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Abstract

Almost any transport company, like railway companies or air lines, have timetables for planning
and scheduling their specific services. The problem of finding an optimal itinerary according
to some optimization criterion like travel time can be reduced to a shortest path problem on
an adequate graph with non-negative edge weights.

'The most prominent algorithm for solving the shortest path problem on such graphs is D1-
JKSTRA’s algorithm without a doubt. Unfortunately, the data sets are far too huge for a naive
implementation of DijksTRA to perform quick enough. Therefore, lots of research has been
put into developing speed-up techniques, which give really amazing results on road network
graphs. However, on timetable networks the achieved speed-ups, as of today, are far from
what can be done on road networks.

Due to time being a crucial aspect on timetable graphs (a road can be used at any time,
but a train is only departing at specific times), speed-up techniques specially developed for
road networks need to be adapted carefully in order to work properly. Some techniques like
highway hierarchies do not work at all, because they require a bidirectional search, which can
not be done on timetable networks, since we do not know the arrival time in advance when
stating a query.

In this work we present several approaches to model timetable networks to support shortest
path queries which minimize travel time. Furthermore, we adapt two unidirectional goal di-
rected speed-up techniques which belong to the best on road networks to work with our time
expanded model, namely Arc-Flags and ALT. Both techniques are goal directed in the sense
that they try to optimize toward the target station, either geographically or in time. For that
reason, we explore the combination of these techniques as well and see that they behave quite
orthogonally, as the speed-up of the combined technique multiplies.

Finally, in our experimental study we conduct tests on huge sets of real world data to show

the feasibility of our approaches which lead to some very good speed-ups with the combination
of the Arc-Flags and the ALT approach.



Contents

1

Introduction

Preliminaries
2.1 Fundamentals of Graph Theory . . .. ... ... ... ... .........

2.2 Periodic Timetables and Itineraries . . . . . . . . . . . . . . . . ... ..

Models

3.1 'The Condensed Model . . . . .. .. ... ... .. .. .. ... ...
3.2 'The Time Dependent Model . . . . . . ... ... .. . . ... ...
3.3 'The Simple Time Expanded Model . . . . .. ... ... .. ... .....
3.4 'The Realistic Time Expanded Model . . . . ... .. ... .. .. ......
35 FootEdges . ... ... ... . ...

Shortest Path Queries

4.1 'The Shortest Path Problem . . . . . . . .. . . ... .. ... .........

4.2 'The Earliest Arrival Problem . . . . . . . . .. .. ... ... ... ... ...

43 BasicDIksTRA . . . . .. e

4.4 'The Choice of decideSameKey . . . . . . . .. .. .. . oo L.
4.4.1 ‘Transfer Minimization . . . . . . ... ... ... ... ........

442 Minimization of Travel Distance . . . . . . . . . . . .. ... ....

Speed-Up Techniques

5.1 Unidirectional Arc-Flags . . . . . .. .. ... . . L
52 Unidirectional ALT . . . . .. .. .
5.3 Combining Unidirectional ALT with Arc-Flags . . . ... ... ... ....

Experimental Studies

6.1 RawData Conversion . . . . . . .. . . . .. ...
6.2 InputGraphs . . . ... ... ... .. .. ...
6.3 Resultsand Evaluation . . . ... ... ... ... ... .. .. ........

Conclusion and Outlook

10
12
14
16
17

57



1 Introduction

Mobility has gained dramatic importance in modern life. To satisfy these needs huge networks
of infrastructure have been built in the past centuries. Road networks on one hand but also
public transport networks on the other hand play the most important roles—whether they are
railways, buses, planes or ships.

One central problem on any of the networks named above is route planning. Imagine living
in the south of Germany and having relatives at the North Sea coast. Assuming that we do not
know the way around, we have to do some kind of planning before we start our trip. If we plan
on going by car, we have to investigate which roads and highways we are going to use. If we
prefer riding the train instead, the task is a little bit more complicated. Not only do we need to
find out which train lines we have to choose, but we probably also need to switch trains, which
involves determining the right connections at transfer stations. Furthermore, trains are only
running at specific times and not anytime we arrive at a station. For that reason, departure and
arrival times of trains are crucial when planning our journey.

With the German railway network having a length of more than 36,000 km, the task of
finding an optimal itinerary for our journey by hand becomes an impossible task. Therefore,
many railway companies provide computer aided tools for planning itineraries. For instance,
the Deutsche Bahn in Germany uses a system developed by HaCon GmbH [HIm], which
is also used in a variety of other countries. Generally they have a central server which holds
the data of the train schedules, and clients (e.g. terminals or internet users) state queries to
the server. 'Therefore, answering the queries has to be very efficient in order to handle the
vast number of concurrent requests.! Commercial tools like HaCon’s HAFAS system use
heuristics to improve computation speed. Unfortunately, this does not always lead to optimal
results regarding travel time or the number of transfer.

2 can be modeled as di-

In this work we show how periodic timetable information systems
rected graphs in such a way, that a shortest path query algorithm can be used to compute an
optimal itinerary regarding minimum travel time. The most prominent algorithm for comput-
ing shortest paths on a graph with non-negative edge weights is DijksTrA’s algorithm [Dij59].
However, realistic graphs are too large for an efficient computation using only plain D1jksTRA.
‘Therefore, we study several speed-up techniques which reduce the search space of DyjksTrA’s
algorithm and eventually lead to speed-ups in computation time. We focus on goal directed
techniques, since they can be easily adapted to timetable models. Hierarchical techniques like
Highway Hierarchies [SS05] require a bidirectional shortest path search which is—as we see
later—not possible on our models, hence they can not be used with timetable graphs. How-
ever, most recent goal directed techniques, especially SHARC [BD08] and CALT [Sch08]
have caught up with the hierarchical techniques and thus are on the same level concerning
query times.

'This work is organized as follows. In the next section we give some fundamentals about

IThe server of the German railway network receives around 100 queries per second [Sch05].
2A periodic timetable is a timetable which is repeated after some period, e.g. each day or each week.



graphs and timetable networks. Then we give a survey about several approaches how to trans-
form timetable data into graphs suitable for handling shortest path requests which correspond
to optimal itineraries. There are two main approaches due to [PSWZ07], namely the #ime
dependent and the time expanded model. However, apart from giving a description we con-
centrate on the latter in this work. In Section 4 we introduce the Earliest Arrival Problem
(EA) which asks for an itinerary with an arrival time as early as possible for a given departure
place and time. Based on this we can define the shortest path problem on timetable networks
and use DyjksTRA’s algorithm for computing shortest path queries. In Section 5 we are go-
ing to introduce several speed-up techniques and show some modifications which need to be
done for making them work on our scenario. We concentrate on unidirectional Arc-Flags and
a method derived from A, the unidirectional ALT algorithm, as well as a combination of these
two techniques. Finally, in Section 6 we conduct some experiments on real world data from
train and bus schedules of Germany and Europe. Our best technique—a combination of ALT
and Arc-Flags—Ileads to speed-ups up to a factor of 17.4 which is a very good result con-
sidering that the shortest path problem on timetable networks is much harder than on road

networks [BDWO07].

2 Preliminaries

‘Throughout the whole work we deal with graphs and timetable networks. Therefore, we need
to define some basic notation for how we describe graphs, trains, stations, etc. which is intro-
duced in this section.

2.1 Fundamentals of Graph Theory

A graphis a tuple G = (V, E) consisting of a finite set of zodes V and a set of edges defined by
E C V x V. There is an edge from node u € V tov € V iff (u,v) € E. All of our graphs
are directed, i.e. the direction of an edge is important. A reflecting edge e = (v, v) is called a
loop. 'The graph obtained by flipping all edges is called the backward graph G = (V, E) where
(u,v) € E< (v,u) € E.

A node induced subgraph G' C G with G’ = (V/,E’) and V' C V is obtained by E’ :=
{(u,v) | u € V',v € V'and (u,v) € E}. Further, an edge induced subgraph G' C G given
E’ C E is obtained by the node set V' := {v | 3(u,v) € E or (v,u) € E',u € V}.

A path P in G is a sequence of nodes v1,0y,...,0k, k > 1 such that foreach 1 < i < k
the condition (v;,v;41) € E holds. If additionally v; = vy, then we call P a cycle. Note, that
a path may contain certain nodes multiple times without being a cycle. A subpath S C P is
a path itself which is contained in P. We call two nodes u,v € V connected, if there exists a
path from u to v. If this is true for all nodes 1, v € V, we call the whole graph connected. For
a graph G which is not connected, a connected subgraph G’ C G is called a strong connected
component of G.

Let w : E — R" be a function on the edges of the graph. We interpret w(e) for an



arbitrary edge e € E as its weight. Instead of w((u,v)) we write w(u, v) for simplicity. The
weight of a path P = vy,..., vk on G is the sum of the edge’s weights on P, meaning w(P) :=
Yot w(vi, vig1).

'Throughout our work we mostly do not deal with loops, i.e. our graphs do not contain loops.
Also, no multiple edges are considered. Note, that multiple edges are excluded by definition,
since we defined E as a set. So if for some reason in an algorithmic step an edge between to
nodes u and v should occur multiple times, it is unified into a single edge having the minimum
value as its new weight.

2.2 Periodic Timetables and Itineraries

Since we deal with timetable information systems in a mathematical sense, we need a formal-
ization what a timetable actually is. In [PSWZ07] an overview is given and we adopt most of
the notation from there. However, since for our purpose timetables are the basis of computing
itineraries, we introduce the required terms in this section again. In the previous section we
mentioned that timetable information systems can not only be found at railway companies,
but also at air lines, ships or other logistics corporations. Although, our notions are mostly
based on terms like “stations” and “trains” it should be clear, that these are general concepts
which can be transfered to any timetable system to which our definitions can be applied.

A (railway) timetable consists of a set of stations 3 and a set of trains Z which run between
stations. Moreover, these trains only travel at certain times. It is satisfying to consider a
resolution of one minute, so let 7 := [0, 1439] be the set of all natural numbers between 0 and
1439 represented in minutes after midnight (a day has exactly 1440 minutes). For calculating
differences between two points in time t1,f, € 7, we define a function A : 7 x 7 — IN by

[ ta(c) — t1(c) if ta(c) > ti(c)
Altyt2) = { 12440 - tll(c) +ty(c) otherwise : 1

Please be aware, that A is not symmetric, hence the order of the arguments is important. At
certain parts in this work it may be more clear if times are expressed in the usual clock format
hh :mm where hh is a two digit number between 0 and 23 representing the hour, and mm refers
to the minutes. Of course these two representations are equivalent, and it should be obvious
how one can convert between them.

An elementary connection is a tuple ¢ := (Z,51,S52,t4,t,) where c is interpreted as train
Z € Z running from station S; € B to station Sy € B departing at t; from S; and arriving at
time f, at Sp. The notion c(x) for an arbitrary field x in the tuple ¢ refers to the value of field
x. For example 51 (c) yields the departure station of connection c.

Since we only consider periodic timetables with a period of one day, each connection is
valid on every day. To model different traffic days we can assign a bit vector of 7 bits to each
connection ¢, which then represents the specific days the train is operating on. In our work we
only consider timetables which do not utilize traffic days, so we have no need for an additional
bit vector. Please refer to [PSWZ07] for more details concerning traffic days.



Finally, the Jength of a connection, denoted by length(c) := A(t;(c), ta(c)), is the time
in minutes between f4(c) and #,(c). We are now able to derive the formal definition of a
timetable from the terms introduced above.

Definition 1 (Timetable). A fraffic timetable is a tuple (C, B, Z,T ) where B is a set of stations, Z
is a set of trains, T points in time (for one day) and C the set of elementary connections the timetable
consists of.

Please note, that one connection ¢ € C corresponds to a direct connection of one specific
train. In particular, this implies that there are no stopovers between S1(c) and Sz(c). A train
with stops at Karlsruhe, Bruchsal and Stuttgart would resolve to two connections c1,¢, € C
where S1(c1) = Karlsruhe, Sy(c1) = S1(c2) = Bruchsal and S(cp) = Stuttgart.

Now, let us consider being at a station where we need to switch trains. Arriving at a certain
time ¢, we most likely are not able to catch any train that leaves right after we just arrived.’
Therefore, for every station S € B we define transfer(S) to be the minimum transfer time at
station S. 'This is the minimal time required to switch trains at station S, which should be
chosen large enough to cope with the worst case scenario, e.g. the most far apart platforms.

With the definitions just developed, we are able to define what an itinerary on a certain
timetable looks like.

Definition 2 (Itinerary). An itinerary is a total ordered set T C C of cardinality |I| due to a total
order relation < of connections with the property of two subsequent connections c;,ciy1 € 1L being

valid if and only if' S>(c;) = S1(cit1).

'The Jength of an itinerary is the accumulated length of all involved connections plus the time
between connections at each station which yields

Z| =
length(I) := ) length(c;) + Y A(ta(ci), ta(cit1))-
i=1 i=1

'There are two points which should be mentioned regarding itineraries valid to our definition.

1. Train switching is done implicitly if for two subsequent elementary connections the trains
are different. If we respect transfer times, the departure time of the second connection must
be far enough away from the arrival time of the first one. We go into more detail regarding
this point right away when we discuss the length of an itinerary.

2. Since we do not consider different traffic days (meaning every connection is valid on every
day) an itinerary where t,(c;) > t;(cit1) is also considered valid—we would just have to
wait A(t,(c;), t(ciy1)) minutes over night at the particular station. This is a simplification
over the models presented in [PSWZ07].

3Most likely we have to switch platforms.



(IR 2269, Karlsruhe Hbf, Pforzheim Hbf, 10:05, 10:23)

(IR 2269, Pforzheim Hbf, Miihlacker, 10:25, 10:33)
(IR 2269, Mithlacker, Vaihingen(Enz), 10:34, 10:40)
(IR 2269, Vaihingen(Enz), Stuttgart Hbf, 10:41, 10:57)
(ICE 791, Stuttgart Hbf, Ulm Hbf, 11:12, 12:06)
(ICE 791, Ulm Hbf, Augsburg Hbf, 12:08, 12:47)

(ICE 791, Augsburg Hbf, Miinchen Hbf, 12:49, 13:21)

Figure 1: Sample itinerary from Karlsruhe to Miinchen based on timetable data from the winter period
2000/2001 in Germany.

