v denote the set of incident faces by Fv. We define an initial flow φ
by setting φ(v, f) = 0 for each v and each f ∈ Fv. All other arcs receive a flow of 0. As
the total amount of demands is in O(n) for Tamassia’s flow network the claim follows from
Lemma 9.5

Next we define the operations that allow us to transform instances of Tamassia’s flow
network stemming from the skeleton of the same node with the same embedding into each
other while maintaining a flow with small defect. Let G be a planar graph, let e = uv be
an edge of G with incident faces g and h and let φ be a flow in Tamassia’s flow network of
G. We introduce the following basic operations on G, respectively on φ. For an illustration
see Figure 9.7.

1. Setting the flow along an edge e with flow at most 4 to 0.

2. Subdividing an edge uv with flow 0 into uw and vw.

3. Doubling an edge with flow 0.

4. Removing a subdivision vertex and inserting an edge with capacity ∞ between its to
neighbors.

206 Chapter 9: Orthogonal Graph Drawing with Flexibility Constraints

g h
x ≤ 4

g h

(a) Reducing flow along an
edge with φe(g, h) ≤ 4
creates a defect of at
most 8.

g h g h
2 2

(b) Subdividing an edge e
with φe(g, h) = 0 does
not increase the defect.

g h g h
1

1

(c) Doubling an edge with-
out flow increases the de-
fect by at most 4.

g hx y
z2

z1
g h

z1+ z2

(d) Removing a subdivision vertex and inserting
an edge with capacity∞ between its neighbors
increases the defect by at most 12.

g h
a

x b

y g h
x

(e) Replacing a double edge by a single edge with
capacity ∞ increases the defect by at most 12.

Figure 9.7.: Manipulation of a graph, the corresponding flow network of Tamassia and its flow.
Edges of the flow network whose flow changes are shown in red. The labels indicate
the amount of flow on these edges.

5. Removing one edge of a pair of double edges and setting the capacity of the remaining
edge to ∞.

Lemma 9.6. Let G be a planar graph with fixed embedding E and let φ be a flow in
Tamassia’s flow network of G with respect to E.

Let G′ be a graph resulting from G by applying one of the above operations. Then a flow
φ′ in Tamassia’s flow net work of G′ with def(φ′) ≤ def(φ) + 12 can be computed in linear
time.

Proof. The operations are illustrated in Figure 9.7. We consider the operations one by
one. For operation 1 assume that e is incident to faces g and h and that |φe(g, h)| ≤ 4. To
obtain φ′ from φ we simply set φ′e(g, h) = 0, which clearly satisfies all lower and upper
bounds. We have defφ′(g) ≤ def(g, f) + 4 and defφ′(h) ≤ defφ′(h) + 4. As the operation
does not change the defect of any other node we have def(φ) ≤ def(φ′) + 8; see Figure 9.7a
for an illustration.

For operation 2 we replace an edge e = uv with incident faces g and h by two edges uw
and wv. We set f? to be a copy of f . Note that inserting the vertex increases the demands
of g and h by 2. On the other hand, the new vertex w has 4 flow units. We simply route
two units of flow from w to h and two units from w to g. Hence, the resulting flow f? has
the same defect as f ; see Figure 9.7b.

For operation 3, see Figure 9.7c, we double the edge e = uv. Let k be the new face that
is bounded by the two parallel edges. Assume that e1 separates g and k and e2 separates k
and h. We route one unit of flow from each of u and v to k. This increases the defects of u
and v by at most 1, each. The resulting function is a flow, as all capacity restrictions hold.
Moreover, since the demand of k is 0, its defect is 2. All other nodes keep their defects and
we have def(f?) ≤ def(f) + 4.

We now show how to remove a subdivision vertex w and connect its neighbors u and v
by an edge with capacity ∞; see Figure 9.7d. Let z1 = φuw(g, h) and let z2 = φwv(g, h)
be the amounts of flow from g to h via uw and wv, respectively. Note that these values

9.5 Quadratic-Time Implementation 207

are negative if there is flow from h to g. Without loss of generality we can assume that
z1 + z2 ≥ 0 holds, otherwise we simply swap g and h. Moreover, we can assume that both
z1 and z2 are non-negative; otherwise we could reduce one of them to zero by eliminating
a cyclic flow.

To obtain φ′ from φ we remove all flow along the arcs wg and wh. This increases the
defect of g and h by at most 4, each since the arcs wg and wh can have at most a flow of 4.
Then, we replace the path uvw by the single edge e and set φ′(g, e, h) = z1 + z2. This does
not change the amount of flow any vertex sends or receives and it reduces the demands of
g and h by 2, each. Hence the defect of the resulting flow φ′ is at most def(φ) + 12.

Finally, we show how to remove a double edge, that is, how to implement operation 5;
see Figure 9.7e. Let k be the face bounded by the double edge and let g be the other
face incident to e1 and, analogously, h the other face incident to e2. To obtain φ′ we first
reduce the flows along the arcs vk and wk to 0, which increases the defects of v and w by
at most 4, each. Next, we increase the capacity of e1 and e2 to ∞ and move flow along
the edge from k to h (or vice versa) such that the defect of k is 0. Essentially, we shift
the defect of k to h. Now, since the defect and the demand of k are both 0, we have that
φe1(g, k) = φe2(k, h). Consequently, removing the edge e2 and setting φ′e1(g, h) = φe1(g, k)
does not change the defects of g and h. Thus, the total increase of defect is at most 8.

Note that a sequence of these operations can be used to replace a gadget by a single edge
and vice versa. The following lemma states that this is always possible while increasing
the defect of a given flow only by a certain constant.

Lemma 9.7. Given G(µ, E , e) together with a flow φ in its corresponding flow network
in which e has at most 4 units of flow, a flow φ′ in the flow network of G(µ, E , e′) with
def(φ′) ≤ def(φ) + 88 can be computed in linear time.

Proof. To transform G(µ, E , e) into G(µ, E , e′) we first replace e by the corresponding
gadget representing its expansion graph. Then we transform the gadget that represents e′
in G(µ, E , e) into the single edge e′. Finally, we may have to change the outer face. We
now show that all these operations can be performed while maintaining the claimed flow
φ′. We start with φ = φ′.

The cost of the first step depends on the Type of the expansion graph of e. If e is of
Type (1,1), no change is necessary. For Type (1,2) we reduce the flow along e, subdivide
e and double one of the resulting edges, for Type(2,2) we first reduce the flow of e and
then double it. In all cases we apply Lemma 9.6 at most three times and the increase of
defect is at most 36. Similarly, we obtain a defect of at most 36 for the second step, thus
yielding a flow φ′ with def(φ′) ≤ def(φ) + 72. Finally, by the definition of Tamassia’s flow
network, to change the outer face to an interior face we increase its demand by 8 and we
decrease the demand of an inner face by 8 to make it the outer face. The defect of φ′ in
the resulting flow network is therefore at most 88.

We apply this lemma to save computing time when processing the graph G(µ, E , e).
If we process µ for the first time with embedding E (embeddings are considered equal
if they only differ by the choice of the external face), using Lemma 9.2, we compute in
O(|skel(µ)|2) time a flow φ with minimum defect in the corresponding flow network, where
the flexibility of e it set to 4. We now distinguish several cases.

If φ has defect 0, it is a valid solution and we have found our base flow. Moreover, we
store φ along with µ and E for future reuse. If the defect of φ is greater than 0 and at
most 88, we know that µ does not admit a valid drawing with embedding E . Again, we

208 Chapter 9: Orthogonal Graph Drawing with Flexibility Constraints

store φ for future reuse. If the defect of φ is greater than 88, we store the information
that µ does not admit a valid drawing with embedding E , independent of the choice of the
reference edge and the outer face. This is true since otherwise we could apply Lemma 9.6
to obtain a flow φ′ for G(µ, E , e) with defect at most 88, contradicting the optimality of φ.

Whenever we encounter µ with embedding E again, but this time with reference edge e′,
we can either conclude that it does not admit a valid drawing (if the embedding is marked
as invalid for µ), or check in O(|skel(µ)|) time whether it admits a feasible flow as follows.
Let φ be the stored flow. By applying Lemma 9.6 we can construct in time O(|skel(µ)|) a
flow φ′ in the flow network of G(µ, E , e′) with def(φ′) ≤ def(φ) + 88 ≤ 196. We then apply
Lemma 9.5 to compute a feasible base flow in O(|skel(µ)|) time, if it exists.

Since each node µ has only a constant number of embeddings, the total time for all
base flow computations is bounded by O(n2). After that checking a node µ with a given
embedding can be done in O(|skel(µ)|) time. Since each node is checked at most linearly
often with each embedding, the total running time is in O(n2). We have proved the
following theorem.

Theorem 9.6. FlexDraw can be solved in O(n2) time for biconnected 4-planar graphs
with positive flexibility.

9.6. Connected Graphs
In this section we generalize our results to connected 4-planar graphs that are not necessarily
biconnected. We analyze the conditions under which orthogonal representations sharing
a cut vertex can be combined and use the block-cutvertex tree to derive an algorithm
that decides whether a connected 4-planar graph with positive flexibility admits a valid
orthogonal drawing.

