
Dynamic One-Sided Boundary Labeling

Martin Nöllenburg
Karlsruhe Institute of Technology and

University of California, Irvine
noellenburg@kit.edu

Valentin Polishchuk Mikko Sysikaski
Helsinki Institute for Information Technology

CS Department, University of Helsinki
firstname.lastname@cs.helsinki.fi

ABSTRACT
In boundary labeling, features on a map are connected to a
stack of labels on the map boundary, using simple polylines
called leaders. We consider the setting that the labels are
axis-aligned non-overlapping rectangles placed on one side of
the map, and leaders are rectilinear polylines with at most
one bend. The goal is to find a labeling that minimizes the
total length of the leaders.

We introduce three extensions of the one-sided boundary
labeling problem: (i) a dynamic setting for continuous scale
changes, (ii) a clustered setting for multiple label stacks, and
(iii) a combined dynamic clustered setting. We obtain the
following results:

• Optimal label placement as a function of map scale can
be computed in O(n logn+ σ logn) time, where σ is the
number of “combinatorially different” labelings that occur
during zooming.
• In a map with fixed scale, an optimal clustered label

placement can be found in O(n logn) time.
• In O(n log2 n+ γ logn) time one can build a structure of

size O(γ) representing the optimal clustered label place-
ment for all possible map scales; here γ is, again, the
number of combinatorially different labelings.

We further extend our basic model to the case where labeled
features enter or leave the viewport due to map panning and
zooming. Our algorithms are based on combining standard
computational-geometry tools and have been implemented
in a Java applet (available online), which indicates that the
algorithms are fast enough for interactive use without delays.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations

General Terms
Algorithms, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GIS ’10, 03-NOV-2010, San Jose CA, USA
Copyright 2010 ACM 978-1-4503-0428-3/10/11 ...$10.00.

Keywords
Map labeling, continuous viewport changes

1. INTRODUCTION
Many different kinds of visualizations—medical illustra-

tions, engineering diagrams, statistical graphics, maps—an-
notate features of interest by textual labels. These labels are
usually required to be placed directly next to the features
without overlapping each other or occluding important parts
of the illustration. If, however, too many features appear
densely together or the labels are too large, it may not be
possible to place the labels in this fashion. A common al-
ternative approach is thus to place the labels next to one or
more sides of the figure’s boundary and to connect them to
the respective features using low-complexity curves. Labels
in this case are also commonly referred to as call-outs and
the curves connecting call-outs and features are called lead-
ers. For a static graphic, the algorithmic problem of placing
the labels and leaders so that a certain quality measure is
optimized is called the static boundary labeling problem. A
natural objective for creating labelings of low visual com-
plexity is to minimize the total leader length and to avoid
intersecting leaders. Figure 1 shows an example.

Of increasing importance in geovisualization are dynamic
maps, in which the user can interactively select regions of in-
terest by zooming and panning his individual view of the illus-
tration. Another use of dynamic visualizations are location-
aware maps on mobile devices, which continuously change
with movement. In this paper we address the problem of
computing and maintaining an optimal placement of labels
and leaders in a map whose scale changes continuously; we
call this the dynamic boundary labeling problem. We also
consider changes of the view—in particular, changes to the
set of visible features—that occur due to map panning.

Related Work.
Over the last decades, most research efforts were devoted

to labeling point features in static maps by directly placing
non-overlapping labels next to the features. This problem is
known to be NP-hard and many heuristics and approximation
algorithms exist, see [19] and the extensive bibliography on
map labeling maintained by Wolff and Strijk [20]. The
(static) boundary labeling problem was first introduced as
an algorithmic problem by Bekos et al. [5] and subsequently
studied in different settings for rectilinear and diagonal leader
shapes with one or two bends and label positions on one, two,
or four sides of the map [3,6,14]; placing the labels in multiple
columns on one side of the map was also considered [4]. Still,

Label 5
Label 4
Label 3
Label 2
Label 1

(a)

Label 5
Label 4
Label 3
Label 2
Label 1

(b)

Label 5
Label 4
Label 3
Label 2

Label 1

(c)

Figure 1: A sample instance with five points shown at a small scale (a) and at a larger scale (b,c). Labels are in a single stack
(a,b) or clustered (c).

all previous results assume that labels should be as large as
possible. Thus, they form a single stack of labels occupying
the full height (or width) of all available boundaries.

In recent years, dynamic map labeling using internal labels
has been studied. Petzold et al. [15,16] use a preprocessing
step to generate a reactive conflict graph that represents
possible label overlaps for all scales. For any fixed scale and
map region, a conflict-free labeling can be computed quickly
using heuristic methods. Continuous movement and zooming,
however, are not explicitly supported by their methods and
may lead to sudden discrete changes of label positions. Been
et al. [1,2] define consistency criteria for dynamic labelings
that avoid popping and jumping of labels during movement
and zooming. They show NP-hardness of maximizing the
number of labels in a consistent labeling and present several
approximation algorithms for the problem.

