A Mixed-Integer Program
for Drawing High-Quality Metro Maps*

Martin Néllenburg and Alexander Wolff

Fakultét fir Informatik, Universitdat Karlsruhe, P.O. Box 6980, D-76128 Karlsruhe.
http://illwww.ira.uka.de/algo/group

Abstract. In this paper we investigate the problem of drawing metro
maps which is defined as follows. Given a planar graph G of maximum
degree 8 with its embedding and vertex locations (e.g. the physical loca-
tion of the tracks and stations of a metro system) and a set £ of paths or
cycles in G (e.g. metro lines), draw G and L nicely. We first specify the
niceness of a drawing by listing a number of hard and soft constraints.
Then we present a mixed-integer program (MIP) which always finds a
drawing that fulfills all hard constraints (if such a drawing exists) and
optimizes a weighted sum of costs corresponding to the soft constraints.
We also describe some heuristics that speed up the MIP. We have im-
plemented both the MIP and the heuristics. We compare their output to
that of previous algorithms for drawing metro maps and to official metro
maps drawn by graphic designers.

1 Introduction

A metro map is a schematic drawing of the underlying geographic network that
represents the different stations and metro lines of a metro system. The users of
a metro map are the passengers of the public transport system. They want to
quickly answer questions like “How do I get from A to B?” or “After how many
stops do I have to change trains?”. Thus the layout of a metro map must be as
clear as possible whereas exact geometry or scale is less important. The problem
of drawing maps of metro systems and other means of public transportation
is an interesting compromise between schematic road maps [4] where vertex
positions are (mostly) fixed and “conventional” graph drawing where vertices
can go anywhere. The first approach maximizes maintenance of the user’s mental
map, the second approach maximizes esthetics. The mother of all modern metro
maps is Henry Beck’s 1933 map of the London Underground. In the meantime,
graphic designers have come up with different layout styles all over the world [§].

After studying a large number of real-world metro maps [8] we formalized the
problem of drawing high-quality metro maps as follows. As usual we say that an
embedding of a graph G associates to each vertex a list of its adjacent vertices in
clockwise order. We say that a set £ of paths and cycles of G is a line cover of G
if each edge of G belongs to at least one element of £. Now the metro-map layout

* Work supported by grant WO 758/4-2 of the German Science Foundation (DFG).

2 Martin Nollenburg, Alexander Wolff

problem is the following. Given (a) a planar graph G of maximum degree 8, the
metro graph, (b) the embedding of G, (¢) for each vertex v its location m(v) in
the plane, and (d) a line cover £ of G, the metro lines, find a nice drawing p of
G and L. In order to be nice, must fulfill a number of hard constraints:

(H1) p must respect the topology of G,

(H2) all edges of (G) must be octilinear line segments, i.e. parallel to one of
the two coordinate axes or to either of their two bisectors,

(H3) each edge e in p(G) has a minimum length ¢., and

(H4) each edge in p(G) has a certain minimum distance dp;, from each non-
incident edge.

Moreover, i should conform to a number of soft constraints as tightly as possible:

(S1) the paths and cycles in p(L£) should have few bends,

(S2) the total edge length of y(G) should be small, and

(S3) for each pair of adjacent vertices (u,v) their relative position should be pre-
served, i.e. the angle Z(u(u), u(v)) should be similar to the Z(7(u), w(v)),
where Z(a,b) is the angle between the z-axis in positive direction and the
line through a and b directed from a to b.

Note that if the embedding of a metro graph is not planar, this can be achieved
by introducing dummy vertices at crossings, of which there are usually not many.
We denote the number of vertices (including dummy vertices) and edges of G
by n and m, respectively. Let m’ be the total number of edges of the paths and
cycles in L. We have m' > m.

While the need for most of the above constraints is immediate, constraint (S3)
may need a few explanatory words. The intuition behind requiring the preserva-
tion of the relative position is that users of metro system usually have a certain
notion of compass directions above ground. Suppose a passenger is in m(u) and
wants to go to the adjacent metro station 7(v), which he knows to lie south of
7(u), then he would be confused if p(u) was north of p(v). Thus ensuring that
the two angles in constraint (S3) do not deviate too much, say by no more than
90 degrees, can be seen as a hard constraint, while it seems to be appropriate
to model smaller deviations as a soft constraint, e.g. by charging a cost propor-
tional to the deviation. Our framework reflects this ambivalence, but modeling
relative position as a purely soft constraint is also possible, see Sect. 3.1 and 3.6.