Lemma 9.8. Let G be a connected 4-planar graph with cutvertex v and corresponding cut
components H1, . . . ,Hk. Then G admits a valid orthogonal representation if and only if all
cut components Hi have valid orthogonal representations such that at most one of them
has v not on the outer face.

Proof. The only if part is clear since a valid orthogonal representation of G induces valid
orthogonal representations of all cut components Hi such that at most one of them does
not have v on its outer face.

Now let Si be valid orthogonal representations of the cut components Hi for i = 1, . . . , k
such that at most one of them does not have v on its outer face.

If all of them have v on their outer face then by Lemma 9.2 we can assume that these
representations are tight. Then it is clear that the components H1, . . . ,Hk can be merged
together in v maintaining their representations Si.

Otherwise, one of the representations, without loss of generality R1, does not have v
on the outer face. If v has degree at least 2 in at most one of the graphs, we can simply
merge the corresponding tight representations as bridges can always be added.

The only problem that can arise is that there are exactly two components H1 and H2,
v has degree 2 in both of them, and the angles incident to v in H1 are 180◦. We resolve
this situation by either increasing or decreasing the number of bends of an incident edge
and changing the angles at v appropriately.

9.7 Complexity 209

Now let G be a connected 4-planar graph with positive flexibility and B its block-
cutvertex tree. Let further B be a block of G that is a leaf in B and let v be the unique
cutvertex of B.

If B is the whole graph G we return “true” if and only if G admits any valid orthogonal
representation. This can be checked with the algorithm from the previous Section.

If B is not the whole graph G we check whether B admits a valid orthogonal represen-
tation having v on its outer face. This can be done with the algorithm from the previous
section by rooting the SPQR-tree of B at all edges incident to v. If it does admit such an
embedding then by Lemma 9.8 G admits a valid orthogonal embedding if and only if the
graph G′, which is obtained from G by removing the block B, admits a valid orthogonal
embedding. We check G′ recursively. If B does not admit such an embedding we mark B
and proceed with another unmarked leaf. If we ever encounter another block B′ that has
to be marked we return “infeasible”. This is correct as in this case B has to be embedded
in the interior of B′ and vice versa, which is obviously impossible. Checking a single block
B requires O(|B|2) time by Theorem 9.6. Since the total size of all blocks is linear the
total running-time is O(n2). This proves the following theorem, which is the main result of
this paper.

Theorem 9.7. FlexDraw can be solved in O(n2) time for 4-planar graphs with positive
flexibility.

9.7. Complexity
In this section, we consider the complexity of FlexDraw for cases that lie between 0-
embeddability and the case of positive flexibility. For example, it is an interesting question,
whether FlexDraw can still be solved efficiently, if the subgraph consisting only of the
edges with flexibility 0 has a special structure. Since 0-embeddability can be solved in
polynomial time for series-parallel graphs and maxdeg-3 graphs, one might hope for an
algorithm that solves FlexDraw efficiently if the edges with flexibility 0 form a graph in
one of these classes. Unfortunately, we can show that both these cases, and in fact a lot of
simpler cases remain NP-hard.

The gadgets used in the NP-hardness proof of 0-embeddability by Garg and Tamas-
sia [GT01] can be constructed in a slightly modified form such that the edges with
flexibility 0 even form a matching. Thus, FlexDraw is NP-hard, even if the edges with
flexibility 0 form a matching. However, the gadgets constructed in this way are slightly
more flexible than the original ones, and hence all steps of the proof need to be reworked,
in order to complete the NP-hardness proof for this case. We will therefore only present
the gadgets, but not the full proof. Instead we will show a weaker statement, for which we
have a short proof. Both constructions rely on a basic building block, which is described
next.

Consider the wheel on five vertices, which consists of a cycle on vertices v2, . . . , v5 and
the center vertex v1 that is connected to all other vertices; see Figure 9.8a. In the following
we assume that the flexibility of each edge of the wheel is 1. A corresponding flex-drawing
is shown in Figure 9.8b. We claim that the outer face, as well as its orthogonal description
are unique. To see this, consider Tamassia’s flow network for the wheel in the embedding
shown in Figure 9.8a. Since the outer face is incident to four vertices it has a demand
of 12. On the other hand, it can receive at most 8 units of flow from v2, . . . , v5 and at

210 Chapter 9: Orthogonal Graph Drawing with Flexibility Constraints

v1

v2

v3

v4

v5

(a)

v1

v2

v3

v4

v5

(b)

v1

v2

v3v4

v5

(c)

u v

(d)

Figure 9.8.: A graph that is almost rigid graph, even if every edge has flexibility 1.

(a) (b)

Figure 9.9.: The tendril gadget used in the proof by Garg and Tamassia [GT01], all edges have
flexibility 0 (a). A substitution, where the thin edges have flexibility 1 and the thick
edges, which form a matching, have flexibility 0 (b). The properties of the wheel graphs
used in the second gadget guarantee that both gadgets behave very similarly.

most 4 units of flow via the incident edges. Hence, in any feasible flow the outer face
must receive two units of flow from its incident vertices, and one unit of flow form each
incident edge. This completely describes the outer face. The only degree of freedom is that
the center vertex can be rotated by 90 degrees to the left or to the right. Moreover, all
other embeddings of the wheel do not allow for a 1-bend embedding. Since the wheel is
3-connected the only embedding choice is the outer face. Up to renaming the there the
only embedding that is different from the embedding in Figure 9.8a is shown in Figure 9.8c.
In Tamassia’s flow network the outer face has a demand of 10. However, it can receive at
most one unit of flow from v1, at most two units of flow from v2 and v5, and at most three
units of flow via its incident edges, which adds up to a total of 8. Hence, the wheel does
not admit a 1-bend drawing with this embedding.

Figure 9.9a shows the gadget that Garg and Tamassia use for their NP-hardness proof
of 0-embeddability. Figure 9.9b shows the replacement we propose. The thick edges have
flexibility 0, all other edges have flexibility 1. Using the knowledge about the drawings
of the wheel-subgraphs, it is not hard to see that these two gadgets behave very similar.
The only difference is that the edge incident to the black attachment vertices admit only
two different drawings in the gadget of Garg and Tamassia, while our gadget admit three
different drawings. By choosing the numbers in the reduction by Garg and Tamassia in the

9.8 Concluding Remarks 211

right way, this small difference does not affect the overall reduction. To avoid a lengthy
argument, we rather present a proof of the following weaker statement.

Theorem 9.8. FlexDraw is NP-hard, even if the subgraph with flexibility 0 is a spanning
tree or a spanning union of disjoint stars.

Proof. We reduce from 0-embeddability, which is known to be NP-hard [GT01]. Let G =
(V,E) be an instance of 0-embeddability and let T be any spanning tree of G. Let G′
be the graph that is obtained from G by replacing each edge uv ∈ E \ T by the gadget
shown in Figure 9.8d, where the two bold edges have flexibility 0 and all other edges in the
gadget have flexibility 1. As in each flex-drawing the rotation between the two vertices of
degree 1 is 0, it follows that G′ admits a flex-drawing if and only if G admits a 0-embedding.
Note that in the gadget the endpoints u and v are not connected by a path of edges with
flexibility 0. Therefore, the edges with flexibility 0 in G′ form a tree.

The same argument works if we replace all edges of G by gadgets to obtain G′. In this
case the edges with flexibility 0 form a union of disjoint stars, each having a vertex of the
original graph as its center.

9.8. Concluding Remarks
The main result of this chapter is that FlexDraw can be solved efficiently for graphs
with positive flexibility. To prove this, we first showed that the set of possible drawings
of a graph with positive flexibility can be described by a single number, its maximum
rotation. The fact that subgraphs can be substituted by graphs with the same maximum
rotation without affecting the overall maximum rotation enabled us to gradually reduce
the size of the graph that needed to be considered. This directly led to a polynomial-time
algorithm, which together with a specialized out-of-the-box flow algorithm for planar
graphs resulted in a running time of O(n5/2). We then introduced flows with defects to
share more information between different phases of the algorithm. Using these concepts
and a careful implementation we were able to reduce the running time to O(n2).

The main result of this chapter closes the long-standing complexity gap between 0-
embeddability and 2-embeddability. However, the result is much more general, as it
enables us to specify the maximum number of bends for each edge, individually. This
may have interesting applications in domains such as the layout of UML diagrams, which
are typically drawn with orthogonal edges, and where certainly some of the edges are
much more important than others, and thus should have few bends, possibly at the cost
of more bends at unimportant edges. To obtain a nice drawing, it may even be desirable
to specify no upper bound at all on the number of bends for unimportant edges. It is
straightforward to generalize the results presented in this chapter to positive flexibility
functions flex : E −→ N ∪ {∞}, where some edges may be bent arbitrarily often.

We further explored the complexity gap between 0-embeddability and FlexDraw with
positive flexibility. We have shown that FlexDraw is NP-hard, even if the subgraph
consisting of edges with flexibility 0 forms a tree or a union of disjoint stars. We further
indicated that this still holds, even if the edges with flexibility 0 form a matching.