Our Contributions.
We combine the two concepts of boundary labeling and

dynamic map labeling into dynamic boundary labeling. More
precisely, we want to minimize the total leader length in
one-sided boundary labelings (all labels are on the same side
of the map) with one-bend rectilinear leaders. We first study
a dynamic version of stacked boundary labelings, where all
labels occupy a contiguous interval of the boundary (but
not necessarily the whole boundary). The problem is to
find the optimum position of the label stack as a function
of the map scale. Figures 1a and 1b show two different
positions for different scales. In Section 3 we show that for
this problem the optimal label placement can be computed
in O(n logn+ σ logn) time where σ is the complexity of the
problem instance in terms of the number of combinatorially
different labelings.

Our second problem introduces clustered instead of stacked
boundary labelings. Here we allow irregular gaps between
consecutive clusters of labels in order to decrease the total
leader length. Figure 1c shows an example, where the optimal
label placement uses two clusters. In Section 4 we give a
simple O(n logn)-time algorithm that determines the optimal
number of label clusters and their placement for the static
boundary labeling problem.

Finally, in Section 5, we present our main result and com-
bine the dynamic setting and the clustered setting. We
compute, in O(n log2 n+ γ logn) time, a structure that rep-
resents the optimal clustered label placement as it changes
during zooming; here γ is again a measure of the complexity
of the instance.

It is worth noting that our algorithms are output-sensitive:

Ω(σ) space is needed to represent the changes in a stacked
labeling, and Ω(γ) space is needed for the changes in a
clustered labeling. Our algorithms spend only a logarithmic
time per change to update the optimal labeling.

In Section 6 we address two important practical issues that
are caused by the limited size of a map displayed on screen.
With these issues taken into account, we implemented our
algorithms and made them available (including the source
code) as a Java applet located at http://cs.helsinki.fi/

group/compgeom/boundarylabeling/. Experimental results
for randomly distributed sites indicate that the output com-
plexities σ and γ grow almost linearly with n.

2. PRELIMINARIES
In this section we extend the existing model for boundary

labeling to models for dynamic, for clustered, and for dynamic
clustered boundary labeling. Additionally, we repeat two
line-sweeping algorithms on which our methods are based.

2.1 Model
Let P = {p1, . . . , pn} be a set of points in the plane, called

sites, that are to be labeled. Suppose that the user’s screen
has width ws and height hs and thus aspect ratio r = ws/hs.
Any rectangle R that has aspect ratio r and that contains
the sites P is called a view of P . In a mapping application
that displays R on the screen we need to scale R by some
factor 1/z > 0 in order to match the screen size. The larger
the rectangle R the smaller the scale 1/z, which corresponds
to the cartographic definition of scale. We define the inverse
z of the scale 1/z to be the zoom level of the view.

Let L be the vertical line containing the right side of the
rectangle R. A right-sided boundary labeling of R is a set of
n axis-aligned non-overlapping rectangular labels l1, . . . , ln
whose left sides lie on L. We make the simplifying assumption
that all labels have uniform height; our algorithms can easily
be adapted to deal with non-uniform labels. Typically [14],
all n labels form a stack, i.e., there are no or only fixed-
height gaps between any two adjacent labels. Each site p is
connected to the fixed anchor point of a distinct label l on
L by a simple curve called leader. In this paper, we assume
that a label’s anchor point is the vertical midpoint of the
label’s left side. As leaders we consider one-bend rectilinear
polylines that start with an optional vertical segment and
then extend horizontally to the anchor point of a label. Such
leaders are called po-leaders in the literature [5] as they
first run parallel to and then orthogonal to L. We call a
leader with a vertical segment of length 0 a direct leader.
Otherwise, a leader whose bend is above (below) its site is

http://cs.helsinki.fi/group/compgeom/boundarylabeling/
http://cs.helsinki.fi/group/compgeom/boundarylabeling/

called upward (downward). For example, in Fig. 1b leader
4 is direct, leaders 1 and 5 are upward and leaders 3 and 2
are downward. We say that a label l has ordinate y0 if the
y-coordinate of its anchor point is y0. We assume that the
labels are ordered by increasing y-coordinates.

Following Bekos et al. [3, 5] our objective is to minimize
the total leader length. This minimizes not only the distance
between site and label but it also minimizes the amount of
non-data ink in the graphic and thus adheres to a rule of
Tufte for graphical excellence [18]. We note that it suffices
to minimize the total length of the vertical leader segments
since the lengths of the horizontal segments are constant for
a given view R and thus independent of the label placement.

