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Abstract

We consider two approaches that model timetable in-
formation in public transportation systems as shortest-
path problems in weighted graphs. In the time-expanded

approach every event at a station, e.g., the departure of
a train, is modeled as a node in the graph, while in
the time-dependent approach the graph contains only
one node per station. Both approaches have been re-
cently considered for the earliest arrival problem, but
little is known about their relative performance. So
far, there are only theoretical arguments in favor of the
time-dependent approach. In this paper, we provide
an extensive experimental comparison of the two ap-
proaches. Using several real-world data-sets we evaluate
the performance of the basic models and of several ex-
tensions towards realistic modeling. Furthermore, new
insights on solving bicriteria problems in both models
are presented. The time-expanded approach turns out
to be more robust for modeling more complex scenarios,
whereas the time-dependent approach shows a clearly
better performance.

1 Introduction

An important problem in public transportation systems
is to model timetable information so that subsequent
queries asking for optimal itineraries can be efficiently
answered. The main target that underlies the modeling
(and which applies not only to public transportation
systems, but also to other systems as well like route
planning for car traffic, database queries, web searching,
etc) is to process a vast number of on-line queries as
fast as possible. In this paper, we are concerned with
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a specific, query-intensive scenario arising in public
railway transport, where a central server is directly
accessible to any customer either through terminals in
train stations or through a web interface, and has to
answer a potentially infinite number of queries. The
main goal in such an application is to reduce the average
response time for a query.

Two main approaches have been proposed for mod-
eling timetable information: the time-expanded [5, 9,
11, 12], and the time-dependent approach [1, 6, 7, 8].
The common characteristic of both approaches is that
a query is answered by applying some shortest path al-
gorithm to a suitably constructed digraph. The time-
expanded approach [11] constructs the time-expanded
digraph in which every node corresponds to a specific
time event (departure or arrival) at a station and edges
between nodes represent either elementary connections
between the two events (i.e., served by a train that does
not stop in-between), or waiting within a station. De-
pending on the problem that we want to solve (see be-
low), the construction assigns specific fixed weights to
the edges. This naturally results in the construction
of a very large (but usually sparse) graph. The time-
dependent approach [1] constructs the time-dependent
digraph in which every node represents a station and
two nodes are connected by an edge if the correspond-
ing stations are connected by an elementary connection.
The weights on the edges are assigned “on-the-fly”, i.e.,
the weight of an edge depends on the time in which
the particular edge will be used by the shortest path
algorithm to answer the query.

The two most frequently encountered timetable
problems are the earliest arrival and the minimum
number of transfers problems. In the earliest arrival

problem, the goal is to find a train connection from
a departure station A to an arrival station B that
departs at A later than a given departure time and
arrives at B as early as possible. There are two variants
of the problem depending on whether train transfers
within a station are assumed to take negligible time
(simplified version) or not. In the minimum number

of transfers problem, the goal is to find a connection
that minimizes the number of train transfers when



considering an itinerary from A to B. We consider
also combinations of the above problems as bicriteria
problems.

Techniques for solving general multi-criteria prob-
lems have been discussed in [4, 5], where the discussion
in [4] is focused on a distributed approach for timetable
information problems. Space consumption aspects of
modeling more complex real-world scenarios is consid-
ered in [3]. For the time-expanded model, the simplified
version of the earliest arrival problem has been exten-
sively studied [11, 12], and an extension of the model
able to solve the minimum number of transfers prob-
lem, but without transfer times, is discussed in [5]. For
the time-dependent model, several extensions to that
model are proposed in [10] including transfer times and
the minimum number of transfers problem. Comparing
the time-expanded and time-dependent approach, it is
argued theoretically in [1] that the time-dependent ap-
proach is better than the time-expanded one when the
simplified version of the earliest arrival problem is con-
sidered.

In this paper, we provide the first experimen-
tal comparison of the time-expanded and the time-
dependent approaches with respect to their performance
in the specific, query-intensive scenario mentioned ear-
lier. For the simplified earliest arrival problem we show
that the time-dependent approach is clearly superior
to the time-expanded approach. In order to cope with
more realistic requirements, we investigate, besides the
extensions to train transfers in combination with the
earliest arrival problem proposed in [5, 10], additional
new extensions of both approaches. In particular, the
proposed extensions can handle cases not tackled by
most previous studies for the sake of simplification.
These new cases are: (a) the waiving of the assumption
that transfer of trains within a station takes negligible
time; (b) the consideration of the minimum number of
transfers problem; (c) the involvement of traffic days;
and (d) the consideration of bicriteria problems com-
bining the earliest arrival and the minimum number of
transfers problems.

We also conducted extensive experiments compar-
ing the extended approaches. That comparison is im-
portant, since the described extensions are mandatory
for real-world applications, and (to the best of our
knowledge) nothing is known about the relative behav-
ior of realistic versions of the two approaches.

In Section 2 the variants of itinerary problems that
are considered in this paper are defined. The model-
ing of the earliest-arrival problem is considered in Sec-
tion 3, where first the basic ideas of the time-expanded
and time-dependent models are briefly reviewed and
then the realistic extensions of these approaches are pre-

sented. Sections 4 and 5 discuss how the minimum num-
ber of transfers problem and the bicriteria problems,
resp., can be solved in either of the extended models.
The experimental comparison of the two approaches
based on real data from the German railways is pre-
sented in Section 6. We first consider how the plain ver-
sions of the two approaches compare, and subsequently
investigate the extensions and bicriteria problems. Sec-
tion 7 summarizes our insights on the advantages and
disadvantages of the approaches under comparison.