If we like to respect transfer times at stations, the length of an itinerary 7 needs some extra
consideration. The length as defined above is the accumulated length of all connections plus
the time we spend at each station. However, it is not enough for the calculation of the station-
time of two subsequent connections ¢; and c;;1 at a station S to simply use A(t,(c;), ts(cit1)),
since if A(t,(c;), ta(cit1)) < transfer(S) we would violate the transfer time criterion. For that
reason, we extend the A function to operate on two elementary connections by the following
definition. Let c;,ci11 € Z be two subsequent connections and S := Sz(c;) = Si(cj) the
station with its transfer time T := transfer(S). Furthermore, let Z; := Z(c¢;) and Z; 1 :=
Z(ciy1) be the trains of the two connections. Then consider

Alcsci) = A(ta(ci), ta(cis)) if Z;=7Z;,1 (no transfer time consideration)
irtj) = A(ta(ci) + T, td(ci+1)) +T if Z; # Zii1 (ensure transfer time holds)

Now we can use the A function to completely describe the length of an itinerary with |Z| > 0
connections by length(I) := Zg‘l length c; + ZE; ! A(ci, cit1).

A sample itinerary with one transfer is given in Figure 1. Each line consists of one elementary
connection ¢; from Z. 'The total length of the itinerary is 296 minutes, if we assume that
transfer(Stuttgart) is less or equal 15 minutes. Going on from here, we introduce graph
models in the next section which are able to represent timetables in such a way that a shortest
path query results in an optimal itinerary considering its length.

3 Models

In this section we present several approaches how to model timetable systems as directed
graphs. When modeling road networks as directed graphs, the following common approach
is widely used. Intersections of roads are modeled as nodes, and an edge is inserted between
two nodes iff there exists a direct road segment (i.e. with no intersections on it) between the
two given intersections®. The weights on the edges depend on what we want to optimize. For
example, if we want to get fastest paths, we would have something like the average travel time
on the specific road segment as weights. Just as well, we could use the length (for example

4Most edges would be undirected, but as there might be one-way roads, there are directed edges in the graph.



in kilometers) of the road segment to model distances. As long as no events like predictable
traffic jams are taken into account, a shortest path query on such a graph does not depend on
the departure time, and hence immediately yields a sequence of road segments we can then
use for our journey.

Unfortunately (railway) timetables are a little bit more complex, which does not allow a
straight forward adaption of the road network model. This is mainly due to the fact, that a
certain segment in the railway network can only be used at specific times, that is to say a train is
utilizing it. Furthermore, one segment can have different “travel times”. For example between
Karlsruhe and Offenburg we can ride a fast train like the German ICE, or use a slow train
which takes longer for the same segment in the network.

In the subsequent sections we develop several models how timetable data can be represented
as a graph. Starting with the most simple approach, the condensed model we then attend to
the time dependent approach giving a short overview about it. The main focus is then on the
time expanded approach, where we describe two models, namely the simple and the realistic
version which form the basis of all our shortest path queries in this work.

3.1 The Condensed Model

The condensed model is a very basic approach consisting of one graph, namely the condensed
graph which is essentially a representation of the structure of the railway network consisting of
stations and their connections between them. The aspect of departure and arrival time is not
yet taken into account with this model.

In the condensed graph, denoted by G* = (B, E*), the set of nodes is equivalent to the
set of stations, so we use I3 as the set of nodes. An edge e = (51,S7) is contained in E* if
there exists at least one elementary connection from S; to Sy in C. For most of our studies
there is no need for a weight function in G*. However, the ALT algorithm later requires us
to specify a lower bound between two stations regarding travel time. Hence, we define the
weight of an edge e € E* to be the best lower bound regarding travel time from S to Sy, i.e.
the time the fastest train takes to get along e. Let C(e) be the set of all elementary connections
corresponding to the edge e, then formally the weight w : E* — IN is defined by

w(e) := min {length(c)}.
ceC(e)
Furthermore, to each node we assign its geographic location in x and y coordinates. So, let
coordy : B — R and coord, : B — R be functions which map a station to its x and y
coordinates, respectively. To compute the diszance between two stations we use the standard
Euclidean metric, therefore dist : B x B — R is defined by

dist(Sy, Sz) := \/(coordx(Sl) - coordx(Sz))2 + (coordy(S1) — COOI‘dy(Sg))Z.

Of course this model is not sufficient to state realistic shortest path queries, since we have not
incorporated any information about the times at which the trains operate.

10
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(c) Berlin’s bus network (2000/20001)

Figure 2: Three condensed graphs generated from real world data of the Deutsche Bahn.
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(ICE 1, Karlsruhe Hbf, Stuttgart Hbf, 10:00, 11:14)
(RE 2, Karlsruhe Hbf, Stuttgart Hbf, 10:05, 11:58)
(ICE 3, Stuttgart Hbf, Karlsruhe Hbf, 10:08, 11:22)
(RE 4, Stuttgart Hbf, Karlsruhe Hbf, 10:26, 12:19)
(ICE 5, Karlsruhe Hbf, Baden-Baden, 10:03, 10:34)
(RB 6, Karlsruhe Hbf, Baden-Baden, 10:11, 11:02)
(ICE 1, Baden-Baden, Karlsruhe Hbf, 9:07, 9:58)
(RB 7, Baden-Baden, Stuttgart Hbf, 9:23, 11:42)

transfer (Karlsruhe Hbf) 6 minutes
transfer(Stuttgart Hbf)

transfer (Baden-Baden)

8 minutes

5 minutes

Figure 3: A small fictitious timetable between three stations.

In Figure 2 three examples of condensed graphs are shown. All graphs are based on real
world data provided by HaCon [HIm]. Every (straight) line represents an edge in the con-
densed graph. Since an edge is inserted into the graph as soon as one elementary connection
exists in the timetable, we get the effect of having lines crossing through the whole graph,
because there might be some trains which have only a few stops and therefore connect stations
which are very far apart. The German railway network has 6,730 stations and 19,088 edges;
'The graph of whole central Europe has 29,770 stations and 91,586 edges and the (relatively
small) graph of the local bus network of Berlin has only 2,874 stations with 7,530 edges.

3.2 The Time Dependent Model

'The time dependent approach is the canonical enhancement of the condensed model to in-
corporate the time aspect of a railway timetable. It has been first developed by Brodal and
Jacob [BJ04] in 2004. 'This section only gives a short overview of their approach before we
devote ourselves to the time expanded model which is then used throughout this work.

In the time dependent graph each station S € BB again becomes a node, and an edge e between
two stations S1 and Sy is inserted iff there exists at least one elementary connection from S; to
S». We write C(e) to describe the set of all elementary connections from S; to S;. The weight
of e during the algorithm depends on the time the station S; is being considered. Therefore,
the weight function w : E x T — IN also depends on the set of points in time, and is defined
by

w(e, t) = A(t,fsllsz(t)), e = (51,52)

where f : 7 — 7T yields the earliest possible time we can arrive at Sy departing from S at
time t (or later).

It should be mentioned that one rather important constraint of this model is, that overtaking
of trains between two stations is not allowed, i.e. there must not be two trains Z;, Z, between

12



Figure 4: The resulting time dependent graph of the timetable in Figure 3.

two stations S; and S; such that Sy leaves at Z; first but arrives at S, second. If we would
allow this feature, the shortest path problem on such networks becomes NP-hard. This has
been shown by Orda in [OR90].

Consider the following simple example of a fictitious timetable. We have three Stations:
Karlsruhe, Baden-Baden and Stuttgart, with the elementary connections shown in Figure 3.
The resulting graph is shown in Figure 4. If we happen to arrive in K at time t = 9:58
and consider the weight on the edge e = (K, S), the function fg s(f) yields 11:14 and thus
w(e, t) = A(t, fx s(t)) = 76 minutes.

'The DyjksTRA algorithm can now be modified to perform a shortest path query with dynamic
weights [CH66]. This can be used to compute itineraries with optimal travel time as proven

by Brodal and Jacob in [BJ04].

Since in this work we do not use the time dependent model, we do not go into more detail.
A much different approach is the time expanded model. For one timetable our shortest path
algorithms operate on two different graphs, namely the #ime expanded graph and the condensed
graph which we already described in Section 3.1. Since the condensed graph does not hold any
information about arrival or departure times, we construct the zime expanded graph where we
“roll out” all the time dependencies in the timetable. For that reason the graph becomes pretty
huge, but in exchange DijksTRA’s algorithm can be used with much less alteration required
than in the time dependent model. Therefore, many speed-up techniques developed for the
basic DijksTRA algorithm can be used with the time expanded model as well. Our models are
based on those developed in [PSWZ07] and [MHSWZ07]. For historic reasons, there are
two versions of the time expanded model, which we introduce both. The simple model, like the
name says, is a relatively simple approach for modeling timetables. It does not support transfer
times, which means we can switch trains in no-time.” To encounter that, we enhance it to the
realistic model which respects transfer times, but as a disadvantage the resulting graph is about
50% larger regarding the number of nodes.

5Note: The version of the time dependent model mentioned earlier also does not respect transfer times. However,
there is also a “realistic version” of the time dependent model, which is presented in [PSWZ07].

13



3.3 The Simple Time Expanded Model

'The simple model is the most basic approach to expand the time dependencies of the timetable
in order to allow shortest path queries. The condensed graph from Section 3.1 is used to
represent the structure of the network, while the time expanded graph is used to roll out the
time dependencies of the timetable.

For that, we consider events that occur in our timetable. For the simple model, there are the
following two event types:

Arrival event - An arrival event occurs every time a train is arriving at a specific station. For
every elementary connection ¢ € C there is an arrival event of train Z(c) at
station Sp(c) at time #,(c).

Departure event — A departure event is the counterpart of an arrival event. For every connec-
tion ¢ € C there is a departure event at station Si(c) at time t4(c) of train
Z(c).

In the time expanded graph G = (V, E) each event is modeled as a node v € V. This yields
two different types of nodes, namely arrival nodes and departure nodes. We denote type(v)
to be the node type of v, station(v) to be the station to which the node (event) belongs and
time(v) the time at which the event occurs. The edge set E = E.UE; is constructed from
the subsets E., which describes the connections befween stations, and Ej, the transfer edges in
stations. For each elementary connection ¢ € C there is an edge e € E. such that it connects
the nodes corresponding to their respective departure and arrival events. Formally, this means
an edge e = (1, 0) is contained in E. if and only if there is an elementary connection ¢ € C
such that

1. u is the node corresponding to the departure event consisting of Z(c), S1(c) and t4(c),
2. v is the node corresponding to the arrival event consisting of Z(c), Sz(c) and t,(c).

The set of transfer edges E; is constructed as follows. For each station S € B let V(S) be the
set of all nodes with station(v) = S. Consider the nodes in V(S) ordered such that for two
nodes u,v € V(S) the relation u < v holds if and only if time(u) < time(v). Then E; is the
transitive reduction of the partial order relation <. To allow transfers over night, we add an
additional edge from the latest node in V(S) to the earliest node in V(S) to E; .

'The edge weight function on G is always equal to the distance in time between the respective
nodes. Since each node v has its own timestamp time(v), edge weights w : E — IN are simply

defined by
w(e) := A(time(u), time(v)), e = (u,0).

Figure 5 illustrates the structure of the simple time expanded graph for two stations of our
sample timetable. As we see, the size of the time expanded graph is significantly larger than
the size of the condensed graph. 'This is due to the fact that for real world timetables we

14



Karlsruhe Stuttgart

Figure 5: Small sample of two stations in the simple time expanded model. Arrival nodes are yellow and
departure nodes are marked green. To each node (event) a timestamp is assigned. Consider-
ing the edges there are blue edges, which we can think of the actual elementary connections
from the timetable. Furthermore, the red edges allow switching trains in the station.

have numerous trains running between two station S; and Sp;. Whereas in the condensed
graph (and in the time dependent graph as well) there would be only one edge to model this,
we get—considering we have k connections—k edges for the connections and also 2k nodes.
Furthermore, we get another 2k edges representing the transfer edges.

'The biggest disadvantage of the simple model is that it does not account for transfer times.
If we look at Figure 5, we see that we could arrive in Karlsruhe at 9:58 and almost immediately
depart at 10:03 with a different train. Since this is quite unrealistic in real world scenarios, we
already introduced transfer times in Section 2.2. We now enhance the simple model by this
concept in the next section.
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3.4 The Realistic Time Expanded Model

'The realistic model is based on the simple model but is extended in such a way, that transfer
times at stations are respected.

Again, we use arrival and departure events to build our node set V, however, there are three
types of nodes now:

Arrival nodes - For each arrival event there exists an arrival node in the graph.
Departure nodes — For each departure event we construct one departure node in the graph.

Transfer nodes - Additionally to the departure node, we add another node type, namely the
transfer node. So, for each departure event in the timetable there is a pair
of nodes consisting of a transfer node and a departure node.

Let again type(v) denote the type of node v, time(v) its time®, and station(v) the station it
belongs to. Furthermore, let V(S) be the set of all nodes v € V where station(v) = S. The
reason for adding a transfer node for each departure event is, that we want to prohibit paths
u,...,v in the graph where u is an arrival node, v is a departure node belonging to the same
station S as u, and A(time(u), time(v)) < transfer(S).

For that, the edge set E is made up a little bit more complicated. To make things more clear,
we derive the edge set incrementally.

1. Each pair of transfer and departure nodes is connected by an edge e = (u,v), where u is
7

the transfer and v the departure node. This has the semantics of boarding a new train.

2. For each train Z that does not begin or end in S, we need an edge which symbolizes staying
in the train (meaning we do not get off the train at S). Therefore we insert a frain edge
between the arrival node belonging to Z at S and the departure node at S belonging to the
same train Z.

3. From each arrival node at S we insert an edge to the earliest transfer node respecting the
transfer time at S. Formally, this means, if u is an arrival node at S and t = time(u) the
time of the arrival event, an edge e = (1, v) is inserted with v defined by

v ;= argmin {A( time(u) + transfer(S), time(v)) }
veV(S)

'This can be seen as getting off the train at S.

®Note: Two nodes u, v which belong to the same departure event have the same timestamp, i.e. time(u) =
time(v).

7At a station S in the simple model we did not make a difference between boarding a new train or staying in the
same train. However, we have to make this difference now, because it should be allowed to leave S with the
same train even though the difference between arrival and departure time is less than transfer(S).
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4. Each elementary connection has its edge in the graph exactly the same way as in the simple
model. If ¢ € C is an elementary connection, then there is an edge from u to v where u is
the departure node belonging to the train Z(c) at the departure time f;4(c) at S1(c). The
node v is the arrival node at Sy (c) at t,(c) with the same train Z(c).