To simplify the exposition, we assume that the sites are in
general position. The exact meaning of the non-degeneracy
will be clarified in the sequel. For each 1 ≤ i ≤ n let yi be
the y-coordinate of site pi. Because we offer Ω(n logn)-time
solutions, we can assume that the sites are ordered by their
y-coordinates, i.e., y1 < · · · < yn. Our first non-degeneracy
assumption is that the y-coordinates of all sites are distinct.

In the following we introduce two extensions to standard
boundary labeling: dynamic boundary labeling that changes
with scale, and clustered boundary labeling, where irregular
gaps between adjacent labels are allowed in order to offer
more flexibility to reduce the total leader length. We also
consider the combined, dynamic clustered setting.

Dynamic Boundary Labeling.
In a dynamic map, in which the user can zoom continuously,

the task is to maintain an optimal boundary labeling at any
scale that is reached during zooming. We want to keep the
size of the labels fixed on screen. This means that as the
zoom level z increases, the relative size of the labels grows,
too (as they are being scaled by 1/z before being displayed
on screen). The label height is thus a linear function of z,
and for simplicity we assume that it is actually equal to z.

Our objective then is to compute an optimal boundary
labeling as a function of z. Of course, as there are n labels,
the full specification of the label positions would require n
functions. However, as long as labels are stacked one on top
of another, as soon as the position of one label at zoom level
z is known, the positions of all other labels can be inferred.
Thus, for a label placement with stacked labels it suffices
to determine the following two functions of z: (1) λ(z) –
an index from {1 . . . n} indicating which label has a direct
leader, and (2) s(z) – the placement of the λ(z)-th label.
So given a set of sites P and some interval [zmin, zmax] of
zoom levels, the problem is to compute λ(z) and s(z) for all
z ∈ [zmin, zmax] such that at any z the labeling induced by
λ(z) and s(z) has minimum total leader length. We present
the solution to this problem in Section 3.

We note that if we know the position of the label stack
at some zoom level z, it is straight-forward to compute the
minimum total leader length for that label placement using
the following observation by Bekos et al. [5, Section 3.3.4]:
Connecting the i-th site to the i-th label in their respective
y-orders for all 1 ≤ i ≤ n yields a length-minimal labeling
with po-leaders.

Clustered Boundary Labeling.
We define clustered boundary labeling initially as an alter-

native to stacked boundary labeling in a static scenario. The
requirement that all n labels form a single stack is reason-

able if the labels occupy (almost) the whole right side of the
view R. But if the sum of the label heights is less than the
height of R it is often more desirable to allow arbitrary gaps
between labels and assign label positions that better reflect
the distribution of the sites, see Fig. 1c. So the problem is,
given a view R of a set of n sites P with a fixed zoom level z,
to place n disjoint labels of height z on the right boundary
of R such that the total leader length of the induced labeling
is minimized. Our algorithm to solve the clustered boundary
labeling problem is given in Section 4.

Dynamic Clustered Boundary Labeling.
The most general and also the most interesting version of

the problem combines the dynamic and clustered settings
introduced above. So the question now is how the optimal
label placement changes with the zoom level z, if arbitrary
gaps between labels are allowed. Our solution decomposes
the range of zoom levels into intervals, within which the
clusters of the labels do not change and thus behave like
single stacks of labels. For each zoom interval and each
cluster in that interval, the solution must again specify two
functions of z: (1) an index of a site in the cluster and (2) the
placement of that site’s label. We present the algorithm for
the dynamic clustered version in Section 5.

Extensions.
The model described above will serve as our basic setting

in Sections 3, 4 and 5, in which we present the technical
details of our approach. In this setting, we tacitly assume
that the screen is essentially unbounded: during the view
changes, all sites remain visible on the screen and all labels fit
in the vertical dimension of the screen. Section 6 extends the
basic model to a more realistic scenario taking into account
that the sites, as well as labels, may potentially move out of
the screen limits due to zooming and panning.

2.2 Output-Sensitive Sweeps
Let’s illustrate what we mean by output-sensitive algo-

rithms. Consider the problem of computing intersections
between a set of n line segments. Because there are O(n2)
intersections, they can all be computed in O(n2) time by
simply checking every pair of line segments for an intersec-
tion. Since there exist sets of line segments inducing Ω(n2)
intersections, this simple algorithm is worst-case optimal.
On the other hand, if the number of intersections K is o(n2),
then an algorithm, whose running time depends on K, i.e.,
on the complexity of the output, would be more efficient.
Such algorithms are known as output-sensitive.