Compared to the orthogonal drawing of (embedded) graphs, the introduction
of diagonal directions yields drawings that are more similar to the original em-
bedding. In addition, the maximum vertex degree increases from 4 to 8. However,
in contrast to the existence of several efficient algorithms for orthogonal draw-
ings [12, 5], the problem becomes NP-complete in the octilinear case as we show
in [7]. This partially motivates why we do not follow the topology-shape-metric
approach [5] for orthogonal graph drawing: while we could compute a minimum-
bend octilinear shape of a metro graph in polynomial time using Tamassia’s
flow model [12], we cannot efficiently embed the resulting shape without creat-
ing crossings even if an octilinear layout exists.

A Mixed-Integer Program for Drawing High-Quality Metro Maps 3

Therefore we decided to model the metro-map layout problem as a MIP,
see Sect. 3. This gave us the necessary flexibility to achieve the following. If
a layout that conforms to all hard constraints exists (which was the case in
all examples we tried), then our MIP finds such a layout. Moreover our MIP
optimizes the weighted sum of cost functions each of which corresponds to a
soft constraint. Our MIP is the first method that guarantees octilinearity, which
is essential for a clear layout of metro maps. Our MIP is also the first method
dedicated to drawing metro maps that uses global optimization and thus avoids
getting trapped in local minima. This contrasts with methods based on local
optimization, see Sect. 2. In [7] we extend our model to combine graph drawing
with the placement of non-overlapping station labels. Binucci et al. [2] have used
a MIP formulations to combine orthogonal graph drawing and label placement.

In order to cope with the running time of MIP solvers, we give several heuris-
tics that speed up our basic MIP, see Sect. 3.7. We have implemented an algo-
rithm based on our MIP formulation. In Sect. 4 we present a metro map that
our algorithm drew of a real-world metro system and compare it to the output
of previous algorithms and to an official metro map.

We stress that our MIP formulation can be used not only for drawing metro
maps, but for any kind of technical drawing with a restricted number of direc-
tions. Brandes et al. [3] introduced the concept of a sketch of a graph. A sketch
can be handmade or the physical embedding of a geometric network like the
real position of telephone cables. Brandes et al. compute an orthogonal drawing
of a sketch in O(n?logn) time. However, their method cannot be extended to
more directions or to incorporate the concept of metro lines. In contrast, our
framework can be used to draw sketches (possibly dropping constraint (S1)) and
can be extended to more than eight directions. Other possible extensions include
user interaction (e.g. fixing the direction edges or lines), the drawing of maps
in a given format, or the minimization of one dimension of the drawing area
(instead of constraint (S2)).

2 Previous work

To the best of our knowledge the first attempt to automate the drawing of metro
maps was made by Barkowsky et al. [1]. They use discrete curve evolution, i.e.
an algorithm for polygonal line simplification, to treat the lines of the Hamburg
subway system. However, their algorithm neither restricts the edge directions
nor does it increase station distances in the crowded downtown area. Stations
are labeled but no effort is made to avoid label overlap.

Hong et al. [6] give five methods for the metro-map layout problem. The
most refined of these methods modifies a topology-maintaining spring embedder
such that edge weights are taken into account and such that additional magnetic
forces draw the straight-line edges towards the closest octilinear direction. In a
preprocessing step the metro graph is simplified by contracting each edge that
is incident to a degree-2 vertex. After performing all contractions, the weight
of each remaining edge is set to the number of original edges it replaces. After

4 Martin Nollenburg, Alexander Wolff

the final layout has been computed, all degree-2 vertices are re-inserted into the
corresponding edges in an equidistant manner. The contraction step reduces the
running time considerably. Station labels are placed in one out of eight direc-
tions. While label-label overlaps are avoided, diagonally placed labels sometimes
intersect network edges.