5. Let Trans(S) € V/(S) be the set of all transfer nodes belonging to a station S. To allow
transfers we connect the nodes from Trans(S) the same way we connected the nodes in the
simple model. So, let’s consider Trans(S) ordered with two nodes u,v € Trans(S) being
in relation u < v if and only if time(u) < time(v). Then again the transitive reduction of
< isadded to E. For allowing transfers over midnight we add an additional overnight edge
from the latest to the earliest node in Trans(S).

Finally, the edge weight function w : E — IN is, again, the difference in time of the nodes
the edge connects, meaning

w(e) := A(time(u), time(v)).

Please note, that every edge between the pairs of transfer and departure nodes has an edge
weight of zero, since these nodes share the same timestamp. This has to be taken some ex-
tra care of when implementing D1jksTRA’s algorithm. In general, we can not rule out zero
weights—even in the simple model—since it is well possible that more than one train departs
at the same time, and therefore the weight of the edge connecting these events would be zero
in any case. Furthermore, when we look at bus timetables it is possible that the stations are so
close by, that the length of the elementary connection, and hence the edge weight belonging
to this connection, could become zero as well.®

Figure 6 shows a small excerpt of our example timetable from Figure 3. A few incoming
connections at Karlsruhe have been left out to increase readability. As we can see, it is no
longer possible to transfer from the arriving ICE 1 at 9:58 to the departing ICE 5 at 10:03,
since we assume transfer(K) to be greater than five minutes. However, it is possible to stay in
the ICE 1 and depart to Stuttgart at 10:00.

'The size of the expanded graph is even larger than in the simple model, since—assuming we
have k elementary connections in C—for |V |we get 3k nodes, and for |E| we even get k edges
for the actual connections, another k edges connecting the transfer with the departure nodes,
k edges again between the transfer nodes and k edges connecting each arrival node to one of
the transfer nodes. Further, we get k' &~ O(k) edges connecting the arrival with the respective
departure node of non ending trains.” All together this yields |E| = 4k + O(k) = 5k edges.

3.5 Foot Edges

'The realistic model gives us a pretty good basis for computing itineraries on timetables. How-
ever, there is yet another common problem we have to take care of. If we look at Figure 7

8 Although we could avoid this through increasing the resolution in time.
9We can assume k' ~ O(k) since most of the incoming trains at a specific station also leave the station.
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Karlsruhe

Figure 6: A small portion of our exemplary timetable in the realistic model. Yellow nodes are arrival
nodes, the purple nodes are transfer nodes and the green nodes are their associated departure
nodes. Edges belonging to elementary connections of the timetable are marked blue, while
edges modeling transfers are shown in red. For clarity the timestamp of the departure nodes is
omnitted here—in fact they have the same timestamp as their corresponding transfer nodes.

we see a detail of the condensed graph of Germany. If we arrive at Karlsruhe’s main station
and want to switch to the “Stadtbahn” we have to go to the square in front of the main sta-
tion since the Stadtbahn stop is located there. Formally the stations “Karlsruhe Hbf.” and
“KA Bahnhofsvorplatz” are two different stations, and therefore switching trains is not pos-
sible here, since there are no connecting edges between these two stations in the graph. In
fact, the network of the Stadtbahn is disjoint from the rest of the railway network in the con-
densed graph, and hence there is no way of computing shortest paths between stations in the
Stadtbahn network and the rest of Germany.

To counteract this problem, foot connections are introduced. These are basically additional
edges (foot edges) that are added to the realistic time expanded graph to model the act of
walking by foot between two stations. For that, we say that two stations S1, Sy € B are called
neighbours if for some reason a foot connection should be inserted between them. In principle,
there is no general rule as to which two stations should become neighbours. Normally, one
would choose these neighbouring stations by hand when constructing the timetable. Since our
real world data does not contain any information on this issue, we choose the following rules
as to which two stations S; and S, become neighbours.

e 'The geographical distance between S1 and Sy has to be less than a fixed value d € R.
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Albtalbf.
Ebertstr.

Karlsruhe Hbf. KA Bahnhofsvorplatz

Poststr.
Augartenstr.

Figure 7: A detail of the condensed graph of Germany around Karlsruhe main station. Without the
red edge the network of the local stadtbahn in Karlsruhe would be disjoint from the rest of
the regular railway network, and therefore no shortest paths would exist between these two
subnetworks.

e There must not exist any elementary connection between S1 and Sy or vice versa. This
rule is due to the fact, that in dense bus networks it is well possible that certain bus
stops are closer to each other than d, and thus would become neighbours even though a
bus connection exists between them (We always want to prefer riding by any means of
transportation rather than walking by foot).

Now, let N C B x B denote the set of chosen neighbour pairs. For a tuple (S1,52) € N
we want foot edges to be inserted from S; to Sp. In general it makes sense having N to be a
reflexive relation, i.e. if (S1,52) € N then also (Sz,S1) € N. Further, let ¢ be the speed at
which one can assume the average person travels by foot. Then the edge set E of the expanded
graph G is enhanced by the following edges. For each pair (51,S2) € N let Arr(S1) C V(S1)
denote the set of all arrival nodes at station S and Trans(S;) C V(Sy) the set of all transfer
nodes at station S. Then for each node 1 € Arr(S;) a foot edge e = (u,v) is inserted toward
the earliest node from Trans(S;) which can be reached in time by foot. Formally the node v
is selected by

v:= argmin {A(time(u) + dist(S1,52)/0 + ¢, time(v)) }
veTrans(S;)
The term ¢ is a constant that is added to the raw foot travel time from S; to Sy. For example,
we could set it to transfer(Sy) or transfer(S,) or some other constant value.!® Finally, the
edge weight of each foot edge is set to the difference in time between the two connecting
nodes, as usual.

10Tn a big station getting off the platform and getting around takes time, though we do not really cover any distance
by doing that. In that case the time computed by dist(S1, S2) /¢ may not be enough to get from S to Sy. In
our experiments we have set ¢ to zero, though.
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Figure 8: This is a fictional example of two stations connected by foot edges. Assuming a distance of
100 m between the two stations and d = 3.6 km/h (which equals 1 m/s) we get a travel time
of 100 sec. Each arrival node on the left station is connected with the earliest transfer node to
the right (see the bright red edges) which can be reached within 100 seconds from the arrival
time.

Figure 8 shows an example how foot edges are inserted. For not making the picture to
bloated, only a small part of the expanded graph is shown.

In this section we developed the models which form the basis of our shortest path queries.
Thus, the next sections are devoted to the shortest path problem and the speed-up techniques
where we see how shortest path queries are connected to optimal itineraries and how query
times can be accelerated through the presented goal directed speed-up techniques.

4 Shortest Path Queries

This and the next section are the main sections of our work. We formally introduce the problem
of finding an optimal itinerary. Then we present several algorithms which solve the problem,
beginning with the basic algorithm of DijksTRA. We see that unlike in road networks there is
a tremendous number of different shortest paths for one query. This leads to some strategies
for choosing the “best” path along the query. Two possible strategies are then discussed in
section 4.4 before we introduce the speed-up techniques in Section 5.

Defining the problem of finding a “good” itinerary may not be as trivial as one might think at
first glance. Imagine planning a (rather long) trip by train. One could think of many different
optimization criteria through which the itinerary should be computed. For example

a) minimize travel time,
b) minimize transfers—no matter if the journey may take longer thereby,
¢) minimize travel distance. Don't take a longer route (even if it may be faster).

d) Consider only some well specified train classes. For example do not choose express trains,
since they are more expensive in most countries than slow trains.

e) Minimize costs, e.g. prefer a route which may be longer but is cheaper in return.
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Figure 9: Visualization of two trains departing at S towards T. The slow train takes 25 minutes longer
than the fast train, but arrives at T five minutes earlier. Considering pure travel time the fast
train should be preferred. However, if we consider the whole time from 14:00 on, the slow
train may be the better choice.

f) Combine all of the above possibilities in a well balanced manner.

We primarily concentrate on optimizing travel time. However, thinking further, even this
statement does not make entirely clear what is meant. Mostly, we would state a query to some
itinerary planning system like this:

’Give me an itinerary from station S to station T. I want to depart around 14:00
in the noon and minimize the travel time.”

Most likely there is no train at exactly 14:00 departing in our direction. Now imagine there
are two choices. The first itinerary chooses a train to depart at 14:15 which arrives at T at
18:00. This is an optimal itinerary, as there is no other itinerary which arrives at T earlier. But
there might be an alternative connection starting much later at S, for example at 14:45. But
taking this train (which might be a faster train), we arrive at T only slightly after the prior
train at 18:05. The second version clearly has a shorter time of travel, namely 3 hours and 20
minutes versus 3 hours 45 minutes. But, since we stated, that we want to depart at 14:00 the
overall travel time is five minutes longer. Figure 9 illustrates this context. Which of the two
connections should be preferred? We clear up this question for our work after introducing the
shortest path problem on directed graphs.

4.1 The Shortest Path Problem

'The shortest path problem is a classic problem in graph theory [Dij59] and much attention
has been put to it, since it is of great importance in many cases. Given a (directed) graph
G = (V,E) with an edge weight function w : V — R, a shortest path from a source node
s € V to some target node t € Visapath P = vy,...,0¢ in G where v; = s, vy = t and for
any other path P’ =s,...,t the inequality w(P) < w(P’) holds. The shortest path between
two nodes does not necessarily have to be unique. The distance of a node v € V from the
source node s is the length of any shortest path from s to v, and is denoted by dists(v). For
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Figure 10: A directed, weighted graph G = (V, E) with two shortest paths between s and ¢.

simplicity we will only write dist(v), if it is clear that we mean the distance from the source
node.

There are three major version of the shortest path problem [HNR68], each given a directed
graph G = (V, E) with some weight function w.

1. 'The one-to-one shortest path problem asks for a shortest path from some source node s to
one target node £ 11

2. 'The one-to-many shortest path problem asks for a set of shortest paths from some source
node s to aset T C V of target nodes.

3. 'The one-to-all shortest path problem is a special case of the one-to-many problem having

T=V.

Figure 10 shows an example graph with two shortest paths. Next, we define one version of
finding an optimal itinerary as a formal problem and reduce it to finding a shortest path.

4.2 The Earliest Arrival Problem

As mentioned before, there are many ways as to how one could refer to an itinerary as being
“optimal”. In this work we focus on the earliest arrival problem (EAP), which is a version of
optimizing travel time. The problem has been stated in [PSWZ07] and is as follows.

Problem 1. Given a source station S and a target station T, as well as a departure time Ts, find an
itinerary with earliest possible arrival time tr at T.

'This version of minimizing time prefers the slow train of Figure 9 over the fast one, because
the slow train is arriving at our destination first. As we see later, we have a few extra liberties
of optimizing second order criteria—like the number of transfers—within the margin of not
getting worse regarding time.

'The following theorem states, that the earliest arrival problem can be reduced to the problem
of finding a shortest path on our time expanded models.

'While finding just one arbitrary shortest path can be solved efficiently, the problem of finding all shortest paths
between two nodes is much harder.
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Theorem 1. Given the time expanded graph G = (V, E) (of the simple or realistic model), a source
station S, a target station T and a departure time T, the earliest arrival problem can be solved by
Jfinding a shortest path from s to t, where

(i) s is the smallest node from Trans(S) with time(S) > T. If no such nodes exists, then

s = argmin {time(v)}.
veTrans(S)

(ii) t is an arrival node from V (T) with minimal distance to s.

Proof. We show the correctness of theorem 1 in two steps. First, we show that a shortest path
leads to an optimal itinerary regarding the earliest arrival problem on our timetable. Second,
we show that to each valid and optimal itinerary regarding the EAP, a shortest path in G
exists. Thus, we have proven the equivalence between shortest paths in our model and optimal
itineraries.

Let P = vy,..., vk be a shortest path starting at some transfer node v; leading to some
arrival node vg. By construction of the expanded graph each edge e = (1, v) where type(u) =
Departure Node and type(v) = Arrival Node can be mapped to an elementary connection
¢ in our timetable. To simplify matters, we call these types of edges connection edges. Now
let Z = cy,...,¢|7) be the sequence of elementary connections we get by walking along the
path P from v; to vy and adding the corresponding elementary connection to Z each time we
encounter a connection edge. Since a connection edge has only been inserted for elementary
connections from C, the only edges (1,v) € E with station(u) # station(v) are either
connection edges or foot edges. Hence, for two subsequent elementary connections c;, ¢j11 €
T either S := Sy(c;) = Si(ciy1) (meaning we transfer at S or stay in our train), or Sy(c¢;) #
S1(ci+1) and thus a foot edge has been used to get from Sy(¢;) to S1(ciy1). In that case these
two stations are neighbours in the timetable.

Furthermore, we show that the length of the shortest path equals the length of the itinerary
plus the time from the first (transfer) node v; to the first departure node on P which we
abbreviate by {. Formally we show

w(P) = length(Z) + A( time(vq), time(v,))

=0
where v, is the departure node corresponding to c; € Z. This is valid due to the edge weight

function in G having exactly the time difference between its nodes by construction. Therefore
we get

7| |Z|-1
length(Z) + ¢ =) length(c;) + Y A(ta(c;), ta(cizr) +¢ (1)
i=1 i=1
7| |Z]-1
= Z w(ui’ vi) + Z w(Pvi/ui+1) + g (2)
i=1 i=1
=w(P), 3)
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where the edge (u;, v;) is the 7’th connection edge on P, and P,
0 and Uji1.

u;,, is the subpath of P between

Finally, assume 7 is not optimal, meaning there is an itinerary Z' with length(Z’) <
length(Z). Since the length of Z and 7’ is not identical, the itineraries themselves must
be different as well. So let ¢; # ¢! be the first elementary connection which differs in Z from
the one in Z'. Furthermore, let v4, v/, be the departure nodes corresponding to ¢; and ¢}, v, be
the (common) arrival node corresponding to ¢;_1 = ¢]_;. Since each edge weight is exactly
the time difference of its two nodes, the only reason for not going over v/, is, that no path from
v, to U); exists in the graph. This is a contradiction to the construction rules of G since each ar-
rival node is either connected to a transfer node at station(vy), if station(v,) = station(v/,),
or—because Z” is assumed to be a valid itinerary—there is a foot edge from each arrival node
at station(v,) to a transfer node at station(?/;) if station(v,) # station(v/,).