2 Itinerary Problems

In this section, we provide definitions of the timetable
problems that we will consider. A timetable consists of
data concerning: stations (or bus stops, ports, etc.),
trains (or busses, ferries, etc.) connecting stations,
departure and arrival times of trains at stations, and
traffic days. We define an elementary connection c
to be a 5-tuple of the form c = (Z, S1, S2, td, ta) and
interpret it as train Z leaves station S1 at time td, and
the immediately next stop of train Z is station S2 at time
ta. The time values ta and td are integers in the interval
[0, 1439] representing the time in minutes past midnight.
The length of elementary connection c, denoted by
length(c), is ta − td (mod 1440). We generally assume
that trains are operated daily, unless stated otherwise,
as e.g., in Section 3.3. There, we discuss the integration
of traffic days: for each elementary connection we are
given additionally one bit per day indicating whether
that particular connection is operated on that day. If x
denotes a tuple’s field, then the notation x(c) specifies
the value of x in the elementary connection c. The
timetable induces a set C of elementary connections. At
a station S it is possible to transfer from one train to
another. Such a transfer is only possible if the time
between the arrival and the departure at that station
S is larger than or equal to a given, station-specific,
transfer time, denoted by transfer(S).

A sequence of elementary connections P =
(c1, . . . , ck) together with departure times depi(P ) and
arrival times arri(P ), 1 ≤ i ≤ k, is called a connec-

tion from station A = S1(c1) to station B = S2(ck),
if it fulfills some consistency conditions: the departure
station of ci+1 is the arrival station of ci; the time val-
ues depi(P ) and arri(P ) correspond to the time values
td and ta, resp., of the elementary connections (modulo
1440) and respect the transfer times at stations. We also
assume that the times depi(P ) and arri(P ) include data
regarding the departure/arrival day by counting time in
minutes from the first day of the timetable. Such a time
t is of the form t = a · 1440 + b, where a ∈ [0, 364] and
b ∈ [0, 1439]. Hence, the actual time within a day is t
(mod 1440) and the actual day is bt/1440c.



For the timetable information problem we are ad-
ditionally given a large, on-line sequence of queries. A
query defines a set of valid connections, and an opti-
mization criterion (or criteria) on that set of connec-
tions. The problem is to find the optimal connection (or
a set of optimal connections) w.r.t. the specific criterion
or criteria. In this work, we are concerned with two of
the most important criteria, namely the earliest arrival
(EA) and the minimum number of transfers (MNT),
and consequently investigate two single-criterion and a
few bicriteria optimization problems which are defined
next.

Earliest Arrival Problem (EAP). A query
(A,B, t0) consists of a departure station A, an arrival
station B, and a departure time t0 (including the depar-
ture day). Connections are valid if they depart at least
at the given departure time t0, and the optimization
criterion is to minimize the difference between the ar-
rival time and the given departure time. We distinguish
between two different variants of the problem: (a) The
simplified version, where train transfers take negligible
time and hence the input is restricted to transfer(S) = 0
for all stations S. (b) The realistic version where train
transfers require arbitrary nonnegative minimum trans-
fer times transfer(S). We will discuss efficient solutions
to these problems in Section 3.

Minimum Number of Transfers Problem
(MNTP). A query consists only of a departure sta-
tion A and an arrival station B. Trains are assumed
to be operated daily, and there is no restriction on the
number of days a timetable is valid1. All connections
from A to B are valid, and the optimization criterion
is to minimize the number of train transfers. We will
discuss this problem in Section 4.

Bicriteria Problems. We consider also bicrite-
ria or Pareto-optimal problems with the earliest arrival
(EA) and the minimum number of transfers (MNT) as
the two criteria. We are interested in two problem vari-
ants: (i) finding the so-called Pareto-curve which is the
set of undominated Pareto-optimal paths (the set of fea-
sible solutions where the attribute-vector of one solution
is not dominated by the attribute-vector of another solu-
tion), and (ii) finding the lexicographically first Pareto-
optimal solution (e.g., find among all connections that
minimize EA the one with minimum number of trans-
fers). We will discuss these problems in detail in Sec-
tion 5.

1This assumption can be safely made since time is not mini-

mized in the MNTP, and thus in a MNTP-optimal connection one

can wait arbitrarily long at a station for some connection that is

valid only on certain days.

3 Earliest Arrival Problem

In this section we consider the modeling of the EAP,
in both the time-expanded and the time-dependent ap-
proach. In either approach we first briefly describe how
to model the simplified version of the problem, where
transfers between trains at a station take negligible
time, and subsequently consider the realistic version of
EAP, where transfer time between trains at a station is
non-zero.

3.1 Time-Expanded Model

3.1.1 Simplified Version The time-expanded
model [11] is based on the time-expanded digraph which
is constructed as follows. There is a node for every time
event (departure or arrival) at a station, and there are
two types of edges. For every elementary connection
(Z, S1, S2, td, ta) in the timetable, there is a train-edge

in the graph connecting a departure node, belonging to
station S1 and associated with time td, with an arrival

node, belonging to station S2 and associated with time
ta. In other words, the endpoints of the train-edges
induce the set of nodes of the graph. For each station
S, all nodes belonging to S are ordered according
to their time values. Let v1, . . . , vk be the nodes of
S in that order. Then, there is a set of stay-edges

(vi, vi+1), 1 ≤ i ≤ k − 1, and (vk, v1) connecting the
time events within a station and representing waiting
within that station. The edge length of an edge (u, v)
is tv − tu (mod 1440), where tu and tv are the time
values associated with u and v, respectively.