BO-Sweep.
The classical output-sensitive algorithm for computing line-

segment intersections is the Bentley–Ottmann sweep (BO-
sweep) [7, Chapter 2], which we outline next. The algorithm
simulates moving a vertical sweepline L from −∞ to +∞
along the x-axis. The invariant maintained during the sweep
is that all intersections to the left of L have been discovered.
The sweepline status is a list of the segments that intersect
L, ordered by the y-coordinates of the intersection points.
The status of L changes at events, which are of two types:
(1) L reaches a segment endpoint, and (2) L reaches the
intersection point of two segments. The crux of the algorithm
is in that the next intersection event always happens between
segments that are neighbors in the sweepline status; this

allows one to spend only O(logn) time per event (after an
initial O(n logn) sorting). Overall, the running time of the
BO-sweep is O(n logn+K logn), where K is the number of
intersections in the instance (the output complexity).

The following observation will be useful for us in Section 5:
The BO-sweep does not have to know about all the segments
in advance; it is sufficient that the sweep learns about a seg-
ment once the sweepline reaches the segment’s left endpoint.

Median Level in a Line Arrangement.
Let H = {`1, . . . , `n} be a set of n lines in the plane. A cell

in the arrangement H is a maximal connected component
of R2 \ H. Let i ∈ {1 . . . n}, and let p be a point on a line `
in H. The point p belongs to the i-level of H if exactly i
lines (other than `) lie below p. The i-level is a chain of
subsegments of lines in H; the complexity of the level is the
number of the subsegments.

For n odd, the median level of H is the (n − 1)/2-level.
For n even, we define the median level to be the (pointwise)
average of the (n/2− 1)- and n/2-levels (viewing the levels
as functions of x). Since the median level for an even n does
not follow any of the lines of H, we will sometimes say that
it is a dummy level.

A long standing open question in combinatorial geometry
is to bound the complexity of the i-level and, in particular,
the median level [12]. The current best upper bound on the

complexity of the i-level is O(ni1/3) [9]; in particular, no

better bound than O(n4/3) is known for the complexity of the
median level. The strongest lower bound on the complexity
of the median level is only slightly superlinear [17].

To compute the i-level we could build the full line ar-
rangement and trace the level. However, for lines in general
position, i.e., no two lines are parallel and no three share
a point, the arrangement has complexity Ω(n2). Thus, the
brute force solution will run in Ω(n2) time. The BO-sweep is
of no help here, as it would spend quadratic time computing
all line intersections. A more involved sweep due to Edels-
brunner and Welzl (EW-sweep) [11], allows one to compute
the i-level in a line arrangement in output-sensitive time. We
describe the EW-sweep next.

EW-Sweep.
Similarly to the BO-sweep, the EW-sweep simulates sweep-

ing a vertical sweepline L from left to right over H, with the
invariant that the level has been computed to the left of L.
To bound the region in which the level changes to another
line, two additional data structures are maintained during
the sweep. The first data structure stores the lines that
intersect L above the current edge of the level, and also the
intersection of the halfplanes that are bounded from above
by these lines. The boundary of this intersection defines an
upper envelope of the region of interest, where the level will
switch to another line. The second data structure stores
analogous information for the lines intersecting L below the
current edge of the level; in particular, it maintains the lower
envelope of the region of interest. The lines defining the
upper and lower envelopes are the candidates for becoming
the next line on the level.

An event in the sweep involves computing the intersection
of the current line supporting the level with a candidate line,
and updating the two data structures. The event can be
processed in O(logn) time [8,11,12]. Thus, the median level

can be computed in O(n logn+K logn) time, where K is
the complexity of the level, i.e., the output complexity. If n
is even, we can run two EW-sweeps concurrently, to compute
both the (n/2− 1)- and the n/2-level.

It is important for our algorithm in Section 5 that the EW-
sweep develops the level “on the fly”, as the sweep proceeds.
In particular, suppose that at a certain point the sweep
receives a signal to stop computing the level further. Then
the time spent by the sweep for computing the level to the
left of the current sweepline is O(n logn+K logn), where
K is the complexity of the level left of the sweepline.

3. DYNAMIC LABELING
In this section we give a solution to the dynamic boundary

labeling problem, where all labels form a single stack on one
side of a dynamic view R of a set P of n sites. We first
assume that n is odd; then we show how to handle the case
of even n.

Odd Number of Sites.
Recall that the sites P = {p1, . . . , pn} are sorted by in-

creasing y-coordinates y1 < · · · < yn, and that a dynamic
placement of the label stack is given by functions λ(z) and
s(z) – an index of some label and the position of that label
at zoom level z.

The following definition is central to our algorithms:

Definition 3.1. Let m(z) be the index of the median of
{yk − kz | 1 ≤ k ≤ n}. We call m(z) the median of P at
zoom level z. The m(z)-th leader connecting pm(z) to lm(z)

is called the median leader.