'The backward direction can be shown analogously. Assume an optimal itinerary 7 =
€1,...,€z|- We can construct a shortest path in G beginning by the transfer node corre-
sponding to the departure event of ¢;. For each elementary connection ¢; we walk along the
connection edge in G and for two subsequent connections ¢;, ¢j1 we create the path according
to the following three rules.

e If Sy(ci) # Si(cit1) there exists a foot edge from the arrival node corresponding to ¢;
to some transfer node at c;;1. Now walk along the transfer nodes until we reach the
transfer node matching the departure event of ¢; 1.

e If Sy(c;) = Si(ciy1) and Z(c;) = Z(cjy1) there is an edge from the arrival node of ¢;
to the departure node of ¢; .

e Otherwise there is an edge from the arrival node of ¢; to some transfer node of the
current station. Again, walk along the transfer nodes until we reach the transfer node
matching the departure event of ¢; 1.

'The length of this constructed shortest path P = v, ..., vk equals to the length of 7 according
to the equations (1)—(3) when setting ¢ := 0. Assuming there is a path P’ from v; to vy with
w(P") < w(P) we could construct an itinerary Z’ according to the first part of this proof with
length length(Z’) < length(Z) which is a contradiction to Z being optimal. O

'The proof only refers to the realistic version of the time expanded model. But it can be easily
adapted to cope with the simple model—without the transfer time criterion, of course.

When applying an EAP query, the target node f is not known in advance. This is due to the
fact that, as our theorem states, the choice of t depends on the distances of all arrival nodes
from the source node s at the target station. So it might seem as if we would need to do a one-
to-many shortest path query to the set of all arrival nodes of our target station, and determine
the correct arrival node afterward. However, as we see in the next section D1jksTRA’s algorithm
can be modified slightly to encounter this problem, and a (modified) one-to-one shortest path
query is sufficient.
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4.3 Basic Dijkstra

'The algorithm of DyxsTRrA is the most prominent algorithm for solving the shortest path
problem. It has been developed in 1959 by E.W. Dijkstra [Dij59] and can be used to solve
the one-to-many/all and the one-to-one shortest path problems. One limitation of Dijk-
sTRA’s algorithm is that it only operates on (directed) graphs with non-negative edge weights.
However, this is not a problem, since our graphs have edge weights > 0 by construction. A
description of the basic version of DijksTRA’s algorithm is shown in Algorithm 1.

Algorithm 1: DijksTrA’s algorithm
Data: A directed, weighted graph G = (V, E) with all edge weights being

non-negative. Further, source and destination nodes s, t € V.
Result: A shortest path from s to ¢.

1 Q « a priority queue of nodes
2 Q.insert (s, 0)

3 while not Q.isEmpty () do
4 v «— Q.dequeue ()

5 if v =t then
// shortest path found
6 stop

7 | forall outgoing edgese = (v, w) do

if w is a new node then

9 Q.insert (w, dist(v) + w(e))

10 pre(w) < v

1 else

12 if dist(v) + w(e) < dist(w) or ( dist(v) + w(e) = dist(w) and
’decideSameKey(v, w) D then

13 Q.decreaseKey (w, dist(v) + w(e))

14 L pre(w) «— v

// no shortest path found
15 stop

'The procedure is as follows. We use a priority queue Q as data structure throughout the
algorithm, which consists of nodes. As key value, the (current) distance of the specific node
from s is used. We start by inserting the source node, which has distance 0. Now, as long as
Q is not empty, the first node v is dequeued (the one with minimal distance from s), and all
outgoing edges of v are being iterated over. For each node w that can be reached through v,
we either add w to the priority queue (if w has not been touched yet), or if the distance of
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w)?
pre(w)?
@) dist=18
Figure 11: Which of the two nodes v and w’ = pre(w) should become the (new) predecessor of w?

w is smaller, decrease the key of w in in the priority queue, thus w is now reached through v
instead from its prior predecessor pre(w). If the distance of w would be the same whether
w is reached through v or pre(w), then pre(w) is bent to v if and only if the function de-
cideSameKey returns true for v and w. 'This turns out to play a crucial role in optimizing
the quality of shortest paths in railway networks, since this situation turns up each time two
shortest paths of the same length concur, and this is a very common situation in the expanded
graphs. See Figure 11 for an illustration of the situation. We go into more detail about this
topic in Section 4.4.

'The nodes, which get touched by DijksTRrA’s algorithm are referred to as the search space
of the algorithm. A node is called to get seztled, if it has been dequeued from Q. A settled
node v is never touched again during the execution of the algorithm (in the sense of getting
reinserted into the queue), since all remaining nodes have a bigger distance from s than v.
'Thus, a shortest path has been found as soon as the target node f gets settled. The nodes which
belong to the search space (and thus have been settled) are exactly all nodes v € V where
dist(v) < dist(t). If Q runs empty for some reason (without t getting settled), the target
node is not in the search space, and hence no shortest path exists from s to . Finally, the
shortest path can be reconstructed by walking backwards along the path of preceding nodes,
starting at the target node t until reaching the source node s. The complexity of DijksTrA’S
algorithm mainly depends on the data structure used for the priority queue. We use a very
efficient implementation by Schultes [Sch07] which allows all operations to be executed in
O(log n) time. This yields an overall complexity of O ((m + 1) log m) time, assuming n = |V/|
and m = |E|.

Adaption

As mentioned in Section 4.2 the target node f is not known at the beginning of the shortest
path query when stating realistic queries on the time expanded models. This leads to the
only slight modification we have to apply to DijksTRA’s algorithm in order to perform on our
railway model. Since a node, which becomes settled is never touched again, and all nodes that
are settled afterward have a greater or equal distance from the source node, we can abort the
shortest path search as soon as a node v with station(v) = T, where T is the target station,
has been settled. Thus in line 5 the abort condition has to be changed to station(v) = T. Of
course the target station needs to be passed as an argument to the algorithm (instead of the
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(a) Karlsruhe to Neumiinster at 8:00 in the morning:  (b) Messina to Helsinki at 10:00 in the morning:
443 minutes travel time with 1 transfer 4651 minutes travel time with 4 transfers. The
last part is done by ship.

Figure 12: Sample queries with the plain DijksTraA algorithm.

target node) for this to happen.

Figure 12 shows two example queries with the plain DijksTrA algorithm. The search space
is visualized through the gray edges. The darker the gray tone, the more edges in the expanded
graph between the two respective stations have been touched by the algorithm. Edges which
are light green have not been touched at all. As we see, most of the edges in the condensed
graph are gray, which means that at least one edge in the expanded graph has been touched
by the algorithm. Please note again that all nodes (and thus edges between them) are touched
which can be reached in time less than the target node. In our case this means, a pure DijksTrA
search visits almost the whole graph, for example in the Europe graph the whole UK has been
touched, though probably no connection ever would go through the UK if we want to go to
Helsinki.

'The itinerary obtained by evaluating the shortest path from Figure 12a is shown in Figure 13.
It shows all the stops on route, as well as the trains of the elementary connections throughout
the way.

In our very basic implementation of DijksTRA’s algorithm we did not care about the de-
cideSameKey operation, which chooses the preceding node if two shortest paths have equal
length. In fact, it is just left blank, so the outcome which of the nodes gets the new predecessor
is not cared about. Although, our primary optimization criterion remains travel time, we can
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Karlsruhe Hbf [10:44] -> Bruchsal [10:55] IR 02572

Bruchsal [10:56] -> Heidelberg Hbf [11:12] IR 02572
Heidelberg Hbf [11:14] -> Weinheim(Bergstr) [11:27] IR 02572
Weinheim(Bergstr) [11:28] -> Bensheim [11:36] IR 02572
Bensheim [11:37] -> Darmstadt Hbf [11:47] IR 02572
Darmstadt Hbf [11:49] -> Frankfurt(Main)Hbf [12:06] IR 02572

Frankfurt (Main)Hbf [12:57] -> Kassel-Wilhelmshdéhe [14:18] ICE 00578

Kassel-Wilhelmshoéhe [14:20] -> Gottingen [14:39] ICE 00578
Gottingen [14:41] -> Hannover Hbf [15:15] ICE 00578
Hannover Hbf [15:18] -> Hamburg Hbf [16:32] ICE 00578
Hamburg Hbf [16:42] -> Hamburg Dammtor [16:44] ICE 00578
Hamburg Dammtor [16:47] -> Neumiinster [17:28] ICE 00578

Figure 13: Itinerary calculated by DyyksTrA’s algorithm.

do some further optimizations, which are only in effect as long as they do not violate an optimal
result regarding time. This can be done through carefully defining the behavior of the decide-
SameKey function. We go into more detail about this issue in the next section.

4.4 The Choice of decideSameKey

Have a look at Figure 13 again. The time between the arrival and the departure at Frankfurt
(Main) is 51 minutes. Intuitively, we would immediately say that it makes sense to stay at
Frankfurt and wait until the ICE train departs. In the expanded graph this equals taking a
path from the arrival node to one of the transfer nodes, then walking along the consecutive
transfer nodes until we reach the transfer node belonging to the departure event of that ICE
00578. From here on we turn off toward the departure node and thus board the desired train.
However, the plain DijksTRA algorithm has no information about its current node being a
transfer or some other node. It just selects its shortest path based on the distance from the
source node. This may lead to very unpleasing results.

Figure 14 shows an example of what can happen if no care is taken. Obviously, both paths
are shortest paths in the sense that they share the same travel time. However, in the figure to
the left we do not wait at the station until train 2 departs, but instead take some other train
to get to station S’ and immediately get back to S, just in time to reach train 2. This is clearly
an unwanted result. For that reason, we have to examine the node where the two shortest
paths merge. This is one of the transfer nodes—let’s call it v—where the paths from station
S’ joins back to S. Let u be the arrival node at S of the path that comes from S’. Assume the
desired path to the left has been computed first, and now the node u gets settled in the priority
queue. It sees that the node v (which is reachable from u) has already been touched (with its
predecessor being another transfer node “above” v), and that dist(v) = dist(#) + w(u, v). In
this case decideSameKey gets called, and we want it to keep its current predecessor and not
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train 1 train 1
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\
v

(a) The desired outcome: Wait at S (b) An equally valid shortest path:

until train 2 departs. Hop over to some other station S'.

Figure 14: Two possible shortest paths in the expanded graph. Computing the desired path on the left
is a matter of luck, if decideSameKey is not implemented carefully.

select u as its (new) predecessor. Two strategies how this can be accomplished are shown in
the next two subsections, namely minimization of transfers and minimizations of geographical
travel distance.

4.4.1 Transfer Minimization

The transfer minimization strategy prefers a path with less transfers over a path with more
transfers. For that reason, a map transfers : V' — IN is defined, which maps each node v to
its number of transfers it has on the (current) shortest path from s to v. A fransfer is thereby
defined as the number of edges ¢ = (u,v) along the shortest path from s to v for which
type(#) = Transfer Node and type(v) = Departure Node holds. This can be imagined
as a transfer corresponding to boarding a new train. For that reason, it is not possible to apply
this strategy to the simple model, since in the simple model there is no way to distinguish
between boarding a new train or staying in the same train.

'The number of transfers can be computed in-place, so the overhead when performing the
DijksTra query is kept low. For ease of notation, let & : V x V. — {0,1} for two arbitrary
nodes u,v € V indicate, whether there is a transfer when going from u to v. Each time a new
node w is discovered from some node v, we set transfers(w) := transfers(v) + a(v, w).
When w has already been touched and therefore gets rediscovered from v, decideSame-
Key tells whether v should be updated (predecessor changed to v) or not. If it does, we set
transfers(w) := transfers(v) + a(v, w) again, otherwise leave transfers(w) untouched.

'The implementation of the decideSameKey operation is very simple. It only needs to check
whether transfers(v) + a(v, w) < transfers(w). If so, than it returns true—and therefore
v becomes w’s new predecessor—otherwise it returns false and nothing is changed.
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4.4.2 Minimization of Travel Distance

A different approach of avoiding a situation as shown in Figure 14 is not minimizing transfers
but minimizing the accumulated geographic length of the shortest path. The geographic length
of a path P = ©vy,..., vy is defined as the sum of the geographic distances of each edge on
the path. Thereby, the geographic distance of an edge connecting two nodes e = (1, v) with
station(u) = station(v) is zero, otherwise it is the Euclidean distance between the two sta-
tions as defined in Section 3.3 and is denoted by dist(station(u), station(v)). So we define
the geographic length of a path P formally by

lengthgeO(P) =)

= 0 otherwise

=l { dist(station(v;), station(v;;1)) if station(u) # station(v)
Both paths from Figure 14 have the same distance regarding time, but the path to the right
clearly has a bigger geographic length, since it has the geographic length of the left path plus
two times the distance dist(Station 1, Station 2).

'The implementation of this strategy is similar to transfer minimization. In addition to the
value dist(v), which holds the (time) distance from s for each node, we keep another value
distgeo(v) which refers to the geographical distance of v from s. distge, can be computed
in-place at the same time dist is computed or updated. The decideSameKey operation now
prefers the node which has the smaller geographic distance, and thus for two shortest paths
with equal length the one with smaller geographic length is selected. As opposed to transfer
minimization, this strategy can also be applied to the simple model, since it does not require
any of the additional features of the realistic model.

Figure 15 shows the difference that can be achieved through transfer minimization. It is,
as can be seen in the figure, well possible that a whole different itinerary is computed for the
same query.