Stott and Rodgers [10] draw metro maps using multi-criteria optimization
based on hill climbing. For a given layout they define metrics for evaluating
the number of edge intersections, the octilinearity and the length of edges, the
angular resolution at vertices and the straightness of metro lines. The quality of
a layout is a weighted sum over these five metrics. Their iterative optimization
process starts with a layout on the integer grid that is obtained from the original
embedding. In each iteration they consider alternative grid positions for each
vertex within a certain radius. For each of these grid positions they compute
the quality of the modified layout. If any of the positions improves the quality
of the layout, they move the current vertex to the best position among those
that do not change the topology of the layout. They observed typical problems
with local minima during their optimization process and give a heuristic fix
that overcomes one of these problems. Stott and Rodgers have experimented
with enforcing relative position, but report that it does not really improve the
results. They can label stations, but do not check for overlaps other than with
the edges incident to the current station. They use the same contraction method
as Hong et al. [6] to preprocess the input graph.

The main advantage of our method over its predecessors is that we guarantee
to keep all hard constraints (among them octilinearity) and that we avoid the
problem of local optima.

Interestingly enough the layout principles of metro maps have not only been
used in a geographic setting. E.g. Sandvad et al. [9] use the metro-map metaphor
as a way to visualize abstract information related to the Internet.

3 The basic MIP model

A MIP consists of two parts: a set of linear constraints and a linear objective
function. In Sect. 3.1 to 3.3 we describe four sets of constraints that model the
hard constraints (H1)—(H4). We model the simultaneous optimization of the
three soft constraints (S1)—(S3) in Sect. 3.4 to 3.6 using a weighted sum of three
individual cost functions:

Minimize)\length COStlength +)\bends COSthends +)\dir COStdiru (1)

where the variables)\; are positive user-defined weights, each of which individu-
ally emphasizes a certain esthetic criterion. The total number of constraints and
variables in our model is of order O(n 4+ m’ + m?). Note that since G is planar
we have m < 3n — 6 due to Euler’s formula.

To be able to treat all four edge directions similarly, we use an (x,y, 21, 22)-
coordinate system as depicted in Fig. 1, where each axis corresponds to one
of the four feasible edge directions in the layout. For each vertex v we define
z1(v) = z(v) + y(v) and 23(v) = z(v) — y(v).

A Mixed-Integer Program for Drawing High-Quality Metro Maps 5

3.1 Octilinearity and relative position

Before modeling the constraints we need some notation to address relative po-
sitions between vertices and to denote directions of edges. For each vertex v we
define a partition of the plane into eight wedge-shaped sectors, numbered from
0 to 7 counterclockwise starting with the positive z-direction as in Fig. 2. To
denote the rough relative position between two vertices u, v in the original lay-
out we use the terms sec,, (v) and sec, (u) representing the sector relative to u in
which v lies and vice versa. Similarly, for each edge {u,v}, we define a variable
dir(u,v) to denote the octilinear direction of {u, v} in the new layout.

As mentioned in the introduction, we partially model the soft constraint
(S3) as a hard constraint. As a compromise between conservation of relative po-
sitions and flexibility to obtain a nice drawing, we allow that an edge is drawn
in three different ways. It can be drawn in the direction corresponding to its
original sector relative to either endpoint or it can be drawn in the two neigh-
boring directions. Let secP™(v) = sec, (v) —1 (mod 8), secS'8(v) = sec, (v) and
secsC(v) = secy (v)+1 (mod 8). We now restrict dir(u, v), which will be used in
Sect. 3.5 and 3.6, to the set {secP™d(v), seco8(v), seci™c(v)}. This is expressed
by the disjunction

\/ (dir(u,v) = sec’ (v) A dir(v,u) = sec’ (u)). (2)

i€{pred,orig,succ}
To model (2) we introduce binary variables qpred; Qorigs Qsuce annd the constraint
Qpred (U, V) + Qorig (U, V) + Asyce(u,v) =1 V{u,v} € E. (3)

The variable that takes the value 1 will determine the direction in which edge
{u,v} is drawn, i.e. the term of disjunction (2) that will evaluate to true.