It is easy to see that the simplified version of
EAP can be solved by computing a shortest path from
the first departure node at the departure station with
departure time later than or equal to the given start
time. Since edge lengths are non-negative, one can use
Dijkstra’s algorithm and abort the main loop when a
node at the destination station is reached.

3.1.2 Realistic Version In this case, we keep, for
each station, an additional copy of all departure nodes
in the station which we call transfer nodes; see Fig. 1.
The stay-edges are now introduced between the transfer
nodes. For every arrival node there are two additional
outgoing edges: one edge to the departure of the same
train, and a second edge, called transfer edge, to the
transfer node with time value greater than or equal to
the time of the arrival node plus the minimum time
needed to change trains at the given station. The edge
lengths are defined as in the definition of the original
model (see Section 3.1.1).
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Figure 1: Modeling train transfers in the time-expanded

approach.

3.2 Time-Dependent Model

3.2.1 Simplified Version The time-dependent
model [1] is also based on a digraph, called time-

dependent graph. In this graph there is only one node
per station, and there is an edge e from station A to
station B if there is an elementary connection from A
to B. The set of elementary connections from A to
B is denoted by C(e). The cost of an edge e = (v, w)
depends on the time at which this particular edge will
be used by an algorithm which solves EAP. In other
words, if T is a set denoting time, then the cost of
an edge (v, w) is given by f(v,w)(t) − t, where t is the
departure time at v, f(v,w) : T → T is a function such
that f(v,w)(t) = t′, and t′ ≥ t is the earliest possible
arrival time at w.

A modification of Dijkstra’s algorithm can be used
to solve the earliest arrival problem in the time-
dependent model. Let D denote the departure station
and t0 the earliest departure time. The differences,
w.r.t. Dijkstra’s algorithm, are: set the distance label
δ(D) of the starting node corresponding to the depar-
ture station D to t0 (and not to 0), and calculate the
edge lengths by evaluating the functions fe on-the-fly.
Assume that the edge e = (A,B) is considered, and let
the earliest arrival time at station A be t. We compute
fe(t) by determining the earliest connection c∗ ∈ C(e)
departing from A later than t. Then, the earliest ar-
rival at B via A is the arrival time of c∗. In other
words, the length of e is the waiting time at A for c∗

plus length(c∗). The particular connection c∗ can be
easily found by binary search if the elementary connec-
tions C(e) are maintained in a sorted array. See [1] for
more details on the algorithm and its correctness.
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Figure 2: Modeling train transfers in the time-dependent

approach.

3.2.2 Realistic Version To model non-zero train
transfers in the time-dependent model, we use informa-
tion on the routes that trains may follow as proposed
in [10]. In the following, we describe the construction of
a digraph G = (V,E) which will be our main model and
will be referred to as the train-route digraph; see Fig. 2.

We say that stations A0, A1, ..., Ak−1, k > 0, form
a train route if there is some train starting its journey
from A0 and visiting consecutively A1, ..., Ak−1 in turn.
If there are several trains following the same schedule
(with respect to the order in which they visit the above
stations), then we say that they all belong to the same
train route P .

In the train-route digraph there are several nodes
per station A: one node A representing the station itself,
and for each train route visiting A an additional node
pA

i . There are three kinds of edges: (i) get-in edges from
A to pA

i with constant length gA = transfer(A); (ii) get-

off edges from pA
i to A with zero edge length; and (iii)

route edges from pA
i to pB

j (B is the next station in the
train route) with time-dependent edge length. A route
edge (pA

i , pB
j ) contains those elementary connections

from A to B that belong only to the considered train
route. Get-in edges belonging to the departure station
have zero edge length.

3.3 Incorporating Traffic Days Integrating traffic
days in any of the so far described models and algo-
rithms can be done as follows. Whenever an elemen-
tary connection is considered, the real departure time is
known not only modulo a day, and the day can be deter-
mined by dividing the calculated departure time by 1440
(see Section 2 on page 2). A look-up in the traffic-day
table of the corresponding train shows whether that day
the elementary connection is valid or not. Elementary
connections that are not valid can be ignored.



4 The Minimum Number of Transfers Problem

The graphs defined for the realistic version of the
earliest arrival problem in both the time-expanded
(Section 3.1.2) and the time-dependent (Section 3.2.2)
approach can be used to solve the MNT problem with a
similar method. Edges that model transfers are assigned
a weight of one, and all the other edges are assigned
weight zero. In both approaches a shortest path in
the resulting (always static) weighted digraph yields
a connection with minimum number of transfers. In
the time-expanded case all transfer edges are the edges
with weight one, and a shortest path from an arbitrary
transfer node of the source station to an arrival node of
the destination station yields a solution of the MNTP.
In the time-dependent case the get-in edges except
the get-in edges belonging to the departure station are
assigned the weight one, all other edges have weight
zero. Here, the MNTP is solved by a shortest path
from the node representing the departure station to the
one representing the arrival station.