Lemma 3.2. For any zoom level z and an odd number of
sites, the median leader in the optimal label placement is a
direct leader.

Proof. The length of the horizontal part of any leader
does not depend on the position of the label stack. If the
lower side of the stack is aligned with the horizontal line
y = z/2, then the k-th label has ordinate kz, k = 1, . . . , n,
and the vertical length of the k-th leader is |yk − kz|. If
the stack is shifted up by s, the total length of the leaders
is

Pn
k=1 |yk − kz − s| which is minimized for s = ym(z) −

m(z)z.

For instance, in Figs. 1a and 1b the median leaders 3 and 4
resp. are direct. Note also that the number of upward and
downward leaders is the same; this is true in general, as the
next corollary shows.

Corollary 3.3. For any zoom level z and an odd number
of sites the number of upward leaders in an optimal label
placement equals the number of downward leaders.

Proof. Assume to the contrary that without loss of gener-
ality the number of upward leaders is larger than the number
of downward leaders. As the median leader is direct, we
could shift the whole label stack downwards by some ε > 0
and thus decrease the total leader length. This contradicts
the optimality.

For k = 1, . . . , n let `k = {(z, y) | y = yk − kz} be a line in
the (z, y)-plane; let A be the arrangement of lines `1, . . . , `n.
By definition, the median level of A traces the line `m(z) for
any zoom level z. By Lemma 3.2, the optimal solution for the

dynamic boundary labeling problem is given by λ(z) = m(z)
and s(z) = ym(z). Since the EW-sweep builds the median
level in time O(n logn) plus O(logn) time per edge of the
level, we have

Theorem 3.4. The dynamic boundary labeling problem
for a set P of n sites can be solved in time O(n logn+σ logn)
where σ is the complexity of the median level of the line
arrangement A induced by P .

We say that a takeover event happens at zoom level z
if the median changes at z. For i < j the median may
possibly change from i to j or from j to i only at zoom level
zij = (yj − yi)/(j − i). Let T ∗ = {zij | zij = (yj − yi)/(j −
i), 1 ≤ i < j ≤ n} be the set of possible takeover events.
Our next non-degeneracy assumption is that all events zij

in T ∗ are distinct. In terms of the line arrangement A it
means that all intersection points of the lines have distinct
z-coordinates.

Even Number of Sites.
If n is even, the optimal label placement is not unique; to

enforce uniqueness we follow the convention that the median
of an even set of numbers is the mean of the two possible
medians. Specifically, let m−(z), m+(z) be the indices of the
two lines in the arrangement A that define the (n/2 − 1)-
and n/2-levels at z. For even n the shift s (see Lemma 3.2)
that minimizes the total leader length

Pn
k=1 |yk−kz−s| can

be any number in the interval [ym−(z) −m−(z)z, ym+(z) −
m+(z)z]. We choose s as the midpoint of the interval, i.e.,
s = (ym−(z) + ym+(z))/2− (m−(z) +m+(z))z/2. This way,

the m−(z)-th label is at position s−(z) = m−(z)z + s =
(ym−(z) + ym+(z))/2 + (m−(z)−m+(z))z/2, and the m+(z)-

th label is at position s+(z) = m+(z)z + s = (ym−(z) +

ym+(z))/2 + (m+(z)−m−(z))z/2.
In order to have a common notion for even and odd n

we introduce a dummy site pm̄(z) at ordinate (ym+(z) +
ym−(z))/2, whose dummy leader is direct. That dummy
site, although not actually part of P , is called the median of
P = {p1, . . . , pn}. Its dummy label has height 0 so that it
does not affect the placement of the real labels. Whenever
either of m−(z) and m+(z) change, the median also changes.
We still call the change event a takeover.

With the above conventions, Lemma 3.2 and Theorem 3.4
extend to the case of even n verbatim: In an optimal place-
ment of the label stack, the median leader is direct and it can
be computed as a function of z in time O(n logn+ σ logn).

4. CLUSTERED LABELING
In the remainder of the paper we consider the case that the

labels do not have to form a single stack. Rather labels can
be split into separate clusters with arbitrary gaps in between
in order to reduce the total leader length. In this section we
solve the problem for static boundary labeling, where the
zoom level z, and thus the label height, is fixed. Without
loss of generality, we assume z = 1 in this section. In the
next section we will consider the general case of maintaining
an optimal clustered labeling in the dynamic setting – for
arbitrary, changing zoom level z.