Now we model the correct assignment of dir(u,v) and dir(v,u). For each
i € {pred, orig, succ} we have the following set of constraints

élirgu,vg - secigvg < %g - aiu,v%%

—dir(u, v) + sec,(v) < — oy (u,v

dir(v, u) — seci)(u) < M(1— a;(u,v)) Hu vk € B, ()
—dir(v, u) + sec’, (u) < M(1 — a;(u,v))

where the variables of type dir(u,v) are integers in the range {0,...,7} and M
is a large constant. The use of the large constant M in connection with a set of
binary variables as in (3) is a standard trick in MIP modeling for formulating
a disjunction of constraints. The constant M must be an upper bound on the
left-hand sides of the inequalities. Here, if a;(u,v) = 0, the constraints in (4) are
trivially fulfilled and do not influence the left-hand sides. On the other hand,
if aj(u,v) = 1, the four inequalities are equivalent to dir(u,v) = sec’,(v) and
dir(v,u) = sec! (u) as desired (equality constraints have to be transformed into
two inequalities when using this trick). Due to (3), a;(u,v) = 1 for exactly one
i € {pred,orig,succ}. Thus, exactly one term of the disjunction (2) must be
fulfilled.

6 Martin Nollenburg, Alexander Wolff

Further, depending on the actual values of sec (v), we add three more con-
straints for each ¢ € {pred, orig, succ}. For example let sec?"'8(v) = 2 (meaning v
is vertically above u in the original layout). Then the constraints are as follows

z(u) — z(v) < M(1 — qorig(u, v))
—z(u) + z(v) < M(1 — qorig(u,v)) V{u,v} € E, (5)
y(u) —y(v) < M(1 = qorig(u, v)) = Liu,0}

where £, ,3 > 0 is the minimum length of edge {u,v}. If arig(u,v) = 1, these
constraints force u and v to have the same z-coordinate and to keep a vertical
distance of at least £, ,1. This is exactly what is needed for a vertical upward
running edge. The other seven possibilities are formulated similarly by forcing
one of the coordinates of both vertices to be equal and the distance along the
respective direction to be at least £, ,,;. Overall, this part needs 22m constraints
and 5m variables.

3.2 Conservation of the Embedding

To guarantee conservation of the original embedding it suffices to maintain for
each vertex v € V' the circular ordering of all incident edges.

Let N(v) = {u1,u2,...,Ugeg(v)} denote the set of all neighbors of v. The
counterclockwise ordering of the edges {v,u} € F incident to v implies an or-
dering on N (v) by identifying each edge {v,u} with the vertex u opposite of v.
Assume the ordering is u; < uz < ... < Ugeg(v)- Then in the metro map lay-
out one of these vertices, say u;, is assigned the smallest direction number from
the set of possible directions {0,...,7}. All other vertices in N(v) must follow
in the same order as before and must have strictly increasing direction num-
bers: dir(v,u;) < dir(v,u41) < ... < dir(v, %;4deg(v)—1), Where in the following
all indices greater than deg(v) are considered modulo deg(v). In other words,
all but one of the inequalities dir(v,u1) < dir(v,uz),...,dir(v, dgeg)—1) <
dir (v, Ugeg(v)), dir(v, Ugeg(v)) < dir(v,u1) must hold.

In order to determine the vertex with smallest direction number, we again use
binary variables as in Sect. 3.1. But instead of using the standard trick to model
a disjunction of deg(v) many terms with deg(v) — 1 constraints each, we make
use of the fact that in each case exactly one of the inequalities may be violated
while the rest must hold. This requires about a factor deg(v) less constraints.
They are as follows:

ﬁl(v) + ﬂ?(v) +.ot Bdeg(v)(v) =1 Vo € ‘/a dEg(v) > 27 (6)
with binary variables f;(v), and

dir(v, ug) — dir(v,uy) > —MpBi(v) + 1
dir(v, us) — dir(v, us) > —MBa(v) + 1

IV IV

Yo € V,deg(v) > 2. (7)

dir(vv ul) - diI‘(’U, udeg(v)) > _M/Bdeg(v)(v) +1

A Mixed-Integer Program for Drawing High-Quality Metro Maps 7

The variable (; that takes value 1 in constraint (6) determines that vertex
u;+1 has minimum direction number among N (v) by not enforcing dir(v, u;+1) —
dir(v,u;) > 1 in constraints (7). All other binary variables j3;, (j # ¢) are set to
0 and thus dir(v, uj41) — dir(v,u;) > 1 holds for all j # 1.