5 Bicriteria Problems

We consider bicriteria problems with the earliest arrival
(EA) and the minimum number of transfers (MNT) as
the two criteria. We investigate two problem variants:
on the one hand we want to find all Pareto-optimal so-
lutions, and on the other hand we want to find the lex-
icographically first Pareto-optimal solution (e.g., find
among all connections that minimize EA the one with
minimum number of transfers). In the following, we
shall refer to the bicriterion problem we consider as
(X,Y) with X (resp. Y) as the first (resp. second) cri-
terion we want to optimize and X,Y ∈ {EA,MNT}.
Again, the graphs defined for the realistic EAP de-
scribed in Sections 3.1.2 and 3.2.2 are used.

5.1 Time-Expanded Model

5.1.1 Lexicographically First Pareto-optima
We first consider the (EA,MNT) case. We maintain
a second edge weight, the transfer value trans(e) for an
edge e = (u, v), whose value is 1 if e is a transfer edge
(i.e., u is an arrival node and v a transfer node), and
0 otherwise. Consider now the edge weights as pairs of
travel time and trans(e), and define the canonical addi-
tion on these pairs: (a, b)+(a′, b′) = (a+a′, b+b′). The
smaller relation is the lexicographical extension to pairs:
(a, b) < (a′, b′) ⇔ (a < a′) or (a = a′ and b < b′). To
find the lexicographically first Pareto-optimal solution,
it then suffices to run Dijkstra’s algorithm by maintain-
ing distance labels as pairs of integers and by initializing
the distance label of the start-node s to d(s) = (0, 0).
The optimal solution is found when a node at the des-

tination station is considered for the first time during
the execution of the algorithm. The (MNT,EA) is sym-
metric to the above and can be solved similarly. Note
that in the same way the latest-departure problem can
be solved by minimizing the difference between arrival
time and actual departure time as second criterion.

5.1.2 All Pareto-optima Finding all Pareto-
optimal solutions is generally a hard problem, since
there can be an exponential number of them. However,
if we make the (apparently reasonable) assumption
that connections that arrive more than one day later
than the earliest arriving connection are not of interest,
then every node in the time-expanded graph can
have only one Pareto-optimum. Hence, the above
described method for producing the lexicographically
first Pareto-optimum can provide all Pareto-optima of
a station, if one simply lets the algorithm run until all
nodes of the destination station have been considered
(either settled or disregarded as dominated solutions).

5.2 Time-Dependent Model

5.2.1 Lexicographically First Pareto-optima
The lexicographically first Pareto-optimum in the
(MNT,EA) case can be solved also in the time-
dependent model like in the time-expanded model (see
Section 5.1.1), by defining edge weights as pairs of trans-
fers and travel time (see also [10]). The (EA,MNT) case
cannot be solved by that method, which can be easily
shown by the construction of a counterexample (see Ap-
pendix B).

5.2.2 All Pareto-optima For generating all Pareto-
optimal solutions in the time-dependent model we use
as a sub-procedure the computation of an earliest arriv-
ing connection with bounded number of transfers (see
Appendix). Then, the following approach can generate
all Pareto-optimal solutions.

Solve EAP and count the number of transfers found,
say M . Then, run the algorithm described in the
Appendix for all values M − 1,M − 2, . . . , 0. The
algorithm given in the Appendix actually does this
and in fact can speed up this process, since instead
of stopping when the optimal solution with at most
M transfers at the destination is found, we can just
continue with the execution of the algorithm to produce
the next EA solution with at most M −1 transfers, and
so on, until no new path can be found.

6 Experiments

The main goal of the experimental study is to compare
the performance of the time-expanded and the time-



C./ C./
Timetable Nodes Edges Node Edge

France 166085 332170 1 0.5
G-long 480173 960346 1 0.5
G-local1 691541 1383082 1 0.5
G-local2 1124824 2249648 1 0.5

E
x
p
a
n
d
ed

G-all 2295930 4591860 1 0.5

France 4578 14791 36 11
G-long 6817 18812 70 26
G-local1 13460 37315 51 19
G-local2 13073 36621 86 31

D
ep

en
d
en

t

G-all 32253 92507 71 25

Table 1: Parameters of the graphs considered in the

comparison of the original models. The last two columns

show the number of elementary connections per node and

per edge.

dependent approach. Thus, given two different imple-
mentations and a timetable, we define the relative per-

formance or speed-up with respect to a measured perfor-
mance parameter as the ratio of the value obtained by
the first implementation and the value obtained by the
second one. When one time-expanded and one time-
dependent implementation is compared, we always di-
vide the time-expanded value by the time-dependent
value, i.e., we consider the speed-up achieved when the
time-dependent approach is used instead of the time-
expanded approach.

All code is written in C++ and compiled with the
GNU C++ compiler version 3.2; the experiments were
run on a PC with AMD Athlon XP 1500+ processor
at 1.3 GHz and 512MB of memory running Linux
(kernel version 2.4.19). The implementation of the
time-dependent model for the simplified earliest arrival
problem uses the parameterized graph data structure of
LEDA version 4.4.

6.1 Comparison of Original Models First, we
consider the simplified version of the earliest arrival
problem, since both approaches have been actually
developed for that problem and we are interested in
investigating their differences in exactly this setting.

6.1.1 Data The following five railway timetables
were used. The first timetable contains French
long-distance traffic (France) from the winter period
1996/97. The remaining four are German timetables
from the winter period 2000/01; one resembles the long-
distance traffic in Germany (G-long), two contain lo-
cal traffic in Berlin/Brandenburg (G-local1) and in
the Rhein/Main region (G-local2), and the last is

the union of all the three German timetables (G-all).
Hafas [2], the commercial timetable information system
used by the German railway company Deutsche Bahn,
is based on data in the same format. Table 1 shows the
characteristics of the graphs used in these models for
the above mentioned timetables.