We say that the sites pi, pi+1, . . . , pj (and equivalently
the labels li, li+1, . . . , lj) form a cluster Cij if in the optimal
solution of the clustered boundary labeling problem the labels

(a) (b) (c)

Figure 2: Illustration of the label clustering algorithm. A
conflict between two clusters in an upward pass (a), in a sub-
sequent downward pass (b), and the optimal placement (c).

li, . . . , lj are stacked one on top of another without gaps. Let
Lij (resp. Uij) be the y-coordinate of the lower (resp. upper)
boundary of the stack. The interval [Lij , Uij] is the answer
to the following query: If pi, . . . , pj were the only sites (i.e.,
the sites p1, . . . , pi−1 and pj+1, . . . , pn did not exist) and they
were to from a cluster Cij , what would be the extent of the
cluster?

Let mij be the (possibly dummy) index of the median of
{yi − i, . . . , yj − j}. We extend Definition 3.1 to each cluster
by calling mij the cluster median of Cij . For any cluster,
Lemma 3.2 applies. Hence, for any cluster Cij , if mij is
known, one can compute Lij and Uij in constant time. This
forms the basis of our algorithm described next.

We maintain a list C of clusters, initially containing just
the singleton cluster C11. The first step is to check whether
labels l1 and l2 form a cluster. If U11 < L22 then labels l1
and l2 do not overlap and both leaders are direct; they do
not form a cluster and we add C22 on top of C. Otherwise,
they must form a cluster and we replace C11 by C12 in C.

A generic step of the algorithm consists of upward and
downward passes over L, each of which continues until merg-
ing of clusters is dictated. During the upward pass, the
cluster Cij from the top of C is taken, and we check whether
Uij ≥ Lj+1 j+1, i.e., whether the labels in Cij and Cj+1 j+1

would overlap (see Fig. 2a). If yes, lj+1 is added to the
cluster, i.e., Cij is replaced with Ci j+1, and the upward pass
continues. If no, the downward pass starts and continues
until a “No” is received: it is checked whether Lij ≤ Uk i−1

where Ck i−1 is the next-to-the-top cluster in C, see Fig. 2b.
If yes, the cluster Ckj is formed and replaces both Ck i−1

and Cij in C; the downward pass continues. Otherwise, if
Lij > Uk i−1 and the answer is “No”, we start another upward
pass to check for label overlaps at the upper boundary of Cij .
These alternating upward and downward passes continue
until neither the lower nor the upper boundary of the top
cluster in C are in conflict with the two neighboring clusters,
i.e., all clusters currently in C are disjoint, see Fig. 2c. Then,
if Cij is the current top cluster, we add the new cluster
Cj+1 j+1 (which, by construction, does not intersect Cij) to
the top of C and start a new upward pass from Cj+1 j+1.

We now analyze the total time that the algorithm spends
in upward passes (the time spent in downward passes is
asymptotically the same). The analysis is similar to the
classical analysis of Graham’s scan algorithm for computing
the convex hull of a planar point set [7, Chapter 1.1]. We
say that j queries j + 1 when Uij ≥ Lj+1 j+1 is checked.
As soon as a “Yes” is received on a query, label lj becomes
internal to its cluster and j never queries any other index
again. Thus, all we need to bound is the number of times

that a “No” is received on a query. Of course, j queries j + 1
at least once. For any extra query, the cluster C of lj must
have increased during a downward pass, i.e., another cluster
C′ must have been merged with C. We charge that merge
event to the topmost label l in C′. Since l is now internal to
the merged cluster, it will never be charged again; hence the
total number of queries (over all labels) is linear.

Finally, note that in order to spend O(logn) time per
query, we need to update the cluster medians as the clusters
merge in O(logn) time.

Lemma 4.1. Given a set P = {p1, . . . , pn} of n sites
ordered by y-coordinates, a data structure can be built in
O(n logn) time that allows one to do median queries for
clusters Cij in O(logn) time.

Proof. The data structure for answering cluster median
queries is a modified layered range tree using fractional cas-
cading [7, Chapter 5.6]. We first transform the set of sites
P into a set of points Q = {(yi − i, i) | 1 ≤ i ≤ n}. For a
cluster Cij we are interested in the median mij of the set
{yk − k | i ≤ k ≤ j}. That is, we need to find the median of
the first coordinate of the points in Q that are in the query
region (−∞,∞)× [i, j].

We build a binary search tree T in the first coordinate of Q,
where each node v in T holds an associated array A(v) of
those points of Q whose first coordinate is in the subinterval
represented by v. These arrays are sorted in increasing order
by the second coordinate of Q. Let v be an internal node
of T and let lc(v) and rc(v) be the left and right children
of v. Each cell in A(v) stores a pointer into A(lc(v)) and a
pointer into A(rc(v)). Each pointer is actually the index of
the smallest element in A(lc(v)) (resp. A(rc(v))) larger or
equal to the element in the cell of A(v) (if such an element
exists).