These constraints not only enforce that the embedding is preserved but also
that no two edges incident to the same vertex can have the same direction. An
upper bound on the number of constraints and variables for this part of the MIP

is given by > -y (deg(v) + 1) € O(m).

3.3 Planarity

For preserving planarity we have to ensure that certain pairs of edges do not in-
tersect. This can be done in the octilinear setting by distinguishing eight possible
relative positions for a pair {e1, es} of edges. We express these relative positions
using compass orientations. Fixing an edge e; a second, non-intersecting edge es
can either be placed north, south, east, west or northeast, northwest, southeast,
southwest of e;. For example northeast means in terms of our coordinate system
that both vertices incident to e; have strictly smaller z;-coordinates than both
vertices incident to es. The other relative positions are defined in a similar way.

Clearly, an octilinear drawing is planar if and only if each pair of non-incident
edges is placed according to one of the above relative positions. Indeed, we model
this disjunctive constraint for all pairs of edges. The constraint

V(el 62) S (E)

: > 1) 2):

_ Z vier,e2) 2 e1, ep not incident, (8)
i€{N,S,E,W,NE,NW,SE,SW}

introduces the variables yx, - .., Ysw. As an example we now give the constraints
for the condition “es is east of e1”

z(u1) — x(ug) < M(1—vyge(e1,e2)) — dmin

z(ur) — z(ve) < M(1 —vg(er,e2)) — dmin V(er,e2) € (5),)
x(v1) — x(uz) < M(1 —vg(e1,e2)) — dmin e1, €2 not incident.

z(v1) — x(v2) < M(1 = yg(e1, €2)) — dmin

Recall that dpiy is the minimum distance between non-incident edges as given
n (H4). Analogously, each of the other seven relative positions is modeled using
four constraints each. This amounts to 33 constraints and 8 variables for each
edge pair. The problem is that the number of edge pairs is O(m?). Therefore,
we give several heuristics in Sect. 3.7 to reduce the number of constraints that
enforce planarity.

3.4 Minimization of Edge Lengths

For modeling the edge lengths one has to specify the underlying metric. We
decided to use the L*°-metric, which defines the distance of two vertices u and v

8 Martin Nollenburg, Alexander Wolff

to be max(|z(u) — x(v)|, |y(u) — y(v)]). We define new real-valued, non-negative
variables D(u,v) for all edges {u,v} € E which serve as upper bounds on the
lengths of their respective edges. By setting

COStlength = Z D(u,v) (10)
{uv}eE

and by minimizing costiengtn, the variables D(u, v) indeed equal the correspond-
ing edge lengths.

The constraints that bound D(u,v) depend on the respective direction of the
edge {u,v}. Note that the actual direction of this edge is determined according
to the constraints in Sect. 3.1. Thus we can reuse the binary variables defined in
that section to distinguish the three cases for the edge direction. As an example
assume that sec, (v) = 1. Then the constraints are

z(v) — z(u) < M(1 — aprev(u,v)) + D(u,v)
x(v) —z(u) < M(1 — ayear(u,v)) + D(u,v) V{u,v} € E. (11)
y(“) - y(u) < M(1-— anext(uvv)) + D(u, v)

Note that for an edge {u,v} drawn diagonally it holds that |z(u) — z(v)| =
ly(u) — y(v)|. Hence we can use either of the z- or y-coordinates to determine
the length D(u,v). Edge lengths for other values of sec,, (v) are modeled similarly.
In total we use m variables and 3m constraints.

3.5 Avoiding Bends along Lines

Clarity in an octilinear drawing depends crucially on the ability to visually follow
the metro lines. This can be partially enhanced by using distinguishable colors,
but also by avoiding bends along the lines.