Real-world queries were available only for the
timetables G-long and G-all, so we additionally gen-
erated random queries for every timetable. Each set of
queries consists of 50,000 queries of the form departure
station, destination station and earliest departure time.
In the tables, real queries are specially marked (✗).

6.1.2 Heuristics On top of the models described
in Section 3, we considered heuristics to reduce the
running time while optimal solutions are guaranteed.
For both approaches we considered the goal-directed
search heuristic (see, e.g., [11]). In this heuristic the
length of every edge is modified in a way that if the edge
points towards the destination its length gets smaller,
while if the edge points away from the destination node,
then its length gets larger. More precisely, for an edge
(u, v) with length l(u, v), its new length l′(u, v) becomes
l′(u, v) = l(u, v) − p[u] + p[v], where p[·] is a potential
function associated with the nodes of the graph. The
crucial fact is that p[·] must be chosen in such a way
so that l′(u, v) is non-negative. For example, a valid
potential of a node can be defined by dividing the
euclidean distance to the destination by the highest
speed of a train in the timetable (i.e., the time that
the fastest train would need on the direct line towards
the destination).

Concerning the time-expanded model we reduced
the node set: All arrival nodes which have outdegree
one can be removed, by redirecting incoming edges to
the target node of the outgoing edge. Thus, in the time-
expanded graphs, the number of nodes equals the num-
ber of elementary connections, and the number of edges
is twice the number of nodes. In the time-dependent
model the binary search technique to determine the edge
length (see Section 3.2.1) can be replaced by the method
described in [1] which avoids the binary searches.

6.1.3 Implementation Environment and Per-
formance Parameters For the time-expanded model
the implementation is based on that used in [11]; the
optimization technique to ignore the arrival events de-
scribed in Section 6.1.2 is included. For the time-
dependent model, we have implemented both the plain
version that uses binary search as well as the “avoid
binary search” technique. For both models we also
used the goal-directed search heuristic. Thus, for the
time-expanded model we have two different implemen-



Timetable Time El.C. Nodes Edges

France 100.4 30824 33391 61649
G-long 169.6 44334 48094 88668
G-local1 608.7 176720 182717 353443
G-local2 840.1 226027 232511 452056
G-all 1352.8 326186 342917 652378
G-long ✗ 66.7 18891 20853 37783E

x
p
a
n
d
ed

G-all ✗ 392.1 96943 104369 193888

France 8.2 8539 2269 4463
G-long 10.7 20066 3396 5129
G-local1 19.7 26792 6535 9835
G-local2 20.7 31698 6524 10075
G-all 76.6 79981 16145 26333
G-long ✗ 5.5 11173 1711 2682D

ep
en

d
en

t

G-all ✗ 37.3 40808 6926 11647

Table 2: Average CPU-time in ms and operation counts

for solving a single query for the time-expanded (upper

part) and the time-dependent model (lower part). The

arrival nodes are omitted in the time-expanded model (see

Section 6.1.2), and in the time-dependent model binary

search was used. Goal-directed search was not applied in

both cases. The marker (✗) indicates whether real-world or

random queries have been used.

tations (goal-directed search with Euclidean distances
or not), while for the time-dependent model we have
several implementations depending on the use of: bi-
nary search or the “avoid binary search” version the
goal-directed search heuristic with Euclidean or Man-
hattan distances and whether floating-point or integral
potentials are used.

For each possible combination of timetable and
implementation variant we performed the correspond-
ing set of random queries (for G-long and G-all we
additionally performed the corresponding real-world
queries) and measured the following performance pa-
rameters as mean values over the set of performed
queries: CPU-time in milliseconds, number of nodes,
number of edges, and number of elementary connec-
tions touched by the algorithm. For the time-expanded
model, the number of elementary connections touched
is the number of train-edges touched by the algorithm,
while for the time-dependent model it is the total num-
ber of elementary connections that have been used for
calculating the edge lengths. More precisely, when bi-
nary search is used in the time-dependent model, for
a single edge the number of steps needed by the binary
search is the number of touched elementary connections.

6.1.4 Results and Discussion Figures 3 and 4 as
well as Tables 2, 3 and 4, clearly show that the time-
dependent model solves the simplified earliest arrival
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Figure 3: Comparison of the performance (CPU-time

in ms) of the basic time-expanded and time-dependent

implementations (see Table 2, only random queries are

shown.) The abscissa shows the size of the timetable in

number of elementary connections.
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Time-Dependent Model, Binary Search
Data Time El. conn. Nodes Edges

France 9.4 7072 1593 3415
G-long 13.5 16597 2737 4217
G-local1 28.6 26008 6257 9434
G-local2 30.4 31196 6398 9895
G-all 100.3 74525 14568 24030
G-long ✗ 6.3 8349 1238 1991

G
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u
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.
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t

G-all ✗ 43.1 33676 5551 9420

France 9.4 7062 1590 3410
G-long 13.6 16560 2730 4208
G-local1 28.9 25975 6249 9422
G-local2 30.7 31152 6389 9882
G-all 103.6 74394 14538 23983
G-long ✗ 6.4 8318 1233 1984

G
o
a
l
E

u
cl

.
fl
o
a
t

G-all ✗ 44.5 33565 5532 9388

France 7.9 7225 1647 3511
G-long 11.2 16975 2807 4316
G-local1 23.2 26086 6284 9473
G-local2 24.7 31235 6407 9908
G-all 86.4 74822 14639 24138
G-long ✗ 5.3 8555 1272 2041

G
o
a
l
M

a
n
h
.

in
t

G-all ✗ 38.0 33994 5615 9524

France 7.7 7214 1644 3505
G-long 11.1 16938 2800 4306
G-local1 23.1 26053 6276 9461
G-local2 24.6 31189 6398 9894
G-all 88.9 74689 14608 24091
G-long ✗ 5.2 8524 1267 2034

G
o
a
l
M
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n
h
.

fl
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a
t

G-all ✗ 39.0 33880 5594 9491

Table 3: Comparison of the time-dependent implementa-

tions that use binary search and four different versions of

goal-directed search: Euclidean distance with (a) integer and

(b) float potentials, and Manhattan distance with (c) integer

and (d) float potentials. Columns are as in Table 2.