We can use the pointers in the associated arrays to locate
the k-th largest element (and thus the median) in the query
region for cluster Cij as follows. We locate the elements
corresponding to sites pi and pj in the array A(r) of the
root r of T in constant time as they are in the i-th and
j-th cell of A(r), respectively. Then we descend into the left
child of r and follow the pointers in the i-th and (j + 1)-
th cells to locate the boundaries of the interval of points
in A(lc(r)) that fall into the query region. The pointers
are actually two array indices llc(r) and ulc(r) and thus the
number of elements in the query region represented by lc(r)
is a = ulc(r) − llc(r). If ulc(r) − llc(r) < k then we know that
the k-th largest element represented by r is the (k − a)-th
largest element represented by rc(r); we continue the search
in rc(r) accordingly. Otherwise the k-th largest element is in
the current subtree and we recursively continue our search
in the left child of lc(r).

Since the height of T is O(logn) the query time of O(logn)
follows immediately. The size of T and its preprocessing time
is O(n logn) analogous to standard layered range trees [7,
Chapter 5.6].

Our algorithm in combination with Lemma 4.1 yields

Theorem 4.2. The clustered boundary labeling problem
for a set P of n sites and a fixed zoom level z can be solved
in O(n logn) time.

The correctness of the algorithm is established via the
following invariant that holds by construction after each

generic step of the algorithm: If Cij is the top cluster in C,
then, if sites pj+1, . . . , pn did not exist, the labels li, . . . , lj
are placed optimally (even) ignoring the sites p1, . . . , pi−1,
and the labels in the other clusters in C are placed optimally
ignoring sites pi, . . . , pj .

5. DYNAMIC CLUSTERED LABELING
In this section we consider the most general problem that

combines dynamic and clustered boundary labeling. We show
that the solution to the problem can be represented by a
tree T in the arrangement A of lines {`1, . . . , `n} defined as
in Section 3. We build the tree in time O(n log2 n+ γ logn)
where γ is the combinatorial complexity of T .

We construct the labeling with increasing zoom level z.
Initially, for z = 0, every leader is a direct leader and all labels
form singleton clusters. With growing label size, clusters
will merge and eventually all labels will form a single cluster.
Our first observation is that the clusters are monotone in the
following sense:

Lemma 5.1. Let Cij be a cluster of labels li, . . . , lj appear-
ing in an optimal clustered labeling at some zoom level z0.
Then for any zoom level z ≥ z0 the labels li, . . . , lj remain in
a joint cluster in the optimal clustered labeling.

Proof. In order to show this lemma we observe that each
cluster is held together by a “gravity” effect. Let Pij =
{pi, . . . , pj} be the sites connected to the labels in Cij . By
Lemma 3.2 and Corollary 3.3 we know that the median leader
of Pij is direct and that there is an equal number of upward
and downward leaders from Pij . We show that for any index
k with i ≤ k < j at most half of the leaders for sites in the
set Pik are upward and at most half of the leaders for sites in
the set Pk+1 j are downward. So shifting the labels li, . . . , lk
downwards or shifting the labels lk+1, . . . , lj upwards does
not decrease the total leader lengths of Pik and Pk+1 j . This
implies that the total leader length of Pij cannot be decreased
by splitting Cij between lk and lk+1. Hence, Cij remains
a single cluster in the optimal labeling for z ≥ z0 until it
is eventually merged with a neighboring cluster. From that
point on the same argument holds for the merged cluster.

At zoom level z0 clearly at most half of the leaders for
sites in the set Pik are upward for any i ≤ k < j; otherwise
we could shift the labels li, . . . , lk downwards by some ∆ > 0
and decrease the total leader length. This contradicts the
assumption that Cij is a cluster in the optimal labeling for
zoom level z0. An analogous argument holds for the number
of downward leaders of sites in Pk+1 j .

If we let z grow from some zoom level z1 ≥ z0 for which
the above property still holds we need to distinguish two
cases. If the current cluster median is contained in Pk+1 j

then the anchor points of the labels for Pik are all moving
downwards and the number of upward leaders obviously does
not grow. If, on the other hand, the current median is some
site pk′ in Pik then the vertical segments of all downward
leaders for sites in Pik above the median actually shrink. But
whenever such a leader for a site pm (k′ < m ≤ k) becomes
a direct leader at some zoom level z2, a takeover event takes
place. The direct leader of pm becomes the new median
leader and the previous median leader, since it belongs to a
site below the new median, turns into a downward leader.
Hence the number of upward leaders of sites in Pik does
not grow regardless of the cluster median. A symmetric

Label 1
Label 2
Label 3

Label 4
Label 5
Label 6

(a)

Label 1
Label 2
Label 3
Label 4
Label 5
Label 6

(b)
zza zb

`2
`5

(c)

Figure 3: Two clusters (a) before and (b) after a merge event;
(c) embedding of the merge tree. Points za and zb in (c)
represent the zoom levels of figures (a) and (b), respectively.
For the merge event at zoom level zb the clusters with median
sites p2 and p5 merge, and the lines `2 and `5 in (c) intersect.

argument holds for the number of downward leaders of any
set Pk+1 j .