We define the bend cost subject to the actual angle between two adjacent
edges on a path. Due to the octilinearity constraints and to the fact that two
adjacent edges cannot have the same direction relative to their joint vertex the
angles can only equal 180, 135, 90, and 45 degrees. In that order we define the
corresponding bend cost to be 0, 1, 2, and 3, such that the cost increases with
the acuteness of the angle, see Fig. 3.

In our model we can determine the angle between two adjacent edges {u,v}
and {v,w} by using the values of dir(u,v) and dir(v, w). For ease of notation let
Adir(u, v, w) = dir(u,v) — dir(v, w). Then, the bend cost can be expressed as

| Adir(u, v, w)| if |Adir(u,

bend(u, v, w) =
end(u, 0, w) {8—|Adir(u,v,w)| if | Adir(u,

<4
vw)l < (12)
v,w)| > 5.

)

Now we can set

COSthends = Z bend(u, v, ’LU) (13)
{u)U}v{vﬂU}eL, LeL

A Mixed-Integer Program for Drawing High-Quality Metro Maps 9

QW
Yy z a 2: /ow
1 ~
3~ 1 4
N
N ! //
“o—\';(- v _O_ow
X 70N
a
4 1 N
7/
29 3 ! M
Wq 19 oW
|
ow

Fig.1. Octilinear Fig. 2. Sectors relative to v, Fig. 3. Bend cost b(u, v, w) for
coordinate system. e.g. sec,(u) = 5. each value of dir, (w).

to minimize the number and acuteness of all bends along lines.

The formulation of bend cost in (12) cannot be transformed directly into a
set of linear constraints because it involves absolute values and a case distinction.
Here, we solve this problem using instead the following constraints for all lines
L € £ and pairs of incident edges {u,v}, {v,w} on L. Again, we need some
binary variables, namely 61 (u, v, w), d2(u, v, w), and d3(u,v,w). The constraint

01 (u, v, w) + 02 (u, v, w) + 03 (u, v, w) = 2 (14)

makes sure that exactly one of them takes the value 0. Then, the set of constraints

Adir(u, v, w) < =54 &1 (u, v, w)M

Adir(u,v,w) > 5= da(u,v,w)M (15)
Adir(u, v,w) < 4+ d3(u, v,w)M

Adir(u, v, w) > —4 — d3(u, v, w) M

together with
—bend(u, v,w) < Adir(u, v, w)—_81 (u, v, w)+802(u,v,w) < bend(u,v,w) (16)

assign the bend cost bend(u, v, w) for the bend between edges {u, v} and {v, w},
where the variable bend(u, v, w) is integer valued and non-negative. Verify that
these constraints in combination with the minimization of (13) indeed model the
bend cost as defined in (12). For a detailed explanation we refer to [7].
Minimizing the number of bends thus uses four variables and seven con-
straints for each pair of incident edges on a path L € L. Since there are in total
at most m’ such pairs we are using 4m’ variables and at most 7m’ constraints.

3.6 Preservation of Edge Directions

To preserve as much of the overall appearance of the metro system as possible
we have already restricted the edge directions to the set of the three directions
closest to the original one in Sect. 3.1. Ideally we want to draw an edge {u,v}
using the closest octilinear approximation, i.e. the direction where dir(u,v) =

10 Martin Nollenburg, Alexander Wolff

secy,(v). Hence we introduce a cost in case that the layout does not use this
direction. This models (S3).

For each edge {u,v} we define as its cost a binary variable ¢(u, v) which is 0
if and only if dir(u, v) = sec, (v). This is modeled as follows

—Me(u,v) < dir(u,v) —sec,(v) < Me(u,v) V{u,v} € E. (17)

Now we can define the edge-direction cost

costqi, = Z e(u,v) (18)

{uv}erE

which, for each edge, charges 1 when the MIP does not choose the closest octilin-
ear direction. This part of our formulation needs m variables and 2m constraints.