Time-Expanded Model
Data Time El. conn. Nodes Edges

France 84.0 22259 24179 44517
G-long 175.0 34259 37453 68517
G-local1 684.3 170369 176243 340741
G-local2 953.0 219992 226386 439986
G-all 1392.6 285440 300788 570885
G-long ✗ 54.3 13384 14931 26768

G
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G-all ✗ 341.9 74069 80229 148140

Time-Dependent Model, Avoid Binary Search
France 5.9 8942 2262 4386
G-long 7.5 9216 3396 5129
G-local1 14.2 18312 6541 9814
G-local2 14.6 18435 6524 10075
G-all 47.4 48520 16146 26333
G-long ✗ 3.8 4773 1711 2682

P
la

in
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ij
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st

ra

G-all ✗ 20.1 20993 6927 11648

France 6.6 6711 1614 3406
G-long 9.2 7553 2737 4217
G-local1 20.5 17656 6301 9499
G-local2 21.5 18088 6398 9895
G-all 63.0 44010 14568 24030
G-long ✗ 4.2 3527 1238 1991

G
o
a
l
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u
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.
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t

G-all ✗ 23.7 16898 5552 9421

France 5.1 6926 1669 3505
G-long 7.1 7733 2807 4316
G-local1 15.3 17621 6289 9480
G-local2 16.1 18113 6407 9908
G-all 50.5 44214 14639 24138
G-long ✗ 3.2 3618 1272 2041

G
o
a
l
M
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h
.
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t

G-all ✗ 19.1 17088 5615 9524

Table 4: Comparison of goal-directed search in the time-

expanded case (upper part) and the technique to avoid

binary searches in the time-dependent case (lower part). In

the time-dependent case two different distance measures for

the goal-directed search are reported, the Euclidean and the

Manhattan distances with integral potentials, which were

the fastest. Columns are as in Table 2.



Expanded Nodes Edges

Simplified 289432 578864

Realistic 578864 1131164

Dependent Station Route Timetable Transfer
Nodes Nodes Edges Edges

Simplified 6685 – 17577 –

Realistic 6685 79784 72779 159568

Table 5: Graph parameters for the realistic models, applied
to the same input timetable G-long-1: The number of nodes
and edges of the graphs in the time-expanded (upper part)
and time-dependent (lower part) approach, compared to the
simplified, original models.

problem considerably faster than the time-expanded
model, for every considered data set. Thus, the much
smaller graph in the time-dependent approach pays off,
and the edge lengths can be computed efficiently enough
when real data is considered.

Regarding CPU-time, the speed-up ranges between
12 (France) and 40 (G-local2) when the basic imple-
mentations are used (see Fig. 4 and Table 2), and be-
tween 17 (France) and 57 (G-local2) when comparison
concerns the best implementations (including heuris-
tics) in both models (see Tables 3 and 4).

Concerning the time-dependent model, we observe
that it is better to use the “avoid binary search”
technique (see Tables 3 and 4). Compared to the binary
search implementation the speed-up was between 1.39
(G-local1) and 1.86 (G-all with real-world queries).
The goal-directed search technique always reduces the
search space of Dijkstra’s algorithm, i.e., the number
of touched nodes and edges. However, this reduction
payed off only in a few cases in the sense that it could
not also decrease the CPU-time.

6.2 Comparison of Realistic Models We now
turn to the comparison of the two approaches when the
more realistic problems and models are considered. As
input data we use a variant of the G-long timetable,
which we get by using only elementary connections that
are valid on the first day of the timetable period. We re-
fer to that timetable as G-long-1. We applied the real-
world and random queries described in Section 6.1.1.
Table 5 shows the parameters of the graphs used in the
realistic models compared to the original models.

6.2.1 Implementation Environment For both ap-
proaches we implemented the described solutions for the
realistic earliest arrival problem (Section 3), the mini-
mum number of transfers problem (Section 4), and the

Problem Time Nodes Edges

EA-simple ✗ 70 20760 41519

EA ✗ 78 40624 73104

MNT ✗ 125 101731 138417

(EA,MNT) ✗ 82 40628 73123

(MNT,EA) ✗ 161 99061 137075

Pareto ✗ 287 123943 236887

EA-simple 106 34469 61955

EA 122 61159 111301

MNT 212 169299 239841

(EA,MNT) 129 61195 111386

(MNT,EA) 259 163438 234297

Pareto 405 170946 330150

Table 6: Results for the realistic problems using the time-
expanded implementations. For comparison, the columns
referred by EA-simple show the results in the simple model
using the G-long-1 data set.

all-Pareto-optima problem involving both of the former
problems (Section 5). Additionally, we have more ef-
ficient implementations in the time-expanded case for
the lexicographically first pareto-optimum when the ar-
rival time is the first criterion (EA,MNT), and in the
time-dependent case when the number of transfers is
the first criterion (MNT,EA). In the time-expanded im-
plementations we reduced the node set using a similar
method as in the simplified case (see 6.1.2), and omit-
ted the departure nodes in the time-expanded graph.
Also for the realistic time-dependent implementations
we applied heuristics similar to the method that avoids
the binary search; for details see [10].