Open questions. We leave open two questions, which we believe to be most interesting.
As we have seen, FlexDraw remains NP-hard, even if the edges with flexibility 0 form a
tree, or a matching. It is an interesting question whether FlexDraw can still be handled

212 Chapter 9: Orthogonal Graph Drawing with Flexibility Constraints

(a) (b)

Figure 9.10.: Examples of graphs that require an edge with several bends in a flex-drawing. The
wheel with an additional edge shown in (a) requires an edge with four bends in any
drawing, if the bold edges have a flexibility of 1. If the embedding is fixed, five bends
are necessary for the thin edge in (b).

if few edges are required to have no bends, for example, a constant number of edges or a
set of independent edges.

Another interesting question stems from the problem of computing a nice flex-drawing.
In general, 4-planar graphs admit drawings with at most 2 bends per edge, with the only
exception of the octahedron, which requires an edge with three bends [BK94]. Thus, in the
absence of flexibility constraints a linear number of bends is sufficient. Figure 9.10 shows
that flex-drawings of graphs with positive flexibility may require edges with four bends.
How many bends may be required for a flex-drawing of a graph with positive flexibility?
Is there a constant C such that for each graph G with positive flexibility that admits a
flex-drawing there is one with at most C bends per edge? This also has implications on the
time for actually computing a flex-drawing since computing a drawing from an orthogonal
representation requires time that is quadratic in the number of bends. If it was possible
that a non-constant number of edges would need to have a non-constant number of bends,
this would result in a total running time that is super-quadratic, and thus slower than the
algorithm for finding the embedding. We suspect that this is not the case; we conjecture
that generally C = 4, and that C = 5 if the embedding is fixed.

Chapter 10

Conclusion

Summary. In this thesis, we have studied a variety of graph problems related to
planarity. As indicated in Chapter 1, planarity is a fundamental concept in graph theory,
and has strongly influenced its development. Moreover, many applications use visualizations
of graphs to present them in an understandable way. Crossings in drawings hurt readability,
and thus algorithms that produce drawings with few crossings, and in particular planar
drawings, are important. We have pointed out that planarity can assume different roles in
a problem, and that the complexity of a problem seems to be connected to this role.

In the first part of this thesis, our main focus was on combinatorial optimization problems
where planarity either occurred as an additional side constraint to an optimization problem
or as an input restriction. It turned out that planarity is not a very useful property as
a side constraint. It does not give too much structure to the set of feasible solutions,
and many problems become harder in the presence of such constraints. Only very strong
planarity conditions like convex geometric planar graphs or relaxed problem versions like
path augmentation allowed us to establish more structure and efficient solution algorithms
in Chapter 3. On the other hand, planarity as an input restriction, as in the matching
problem in Chapter 5, proved to be tremendously helpful. It is worth noting that our
algorithm for finding large matchings quickly neither just uses basic planarity properties,
such as the existence of a vertex of low degree, nor does it rely on the existence of special
data structures that are particularly efficient for planar graphs. Instead, it exploits planarity
at a deeper level, by using a combinatorial embedding of the input graph as a guide to
find edges that can be used to improve the matching.

The second part of this thesis is motivated by problems stemming from the areas of
network visualization and graph drawing. A planar graph usually has many different planar
drawings, and some embeddings may allow for nicer drawings than others. We have studied
the complexity of finding an optimal embedding for a variety of different drawing styles. It
turned out that the set of planar embeddings of a graph has a rich structure, and thus we
were able to show that in many cases an optimal embedding can be computed efficiently.
The main observation here is that the difficulty of these problems is strongly connected to
the existence of simple and useful combinatorial characterizations of valid solutions. It is
worth noting that, although all the problems we considered in the second part come from
the field of graph drawing, we rarely had to work with actual drawings of graphs. Instead,
almost all of the time, it was sufficient to work on higher levels of abstraction.

For testing the planarity of partially embedded (or partially drawn) graphs, the whole
problem could be treated at the level of embeddings, and it turned out that the valid
solutions have a very particular structure that indeed allows to resolve constraints locally
at each skeleton of the SPQR-tree of the input graph. This resulted in a very simple

214 Chapter 10: Conclusion

polynomial-time algorithm, for which correctness is almost immediate. Similarly, in
Chapter 9, where we considered the problem FlexDraw, we never worked with actual
orthogonal drawings. Instead, right from the start, we only worked with the already known
orthogonal representations as an abstraction. On top of this, we showed that for graphs
with positive flexibility, with two given vertices on the outer face, all relevant embeddings
can in fact be encoded in a single number, the maximum rotation. This allowed us to
address the problem FlexDraw on a very high abstraction level, simply by computing the
maximum rotation of the whole graph. Afterwards, a whole machinery of combinatorial
results was available to produce a corresponding solution.

Finally, in Chapter 8, we got a reminder of how friendly planarity actually is. There,
we had a small glimpse of what happens when we leave the realm of planarity and consider
even only slightly non-planar drawings, namely simultaneous embeddings with fixed edges
of two graphs. In this case, it seems that the fact that we could use the SPQR-tree of the
intersection graph to handle its embedding (and thus a large part of the embedding of each
graph), helped a lot to keep control of the many different possibilities to embed the two
input graphs.

Outlook. As indicated in each of the chapters, many of the results presented in this
thesis lead to related questions that are theoretically interesting and are well worth studying.
Here we take a broader look and raise some challenges for future research in the area of
planar graphs, and beyond.

In terms of combinatorial optimization, by now there exist a lot of very efficient
algorithms that are specialized to planar graphs. Still, some of the most basic problems are
not yet solved in a satisfying manner. The obvious two questions in this field are to either
resolve more questions on planar graphs or to extend results for planar graphs to more
general graphs, in particular to bounded genus graphs, k-degenerate graphs, and graphs
that admit small, balanced separators. Further, many of the very efficient algorithms for
planarity are rather complicated, and it is an ongoing endeavor to simplify these algorithms
and unify their descriptions while maintaining their theoretical guarantees. The recent
progress in designing simple and efficient algorithms for planarity testing [HT08, Bra09]
and maximum flows in planar graphs [Eri10] shows great potential and possibly leads to a
deeper understanding of planarity, which may in turn enable the generalization of such
algorithms to more general graphs.

Also for planar graphs, a lot of very basic questions are still open. For example, what is
the complexity of determining the treewidth of a planar graph? For general graphs, this
problem is NP-complete. For planar graphs, however, neither an NP-hardness proof nor a
polynomial-time algorithm is known. But also for polynomial-time solvable problems a lot
of challenges remain, in particular when it comes to determining their exact complexity.
Until now, there is a lack of lower bounds in the area of planar graph algorithms, and
essentially only linear-time algorithms are provably optimal. Not too long ago, it was shown
that maximum st-flows in planar graphs can be computed in O(n logn) time [BK09, Eri10],
which is at least optimal to within a polylogarithmic factor. For computing maximum
matchings, a corresponding result is still unknown, the fastest known maximum matching
algorithm for planar graphs has running time O(nc) with c > 1. However, for bipartite
planar graphs, at least a perfect matching can be found faster, namely in O(n log3 n)
time [MN95, FR06], which gives hope that also the general planar case might be solvable
in time O(n polylogn). Settling this question, one way or the other, would mean a huge
leap forward in determining the exact complexity of these problems.

Concerning graph drawing and network visualization, one future challenge rises from

215

the fact that in practice graphs are often not static, but change dynamically over time.
In this case it is important to visualize them in such a way that the user’s mental map
is preserved – in order to facilitate the recognition of stable substructures and to allow
for easy orientation. The work on partially embedded graphs in this thesis can be seen
as a step in this direction. A typical example of such graphs are UML diagrams that are
commonly used for describing software architectures, and thus change over time as the
software evolves. These diagrams are typically drawn in an orthogonal drawing style, where
the vertices are represented by large boxes. It seems worthwhile to investigate whether
combining the ideas of drawing important edges with fewer bends, and that of preserving as
much of a previous drawing as possible yields good algorithms for drawing UML diagrams
in a dynamic setting.

Given the crucial role that planarity has played in the development of graph theory and
its fundamental importance in graph drawing, it would probably be an exaggeration to claim
that planarity will become more important in the future. Rather I believe that planarity
will keep its importance, in particular as a stepping stone for developing algorithms for
larger, more general classes of graphs.

Whereas planar graphs form a large class of graphs with a rich structure, one should
not forget that many applications involve graphs that are not planar. Fortunately, many
real-world graphs are sparse, and in many cases in some sense close to planar. Clearly,
there is a strong demand for efficient algorithms to handle such graphs. Several notions for
describing these “slightly non-planar” graphs have been suggested, for example quasi-planar
graphs (graphs that can be drawn in the plane such that no three of its edges are pairwise
crossing), almost-planar graphs (graphs for which for each edge e at least one of G − e
and G/e is planar), k-planar graphs (graphs that can be drawn such that each edge has at
most k crossings), and recently RAC graphs (graphs that have straight-line drawings such
that all crossings form a right angle). In particular in the area of graph drawing, as the
large number of papers on RAC graphs and RAC drawings at the last two graph drawing
conferences shows, a shift towards studying and understanding these non-planar graphs
has already started.