We have seen several strategies for implementing the decideSameKey operation. Unlike in
road graphs, timetable networks demand much more attention to this issue due to the tremen-
dous number of shortest path of equal length for each query. The two approaches we presented
here are just examples of what can be done. We could, of course, think of many further strate-
gies such as minimizing the number of stops (stations) or minimizing the number of “slow”
trains to prefer express trains. However, since our presented strategies only decide which path
to take, when two shortest path merge together at some node, there is no difference in the
number of touched or settled nodes in the graph. Therefore, the search space (and thus the
query time) is much the same, no matter which of our strategies we apply.'2

In real world scenarios one usually has a centralized server that handles all the shortest path
requests. Clients can then state requests to that server—for example via the internet. In such
scenarios it is very important that these requests can be handled efficiently. For example,
during the query from Messina to Helsinki in Figure 12b the (pure) DijksTrA algorithm has

120f course we could think of a decideSameKey operation that is very intensive, thus yielding worse query times
or even touching nodes which normally would not be touched by the algorithm.
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Figure 15: A query from Savignyplatz to the subway station Schonhauser Allee in the bus network of
Berlin. Each journey takes the same time, but the second one has two transfers less leading
to a completely new route.

touched 4.779.492 nodes and 6.829.885 edges in the expanded graph taking almost 3 seconds.
Moreover, almost the whole graph is drawn gray, which means the algorithm advanced into
regions one would never expect an optimal itinerary to go through. One can almost certainly
rule out that an optimal itinerary would go through London for example. This is very unsatis-
tying. To overcome this, speed-up techniques have been developed to reduce the search space
which we go into more details with in the next section.

5 Speed-Up Techniques
In this section we study some speed-up techniques, which mostly have been optimized to work

well with road networks. We go into more details with Arc-Flags, the ALT algorithm, and a
combination of these two techniques. In the section afterward we present results how these
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techniques behave, and observe that in timetable networks the speed-up techniques behave
quite differently to road networks. For example Arc-Flags gives much worse results than in
road networks. However, the combination of Arc-Flags with ALT plays off very well, in
contrast to road networks where combining these techniques gives almost no advantage at

all [Sch08].

'The theoretical complexity of DijksTrA’s algorithm is O((m + n) log m) which one would
think of pretty good at first glance. Of course this is true because it allows us handling huge
sets of input data at all. So why care about speeding up DijksTrRA? The roots of the research
tor making D1jksTRrA’s algorithm faster indeed come from public transport networks and were
first introduced by Schulz, Wagner and Weihe in 1999 [SWW99]. The development then,
however, started to focus more on road networks which is mainly due to the availability of
large road network graphs to the public. At the 9th DIMACS challenge in 2006 [DGJ06]
which had speed-up techniques as its topic, most submissions were therefore dedicated to
road networks. Furthermore, speeding up DijksTRrA is easier on road networks, hence most
attention has been payed to this matter in the first place.

Several techniques have emerged, which yield really amazing results on road networks, from
those the fastest ones known today being transit node routing [BFSS07] and SHARC [BDO08].
A good overview about the most important speed-up techniques is given in [WWO07] by Wag-
ner and Willhalm and in [SSO07] by Sanders and Schultes, which can be seen as a good in-
troduction into the matter. We do not go into much detail about each and every speed-up
technique but focus on two main techniques, which can be adapted to railway networks rela-
tively easy.

The first one we study is called Arc-Flags and has been proposed by Lauther in [Lau04]. It
has been studied and improved further by several authors in [MSS*05, KMS05, HKMS06,
Hil07]. The basic approach is as follows. Informally, it basically partitions the graph into
regions, and to every edge (or arc) a bit field is assigned with its I’th entry being true if and only
if a shortest path toward the i’th regions uses the respective edge. During queries, edges having
their flag set to false regarding the target region can be ignored. In a preprocessing step the
partition and the arc flags are computed, which are then used during the actual queries. There
are further speed-up techniques which are based on graph partitions [MSST06]. However,
Arc-Flags has proven to be the best one in road networks, so we focus on Arc-Flags in this
work.

The second speed-up technique we go into more detail with, is the ALT algorithm. It
is a variation of the A" algorithm [HNR68] which has been introduced by Goldberg and
Harrelson in [GHO04]. Some further research has been put into this approach by Delling and
Wagner in [DWO07]. Basically, it is a goal directed search, exploiting the triangular inequality
according to some carefully chosen landmark nodes in the graph. As a consequence, nodes
which lie between the source and the target node are prioritized in the priority queue. This
technique also requires some preprocessing for computing the landmark nodes, but since we
do preprocessing on the much smaller condensed graph here (in contrast to Arc-Flags, where
we compute the flags on the expanded graph), preprocessing time is almost negligible.
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(a) Unidirectional DijksTRA

(b) Bidirectional DijksTRA

Figure 16: Search space of a query around Amsterdam in the Netherlands’ road network. The upper
picture shows a plain D1jksTRA search, while the lower picture shows a bidirectional search.

Before we go into more detail with these two speed-up techniques in the next two sections,
we want to make a few notes about the most obvious technique for speeding up queries: Bidi-
rectional search. The basic version of DijksTRA’s algorithm does a forward search alone. 'This
means, for some s-t query in a graph G = (V, E) we start at the source node s and the algo-
rithm terminates as soon as the target node t has been settled. Now let G = (V, E) be the
backward graph obtained from G when all edges are flipped. Instead of initiating only one
search from s to t in G we start another search in the backward graph G from t to s at the
same time, called the backward search. As soon as the search spaces meet, meaning there is
a node v which has been settled in the forward and the backward search, the algorithm may
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Figure 17: Simple example to illustrate “unnecessary” edges. The edge (s,v) is on no shortest path
from s to t and thus can be ignored during the DijksTRA search.

be aborted, and the shortest path is the concatenation composed of the two paths from/to v.
Figure 16 shows the difference in the size of the search space on a road network query when a
bidirectional search is used over a simple unidirectional search.

Unfortunately, as we worked out in Section 4.2 the exact target node is not known for the
earliest arrival problem, since we do not know at which time we arrive at the target station.
'Thus, we have no basis from where we should start the backward search, rendering the bidi-
rectional approach impossible. As a consequence, any speed-up technique which relies on a
backward search, especially hierarchical approaches, can not be used with our railway model.
Even worse, some unidirectional techniques like the basic implementation of the ALT algo-
rithm also need the target node as input. However, in this case the algorithm can be modified
to work in our scenario where we do not know the exact target node.

5.1 Unidirectional Arc-Flags

When we try to engineer DijksTRA’s algorithm, one central insight is that the algorithm does
not need to touch each and every node and edge of the graph in order to find a shortest path
toward the target node f. 'This allows some room for improvement by trying to reduce the
number of touched nodes. When we look at Figure 17, we can see that the edge from s to v is
certainly not used by a shortest path beginning at s with target node . Thus, this edge does not
need to be considered for a shortest path query from s to t. More generally, the edge can be
ignored for every shortest path with target node t at the point where D1jksTRA’s algorithm is
processing the node s (We could imagine the graph being larger, and during the computation
of the shortest path at some point arriving at s).

What we do now, is that in a preprocessing step we compute “unnecessary” edges which can
be ignored during the shortest path search, eventually yielding a smaller search space. Let
e = (u,v) be an arbitrary edge in E and V, be the set of all nodes that can be reached through
a shortest path starting with u over e. Then, when computing shortest paths from s to f, all
edges e where e ¢ V, can be ignored. In our example the set V(, ;) only consists of the node
v, since for every other node in the graph a shortest path from s does not use the edge (s, v),
but the edge (s, 1) instead.

Storing all sets V, for a graph G would lead to space complexity O(nm) which is much too
large for our graphs to be held in memory. Hence, we partition the graph into r different
regions with r < n. Let region : V — {1,...,r} be the function that maps each node to
its region-id. Then, instead of assigning each edge e its set V, of nodes that can be reached
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Figure 18: Sample edge with arc flags vector. Regions are marked with different colors. Since the
yellow region can not be reached by a shortest path starting from e its flag is set to false.

through a shortest path starting at e, we assign a subset R, C {1, ...} of region-ids of exactly
those regions which can be reached through a shortest path starting at e. We say, that a region
with id 7 can be reached (through a shortest path beginning with e), if at least one node v € V,
with region(v) = r exists.

The implementation is done using a bit-vector of size r for every edge e. The i’th entry of
the vector is set to true if and only if at least one node in region 7 can be reached through a
shortest path beginning at e (And false otherwise). See Figure 18 for an illustration. The
DyxsTra search from s to t can now be reduced to the subgraph induced by those edges which
have the entry of region(t) set to true in their bit-vector. A proof of correctness can be found
in [HKMSO06]. The additional space required to store the arc flags is in O(rm), for sparse
graphs—like our expanded graphs—this even leads to space complexity O(rn). The number
of regions r gives us a trade off between speed-up and space consumption. The higher r is
chosen, the more arcs can be ignored during the DijksTrA query. The optimal case is setting
r = n, thus only edges which are part of shortest paths toward t would be considered during
a search from s to t. The other extreme, when making r very small, leads to a much higher
probability that the relevant flags of many “unnecessary” edges are set to true, even though
they are not contained in a shortest path to ¢, since chances are high, that at least one other
node in the target region exists from which a shortest path is using the considered edge.

'The edge induced subgraph due to the arc flags of the particular target region can be com-
puted on the fly when executing the algorithm for each query. In line 7 of algorithm 1 we just
need to check whether the flag regarding our target region is set to true. If it is not, the edge
can be simply ignored and its tail node does not need to be examined for insertion into the
priority queue.

The Preprocessing

For having the arc flags available when executing shortest path queries, we need to compute
them in a preprocessing step. This step only needs to be done once, since the computed arc
flags can be used for all subsequent queries as long as the graph structure does not change.!3
'The preprocessing consists of the following two steps.

1. Partitioning and

13This makes this technique somewhat unsuitable for dynamic scenarios, where weights or even the graph’s struc-
ture may change often—but this is not a topic in this thesis.
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Figure 19: Berlin’s Bus Network partitioned into eight regions by SCOTCH.

2. computing the arc flags due to the regions from the previous step.

'The partitioning is done on the condensed graph, because during a query we do not know
the exact target node in the expanded graph. Thus, we also do not know the target region
which would render the whole Arc-Flags approach useless. But, since we know the target
station, we simply assure that all nodes belonging to the same station also belong to the same
region. This can be achieved through partitioning on the condensed graph. So in a first step
we retrieve a map region : B — {1,...r} which assigns each station its region-id. In a
second step we expand the map to the nodes of the expanded graph such that each node of
the expanded graph is mapped to the region-id of its respective station it belongs to; formally:
region(v) := region(station(v)) for some node v € V from the expanded graph.

'The choice of the partition type has a big influence on the efficiency of the speed-up tech-
nique. One goal is to balance the regions well, meaning they all contain a similar number
of nodes. Furthermore, the number of edges that cross region borders should be as low as
possible. In [HKMS06] and [MSS*06] several partitioning methods are presented, some of
which need geographic information or some other embedding of the graph in the plane.!*
For our experiments we solely use SCOTCH [Pel07] which provides a family of (multilevel)
partitioning algorithms developed at the Laboratoire Bordelais de Recherche en Informatique

4Our (condensed) graphs are equipped with geographic information.
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Figure 20: A region i with some boundary nodes (the fat ones). The fat edges are the overlapping arcs
through which the region can be entered.

in France. Figure 19 shows the result of a partition with eight regions on the graph of the local
bus network of Berlin.

'The second step is to compute for each edge the actual arc flags based on the partition
layout. A naive way of doing this is computing a one-to-all shortest path tree from every edge
e = (u,v). This can be done by a standard DijksTrA algorithm which does not stop until all
nodes have been settled [Lau04]. The start node is set to u and every time a node w gets settled
during the algorithm, we check whether e is on the shortest path from u to w. Accordingly,
the arc flag f.(region(w)) is set to true if and only if e is contained on the path from u to
w. 'The information whether e is contained on the path can be propagated through all nodes
during execution of the algorithm as follows. We assign a flag to each node which indicates
whether e is used on the shortest path to the specific node. Each time we set the predecessor
of some node w during the algorithm, we set the e-flag to the value of its preceding node,
unless we used e directly to get from pre(w) to w. In this case the e-flag must be set to true.
'This way, and assuming that we initialize the e-flag of the source node u with false, we can
easily determine whether the arc e is contained on the shortest path from u to w with almost
no overhead. However, computing m shortest path trees takes O(m((m + n)logn)) time.
Assuming the graphs are sparse!>—and therefore m € O(n) holds—we still get O(n?logn)
time complexity which is far too much to be practical. Preprocessing on huge graphs such as the
German or even the European rail network would take weeks on todays high end computers.
For that reason, we use a smarter technique for computing the arc flags which does not require
an all pair shortest paths computation.

In the previous approach we did not really exploit the partitioning scheme for our preprocess-
ing. We simply computed shortest paths from each arc e € E to every node in the graph. But
we can do better. Let i be the region-id of the ’the region from {1,...,7}. Then every (short-
est) path from any node s (which is not a member of the region 7) to any node inside the region
i has to enter the region at some point. Thus, let’s call an edge e = (1, v) with region(u) # i

15111 our scenarios they are.
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target region

Figure 21: Illustration of the construction of the backward-DijxsTra shortest path tree from some
boundary node v. The gray edge is not contained in the shortest path tree, and therefore its
flag is set to false.

and region(v) = i an overlapping arc. The set B(i) := {v | There is an overlapping arc e =
(u,v) into i} is called se of boundary nodes of the region i, and its members are called boundary
nodes. In [MSST06] Mohring, Schilling, Schiitz, Wagner and Willhalm have shown that it is
sufficient to only compute shortest paths to the boundary nodes of each region. See Figure 20
for an illustration of the boundery nodes of a region.

For that reason, we no longer use a forward-D1jksTRA on G to compute the shortest path
trees, but instead for each region 7 and every boundary node v € B(i) we compute a one-to-all
shortest path tree on the backward graph G of G starting at v. Now every time a node w
in G is settled by the backward-DijksTra, we acquire its preceding node pre(w) in G and
the flag of the corresponding forward-edge (w, pre(w)) in G is set to true due to the region
i. Please refer to Figure 21 for an illustration. This method gives us a significant speed-up
in preprocessing time. The amount of time reduced heavily depends on the quality of the
partition. Since our partition is computed on the condensed graph and is then mapped over to
the expanded graph, region borders always go along the “border-nodes” of the stations. These
mostly consist of arrival and departure nodes which have train connections going outside the
region. One can easily see, that this is not necessarily the best way to partition the expanded
graph in regard to a minimal number of boundary nodes. Therefore, the number of the overall
boundary nodes is still very large in our scenario. Preprocessing times are shown in Section 6,
but they usually vary between several hours up to more than a day depending on the graph size
and number of regions.

Importance of decideSameKey

Aswe have worked out in Section 4.4 the number of different shortest paths between two nodes
in the expanded graph is tremendous. Of course these considerations also apply to the prepro-
cessing step when computing the one-to-all shortest path trees in G. As a consequence, if we
do not choose the strategy for the decideSameKey operation carefully in the preprocessing-
DyxsTra, we end up having almost all arc flags set to true, and thus not gaining anything
when stating queries with these flags.
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Figure 22: The left path has a lot more hops than the right path. However, the left path should be
preferred.