6.2.2 Results and Discussion The average values
of the number of touched nodes, edges, and the average
running time for solving the real-world queries are
displayed in Tables 6 and 7. These results show that,
concerning CPU time, the time-dependent approach
still performs better than the time-expanded approach
in all the cases considered. However, the gap is not
as big as for the simplified earliest arrival problem.
In fact, for the realistic earliest arrival problem with
realistic queries the speed-up is only 1.6 (compared to
a speed-up of 12 for the simplified EAP and the data
set G-long, see Table 2). In the time-expanded case,
the graph used in the realistic EAP has less than twice
as many nodes and edges as the graph used in the
simplified EAP, and is of very similar structure. Thus, it
needs only slightly more time to solve the realistic EAP
than to solve the simplified EAP. The lexicographically
first (EA,MNT) problem is solved in a very similar way
as the realistic EAP, and the CPU-time and operation



Problem Time Nodes TT- Trans.
[ms] Edges Edges

EA-simple ✗ 10 2967 4365 –

EA ✗ 50 44731 38168 45494

MNT ✗ 38 26680 21558 61615

(MNT,EA) ✗ 83 28272 22901 60462

Pareto ✗ 181 78412 65753 79691

EA-simple 11 3315 4811 –

EA 54 48200 41011 48942

MNT 47 33455 27235 69411

(MNT,EA) 106 35262 28779 69054

Pareto 219 92378 77610 94904

Table 7: As Table 6, but for the time-dependent implemen-
tations.

counts are almost identical. In contrast, for the MNT
and the lexicographically first (MNT,EA) problems as
well as for finding all Pareto-optimal solutions a much
bigger part of the graph has to be searched, and thus
more CPU-time is needed.

In the time-dependent case, because of the addi-
tional nodes and edges in the train-route graph, which
are much more than the nodes in the simplified time-
dependent graph, the realistic earliest arrival problem
is solved 5 times slower than the simplified EAP. The
MNT is solved faster than the realistic EAP, since all
edge lengths in the train-route digraph are static. The
solution of the (MNT,EA) problem again involves time-
dependent edge lengths, and thus is slower than com-
puting the realistic EAP and MNTP. The implementa-
tion for all Pareto-optimal solutions uses the compution
of the earliest arrival problem with bounded number of
transfers as a sub-procedure, and needs only roughly
twice the time as the solution to the lexicographically
first (MNT,EA) problem.

7 Conclusion

We have discussed time-expanded and time-dependent
models for several kinds of single and bicriteria prob-
lems in timetable information. In the time-expanded
case, extensions that model more realistic requirements
(like modeling train changes) could be integrated in a
more-or-less straightforward way and the central char-
acteristic of the approach is that a solution to a given
optimization problem could be provided by solving a
shortest path problem in a static graph, even for find-
ing all Pareto-optimal solutions in the considered bicri-
terion problem. In the time-dependent case, the cen-
tral characteristic of having one node per station had
to be violated when more complex optimization prob-
lems (like the integration of minimum transfer times at

stations) are considered, and more sophisticated tech-
niques in the bicriterion case had to be used. Finding
the lexicographically first connection when the earliest
arrival is the main criterion could not be done directly
in the time-dependent model. Nevertheless, all other
problems under consideration could be modeled also in
the time-dependent approach.

The experimental study showed that the time-
dependent approach is clearly superior with respect
to performance of the original models, as speed-up
factors in the range from 10 to 40 were observed.
Considering the extensions towards realistic models,
however, the time-dependent approach still performs
better, but the difference is much smaller. The time-
expanded approach benefits from the straight-forward
modeling that allows more direct extensions and simpler
implementations.
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advanced transportation modelling, chapter 11. Kluwer
Academic Publishers, 1998.

[10] E. Pyrga, F. Schulz, D. Wagner, and C. Zaroliagis.
Towards realistic modeling of time-table information
through the time-dependent approach. In Proc. 3rd
Workshop on Algorithmic Methods and Models for



Optimization of Railways (ATMOS 2003), Electronic
Notes in Theoretical Computer Science, volume 92,
issue 1, Elsevier, 2003.

[11] F. Schulz, D. Wagner, and K .Weihe. Dijkstra’s
algorithm on-line: An empirical case study from public
railroad transport. ACM Journal of Experimental
Algorithmics, volume 5(12), 2000.

[12] F. Schulz, D. Wagner, and C. Zaroliagis. Using multi-
level graphs for timetable information in railway sys-
tems. In Proceedings 4th Workshop on Algorithm En-
gineering and Experiments (ALENEX 2002), Springer
LNCS, volume 2409, pages 43–59, Springer, 2001.

[13] D. Wagner and T. Willhalm. Geometric speed-up
techniques for finding shortest paths in large sparse
graphs. In Proc. 11th European Symposium on Al-
gorithms (ESA 2003), Springer LNCS, volume 2832,
pages 776–787, Springer, 2003.

[14] M. Ziegelmann. Constrained shortest paths and re-
lated problems. PhD Thesis, Naturwissenschaftlich-
Technischen Fakultät der Universität des Saarlandes,
2001.