I believe that it will become a major challenge of the coming years to develop a theoretical
toolbox for handling such close-to-planar graphs, and to adapt, enhance and generalize as
many algorithms for planar graphs as possible to these larger graph classes.

Bibliography

[ADF+10a] Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Vít Jelínek, Jan
Kratochvíl, Maurizio Patrignani, and Ignaz Rutter. Testing planarity of
partially embedded graphs. In Proceedings 21st ACM-SIAM Symposium on
Discrete Algorithms (SODA’10), pages 202–221. SIAM, 2010. [see page 81]

[ADF+10b] Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrignani,
and Ignaz Rutter. Testing the simultaneous embeddability of two graphs
whose intersection is a biconnected graph or a tree. In C. S. Iliopoulos
and W. F. Smyth, editors, Proc. 21st Internat. Workshop Combinatorial
Algorithms (IWOCA’10), volume 6460 of Lecture Notes Comput. Sci., pages
212–225. Springer-Verlag, 2010. [see page 165]

[AGH+08] Manuel Abellanas, Alfredo García, Ferran Hurtado, Javier Tejel, and Jorge
Urrutia. Augmenting the connectivity of geometric graphs. Comput. Geom.
Theory Appl., 40(3):220–230, 2008. [see pages 24, 25, 39, and 42]

[AGKN10] Patrizio Angelini, Markus Geyer, Michael Kaufmann, and Daneiel Neuwirth.
On a tree and a path with no geometric simultaneous embedding. In Ulrik
Brandes and Sabine Cornelsen, editors, Proc. 18th Internat. Sympos. Graph
Drawing (GD ’10), volume 6502 of Lecture Notes Comput. Sci., pages 38–49.
Springer-Verlag, 2010. [see page 166]

[AJIR+09] Marwan Al-Jubeh, Mashhood Ishaque, Kristóf Rédei, Diane L. Souvaine,
and Csaba D. Tóth. Tri-edge-connectivity augmentation for planar straight
line graphs. In Yingfei Dong, Ding-Zhu Du, and Oscar H. Ibarra, editors,
Proc. 20th Internat. Sympos. Algorithms Comput. (ISAAC’09), volume 5878
of Lecture Notes Comput. Sci., pages 902–912. Springer-Verlag, 2009. [see
page 25]

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. The
Annals of Mathematics, Second Series, 160(2):781–793, 2004. [see page 17]

[Alg07] Algorithmic Solutions. The LEDA user manual version 5.2. www.
algorithmic-solutions.info/leda_manual, visited 07/04/2007. [see
page 65]

[APT79] Bengt Aspvall, Michael F. Plass, and Robert E. Tarjan. A linear-time algo-
rithm for testing the truth of certain quantified boolean formulas. Information
Processing Letters, 8(3):121–123, 1979. [see pages 18, 176, and 183]

[BBDL01] Therese Biedl, Prosenjit Bose, Eric Demaine, and Anna Lubiw. Efficient
algorithms for Petersen’s theorem. J. Algorithms, 38:110–134, 2001. [see
page 66]

218 Bibliography

[BCD+07] Peter Braß, Eowyn Cenek, Christian A. Duncan, Alon Efrat, Cesim Erten,
Dan P. Ismailescu, Stephen G. Kobourov, Anna Lubiw, and Joseph S. B.
Mitchell. On simultaneous planar graph embeddings. Computational Geom-
etry, 36(2):117–130, 2007. [see page 166]

[BDD00] Paola Bertolazzi, Giuseppe Di Battista, and Walter Didimo. Computing
orthogonal drawings with the minimum number of bends. IEEE Trans.
Computers, 49(8):826–840, 2000. [see page 86]

[BDD+04] Therese Biedl, Erik D. Demaine, Christian A. Duncan, Rudolf Fleischer, and
Stephen G. Kobourov. Tight bounds on maximal and maximum matchings.
Discrete Math., 285(1–3):7–15, 2004. [see page 66]

[BK94] Therese Biedl and Goos Kant. A better heuristic for orthogonal graph
drawings. In Proc. 2nd Europ. Symp. Algorithms (ESA’94), volume 855
of Lecture Notes Comput. Sci., pages 24–35. Springer-Verlag, 1994. [see
pages viii, 192, 193, and 212]

[BK09] Glencora Borradaile and Philip Klein. An o(n logn) algorithm for maximum
st-flow in a directed planar graph. J. ACM, 56(2), 2009. [see pages 2 and 214]

[BKRW11] Thomas Bläsius, Marcus Krug, Ignaz Rutter, and Dorothea Wagner. Or-
thogonal graph drawing with flexibility constraints. In U. Brandes and
S. Cornelsen, editors, Proc. 18th Internat. Sympos. Graph Drawing (GD’10),
volume 6502 of Lecture Notes Comput. Sci., pages 92–104. Springer-Verlag,
2011. [see page 191]

[BM89] Daniel Bienstock and Clyde L. Monma. Optimal enclosing regions in planar
graphs. Networks, 19:79–94, 1989. [see page 12]

[BM90] Daniel Bienstock and Clyde L. Monma. On the complexity of embedding
planar graphs to minimize certain distance measures. Algorithmica, 5(1):93–
109, 1990. [see page 12]

[BM04] John M. Boyer and Wendy J. Myrvold. On the cutting edge: simplified O(n)
planarity by edge addition. J. Graph Alg. Appl., 8(3):241–273, 2004. [see
pages 2 and 11]

[Bra09] Ulrik Brandes. The left-right planarity test. manuscript, 2009. [see page 214]

[CGMW09] Markus Chimani, Carsten Gutwenger, Petra Mutzel, and Christian Wolf.
Inserting a vertex into a planar graph. In SODA ’09: Proceedings of the
twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
375–383, Philadelphia, PA, USA, 2009. SIAM. [see page 193]

[Cha91] Bernard Chazelle. Triangulating a simple polygon in linear time. Discrete
Comput. Geom., 6(1):485–524, 1991. [see page 42]

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to algorithms. MIT Press, Cambridge, MA, USA, 2nd
edition, 2001. [see pages 7 and 38]

Bibliography 219

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Proc.
3rd Annu. ACM Sympos. Theor. Comput. (STOC’71), pages 151–158. ACM,
1971. [see page 18]

[Coo03] Matthew Cook. Still Life Theory. In C. Moore and D. Griffeath, editors,
New Constructions in Cellular Automata, volume 226, pages 93–118. Oxford
University Press, 2003. [see page 47]

[Cor88] Gerard Cornuéjols. General factors of graphs. Journal of Combinatorial
Theory, Series B, 45:185–198, 1988. [see page 59]

[COS01] Richard Cole, Kirstin Ost, and Stefan Schirra. Edge-coloring bipartite
multigraphs in O(E logD) time. Combinatorica, 21, 2001. [see page 66]

[CW87] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arith-
metic progressions. In Proc. 19th Annu. ACM Conf. Theory Comput.
(STOC’87), pages 1–6, 1987. [see page 65]

[dBCvKO08] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars.
Computational Geometry: Algorithms and Applications. Springer-Verlag,
Berlin, 3rd edition, 2008. [see page 40]

[dBK10] Mark de Berg and Amirali Khosravi. Optimal binary space partitions in the
plane. In Proc. 16th International Computing and Combinatorics Conference
(COCOON’2010), volume 6196 of Lecture Notes Comput. Sci., pages 216–225.
Springer-Verlag, 2010. [see page 51]

[dFdMR06] Hubert de Fraysseix, Patrice O. de Mendez, and Pierre Rosenstiehl. Trémaux
trees and planarity. Int. J. Found. Comput. Sci., 17:1017–1030, 2006. [see
pages 2 and 11]

[Die10] Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in Mathe-
matics. Springer-Verlag, Heidelberg, 4th edition edition, 2010. [see page 7]

[DL07a] Emilio Di Giacomo and Giuseppe Liotta. Simultaneous embedding of outer-
planar graphs, paths, and cycles. Int. J. Comput. Geom. Appl., 17(2):139–160,
2007. [see page 114]

[DL07b] Emilio Di Giacomo and Giuseppe Liotta. Simultaneous embedding of out-
erplanar graphs, paths, and cycles. Int. J. Computational Geometry and
Applications, 17(2):139–160, 2007. [see page 166]

[DLV98] Giuseppe Di Battista, Giuseppe Liotta, and Francesco Vargiu. Spirality and
optimal orthogonal drawings. SIAM J. Comput., 27(6):1764–1811, 1998. [see
pages 192 and 195]

[DMP64] G. Demoucron, Y. Malgrange, and R. Pertuiset. Reconnaissance et con-
struction de représentations planaires topologiques. Rev. Franc. Rech. Oper.,
8:33–34, 1964. [see page 147]

[Dor02] Christoph Dornheim. Planar graphs with topological constraints. J. Graph
Alg. Appl., 6(1):27–66, 2002. [see page 82]

220 Bibliography

[DT96a] Giuseppe Di Battista and Roberto Tamassia. On-line planarity testing.
SIAM J. Comput., 25(5):956–997, 1996. [see pages 12, 81, and 82]

[DT96b] Giuseppe DiBattista and Roberto Tamassia. On-line maintenance of tricon-
nected components with spqr-trees. Algorithmica, 15:302–318, 1996. [see
page 12]