3.7 Speed-Up Techniques

A common feature of metro maps is that they tend to have a large number of
degree-2 vertices on tracks between two interchange stations. It is useful and
common in real metro maps to draw paths between pairs of neighboring in-
terchange or terminal stations as straight as possible. This leads to the idea
of replacing chains of degree-2 vertices temporarily by single edges and rein-
serting the vertices in the final drawing equidistantly on these edge. While this
data-reduction trick has been applied before [6, 10], we extend it by keeping two
vertices on each chain of degree-2 vertices. The rationale behind this is that it al-
lows for drawing the connection between the corresponding interchange vertices
as a polyline with three segments. Our experiments showed that this is a good
compromise. Remember that the target function penalizes bends along lines so
that in many cases bends at these special degree-2 vertices are in fact avoided.

The only part of our MIP formulation that needs a quadratic number of
constraints (and variables) is the one that ensures planarity. This is why we
suggest several ways to reduce the number of these constraints. For a planar
drawing of an embedded graph it suffices to require that non-incident edges
of the same face do not intersect. This already guarantees that no two edges
intersect except at common endpoints. So instead of using the constraints in
Sect. 3.3 for all pairs of non-incident edges we only include them for pairs of
non-incident edges of the same face.

In many real-world examples (see Sect. 4) this is still not enough to solve
the MIP in an acceptable amount of time. To further reduce the number of
constraints we rely on heuristic methods that relax the planarity requirements.
These heuristics involve subdividing the external face using the convex hull and
considering only pairs of edges where at least one edge is a pendant edge, i.e.
an edge that leads to a degree-1 vertex. One can also try to skip the planarity
constraints completely. In some of these experiments the results were indeed
planar in spite of not being enforced in the model. For more details see [7].

A Mixed-Integer Program for Drawing High-Quality Metro Maps 11

‘ G ‘ n ‘ m H MIP | all pairs | faces | CH ‘ PE ‘ C]?E& none
Sydney | uncontr. | 174 | 183 || constr. 81416 | 45182 | 21983 | 13535 | 6242 | 3041
10 lines contr. | 62| 71 var. 20329 | 11545 | 5921 | 3873 | 2105 | 1329

Table 1. Total number of constraints and variables for six different planarity tests

4 Experiments

In this section we show how our method performs on the metro system of Sydney
because Sydney has been used as a benchmark before [6, 10]. For more examples,
see [7]. We solved our MIP with the optimizer CPLEX 9.0 running on a Power3-
IT processor with 375 MHz under the UNIX operating system AIX 5.1, the only
system with a CPLEX license accessible to us. We have also experimented with
the optimizer XpressMP but found that CPLEX generates better results.

Table 4 shows the size of the uncontracted and contracted network and the
number of constraints and variables for the different planarity options in the
contracted case. The numbers in the columns faces and none show that en-
suring planarity is in fact responsible for about 90% of the constraints and
variables. The other columns show that the convex-hull (CH) and pendant-edge
(PE) heuristics as well as their combination effectively reduce the MIP size.

The CityRail system in Sydney (which we restricted to the more interesting
suburban part) is a relatively large network and has several multiple edges. The
geographic layout is displayed in Fig. 4(a), the official metro map in Fig. 4(f).
The weights used in the objective function were (Aiength, Abends; Adir) = (1,5, 5).
Combining convex-hull and pendant-edge heuristic yielded the planar layout in
Fig. 4(e) within 22 minutes. Observe the influence of the soft constraints on the
layout: There are no unnecessarily long edges (optimization of (S2)). Moreover,
the metro lines only bend where geographically required and pass through in-
terchange stations as straight as possible (optimization of (S1)). And, finally,
the simplified edges tend to follow the original directions of Fig. 4(a) (optimiza-
tion of (S3)). These goals were optimized while guaranteeing octilinearity and
preserving the original embedding.

We now compare our layout of the Sydney map to the results of previous
algorithms. Figure 4(b) is taken from Hong et al. [6] and shows their layout using
a special spring-embedder method. Originally they draw a network that extends
slightly further into the periphery but these extensions should not influence the
layout of the central part of the network. For ease of comparison we clipped
the lines appropriately in Fig. 4(b). Apart from the fact that Hong at al. show
station labels, one can observe that edges are not strictly octilinear and that
avoiding bends along lines is not a goal of their method. In addition, there is a
large variance in the distribution of the edge lengths. Figure 4(c), taken from
Stott and Rodgers [10], shows their layout when applying an edge contraction
step before actually drawing the network. There are two edges that obviously

12 Martin Nollenburg, Alexander Wolff

violate octilinearity, which is an important drawback of this layout. Figure 4(d)
displays the result of the same method without prior edge contraction. It again
shows an almost octilinear layout, now with the exception of one edge.