When we do shortest path computations on road networks and get the situation of two
shortest paths merging togetherl(’, and thus decideSameKey gets called, it usually makes sense
to choose the shortest path with less nodes (hops) on it. This has the semantics of preferring a
route with less crossings over a route with more crossings, even though they may be equally fast.
'This strategy does not lead to good results in the time expanded graph of our model. Imagine
arriving at some station S; with lots of traffic (for example in some big city). Probably we
switch trains here, and thus have to go through a /o# of transfer nodes in order to get to the
desired train. Figure 22 shows that in this case it is more attractive for the algorithm to use a
path which leaves S; for S, and gets back immediately. This is due to the enormous number
of transfer nodes we have to go through at S;.

At first glance, it seems to be intelligent to use the same strategy for decideSameKey as we
use later for our queries. However, this has proven to result in very bad speed-ups. When using
transfer minimization we yield almost no speed-up. The number of settled nodes improves by a
few hundred where the scale of settled nodes of our queries is around 100,000. 'This means, that
during the preprocessing almost a// arc flags have been set to true. Also, the strategy which
minimizes travel distance does not lead to good results (though they are a little bit better than
transfer minimization). Please see Section 6 for a comparison of the different strategies.

For achieving any significant speed-up at all, we have to do some really aggressive opti-
mization. By aggressive we mean, that we need to force as many flags to be set to false as
possible. That is, if a flag of some edge is kept false we must try to prohibit as strongly as
possible that it gets overwritten to true by some other backwards-DijksTra-run from the
same region. Thus, the criterion which the decision at the decideSameKey operation is based
on, should have the same outcome as often as possible, no matter from which boundary node
of the respective region we started our DijksTrA search. To achieve this, we use the direct
geographical distance between the the source boundary node s and the nodes involved in the
decideSameKey operation as the determining factor. If for some node v (which has pre(v)
as its current predecessor) that is reached from some other node u we have to decide which

16Which in fact does not really occur very often in road networks, so here it is even sufficient to do nothing about
this matter at all.
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(a) Without Arc-Flags acceleration  (b) Alternative 1: Departing at (c) Alternative 2: Departing at
11:19 15:15

Figure 23: Comparison between Arc-Flags using “geographical distance to target” strategy for prepro-
cessing and two alternative shortest path routes between Waldshut and Karlsruhe. While
plain DijksTRA visits a lot of unnecessary arcs, with Arc-Flags only those edges are visited
which go along routes for which, at some point in time, no better (in the sense of being more
directed toward the target region) route exists.

one becomes the “new” predecessor, we choose the node due to the following criterion.

pre(v)pew := argmin {\/(coordx(w) - coordx(s))2 + ((coord, (w) — coordy(s))z},
we{u,pre(v)}

where s is the source boundary node where the backward-search started from. This can be
imagined as follows. At each node we always try to geographically go further toward the
target region, thus cutting oft routes which do not lead toward the target region. However, if
(for example at some different time of day) valid connections are only available trough some
other route, the arc flags are opened (set to true) for both alternatives. Therefore, when stating
a query, both alternatives are explored by the DijxsTRrA algorithm, regardless of the time at
the source station we stated our query at. This can be seen nicely in Figure 23 which shows a
cut-out of the German railroad network. There are two routes from Waldshut to Karlsruhe.
Which one is faster depends on the time we want to start our journey in Waldshut. Thus,
only these two routes are explored, but other routes, where no shortest paths lead over, are not
touched.

Figure 24 shows a general comparison between the three different decideSameKey strate-
gies. Each query starts at 8:00 in the morning and the queries with arc flags are using the same
128 region partition generated by SCOTCH. During the queries we applied the strategy of
transfer minimization according to Section 4.4.1. We can see that depending on the strategy
chosen for the decideSameKey operation in the preprocessing phase, there are huge differences
regarding the number of settled nodes and touched edges in the shortest path queries after-
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ward. Whereas “distance” and “transfer” have almost no effect compared to a plain D1jksTRA
query, “geographical distance to target” gives a nice speed-up.

Disadvantages of Arc-Flags

Although we can achieve good speed-ups with the geometric strategy when using Arc-Flags,
this also leads to some disadvantages. First, the preprocessing time is still way too long. On
the graph of whole Europe with a large partition, preprocessing takes more than four days on
our machines. Please refer to Section 6 for the measurements and the hardware specification
we used in our experiments. This makes Arc-Flags very inflexible for dynamic scenarios where
weights may change, or the graph needs to be patched up in some way (for example due to
delays in the train network). Although, recently some promising development has come up to
dramatically reduce preprocessing time. For example in [BD08] Bauer and Delling propose
to contract the graph during the preprocessing phase, thus making the graph smaller, which
eventually leads to shorter preprocessing times (and even more amazing speed-ups regarding
query times). Another improvement is to use centralized shortest paths computations which
reduces the number of shortest path that need to be computed and therefore also reduces
preprocessing time, see [Hil07].

Concerning the second disadvantage, and this might weigh more heavily, the aggressive ge-
ographic optimization in the preprocessing destroys the room for second order optimization
during the execution of shortest path queries as we described in Section 4.4. Even worse,
optimizing geographically toward the target station (or region) can contradict the desire to
minimize transfers or travel distance, because shortest paths with less transfers may be cut off
with a false indicating arc flag. Thus, the optimal shortest path—in sense of the number
of transfers—is lost.!” This can lead to pretty bad itineraries as can be seen in Figure 24d
compared to Figure 24a. While plain D1jksTRA gives us a pretty nice itinerary with just three
transfer, the Arc-Flags method gives us plenty more transfers, although we used transfer min-
imization in this query as well.

With Arc-Flags and the best strategy for decideSameKey applied, we optimize query times
pretty well. However, the dimension in which optimizations are applied to, is only geographi-
cally. Aswe see in Figure 23 almost no edges which are not on train routes (containing optimal
connections for some time of day) are considered, but on these branches of the network we still
examine all connections in the time span between the start time at the source and the arrival
time at the target station. Hence, the “time component” of our network is not optimized too
well. The next speed-up technique we present, namely the ALT algorithm, has its focus on the
time component. Instead of cutting off paths that go into the wrong direction geographically,
we cut off paths that probably do not reach the target station in time.

5.2 Unidirectional ALT

Another algorithm for solving the shortest path problem is the A algorithm [HNR68]. How-
ever, we can easily reduce A" to DyksTRA’s algorithm, and thus consider it as a speed-up tech-

170f course the now obtained shortest path (with possibly more transfers) is still optimal regarding travel time.
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egy. Settled nodes: 73,256, touched edges:
91,223

Figure 24: A query from Meckenbeuren to Westerland on Sylt.



nique of DijksTrA. We now derive some general ideas behind A’, referring to the terms of
Goldberg in [GHO04], which uses lower bounds to the target node to estimate the direction in
which the shortest path search should advance. After that, we introduce landmarks which are
basically special nodes in the graph which help us to compute good lower bounds. This leads us
to the ALT algorithm, which is an abbreviation for “A", Landmarks and Triangle inequality”.

Potential Functions and A"

Consider 71 : V' — R to be a potential function from the nodes into the reals. When we modify
the weight function w of our graph G to a new weight function w, with w, (u,v) := w(u,v) +
mt(v) — rt(u), then the length of every (not necessarily shortest) path between two arbitrary
nodes s and ¢ changes by the same amount w(t) — wx(s). This is because the potentials of
subsequent nodes along the paths cancel out each other. As a consequence, finding a shortest
path due to w is equivalent to finding a shortest path due to w,. Since we cannot handle
negative edge weights we call a potential function 7t feasible if w,(e) > 0 holds for all edges
of our graph. This implies the following two statements which can easily be verified.

(a) Given a feasible potential function 77, and for some (target) vertex t we have 7r(t) < 0,
then for any node v € V the equation 7t(v) < dist(v, ) holds.

(b) If 71y and 71y are two feasible potential functions, then max(7ty, 712) is also feasible.

This can be seen as 71(v) being a lower bound on the distance between v and some fixed target
node t in the graph. Furthermore, the second statement can be interpreted like this. If we
always (meaning for each node) use the best lower bound we can get, we still have a feasible
potential function which can be applied to DijxsTrA’s algorithm. Thus, from now on all of
our potential functions are feasible, and we omit to mention the word feasible each time.

The modification of DijksTRA that needs to be applied in order to derive the A" algorithm is
very simple. Instead of inserting new nodes v with key dist(v) into the queue, we insert them
with respect to our potential function, and thus the key is altered to dist(v) + 71(v). In this
case, the search space is reduced to the nodes v € V where dist(v) < dist(t) — 7r(v). This
implies that the better the lower bound, meaning the greater the value of 77, the smaller the
search space grows. In the most simple case, which is the idea behind the original A algorithm,
the potential function 77 is defined as 77(v) := distge, (v, t)—the straight geographic distance
between v and the target node £.!® Then in the priority queue nodes are prioritized (and thus
get settled earlier) which have a smaller geographical distance to the target node than nodes
with a higher distance. Hence, the search is goal directed, in the sense that it preferably scans
paths leading toward the target node first. If we define 77(v) := dist(v, t), the potential
function yielding exactly the shortest path distance to the target node t, we would get the
best possible lower bound, and thus only nodes along shortest paths would be settled during
the DijksTraA algorithm. Of course, having such a potential function available would require
a distance table of all node pairs held in memory somewhere, which is not practical at all.

18Note, that 77 is not a fixed function like the edge weights w, but depends (in this case because of the location of
the target node) on the actual shortest path query that is being stated.
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Furthermore, preprocessing time for computing all-pair shortest paths is way off the limits.
So we have to find some other good feasible potential function.

Landmarks and the Triangle Inequality

'The basic idea behind using landmarks is having a fixed number of acclaimed landmark nodes
to/from which we precompute one-to-all shortest-path trees. Therefore, we have the exact
distances from each node v to each of the landmarks and vice versa. Now, for a target node t,
some node v and a landmark ¢ the following two equations hold by the triangle inequality.

dist(v, t) 4 dist(¢,t) > dist(v, ¢) 4)
dist(¢,v) + dist(v, t) > dist(¢, t) 5)

Please also refer to Figure 25 for a visualization of this matter. To get a feasible potential from
this coherence, we resolve the equations (4) and (5) to dist(v, t) and thus get

nt(v) = max{dist(v, ¢) — dist(t, £),dist(¢, t) — dist({,v) } < dist(v, )

which is a lower bound of the distance from v to t. To get the best possible lower bound we
can consider all landmarks L C V and use the maximum value from each triangle inequality,
yielding

n(v) = max max{dist(v, ¢) — dist(t, ¢),dist(¢, t) — dist(¢,v) }.

Although one might think that for the sake of the lower bound the more landmarks are taken
into account for computation the better, but this has proven to be false. The overhead of
computing the lower bounds outweighs the actual increase in speed of heaving a better lower
bound in this case. Thus, we only use a fixed number of concurrent landmarks. These land-
marks are determined before the execution of the actual DijksTRA search, and are selected due
to providing the best lower bounds for the start node. We refer to these landmarks as active.
Furthermore, the set of active landmarks is updated during the execution of the algorithm
within some fixed interval, e.g. after a fixed number of nodes have been settled. This ensures
that we maintain a reasonably good lower bound during the whole execution of the algorithm
without the need of calculating the distances to all landmarks all the time.

Preprocessing

Again, we have the problem of not knowing the exact target node when stating a shortest path
query. Thus, we can not use landmarks in the expanded graph as long as t is unknown. For
that reason, we do preprocessing on the much smaller condensed graph, which is okay, since
we defined the edge weights in G* to be the lower bound regarding travel time between the
two connected stations (nodes). When doing the DijksTRA search in the expanded graph, we
then compute the potential function through

n(v) = max max{dist(station(v), ¢) — dist(T, ¢),dist(¢, T) — dist(¥, station(v)) },
€
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dist(¢,t)

Figure 25: Visualization of the relation between the nodes v, t and £ and (shortest) paths between them.
'The triangle inequality can be applied in multiple ways according to the equations (4) and (5).

where T is the target station of our query. Of course, since in this case the distances are, again,
only lower bounds (because they are computed on the condensed graph), the potential function
is not as good as if we would use exact distances from the time expanded graph.!?

'The selection of the landmark nodes is crucial to the performance of the ALT algorithm. The
most naive approach, using random nodes as landmarks already gives pretty good results, but
we can do better. The triangle inequality yields better lower bounds the “fatter” the triangles
are. 'Thus, the best results can be achieved if the landmark nodes are right “behind” or “in
front of” the target node f. One way to increase the chance of having this result, is to place
landmark nodes along the outer boundaries of the graph. A few techniques that try to achieve
this effect are presented in [DSSWO06], from which we use MaxCover.

'The time complexity for preprocessing the ALT algorithm is much less than for Arc-Flags.
'This is because we only use the condensed graph to compute the landmarks, which is much
smaller than the expanded graph. For example, the condensed graph of Germany has only
6,730 nodes, whereas the expanded graph has 1,661,828 nodes. This decreases the time for
computing a one-to-all shortest path tree dramatically. Hence, preprocessing time becomes
negligible for the ALT algorithm, taking only a few seconds on the time expanded railway
model.

Discussion
Figure 26 shows an example query in the German railroad graph when using the ALT algo-
rithm with 16 landmarks compared to the same query using plain DijksTrRA. As we see, the
search space is considerably smaller than with plain DijksTra, but the “visual difference” in
the figure does not seem to be as dramatic as with Arc-Flags (and our best decideSameKey
strategy). 'This can be put down to the property of the ALT algorithm preferring nodes with
a shorter distance to the target node instead of the wrong geographic direction as Arc-Flags
does. Hence the number of touched connections per edge in the visualized graph is optimized
but there might still be some touched edges which point to the wrong geographical direction.
For this matter have a look at Figure 27. When stating a plain DijksTRA query we visit
all nodes v € V with dist(v) < dist(#). This has the effect that connections to stations are
touched even if we already have reached the specific station by an earlier connection. In our

19We can think of this as using a “lower bound of a lower bound”.
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(a) Plain DijksTRA. Settled nodes: 107,641, touched  (b) ALT with 16 landmarks, from which 4 have been
edges: 156,641 active during the query. Settled nodes: 17,043,
touched edges: 25,238

Figure 26: A query from Straubing to Remscheid-Lennep using plain Dijkstra and the ALT algorithm.
'The diamond nodes are landmarks whereas landmarks which were active at some time during
the query are colored in red.

figure we visualize this by the gray area which is enclosed by the arrow representing the path
of the optimal connection through time and space. With plain DijksTra all nodes are settled
which can be reached in time before we reach our target, thus the gray area is a perpendicular
triangle. The ALT algorithm however, only touches nodes v € V with dist(v) < dist(t) —
71(v), thus the gray area—and for such the number of settled nodes—is a much smaller strip,
since paths to nodes which can not be reached “in time” (regarding the lower bound function
7r) are cut off during the search.