[EBGJ+07a] Alejandro Estrella-Balderrama, Elisabeth Gassner, Michael Jünger, Merijam
Percan, Marcus Schaefer, and Michael Schulz. Simultaneous geometric graph
embeddings. In S.-H. Hong, T. Nishizeki, and W. Quan, editors, GD ’07,
volume 4875 of Lecture Notes Comput. Sci., pages 280–290, 2007. [see
page 114]

[EBGJ+07b] Alejandro Estrella-Balderrama, Elisabeth Gassner, Michael Jünger, Merijam
Percan, Marcus Schaefer, and Michael Schulz. Simultaneous geometric graph
embeddings. In S. H. Hong, T. Nishizeki, and W. Quan, editors, Graph
Drawing (GD ’07), volume 4875 of LNCS, pages 280–290, 2007. [see page 166]

[Edm69] Jack Edmonds. Submodular functions, matroids, and certain polyhedra.
In Proceedings of the Calgary International Conference on Combinatorial
Structures and Their Applications, pages 69–87, Calgary, 1969. [see page 53]

[EK04] Cesim Erten and Stephen G. Kobourov. Simultaneous embedding of planar
graphs with few bends. In J. Pach, editor, GD ’04, volume 3383 of Lecture
Notes Comput. Sci., pages 195–205, 2004. [see page 114]

[EK05] Cesim Erten and Stephen G. Kobourov. Simultaneous embedding of planar
graphs with few bends. J. Graph Algorithms Appl., 9(3):347–364, 2005. [see
page 166]

[Eri10] Jeff Erickson. Maximum flows and parametric shortest paths in planar
graphs. In Proceedings 21st ACM-SIAM Symposium on Discrete Algorithms
(SODA’10), pages 794–804. SIAM, 2010. [see pages 2 and 214]

[ET76] Kapali P. Eswaran and Robert E. Tarjan. Augmentation problems. SIAM J.
Comput., 5(4):653–665, 1976. [see page 24]

[FF56] Lester R. Ford and Delbert R. Fulkerson. Maximal flow through a network.
Canad. J. Math., 15(4):302–318, 1956. [see pages 195 and 205]

[FGJ+08a] J. J. Fowler, C. Gutwenger, M. Jünger, P. Mutzel, and M. Schulz. An
SPQR-tree approach to decide special cases of simultaneous embedding with
fixed edges. In I. G. Tollis and M. Patrignani, editors, Graph Drawing (GD
’08), volume 5417 of Lecture Notes Comput. Sci., pages 157–168, 2008. [see
page 166]

[FGJ+08b] Joseph Fowler, Carsten Gutwenger, Michael Jünger, Petra Mutzel, and
Michael Schulz. An SPQR-tree approach to decide special cases of simulta-
neous embedding with fixed edges. In I. G. Tollis and M. Patrignani, editors,
GD ’08, volume 5417 of Lecture Notes Comput. Sci., pages 157–168, 2008.
[see page 114]

Bibliography 221

[Fia03] Jiří Fiala. NP-completeness of the edge precoloring extension problem on
bipartite graphs. J. Graph Theory, 43(2):156–160, 2003. [see page 82]

[FJ81] Greg N. Frederickson and Joseph Ja’Ja’. Approximation algorithms for
several graph augmentation problems. SIAM J. Comput., 10(2):270–283,
1981. [see pages 24 and 46]

[FJKS08] Joseph Fowler, Michael Jünger, Stephen G. Kobourov, and Michael Schulz.
Characterizations of restricted pairs of planar graphs allowing simultaneous
embedding with fixed edges. In H. Broersma, T. Erlebach, T. Friedetzky,
and D. Paulusma, editors, WG ’08, volume 5344 of Lecture Notes Comput.
Sci., pages 146–158, 2008. [see pages 114 and 166]

[FM98] Sergej Fialko and Petra Mutzel. A new approximation algorithm for the
planar augmentation problem. In Proc. 9th Annu. ACM-SIAM Sympos.
Discrete Algorithms (SODA’98), pages 260–269, 1998. [see page 24]

[FR06] Jittat Fakcharoenphol and Satish Rao. Planar graphs, negative weight,
shortest paths, and near linear time. J. Comput. System Sci., 72:868–889,
2006. [see pages 66 and 214]

[Fra06] Fabrizio Frati. Embedding graphs simultaneously with fixed edges. In
M. Kaufmann and D. Wagner, editors, GD ’06, volume 4372 of Lecture Notes
Comput. Sci., pages 108–113, 2006. [see pages 114 and 166]

[FRW10] Robert Franke, Ignaz Rutter, and Dorothea Wagner. Computing large
matchings in planar graphs with fixed minimum degree. Theoret. Comput.
Sci., 2010. available online, http://dx.doi.org/10.1016/j.tcs.2010.06.
012. [see page 65]

[GJ77] Michael R. Garey and David S. Johnson. The rectilinear steiner tree problem
is NP-complete. SIAM J. Appl. Math., 32(4):826–834, 1977. [see page 113]

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability. A
Guide to the Theory of NP-Completeness. W.H. Freeman and Company,
1979. [see pages 7, 18, 19, and 50]

[GJP+06] Elisabeth Gassner, Michael Jünger, Merijam Percan, Marcus Schaefer, and
Michael Schulz. Simultaneous graph embeddings with fixed edges. In F. V.
Fomin, editor, WG ’06, volume 4271 of Lecture Notes Comput. Sci., pages
325–335, 2006. [see pages 114 and 166]

[GK04] Jan F. Groote and M. K. Keinänen. Solving disjunctive/conjunctive boolean
equation systems with alternating fixed points. In Proceedings of the 10th
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’04), volume 2988 of Lecture Notes Comput.
Sci., pages 436–450. Springer-Verlag, 2004. [see page 48]

[GKM08] Carsten Gutwenger, Karsten Klein, and Petra Mutzel. Planarity testing and
optimal edge insertion with embedding constraints. J. Graph Algorithms
Appl., 12(1):73–95, 2008. [see pages 82 and 116]

http://dx.doi.org/10.1016/j.tcs.2010.06.012
http://dx.doi.org/10.1016/j.tcs.2010.06.012

222 Bibliography

[GKT01] Harold N. Gabow, Haim Kaplan, and Robert E. Tarjan. Unique maximum
matching algorithms. J. Algorithms, 40(2):159–183, 2001. [see page 66]

[GKV09] Markus Geyer, Michael Kaufmann, and Imrich Vrt’o. Two trees which are self-
intersecting when drawn simultaneously. Discrete Math., 307(4):1909–1916,
2009. [see page 166]

[GLS88] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algo-
rithms and Combinatorial Optimization, chapter 9: Stable Sets in Graphs,
pages 273–303. Springer-Verlag, 1988. [see page 82]

[GM00] Carsten Gutwenger and Petra Mutzel. A linear time implementation of
SPQR-trees. In J. Marks, editor, GD ’99, volume 1984 of Lecture Notes
Comput. Sci., pages 77–90, 2000. [see pages 16, 86, 87, 96, 168, and 203]

[GMW01] Carsten Gutwenger, Petra Mutzel, and René Weiskircher. Inserting an edge
into a planar graph. In SODA ’01: Proceedings of the twelfth annual ACM-
SIAM symposium on Discrete algorithms, pages 246–255, Philadelphia, PA,
USA, 2001. SIAM. [see page 193]

[GP08] Jan F. Groote and Bas Ploeger. Switching graphs. In Proceedings of the
2nd Workshop on Reachability Problems (RP’2008), ENTCS, pages 119–135,
2008. [see pages 47 and 48]

[GT85] Harold N. Gabow and Robert E. Tarjan. A linear-time algorithm for a
special case of disjoint set union. Journal of Computer and System Sciences,
30:209–221, 1985. [see page 179]

[GT01] Ashim Garg and Roberto Tamassia. On the computational complexity of
upward and rectilinear planarity testing. SIAM J. Comput., 31(2):601–625,
2001. [see pages viii, 192, 193, 209, 210, and 211]

[Hal35] Philip Hall. On representatives of subsets. Jour. London Math. Soc., 10:26–30,
1935. [see pages 55 and 66]

[Han08] Yijie Han. Matching for graphs of bounded degree. In Frontiers in Algorith-
mics, volume 5059 of Lecture Notes Comput. Sci., pages 171–173, 2008. [see
page 66]

[HJL10] Bernhard Haeupler, Krishnam Raju Jampani, and Anna Lubiw. Testing
simultaneous planarity when the common graph is 2-connected. In Proceed-
ings of the 21st Symposium on Algorithms and Computation (ISAAC’10),
volume 6507 of LNCS, pages 410–421. Springer Heidelberg/Berlin, 2010. [see
page 166]

[HJSW90] Derek A. Holton, Bill Jackson, Akira Saito, and Nicholas C. Wormald.
Removable edges in 3-connected graphs. Journal of Graph Theory, 14(4):465–
473, 1990. [see page 129]

[HKRS97] Monika R. Henzinger, Philip Klein, Satish Rao, and Sairam Subramanian.
Faster shortest-path algorithms for planar graphs. Journal of Computer and
System Sciences, 55:3–23, 1997. [see pages 2 and 200]