Our method overcomes the limitations of the previous results: there are no
exceptions to octilinearity and we avoid the problems of local optima in [10]. In
contrast to Hong et al. we actively minimize the number of line bends in the
layout and maintain the overall geography using the concept of relative position.

The disadvantage of our method is its running time. While we needed 22
minutes to produce our Sydney map, Hong et al. computed the layout in Fig. 4(b)
within 7.6 seconds. Stott and Rodgers needed 4 minutes for a Sydney map using
a contracted input graph (Fig. 4(c)) and about 28 minutes for the uncontracted
graph (Fig. 4(d)). Experiments were carried out on very different machines.

Acknowledgments. We thank Seok-Hee Hong and Herman Haverkort for in-
teresting discussions and Damian Merrick for the Sydney data.

References

1. T. Barkowsky, L. J. Latecki, and K.-F. Richter. Schematizing maps: Simplification
of geographic shape by discrete curve evolution. In C. Freksa, W. Brauer, C. Habel,
and K. F. Wender, editors, Proc. Spatial Cognition II, volume 1849 of Lecture Notes
in Artificial Intelligence, pages 41-53, 2000.

2. C. Binucci, W. Didimo, G. Liotta, and M. Nonato. Orthogonal drawings of graphs
with vertex and edge labels. Comp. Geometry: Theory & Appl., 32(2):71-114, 2005.

3. U. Brandes, M. Eiglsperger, M. Kaufmann, and D. Wagner. Sketch-driven orthog-
onal graph drawing. In Proc. 10th Int. Symp. on Graph Drawing (GD’02), volume
2528 of Lecture Notes in Computer Science, pages 1-11. Springer-Verlag, 2002.

4. S. Cabello, M. d. Berg, S. v. Dijk, M. v. Kreveld, and T. Strijk. Schematiza-
tion of road networks. In Proc. 17th Annual Symp. on Computational Geometry
(SoCG’01), pages 33-39, New York, 2001. ACM Press.

5. G. di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall, 1999.

6. S.-H. Hong, D. Merrick, and H. A. D. d. Nascimento. The metro map layout prob-
lem. In J. Pach, editor, Proc. 12th Int. Symp. on Graph Drawing (GD’04), volume
3383 of Lecture Notes in Computer Science, pages 482—-491. Springer-Verlag, 2005.

7. M. Nollenburg. Automated drawings of metro maps. Technical Report 2005-25,

Universitat Karlsruhe, 2005. Available at http://www.ubka.uni-karlsruhe.de/

cgi-bin/psview?document=/ira/2005/25.

M. Ovenden. Metro Maps of the World. Capital Transport Publishing, 2003.

9. E. S. Sandvad, K. Grgnbak, L. Sloth, and J. L. Knudsen. A metro map metaphor
for guided tours on the Web: the Webvise Guided Tour System. In Proc. 10th Int.
World Wide Web Conf. (WWW’01), p. 326-333, Hong Kong, 2001. ACM Press.

10. J. M. Stott and P. Rodgers. Metro map layout using multicriteria optimization. In

Proc. 8th Int. Conf. on Information Visualisation (IV’04), London, pages 355-362.
IEEE, 2004.
11. Sydney CityRail. www.cityrail.nsw.gov.au/networkmaps/network_map.pdf.
12. R. Tamassia. On embedding a graph in the grid with the minimum number of
bends. SIAM J. Comput., 16(3):421-444, 1987.

®

A Mixed-Integer Program for Drawing High-Quality Metro Maps 13

(a) Original geographic layout

(c) Stott and Rodgers using contracted (d) Stott and Rodgers using uncontracted
edges (Fig. 14 in [10]) edges (Fig. 15 in [10])

[s s 2y
’ SR
(e) Final layout using our method (f) Clipping of the ofﬁciglmmap [11]

Fig. 4. Various drawings of the Sydney CityRail system.