Appendix

A Earliest Arrival with Bounded Number of
Transfers in the Time-Dependent Model

Given two stations a and b, and a positive integer
k, the Earliest Arrival problem with Bounded number
of Transfers (EABT) is defined to be the problem of
finding a valid connection from a to b such that the
arrival time at b is the earliest possible, and subject
to the additional constraint that the total number of
transfers performed in the path is not greater than k.
Since EAP reduces to a shortest path problem, EABT
is clearly a resource constrained shortest path problem.

We consider two algorithms for solving the EABT
problem. The first one is an adaptation of the method
proposed in [1] to our extended time-dependent model
(train-route digraph). The second one is an adaptation
of the labeling approach (see e.g., [14]) for solving
resource constraint shortest paths to our extended time-
dependent model.

The idea of [1] casted to the extended time-
dependent model is as follows. Let A denote the get-off
edges, D the get-in edges, and R the route edges (cf. Sec-
tion 3.2.2). We construct a new digraph G′ = (V ′, E′)
consisting of k + 1 levels. Each level contains a copy of
the train-route digraph G = (V,A ∪ D ∪ R). For node
u ∈ V , we denote its i-th copy, placed at the i-th level,
by ui, 0 ≤ i ≤ k. For each edge (u, v) ∈ A ∪ R, we
place in E′ the edges (ui, vi), ∀0 ≤ i ≤ k. For each
edge (u, v) ∈ D, we place in E′ the edges (ui, vi+1),
∀0 ≤ i ≤ k. These edges, which connect consecutive
levels, indicate transfers. With the above construction,
it is easy to see that a path from some node s0 (at

the 0-th level) to a node tl (at the l-th level) repre-
sents a path from station(s) to station(t) with l trans-
fers. In other words, the EABT problem can be solved
by performing a shortest path computation in G′ aim-
ing to find a shortest path from a node ps

0 at level 0,
where a = station(s), to the first possible ui at level i,
0 ≤ i ≤ k, where u is the node of the train-route graph
such that b = station(u).

The adaptation of the labeling approach to our
train-route digraph is as follows. We use the modified
Dijkstra’s algorithm (cf. Section 3.2.2), where now we
maintain k+1 (instead of one) labels, and which requires
some additional operations to take place as nodes are
extracted from the priority queue. Each label is of the
form (ti, li)u, 0 ≤ i ≤ k, representing the currently
best time ti to reach node u by performing exactly li
transfers.

Let s be the node for which a = station(s). The
algorithm works as follows. Initially, we insert to the
priority queue the label (t, 0)s. The priority queue is
ordered according to time, aiming at computing the
earliest arrival path. When we extract a label (tl, l)u,
we relax the outgoing edges of u considering that u is
reached on time tl and with l transfers. In addition, if
(tl′ , l

′) was the last label of u that has been extracted,
then we delete from the priority queue all labels of the
form (tm,m)u for l < m < l′, setting l′ = k in the case
where (tl, l)u was the first of the labels of u to have been
extracted. In this way, we discard the dominated – by
(tl, l)u – labels from the priority queue, since for all such
(tm,m)u it holds that tl ≤ tm (as (tl, l)u was extracted
before (tm,m)u) and l < m. Clearly, such labels are
no longer useful as (tl, l)u corresponds to an s-u path
at least as fast as the one suggested by (tm,m)u, and
with less transfers than the latter. Exactly for the same
reasons, when we relax an edge (u, v) ∈ E having found
a new label (tl1 , l1)v for v, we will actually update the
label of v only if there has been so far no label of v
extracted from the priority queue, or if the last label of
v that was extracted had a number of transfers greater
than l1.

Concerning now the complexity of the labeling
algorithm, we need to see that for each node the total
number of labels that is scanned in order to find those
that are in the priority queue and can safely be deleted
is O(k), while the total number of deletions is O(nk),
where n = |V |. This is due to the fact that we only
check the labels from the last known (by a delete-

min operation) number of transfers, until the previous
one. In this way, each label is checked at most once
throughout the execution of the algorithm. Since each
edge will be relaxed at most k + 1 times, the total
number of relaxations will be O(mk), where m = |E|.



We can also see that the total number of labels that
are in the priority queue is at most O(nk). Because of
this, the time for a delete-min or a delete operation is
O(log(nk)). This means that the total time needed for
the algorithm is O(mk + nk · log(nk) + nk · log(nk)) =
O(nk · log(nk)), which is the same as for the algorithm
in [1].

B The (EA,MNT) Problem in the Time-
Dependent Approach

The following describes an example showing that the
(EA,MNT) problem cannot be solved directly in the
time-dependent approach by using pairs as edge costs
in the train-route digraph. Consider the train-route
digraph shown in Figure 5, and a query to find an A-D-
connection. Let C1 be an A-B-C-D-connection with one
transfer at C, and C2 be an A-C-D-connection with no
transfer. Both connections arrive at the same (optimal)
time at D, and connection C1 arrives earlier at C than
the connection C2. Then, the algorithm for finding the
lexicographically first solution using pairs (EA,MNT)
as edge costs outputs connection C1 as optimal, while
there is connection C2 with the same arrival time, but
less transfers. The reason is that the time-dependent
function for edge e is decreasing.

A

B

D
C

e

Figure 5: Lexicographically first (EA,MNT) connec-
tions cannot be found by simply using pairs as edge
costs in the train-route digraph.
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