Bibliography 223

[HN09] Seok-Hee Hong and Hiroshi Nagamochi. Two-page book embedding and
clustered graph planarity. Tech. Report 2009-004, Department of Applied
Mathematics & Physics, Kyoto University, 2009. [see pages 166, 189, and 190]

[Hsu02] Tsan-sheng Hsu. Simpler and faster biconnectivity augmentation. J. Algo-
rithms, 45(1):55–71, 2002. [see page 24]

[HT73] John E. Hopcroft and Robert E. Tarjan. Dividing a graph into triconnected
components. SIAM J. Comput., 2(3):135–158, 1973. [see page 11]

[HT74] John E. Hopcroft and Robert E. Tarjan. Efficient planarity testing. J. ACM,
21(4):549–568, 1974. [see pages v, 2, and 11]

[HT84] Dov Harel and Robert E. Tarjan. Fast algorithms for finding nearest common
ancestors. SIAM J. on Computing, 13(2):338–355, 1984. [see page 180]

[HT08] Bernhard Haeupler and Robert E. Tarjan. Planarity algorithms via pq-trees.
Electr. Notes Discrete Math., 31:143–149, 2008. [see pages 11 and 214]

[Huc93] Ulrich Huckenbeck. On paths in networks with valves. In Proceedings of
the 10th Annual Symposium on Theoretical Aspects of Computer Science
(STACS’93), volume 665 of Lecture Notes Comput. Sci., pages 90–99, 1993.
[see page 48]

[Huc97] Ulrich Huckenbeck. On valve adjustments that interrupt all s-t-paths in a
digraph. Journal of Automata, Languages and Combinatorics, 2(1):19–45,
1997. [see page 48]

[HZ93] Pierre Hansen and Mao Lin Zheng. A linear algorithm for perfect matching
in hexagonal systems. Discrete Math., 122(1-3):179–196, 1993. [see page 66]

[JKR11] Vít Jelínek, Jan Kratochvíl, and Ignaz Rutter. A Kuratowski-type theorem
for planariy of partially embedded graphs. In Ferran Hurtado and Marc
van Kreveld, editors, Proc. 27th Annu. Sympos. Comput. Geom., 2011. to
appear. [see page 117]

[JM05] Martin Juvan and Bojan Mohar. 2-restricted extensions of partial embeddings
of graphs. European J. Comb., 26(3–4):339–375, 2005. [see pages 82 and 147]

[JS09] Michael Jünger and Michael Schulz. Intersection graphs in simultaneous
embedding with fixed edges. J. Graph Algorithms Appl., 13(2):205–218, 2009.
[see pages 114, 118, 166, and 168]

[Kan93] Goos Kant. Algorithms for Drawing Planar Graphs. PhD thesis, University
of Utrecht, 1993. [see page 25]

[Kan96] Goos Kant. Augmenting outerplanar graphs. J. Algorithms, 21(1):1–25, 1996.
[see pages 24, 25, and 46]

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In J. W.
Thatcher and R. E. Miller, editors, Complexity of Computer Computations.
Plenum Press, 1972. [see page 18]

224 Bibliography

[KB91] Goos Kant and Hans L. Bodlaender. Planar graph augmentation problems.
In Frank Dehne, Jörg-Rüdiger Sack, and Nicola Santoro, editors, Proc. 2nd
Workshop Algorithms and Data Structures (WADS’91), volume 519 of Lecture
Notes Comput. Sci., pages 286–298. Springer-Verlag, 1991. [see pages 23, 24,
25, and 26]

[KK03] Lukasz Kowalik and Maciej Kurowski. Short path queries in planar graphs
in constant time. In STOC ’03, pages 143–148, 2003. [see pages 87 and 106]

[KKRW10] Bastian Katz, Marcus Krug, Ignaz Rutter, and Alexander Wolff. Manhattan-
geodesic embedding of planar graphs. In David Eppstein and Emden Gansner,
editors, Proc. 17th Internat. Sympos. Graph Drawing (GD’09), Lect. Notes
Comput. Sci. Springer-Verlag, 2010. To appear. [see page 116]

[KN05] Sven O. Krumke and Hartmut Noltenmeier. Graphentheoretische Konzepte
und Algorithmen. Teubner, 2005. [see page 38]

[KR92] Donald E. Knuth and Arvind Raghunathan. The problem of compatible
representatives. SIAM J. Discrete Math., 5(3):422–427, 1992. [see page 26]

[KR96] Claire Kenyon and Eric Rémila. Perfect matchings in the triangular lattice.
Discrete Math., 152(1–3):191–210, 1996. [see page 66]

[Kri00] Matthias Kriesell. Contractible subgraphs in 3-connected graphs. J. Comb.
Theory Ser. B, 80:32–48, 2000. [see page 128]

[Kri02] Matthias Kriesell. A survey on contractible edges in graphs of a prescribed
vertex connectivity. Graphs and Combinatorics, 18:1–30, 2002. [see page 128]

[KRW10] Bastian Katz, Ignaz Rutter, and Gerhard Woeginger. An algorithmic study
of switch graphs. In Proc. 35th International Workshop Graph-Theoretic
Concepts in Computer Science (WG’09), volume 5911 of Lecture Notes
Comput. Sci., pages 226–237. Springer-Verlag, 2010. [see page 47]

[KS97] Jan Kratochvíl and Andras Sebő. Coloring precolored perfect graphs. J.
Graph Theory, 25:207–215, 1997. [see page 82]

[Kur30] Kazimierz Kuratowski. Sur le problème des courbes gauches en topologie.
Fund. Math., 15:271–283, 1930. [see pages v, vii, 2, 11, and 117]

[KV08] Bernhard Korte and Jens Vygen. Combinatorial Optimization. Springer-
Verlag, 4th edition edition, 2008. [see pages 7 and 52]

[KW02] Michael Kaufmann and Roland Wiese. Embedding vertices at points: Few
bends suffice for planar graphs. J. Graph Algorithms Appl., 6(1):115–129,
2002. [see page 193]

[Lam70] Gerard Laman. On graphs and rigidity of plane skeletal structures. J.
Engineering Mathematics, 4(4):331–340, 1970. [see page 63]

[Lic82] David Lichtenstein. Planar formulae and their uses. SIAM J. Comput.,
11(2):329–343, 1982. [see pages 18 and 26]

Bibliography 225

[LMPS92] Yanpei Liu, Paola Marchioro, Rosella Petreschi, and Bruno Simeone. Theo-
retical results on at most 1-bend embeddability of graphs. Acta Math. Appl.
Sinica (English Ser.), 8(2):188–192, 1992. [see page 192]

[LMS98] Yanpei Liu, Aurora Morgana, and Bruno Simeone. A linear algorithm for
2-bend embeddings of planar graphs in the two-dimensional grid. Discrete
Appl. Math., 81(1–3):69–91, 1998. [see page 192]

[LP86] László Lovász and Michael D. Plummer. Matching Theory. North Holland,
Amsterdam, 1986. [see page 65]

[LT79] Richard J. Lipton and Robert E. Tarjan. A separator theorem for planar
graphs. SIAM J. Appl. Math., 36:177–189, 1979. [see page 2]

[MdMS04] Aurora Morgana, Célia Picinin de Mello, and Giovanna Sontacchi. An
algorithm for 1-bend embeddings of plane graphs in the two-dimensional
grid. Discrete Appl. Math., 141(1-3):225–241, 2004. Brazilian Symposium on
Graphs, Algorithms and Combinatorics. [see page 193]

[Mei89] Christoph Meinel. Switching graphs and their complexity. In Proceedings
of the 14th Conference on Mathematical Foundations of Computer Science
(MFCS’1989), volume 379 of Lecture Notes Comput. Sci., pages 350–359.
Springer-Verlag, 1989. [see page 47]

[Mel87] Avraham A. Melkman. On-line construction of the convex hull of a simple
polyline. Inform. Process. Lett., 25(1):11–12, 1987. [see pages 34 and 42]

[MMNS10] Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer.
Certifying algorithms. manuscript, 2010. [see page 115]

[MN95] Gary L. Miller and Joseph Naor. Flow in planar graphs with multiple sources
and sinks. SIAM J. Comput., 24(5):1002–1017, 1995. [see pages 66, 199,
and 214]

[Moh99] Bojan Mohar. A linear time algorithm for embedding graphs in an arbitrary
surface. SIAM J. Discr. Math., 12(1):6–26, 1999. [see page 82]

[MS04] Marcin Mucha and Piotr Sankowski. Maximum matchings via Gaussian
elimination. In Proc. 45th Annu. IEEE Sympos. Foundat. Comput. Sci.
(FOCS’04), pages 248–255, 2004. [see page 65]

[MS06] Marcin Mucha and Piotr Sankowski. Maximum matchings in planar graphs
via Gaussian elimination. Algorithmica, 45(1):3–20, 2006. [see pages 2, 3,
and 65]

[Mut03] Petra Mutzel. The SPQR-tree data structure in graph drawing. In J. C. M.
Baeten, J. K. Lenstra, J. Parrow, and G. J. Woeginger, editors, ICALP ’03,
volume 2719 of Lecture Notes Comput. Sci., pages 34–46, 2003. [see page 82]