If we think this further, we can derive the following semantics from this context. Since we
prefer nodes in the priority queue, which have a smaller distance from the target, connections
which go closer to the target are preferred over connections which only cover a short distance
toward the target. These connections are exactly long distance train connections, so the ALT
algorithm implicitly prefers long distance trains over short distance trains (as far as they are
available), which is the same approach one would use when finding an itinerary by hand.

If we put it into simple words, we can say that Arc-Flags optimizes the geographic dimen-
sion, and ALT optimizes the time dimension. This leads us to the question how these two

46



» Location » Location

search space

search space

\J
Time Time

(a) Plain DijksTrA (b) ALT algorithm

Figure 27: Illustrating the differences in search space between a normal DijksTrA and the ALT algo-
rithm: ALT does not crawl so deeply in time, because nodes which are closer to the target
(in the sence of travel time) are preferred over nodes from which it takes longer to the target.

speed-up techniques can be combined into one new speed-up technique, and how they per-
form together. From road networks we know that combining Arc-Flags with ALT does not
yield much improvement over using them alone [Sch08]. Mostly, Arc-Flags overrules ALT,
and since in road networks there is no time component ALT does not have the advantage of
optimizing the time dimension. However, we see in the next section, that in the expanded
railway model the two techniques perform very well together because they optimize almost
orthogonal leading to speed-ups by the factor of the product of the individual speed-ups of
the two techniques.

5.3 Combining Unidirectional ALT with Arc-Flags

Combining Arc-Flags with ALT is pretty straight forward, since the two techniques do not
interfere with each other. Arc-Flags simply ignores edges with its appropriate flag not being
set, and ALT just modifies the key value of the nodes in the priority queue, and thus the order
in which they are dequeued. Both modifications can be applied simultaneously without side
effects.

Figure 28 shows a sample query from Berchtesgaden in Bavaria to Westerland on Sylt. The
difference in the number of settled node and accordingly touched edges is really dramatic.?’
Geographically almost no routes to stations which are not on the optimal path are searched
which is due to the Arc-Flags technique, while ALT cuts off the search space in the time
dimension, particularly where long distance trains are available. Thus, almost only nodes along
the actual shortest path are touched.

In the next section we deal with experiments we have conducted on several graphs. First, we
describe the hardware and software which was used in our experiments. After talking about
the raw data, and how we convert it to the actual railway model, we evaluate the results we
achieved. We see, that the performance of Arc-Flags mainly depends on the right choice of

20The example shown is an instance which leads extremely good results. In average, the speedups are not #is good.
A more detailed evaluation can be found in Section 6.
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(a) Plain DyjksTrA. Settled nodes: 333,851, touched  (b) Combination of ALT and Arc-Flags with 32
edges: 481,183 landmarks and 128 regions. The Arc-Flags de-
cideSameKey strategy is “geographic distance to
target”. Settled nodes: 3,029, touched edges:

3,751

Figure 28: A query from Berchtesgaden to Sylt using plain Dijkstra and the combination of ALT and
Arc-Flags.

the decideSameKey strategy during preprocessing. Further, we show that the combination of
ALT with Arc-Flags has a dramatic increase on the speed-up factor over the speed-up factors
of the individual techniques.

6 Experimental Studies

In this section we conduct several experiments on the railway models with difterent speed-up
techniques on timetable graphs. Our implementation of both the railway models / graphs and
the query techniques are done in C++ solely based on the STL. For efficiency reasons, we do
not use virtual methods and class inheritance but rather make excessive use of templates. The
way we store graphs is done using a binary format consisting of a forward star (adjacency array)
representation which is very efficiently implemented [Del07]. For this reason, we can handle
huge graphs very well with a minimum of required memory—the performance of reading a
graph from file is limited by the hard drive speed. The implementation of our graphs also
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*Z 27988 RD____ 01 % 27988 RD 01

*G DNR 8000247 5400004 % 27988 RD____ 01
*A VE 8000247 5400004 000000 % 27988 RD____ 01
*A FB 8000247 5400004 % 27988 RD____ 01
*A RD 8000247 5400004 % 27988 RD____ 01
*A GR 8005352 5400004 % 27988 RD____ 01
*GR 8005353 8005352 5400004 Cheb(Gr) % 27988 RD____ 01
8000247 Marktredwitz 2112 % 27988 RD____ 01
8000613 Arzberg(Oberfr) 2119 2120 % 27988 RD____ 01
8005352 Schirnding 2124 2126 % 27988 RD____ 01
5400004 Cheb 2140 % 27988 RD 01

Figure 29: Sample set of raw data belonging to a local train from Marktredwitz to Cheb at the German-
Czech border.

contains backward-edges, hence the backward graph G is stored implicitly.?! The choice of
the tuple of speed-up technique, decideSameKey strategy and model type is based on template
arguments, and can be set from the command line when stating queries. For debugging and
visualization purposes we also developed an interactive program which allows us to generate
itineraries and pictures. As compiler we use GCC version 4.1 on SuSe Linux 10.1 (kernel
version 2.6.16.13-4-smp) with the flags -04 -DNDEBUG -funroll-loops.

Our experiments were conducted on a dual core AMD Opteron 2218 processor having 2.6
GHz, 1 MiB level 2 cache (each core) and 16 GiB of main memory. All of our programs are
single threaded, and thus only one of the two cores is used.

6.1 Raw Data Conversion

For input we only use real world data which was kindly given to us by HaCon [HIm] (and is
also used by the Deutsche Bahn). The raw data first needs to be converted into a set of files
representing the simple or realistic time expanded model. Since the format of the raw data is
quite unhandily for our purposes, in a first step we convert the raw data into an intermediate
format from which we generate the model and graph files. Figure 29 shows an example of a
train represented in the raw data files. The first lines consist of some meta data information
about the train from which only the train type (in the *G line) is relevant for us. Next, for
each station the train is passing through, one line exists where the first column is the station’s
id, the second its name and the third and fourth are the arrival and departure time, respec-
tively. Additionally, a separate file exists where all stations with their id number and their x/y
coordinates are listed.

Since our definition of a timetable is based on connections and not on stations being passed
through, the intermediate file format for connections is simply a text file, where each line
consists of an elementary connections composed of a connection ID, the departure and arrival

21f for two nodes u,v € V both (1,v) and (v, u) are contained in the edge set, the forward and backward edges
are compressed, i.e. only stored once.
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stations/times, the train type and its id. Another intermediate file to represent all the stations is
generated where each line belongs to one station composed of its id number, the transfer time
of the station, its x/y coordinates and the name. Since the task of converting the raw data into
our intermediate format involves heavy parsing and processing of text we use a PERL script for
that. The transfer times are generated at random in a specified interval. For our experiments we
used a range of 3—7 minutes. In reality one would of course define the transfer time according
to the size and topology of the particular station. While the first can be collected from our
data, the latter is not available.

In a second step the simple or expanded model is generated from the intermediate data.
'This is done using C++ as described above, and results in a set of files consisting of two binary
graph files for the condensed and expanded graphs, and several (also binary) files needed for
the meta information. Furthermore, in this step the radius in kilometers can be specified for
which two stations should become neighbours.?? This set of files is then used as input for our
specially developed shortest path query programs.

6.2 Input Graphs

Our raw real world data consists of timetables from the winter period 1995/1996 up to the
winter period 2001/2002. From this repertory we decided to choose the following selection
for generating input graphs:

e Germany’s railway timetable from the winter period 2001/2002—referred to as de_fern,

e the railway network of France (including high speed TGV trains) from the winter period
1996/1997—referred to as fra,

e the railway network of central Europe from the winter period 1996/1997—referred to
as europe, and

e the bus and tram network of Berlin from the winter period 2001/2002—referred to as
bub.

All experiments were conducted only using the realistic model as described in Section 3.4,
since the realistic model has a similar structure as the simple model, and therefore the speed-up
techniques should behave in a similar manner as well. Further, we think, that the simple model
is too far from realism, because transfers can not be modeled with it, and as a consequence
transfer times at stations are ignored which may lead to itineraries that are simply not practical.
Table 1 gives an overview about the size of the graphs generated for each instance. Having
a look at figures 2 and 30 we see, that the graphs also differ in structure. While the German
network is a symbiosis of long and short distance connections which mostly share the same
tracks, the French graph mostly consists of short distance connections added by some TGV
connections all originating from Paris. In contrast, the graph of Berlin’s bus network is drawn

22 Only if no elementary connections exist between them, see Section 3.5.
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Figure 30: Condensed Graph of France. Note the high speed train (TGV) connections all originating
from Paris.

almost planar, and it only consists of “local” connections which run very frequently in part.?3

'The Europe graph is our largest instance and is a mix of many different structures of each
country. We use this to get some realistic values regarding query time, since today’s railway
companies mostly do not only have the data of their own country but of other countries as
well.

Exp. GraPH Conb. GraPH

H #nodes #edges ‘ #nodes #edges
de_fern || 1,661,828 2,731,275 | 6,730 19,088
fra 616,514 1,014,104 | 4,551 15,802
europe | 5,251,194 8,619,281 | 29,770 91,586
bvb 2,232,015 3,712,092 | 2,874 7,530

Table 1: Size of our input graphs.

For our computations, from each of the graphs we only use the largest strongly connected
component which is extracted from the expanded graph. The condensed graph is then rebuilt
according to the stations which are left in the strongly connected component. All other edges
and nodes are deleted. This assures that a shortest path between two arbitrary nodes s and ¢

23Some buses are running less frequently, while other are running up to every five minutes or so.
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can always be found. The number of nodes and edges of both the expanded and the condensed
graphs are shown in Table 1. Please note the tremendous increase when going from the con-
densed to the expanded graphs which is due to “rolling out” time.2* Together with the set of
meta information files (like the station names, train ids, etc) this results in an altogether file
size between 100 and 300 MB per instance.

6.3 Results and Evaluation

In this section we report results we gained in experiments on the above mentioned instances
using Arc-Flags and ALT (and the combination of both speed-up techniques). We first fo-
cus on Arc-Flags and tend to the ALT algorithm later. All the following tables are made up
as follows. For each graph used in the specific experiment we have two groups of columns.
The first two columns refer to values regarding the preprocessing phase, namely the prepro-
cessing time and the number of additional bytes per node required to store the preprocessed
information. The second group refers to the values obtained from the queries with the spe-
cific speed-up technique on the given graph. The number of settled nodes is a direct measure
to quantify the size of the search space of a DyjksTRA run, which we want to minimize of
course. Additionally the query time gives some insight on the “real” speed of the algorithm,
but may vary depending on the computer hardware used. Additionally in each table the first
row of data named “reference” refers to the values obtained by a pure DijksTRA run without
any speed-up technique. Each value in the “query” group is obtained by running 1.000 queries
between uniformly distributed random stations at a random start time and using the average
value as the result.

DecideSameKey Strategy

As we worked out in Section 5.1, there are several tuning parameters for Arc-Flags. We start
with the most important factor first: The right choice of the implementation of the decide-
SameKey operation during the preprocessing phase. Table 2 compares our four implementa-
tions of decideSameKey. On all queries we used a partition with 64 regions generated by
SCOTCH [Pel07] which was computed on the condensed graph.

We observe that the standard strategy, which works very well on road networks (see [BD08])
totally fails on timetable graphs. Obviously only on very few (almost none) edges the flags
are set to zero, so still a lot of unnecessary nodes are explored during the query. Taking the
overhead during the query into account, this even leads to “speed-downs” concerning query
time. This has two reasons: The enormous number of shortest paths of equal length and the fact
that the boundary nodes of the target region have all kind of different timestamps. Regarding
the first point, minimizing the number of hops does not lead to a predictable outcome of the
decideSameKey decision, thus chances are very high, that for two equal shortest paths both
paths are opened at some point, which does not give any speed-ups when stating a query due
to the tremendous number of shortest paths. The second point is a general drawback of using

24In the time dependent models the graph size would correlate to the size of our condensed graphs (q.v. Sec-
tion 3.2).
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de_fern bvb

PrePRO Query Prerro Query
Strategy [h:m] [B/n] | #settled [ms] || [h:m] [B/n] | #settled [ms]
reference — 0| 152,998 58.13 — 0 | 150,460 50.06
hops 17:.00 26.2 | 149,931  70.31 || 36:30  26.6 | 146,432 60.68
transfers 16:26  26.2 | 152,307 71.674 || 35:34  26.6 | 149,921 62.28
distance 20:53 26.2 | 134,462 61.802 || 36:50  26.6 | 147,190 61.13
geo. dist. to target || 16:08 262 | 38,511  14.96 | 36:17 26.6 | 65,184 2529

Table 2: Arc-Flags. Evaluation of decideSameKey strategy. For each strategy we used a partition with
64 regions to generate the arc flags.

the condensed graph as the source for partitioning the expanded graph. Since the boundary
nodes consist of all possible times, a shortest path, which is not used for a boundary node
with time t; is set to false, but is overwritten with true by some other path that is used for
a boundary node with time f. For example, we can assume that all edges between transfer
nodes are set to true. Ultimately, all paths for all time segments are opened, thus yielding
no advantage for the actual query when the exact time is known and paths belonging to other
time segments should not need to be considered.

Also minimizing transfers or the accumulated travel distance still gives too chaotic results of
the decideSameKey operation. The results are even worse. Only using the minimum of the
direct geographic distance from the two involved nodes to the target node as a criterion for the
decideSameKey operation forces some edges being set to false because this almost always
forces the same outcome of the decideSameKey operation. The downside of this approach is,
that we only involve geographical information and thus lose the opportunity of optimizing in
the time dimension completely.