[MV80] Silvio Micali and Vijay V. Vazirani. An O(
√
|V | · |E|) algorithm for finding

maximum matchings in general graphs. In Proc. 21st Annu. IEEE Sympos.
Found. Comput. Sci. (FOCS’80), pages 17–27, 1980. [see page 65]

226 Bibliography

[NB79] Takao Nishizeki and Ilker Baybars. Lower bounds on the cardinality of the
maximum matchings of planar graphs. Discrete Math., 28(3):255–267, 1979.
[see pages vii, 4, 66, 67, and 76]

[Pat06] Maurizio Patrignani. On extending a partial straight-line drawing. Found.
Comput. Sci., 17(5):1061–1069, 2006. [see pages vii, 5, 82, and 116]

[PB99] J. Scott Provan and Roger C. Burk. Two-connected augmentation problems
in planar graphs. J. Algorithms, 32:87–107, 1999. [see page 24]

[Pet91] Julius Petersen. Die Theorie der regulären Graphs. Acta Mathematica,
15:193–220, 1891. [see pages 65 and 66]

[Ple79] J. Plesńik. The NP-completeness of the Hamiltonian Cycle Problem in
planar digraphs with degree bound two. Information Processing Letters,
8(4):199–201, 1979. [see pages 18 and 60]

[Pou94] Han La Poutré. Alpha-algorithms for incremental planarity testing. In STOC
’94, pages 706–715, 1994. [see page 81]

[PW01] János Pach and Rephael Wenger. Embedding planar graphs at fixed vertex
locations. Graphs and Combinatorics, 17:717–728, 2001. [see page 10]

[PY81] Christos H. Papadimitriou and Mihalis Yannakakis. Worst-case ratios for
planar graphs and the method of induction on faces. In Proc. 22nd Annu.
IEEE Sympos. Foundat. Comput. Sci. (FOCS’81), pages 358–363, 1981. [see
page 66]

[Rap89] David Rappaport. Computing simple circuits from a set of line segments is
NP-complete. SIAM J. Comput., 18(6):1128–1139, 1989. [see pages 24, 25,
and 26]

[Rei09] Klaus Reinhardt. The simple reachability problem in switch graphs. In
Proceedings of the 35th Conference on Current Trends in Theory and Practice
of Computer Science (SOFSEM’2009), volume 5404 of Lecture Notes Comput.
Sci., pages 461–472. Springer-Verlag, 2009. [see pages 48 and 49]

[RS04] Neil Robertson and Paul Seymour. Graph minors. XX. wagner’s conjecture.
J. Combinat. Theor., Ser. B, 92(2):325–357, 2004. [see page 163]

[RW08a] Ignaz Rutter and Alexander Wolff. Augmenting the connectivity of planar
and geometric graphs. Electr. Notes Discrete Math., 31:53–56, 2008. [see
page 23]

[RW08b] Ignaz Rutter and Alexander Wolff. Augmenting the connectivity of planar
and geometric graphs. Technical Report 2008-3, Universität Karlsruhe, 2008.
Available at www.ubka.uni-karlsruhe.de/indexer-vvv/ira/2008/3. [see
page 23]

[RW08c] Ignaz Rutter and Alexander Wolff. Computing large matchings fast. In
Proc. 19th Annu. ACM-SIAM Sympos. Discr. Algorithms (SODA’08), pages
183–192, 2008. [see page 66]

Bibliography 227

[RW10] Ignaz Rutter and Alexander Wolff. Computing large matchings fast. ACM
Trans. Algorithms, 1, 2010. [see page 66]

[Sch99] Alexander Schrijver. Bipartite edge coloring in O(∆m) time. SIAM J.
Comput., 28:841–846, 1999. [see page 66]

[SGYBD05] Roded Sharan, Jens Gramm, Zohar Yakhini, and Amir Ben-Dor. Multiplexing
schemes for generic SNP genotyping assays. Journal of Comp. Biology, 15:514–
533, 2005. [see page 48]

[SLL07] Jeremiy Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph
Library documentation. www.boost.org/libs/graph, visited 07/04/2007.
[see page 65]

[Syl78] John J. Sylvester. Chemstry and algebra. Nature, 17:284, 1878. [see page 1]

[Tam87] Roberto Tamassia. On embedding a graph in the grid with the minimum
number of bends. SIAM J. Comput., 16(3):421–444, 1987. [see pages 10, 193,
194, 195, 196, and 199]

[Tam96] Roberto Tamassia. On-line planar graph embedding. J. Algorithms, 21(2):201–
239, 1996. [see page 81]

[Tam98] Roberto Tamassia. Constraints in graph drawing algorithms. Constraints,
3(1):87–120, 1998. [see page 82]

[Tar72] Robert E. Tarjan. Depth first search and linear graph algorithms. SIAM J.
Comput., 2:146–160, 1972. [see page 87]

[Tar83] Robert E. Tarjan. Data structures and network algorithms. SIAM, Philadel-
phia, 1983. [see pages 58, 65, and 75]

[TDB88] Roberto Tamassia, Giuseppe Di Battista, and Carlo Batini. Automatic graph
drawing and readability of diagrams. IEEE Trans. Syst., Man and Cyber.,
18(1):61–79, 1988. [see page 82]

[Thu90] William P. Thurston. Conway’s tiling groups. Amer. Math. Monthly,
97(8):757–773, 1990. [see page 66]

[Tót08] Csaba D. Tóth. Connectivity augmentation in plane straight line graphs.
Electronic Notes in Discrete Mathematics, 31:49–52, 2008. [see pages 24
and 39]

[Tut47] William T. Tutte. The factorization of linear graphs. J. Lond. Math. Soc.,
22:107–111, 1947. [see page 66]

[TV09] Csaba D. Tóth and Pavel Valtr. Augmenting the edge connectivity of
planar straight line graphs to three. In Proc. XIII Encuentros de Geometría
Computacional (EGC’09), Zaragoza, 2009. [see page 24]

[Wes92] Jeffery Westbrook. Fast incremental planarity testing. In W. Kuich, editor,
ICALP ’92, volume 623 of Lecture Notes Comput. Sci., pages 342–353, 1992.
[see page 81]

228 Bibliography

[Whi32] Hassler Whitney. Congruent graphs and the connectivity of graphs. American
J. Math., 54(1):150–168, 1932. [see pages 10 and 27]

[YZ07] Raphael Yuster and Uri Zwick. Maximum matching in graphs with an
exluded minor. In Proc. 18th Annu. ACM-SIAM Sympos. Discr. Algorithms
(SODA’07), pages 108–117, 2007. [see page 65]

List of Publications

Journal Articles
[1] Computing Large Matchings in Planar Graphs with Fixed Minimum De-

gree. Theoretical Computer Science, 412(32):4092–4099, 2010. Joint work with Robert
Franke and Dorothea Wagner.

[2] Computing Large Matchings Fast. ACM Transactions on Algorithms, 7(1), 2010.
Joint work with Alexander Wolff.

[3] Augmenting the Connectivity of Planar and Geometric Graphs. Electronic
Notes in Discrete Mathematics, 31:53–56, 2008. Joint work with Alexander Wolff.

Articles in Refereed Conference Proceedings
[4] Generalizing Geometric Graphs. In: Proceedings of the 19th International Sym-

posium on Graph Drawing (GD’11), Lecture Notes in Computer Science. Springer,
2012. To appear, joint work with Edith Brunel, Andreas Gemsa, Marcus Krug, and
Dorothea Wagner.

[5] Hamiltonian Orthogeodesic Alternating Paths. In: Proceedings of the 22nd
International Workshop on Combinatorial Algorithms, Lecture Notes in Computer
Science. Springer, 2012. To appear, joint work with Emilio Di Giacomo, Luca Grilli,
Marcus Krug, and Giuseppe Liotta.

[6] Connecting Two Trees with Optimal Routing Cost. In: Proceedings of the
23rd Canadian Conference on Computational Geometry (CCCG ’11). University of
Toronto Press, 2011. To appear, joint work with Mong-Jen Kao, Bastian Katz, Marcus
Krug, D.T. Lee, Martin Nöllenburg, and Dorothea Wagner.

[7] Sliding Labels for Dynamic Point Labeling. In: Proceedings of the 23rd Canadian
Conference on Computational Geometry (CCCG ’11). University of Toronto Press,
2011. To appear, joint work with Andreas Gemsa and Martin Nöllenburg.

[8] The Density Maximization Problem in Graphs. In: Proceedings of the 17th
Annual International Conference on Computing Combinatorics (COCOON’11), Lec-
ture Notes in Computer Science. Springer, 2011. To appear, joint work with Mong-Jen
Kao, Bastian Katz, Marcus Krug, D.T. Lee, and Dorothea Wagner.

230 List of Publications

[9] Consistent Labeling of Rotating Maps. In: Algorithms and Data Structures,
12th International Symposium (WADS’11), volume 6844 of Lecture Notes in Computer
Science, pages 451–462. Springer, August 2011. Full version available at http://arxiv.
org/abs/1104.5634., Joint work with Andreas Gemsa and Martin Nöllenburg.

[10] A Kuratowski-Type Theorem for Planarity of Partially Embedded Graphs
. In: Proceedings of the 27th Annual ACM Symposium on Computational Geometry
(SoCG’11), pages 107–116. ACM Press, 2011. Joint work with Vít Jelínek and Jan
Kratochvíl.

[11] Speed Dating: An Algorithmic Case Study Involving Matching and
Scheduling. In: Proceedings of the 10th International Symposium on Experimental
Algorithms (SEA’11), volume 6630 of Lecture Notes in Computer Science, pages
292–303. Springer, 2011. Joint work with Bastian Katz, Ben Strasser, and Dorothea
Wagner.

[12] On d-regular Schematization of Embedded Paths. In: Proceedings of the 37th
International Conference on Current Trends in Theory and Practice of Computer
Science (SOFSEM’11), volume 6543 of Lecture Notes in Computer Science, pages
260–271. Springer, January 2011. Joint work with Andreas Gemsa, Martin Nöllenburg,
and Thomas Pajor.

[13] Orthogonal Graph Drawing with Flexibility Constraints. In: Proceedings of
the 18th International Symposium on Graph Drawing (GD’10), volume 6502 of Lecture
Notes in Computer Science, pages 92–104. Springer, 2011. Joint work with Thomas
Bläsius, Marcus Krug, and Dorothea Wagner.

[14] Testing the Simultaneous Embeddability of Two Graphs whose Intersec-
tion is a Biconnected Graph or a Tree. In: Proceedings of the 21st International
Workshop on Combinatorial Algorithms, volume 6460 of Lecture Notes in Computer
Science, pages 212–225. Springer, 2011. Joint work with Patrizio Angelini, Giuseppe
Di Battista, Fabrizio Frati, and Maurizio Patrignani.

[15] Testing Planarity of Partially Embedded Graphs. In: Proceedings of the 21st
Annual ACM–SIAM Symposium on Discrete Algorithms (SODA’10), pages 202–221.
SIAM, 2010. Joint work with Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati,
Vít Jelínek, Jan Kratochvíl, and Maurizio Patrignani.

[16] Gateway Decompositions for Constrained Reachability Problems. In: Pro-
ceedings of the 9th International Symposium on Experimental Algorithms (SEA’10),
volume 6049 of Lecture Notes in Computer Science, pages 449–461. Springer, May 2010.
Joint work with Bastian Katz, Marcus Krug, Andreas Lochbihler, Gregor Snelting,
and Dorothea Wagner.

[17] Manhattan-Geodesic Embedding of Planar Graphs. In: Proceedings of the
17th International Symposium on Graph Drawing (GD’09), volume 5849 of Lecture
Notes in Computer Science, pages 207–218. Springer, 2010. Joint work with Bastian
Katz, Marcus Krug, and Alexander Wolff.

[18] Computing Large Matchings in Planar Graphs with Fixed Minimum De-
gree. In: Proceedings of the 20th International Symposium on Algorithms and

http://arxiv.org/abs/1104.5634
http://arxiv.org/abs/1104.5634

List of Publications 231

Computation (ISAAC’09), volume 5878 of Lecture Notes in Computer Science, pages
872–881. Springer, 2009. Joint work with Robert Franke and Dorothea Wagner.

[19] An Algorithmic Study of Switch Graphs. In: Proceedings of the 35th Interna-
tional Workshop on Graph-Theoretic Concepts in Computer Science (WG’09), volume
5911 of Lecture Notes in Computer Science, pages 226–237. Springer, June 2009. Joint
work with Bastian Katz and Gerhard J. Woeginger.

[20] Augmenting the connectivity of planar and geometric graphs. In: Topological
& Geometric Graph Theory (TGGT’08), pages 55–58, 2008. Joint work with Alexander
Wolff.

[21] Computing Large Matchings Fast. In: Proceedings of the 19th Annual ACM–
SIAM Symposium on Discrete Algorithms (SODA’08), pages 183–192, 2008. Joint
work with Alexander Wolff.

Articles in Non-Refereed Workshop Proceedings
[22] How Alexander the Great Brought the Greeks Together While Inflicting

Minimal Damage to the Barbarians. In: Proceedings of the 26th European
Workshop on Computational Geometry (EuroCG’10), pages 73–76, 2010. Joint work
with Mark de Berg, Dirk Gerrits, Amirali Khosravi, Constantinos Tsirogiannis, and
Alexander Wolff.

Thesis
[23] Schnelle Berechnung von großen Matchings. Master’s thesis, Fakultät für

Informatik, Universität Karlsruhe, April 2007.

Posters
[24] Automatic Generation of Route Sketches. In: Proceedings of the 18th Inter-

national Symposium on Graph Drawing (GD’10), volume 6502 of Lecture Notes in
Computer Science, pages 391–392. Springer, 2011. Poster abstract., Joint work with
Andreas Gemsa, Martin Nöllenburg, and Thomas Pajor.

Curriculum Vitæ

Name Ignaz Rutter

Date of Birth 13 May 1981

Place of Birth Karlsruhe

Nationality German

06/2000 Abitur (university entrance qualification), Copernicus-Gymnasium
Philippsburg

10/2000–08/2001 Alternative civilian service, as youth worker at the German Young
Christian Workers association (CAJ)

10/2001–04/2007 Student in Informatics at Universität Karlsruhe (TH). Finished with
Dilpoma in Informatics.

05/2007–04/2008 Ph.D. student and research assistent in the project “Geometric Net-
works and their Visualization” funded by the German Research
Foundation (DFG), Fakultät für Informatik, Universität Karlsruhe
(TH). Advisor: Prof. Dr. Alexander Wolff

since 05/2008 Ph.D. student and reasearch assistent, chair Algorithmics I, Karlsruhe
Institute of Technology (KIT). Advisor: Prof. Dr. Dorothea Wagner

05.04–10.04.2009 Research guest of Prof. Jan Kratochvíl at Charles University, Prague,
Czech Republic

12.10–16.10.2009 Research guest of Prof. Giuseppe Di Battista and Prof. Maurizio
Patrignani at University Roma Tré, Rome, Italy

	Acknowledgments
	Deutsche Zusammenfassung (German Summary)
	Introduction
	Preliminaries
	Graphs and Related Concepts
	Drawings and Planarity
	The SPQR-tree
	Complexity

	Combinatorial Optimization on Planar Graphs
	Augmenting the Connectivity of Planar and Geometric Graphs
	Introduction
	Complexity
	Complexity of PECA
	Geometric PVCA and Geometric PECA

	Convex Geometric Graphs
	Biconnecting Convex Geometric Graphs
	Bridge-Connecting Convex Geometric Graphs
	Minimum-Weight Augmentation

	Path Augmentation
	Planar 2-Path Augmentation
	Geometric 2-Path Augmentation
	Geometric 3-Path Augmentation

	Concluding Remarks

	Switch Graphs
	Introduction
	Basic Definitions
	Bipartite, Planar, and Triangle-Free Graphs
	Global Connectivity
	Local Connectivity
	Even Degrees, Eulerian Graphs and Biconnectivity
	Acyclic and Almost Acyclic Graphs
	Concluding Remarks

	Matchings in Planar Graphs with Fixed Minimum Degree
	Introduction
	Exploiting Minimum Degrees
	Algorithm Based on Short Augmenting Paths
	More Structure via Pure Tree-Like Matchings

	Algorithm
	Enlargement by Adding a Suitable Edge
	Exploiting Existence of an Augmenting Path of Length 3
	Linear-Time Algorithm

	A Better Bound for Minimum Degree 5
	Concluding Remarks

	Embeddings of Planar Graphs
	Testing Planarity of Partially Embedded Graphs
	Introduction
	Notation and Preliminaries
	Drawings, Embeddings, and the Problem Definition
	Facial Cycles and H-Bridges
	Connectivity and Data Structures

	Combinatorial Characterization
	Planarity of Biconnected Pegs
	Planarity of Connected and Disconnected Pegs

	Linear-Time Algorithm
	G Biconnected, H Connected
	G Biconnected, All Vertices and Edges of G Lie in the Same Face of H
	G Biconnected
	G Connected or Disconnected

	Applications and Extensions
	Concluding Remarks

	A Kuratowski-Type Theorem for Planarity of Partially Embedded Graphs
	Introduction
	Preliminaries and Notation
	Biconnected Pegs
	P-Nodes
	R-Nodes

	Disconnected and 1-Connected Pegs
	Other Minor-Like Operations
	Concluding Remarks

	Simultaneous Embedding with Fixed Edges
	Introduction
	Preliminaries
	Computing a Sefe When the Intersection Graph is Biconnected
	A Polynomial-Time Algorithm
	A Linear-Time Algorithm

	The Intersection Graph is Connected
	Concluding Remarks

	Orthogonal Graph Drawing with Flexibility Constraints
	Introduction
	Preliminaries
	The Maximum Rotation with a Fixed Embedding
	Biconnected Graphs
	Quadratic-Time Implementation
	Connected Graphs
	Complexity
	Concluding Remarks

	Conclusion
	Bibliography
	List of Publications
	Curriculum Vitæ