If we look at the time we need to preprocess the data, the results of the first three strategies are
even more scary. The very high value of the distance strategy comes from the massive amount
of floating point arithmetic used to calculate the accumulated distance along the paths in the
DijksTRrA search.

Number of Regions

Since the geographical distance strategy is the only one which gives some noteworthy results,
we use it in all subsequent experiments. Table 3 shows the next tuning parameter for Arc-Flags
we examined: The number of regions of the partition.

As one would expect, increasing the number of regions leads to better speed-ups, since more
paths can be cut off. However, doubling the number of regions does not lead to halving the
number of settled nodes. Furthermore, the railway graph performs about as twice as good
as the bus network graph. However, we can observe that the query time directly correlates
to the number of settled nodes which is due to the negligible overhead of Arc-Flags during
the query when increasing the number of regions. With both graphs the difference in query
time between 64 and 128 regions is extremely small compared to the increase in preprocessing
time from e.g. 16:08 hours to 24:14 hours in the de_fern graph, so it probably makes sense to
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de_fern bob

PrePrRO QuEery PrePrO QuUERY
#regions || [h:m] [B/n] | #settled [ms] || [h:m] [B/n] | #settled [ms]
reference — 0] 152,998 58.13 — 0 | 150,460 50.06
8 3:46 33| 64,848 27.05 9:30 33| 96,047 37.08
16 5:00 6.6 | 53,081 21.56 || 17:54 6.7 | 86,388 33.17
32 12:05 13.1 | 44,651 17.68 || 29:34 133 | 77,595 29.73
64 16:08  26.2 | 38,511 14.96 || 36:17 26.6 | 65,184 25.29
128 24:14  52.6 | 34,894 13.45 | 50:35 532 | 60,101 22.60

Table 3: Arc-Flags. Testing the impact of increasing the number of regions using the “geographic
distance to target” strategy for decideSameKey during preprocessing.

use 64 regions at most. Generally, we always have to make a trade-off between an increase in
preprocessing time and as a result a decrease in query time.

ALT

'The next experiment is devoted to the ALT algorithm. As we explained in Section 5.2, we
generate landmarks using the MaxCover method which is described in [DSSWO06]. Table 4

shows the influence of the number of landmarks on the query time and the number of settled

nodes.
de_fern bvb
Prerro QuEery Prerro QuErY
#landmarks || [sec] [B/n] | #settled [ms] || [sec] [B/n] | #settled [ms]
reference — 0| 152,998 58.13 — 0 | 150,460 50.06
2 <1 0.06 70,246  30.85 <1 0.02 | 122,598 48.80
4 <1 0.13 62,484 28.92 <1 0.04 | 117,937 48.46
8 1 0.26 59,039 28.07 <1 0.08 | 116,988 50.26
16 1 0.52 57,898 28.53 1 0.16 | 116,359 50.96
32 5 1.04 57,424 29.58 2 0.33 | 116,093 51.60
64 13 2.07 | 56,337 29.88 5 0.66 | 115,660 51.74

Table 4: ALT. Testing the effect of using different numbers of landmarks.

First of all, the preprocessing time is really negligible (compared to Arc-Flags), which makes
this speed-up technique also interesting for dynamic scenarios where the graph may change
and therefore a fast re-computation of the preprocessed data is required. Second, the additional
space required is also very small, since we calculate landmarks on the condensed graph, and
thus the distance table from all nodes to each landmark is small as well. The downside of
ALT is, however, that the computational overhead during the queries is more relevant. As we
see at the de_fern graph, an increase from 8 landmarks on only leads to insignificant changes
in the number of settled nodes, whereas the query time starts to rise again, which is due to
the increasing effort for examining more potential candidates for active landmarks during the

query.
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If we look at the bvb graph, the ALT algorithm does not seem to draw any distinction
compared to pure DijksTra. With the structure of the local bus network graph having no
long distance connections, the ALT algorithm has almost no margin of optimization with the
key in the priority queue.

Combining ALT and Arc-Flags

'The next Table 5 reports the performance of each speed-up technique on all four input in-
stances.

de_fern bvb
PrePrO QuEery PrePrO QuEry
Algorithm [h:m] [B/n] ‘ #settled  [ms] || [h:m] [B/n] ‘ #settled  [ms]
Plain DijksTrRA — 0| 152,998 58.13 — 0 | 150,460 50.06
Arc-Flags 24:14 52.6 34894 13.44 || 50:35 53.2 60,101 23.09
Uni-ALT 1s 026 | 59,039 28.77 || <1s 0.08 | 116,988 50.28
Arc-Flagsw/ ALT || 24:14 52.86 | 14,790 6.73 | 50:35 53.3 | 48,699 22.16
fra europe
PrerPro QUERY PrerPro QUERY
Algorithm [h:m] [B/n] ‘ #settled  [ms] [h:m] [B/n] ‘ #settled [ms]
Plain DIjKsTRA — 0 [ 113,167 37.77 — 0 | 1,113,707 585.20
Arc-Flags 3:38 52,6 | 35168 12.89 || 116:13  52.2 187,489  91.04
Uni-ALT 3s 047 | 55356 23.42 2s 036 443410 281.78
Arc-Flags w/ ALT 3:38 53.1 16,779 7.30 || 116:13 52.6 63,561 33.60

Table 5: Comparing the two speed-up techniques and their combination. The parameter set used is
128 regions, “geographical distance to target” decideSameKey strategy for Arc-Flags and 8
landmarks using MaxCover for ALT.

As opposed to road networks, on all four graphs ALT and Arc-Flags behave orthogonal
as the speed-up factors approximately multiply when the two techniques are combined. The
best results are obtained on the Europe graph where (regarding query time) Arc-Flags leads
to a speed-up Tpyxsrra/ Teechnique Of 6.4, ALT to a speed-up of 2.1 and the combination of
both techniques to a speed-up of 17.4 which is even beyond the product. The worst speed-ups
can be observed on the homogeneous bus network graph bvb which seems to be a very hard
instance.

Local Queries

In all of our previous tables we created random queries by choosing a random start and target
station as well as a completely random start time. Of course these queries are not very realistic,
since in reality most people will not want to travel over night, but when creating purely random
queries this matter is not accounted for at all. Hence, we now assume that the longer the
distance put back the earlier the starting time should be chosen. Further, we want to examine
the relation between the distance of the start and target station and the performance of the
speed-up technique.
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Figure 31: Comparison of DijksTrA with ALT and Arc-Flags using DijksTRA rank methodology
from [SSO5] on the graph of Europe by a box and whisker plot [Tea04]. Each box spreads
from the lower to the upper quartile and contains the median. The whiskers extend to the
minimum and maximum value omitting outliers, which are plotted individually.

For this reason, we have used the DijksTRrA rank methodology described in [SS05] to visu-
alize the performance of the combination of ALT and Arc-Flags compared to the DijksTrA
ranks as shown in Figure 31. The DijksTraA rank is defined as follows. If we order the nodes
V of the given graph as they are dequeued (settled) by the priority queue of DijxsTrA’s al-
gorithm, then the DijksTrA rank 7(v) of a node v is defined as the rank of v with respect to
this order. The source node s has rank r(s) = 0, its first considered neighbour rank 1 and so
on. For each DijksTRrA rank between 23 and 2! we have created 1000 random queries on the
condensed graph of Europe to determine the source and target stations which are then used
as input for queries on the expanded graph. The start times are not chosen by random but are
always around 7:00 in the morning for simplicity. This should guarantee for most queries that
they can be accomplished on one day without the need for an overnight journey. We have
decided to use the graph of Europe for this experiment, since it provides a good mixture of
long and short distance trains.

As we see in Figure 31 using ALT with Arc-Flags benefits more from long distance trains.
In short queries with low DijksTRrA rank the advantage of the speed-up technique to a pure
D1jksTRA query is rather negligible, but the longer the source and target stations are apart the
lower are the query times of the speed-up technique compared to the pure DijksTRA imple-
mentation. Please note that both axis are scaled logarithmically, hence our speed-up technique
scales linear with increasing D1jksTRA rank but with a much flatter curve than pure DijksTRA.

Concluding, we showed that executed on their own, neither technique yields very good

speed-ups, although Arc-Flags exceeds the ALT algorithm regarding query time which comes
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at the price of preprocessing time. On the other hand, ALT can be applied with almost no
overhead regarding preprocessing and query time. However, when combined, Arc-Flags and
ALT perform very well outperforming all known speed-up techniques for time expanded net-

works [PSWZ07].

7 Conclusion and Outlook

In this work we investigated several approaches how timetable data can be modeled as graphs
to solve the earliest arrival problem of finding an optimal itinerary. From these approaches the
realistic model is the most realistic version when considering the time expanded approach. We
showed that with little effort DijksTrA’s algorithm can be adapted to solve the earliest arrival
problem on this model.

Because of the huge size of the graphs with several million nodes a pure DijxsTRA query is
not very effective. Unfortunately, the speed-up techniques which were mainly developed for
road networks, and have been highly optimized on those, can not simply be used on timetable
data without further consideration. First, hierarchical techniques use bidirectional search, ren-
dering them useless on our models, since the target node is not known in advance. For that rea-
son, we focused on two goal directed unidirectional techniques, namely Arc-Flags and ALT,
and showed how they must be adapted to work with our models. Second, we have worked
out that due to the tremendous number of shortest paths of equal length between two nodes,
the choice of the right implementation of the decideSameKey operation in the preprocess-
ing phase is crucial. Minimizing hops, which is obviously a good choice on road networks,
performs extremely bad here. But also other strategies, like minimizing transfers or the accu-
mulated travel distance, which intuitively seem to be good at first, do not perform well. Only
the most aggressive strategy, geographically minimizing the distance to the target station, leads
to notable speed-ups.

Moreover, we worked out, that Arc-Flags and ALT optimize in two different ways. Arc-
Flags (with the geographic distance strategy) prunes paths which lead to the wrong direction
geographically, while the ALT algorithm “cuts oft” paths which do not lead to the target station
fast enough, thus having the sense of preferring fast trains over slow trains or in other words
optimizing the time component. This lead us to the conclusion that—opposed to on road
networks—the combination of Arc-Flags and ALT gives an extra boost in query time because
both of the aspects mentioned above behave orthogonally.

Our experiments, which were conducted only using real world data and realistic queries,
revealed that with a good choice regarding the decideSameKey operation, Arc-Flags generally
yields good speed-ups. The performance of the ALT algorithm in contrast heavily depends
on the structure of the underlying timetable network. On Germany’s railway network ALT
performs very well, because it can play off its advantage of preferring long distance trains. On
the bus network of Berlin however, the speed-ups are negligible since there are no long distance
connections at all. But it should be mentioned that the ALT algorithm with its negligible
preprocessing time can always be applied without yielding any disadvantages.
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'The best results were obtained using the combination of ALT and Arc-Flags which increased
the speed-ups up on all tested instances approximately by the product of the individual speed-
ups of each technique. On the graph of whole Europe, this even lead to a average speed-up of
17.4 regarding query time.

Summarizing, we showed that two of the most prominent goal directed speed-up techniques
can be adapted to timetable networks and perform very well. However, when using techniques
derived from road networks a lot of consideration has to be put into the adaption process. With
speed-ups up to 17.4 gained by the combination of ALT with Arc-Flags, we have achieved
the best known results for real world queries on time expanded graphs.

Future Work

'The field of developing good speed-up techniques for timetable networks is still widely unex-
plored. As we showed with Arc-Flags, just copying speed-up techniques from road networks
over to timetable networks can lead to a big disillusion as the speed-ups can become insignif-
icant, although on road networks they seemed very promising. However, with some further
engineering and fine-tuning these techniques eventually provide good results.

'The speed-up techniques discussed in this work certainly are not the end of the line. We
would be interested in further strategies for the decideSameKey operation during the prepro-
cessing of the Arc-Flags, as we believe this is the main point where we still have room for fur-
ther improvements concerning basic Arc-Flags. Our best strategy, geographic distance, does
not exploit the additional information provided by the expanded graph over the condensed
graph, since the geographic distance between stations is already available from the condensed
graph.

Moreover, Bauer and Delling have presented in [BD08] an improved version of Arc-Flags,
named SHARC, which in a first step contracts the graph before computing the Arc-Flags on
the new, smaller graph. 'This does not only speed-up the preprocessing time—which is too
large for practical use in our cases—but also decreases query times significantly, making it the
fastest unidirectional speed-up technique (on road networks) available. We are very optimistic
that some of these techniques can be adapted to timetable networks and equally lead to an
increase of the speed-up factor.

Considering the ALT algorithm, it would be interesting to see whether we can further im-
prove the quality of the lower bounds. Since landmarks are computed on the condensed graph,
which is pretty small, we could imagine using the target station as an “optimal” landmark and
compute the distance table to the target node on the fly for each query.

Furthermore, the exploration of dynamic scenarios, like delay management, would be inter-
esting. On one hand, the models probably need to be adapted to cope with dynamic scenarios,
and on the other hand, the preprocessed data from the speed-up techniques needs to be dy-
namically updated. This reveals the biggest disadvantage of the Arc-Flags method because
the preprocessing takes too much time, and can not be updated easily. In this case the ALT
algorithm may be the stronger choice.

As long term research we could imagine some new speed-up techniques to arise that do not
come from road networks but are optimized for timetable graphs. As an example, when we
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try to compute a good itinerary by hand, we do it probably with a hierarchical approach by
looking for a local train connecting to the nearest station which provides high speed trains,
then using these high speed trains to go as close to the target as possible, and do the last step
by local trains again. Although the ALT algorithm implicitly benefits from this property on
most networks, one could think of a speed-up technique which exploits this property more
explicitly. Another interesting characteristic to exploit is the fact that most modern timetables
are synchronized ones, i.e. trains depart every 10, 30 or 60 minutes. This is especially true for
local networks like bus or commuter train networks.

Unfortunately, speed-ups in the scale of 17 stand in no correlation to the increase in graph
size when constructing the expanded graph from the condensed graph which is a factor of
about 247 in case of the de_fern graph regarding the number of nodes. Hence, a pure DijksTrA
query on the time dependent model is still faster than using the expanded model with one of our
speed-up techniques. Furthermore, dynamic scenarios like delays can be handled easier on the
time dependent model, see [DGWZ08]. For that reason, the time dependent approach may
be the more seminal one, thus we would be interested in future work on the time dependent
model, including improvements regarding the models as well as speed-up techniques.
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