We say that a merge event happens when two clusters
merge. Between two merge events, each cluster behaves as
a separate stack of labels to which the results of Section 3
apply. In particular, the median level in each cluster can be
built independently by an EW-sweep. We use a separate EW-
sweepline for each cluster, and also a global event queue in
which the events from all EW-sweeps are stored. In O(logn)
time per EW-event (i.e., a takeover event in any of the EW-
sweeps), both the status of the relevant EW-sweepline and
the global event queue can be updated.

Thus, the median levels within all clusters can be built
in O(γ logn) time where γ is the total complexity of the
medians in the clusters. What remains to show is how to
detect and handle the merge events.

It appears that a merge event for two clusters occurs at
the time when their median levels intersect (Fig. 3). Indeed,
suppose that both clusters have an odd number of labels,
and let i < j be the two cluster medians. As the zoom level
increases, the clusters “collide” at zoom level z when the
distance between their medians equals the number of labels
between them, i.e., (j − i)z = yj − yi, which is exactly the
zoom level at which the lines `i and `j intersect in A. Using
dummy medians, the same is true when two even clusters or
two different-parity clusters merge.

Thus, to detect merge events it is enough to watch for
intersections between the medians during the sweep. For that
we perform, concurrently with the EW-sweeps, an additional
BO-sweep whose sweepline is called the median sweepline (see
Fig. 4). The status of the median sweepline is the list of the
cluster medians in the order as they intersect the sweepline.
The events are intersections between neighboring medians.
The events are stored in the same, global queue. Every time
a takeover event happens in any of the EW-sweeps, a signal
is sent to the BO-sweep to update the status of the median
sweepline and the event queue of the BO-sweep; each update
takes O(logn) time.

Finally, we describe what happens to the EW-sweeps at
a merge event in the BO-sweep. Recall that the following
information is stored with an EW-sweepline: the list of lines
currently above (resp. below) the median and the intersection
of the halfplanes bounded by these lines. Suppose now that
two clusters C and C′ merge. The median for the new cluster
is chosen from the following constant-size set of candidates
(which depends on the parity of |C| and |C′|): one of the
current medians of C and C′ or a new dummy median. Next,

`1

`2

`3

m12EW12

EW3

BO(m12, m33)

m33

Figure 4: Two EW-sweeps (one per cluster) simultaneously
“develop” the cluster medians m12 (dummy) and m33. The
medians from all current clusters are the segments in the
global BO-sweep that detects the median intersections, i.e.,
the cluster merge events.

we take the lines stored with the EW-sweepline of the smaller
cluster and add them one by one to the EW-sweepline of
the larger cluster. Note that the lines below (above) the
medians in C or C′ are also below (above) the median in the
new cluster – modulo the fact that depending on the parities
of |C| and |C′| the previous median lines may change their
status to being above or below the new (dummy) median.
For every added line, we update the halfplane intersections;
this can be done in O(logn) time per addition of a line [8].

The Merge Tree.
We now bound the total time spent in the merge events.

By Lemma 5.1 there are exactly n− 1 merge events for z ∈
(0,∞). Moreover, the set of all clusters forms a hierarchical
decomposition of the sites, i.e., the formation of clusters with
increasing zoom level can be represented by a tree T . The
leaves of T are individual sites, and internal nodes represent
the merging of the children clusters into a new cluster; by
our non-degeneracy assumption no two merge events happen
simultaneously and thus the tree is binary. The time our
algorithm spends at a node v of T is O(smin(v) logn) where
smin(v) is the minimum of the sizes of the two subtrees
of v, and the total time spent to process all n − 1 merge
events and to update the status of all EW-sweeplines is
O(

P
v∈T smin(v) logn).

In the next lemma we prove that
P

v∈T smin(v), i.e., the
sum of the sizes of the smaller subtrees of the nodes of T , is
O(n logn). As an immediate consequence, we obtain that
the total time spent by our algorithm to process the merge
events is O(n log2 n).

Lemma 5.2. The sum
P

v∈T smin(v) is O(n logn).

Proof. The heavy-path decomposition (HPD) [13] of a
tree T is a decomposition of T into paths as follows. Let u
be a node of T and let Tu be the subtree rooted at u. Then
a child w of a non-leaf node u is called the heavy child of u if
|Tw| ≥ |Tv| for all children v of u. All other children of u are
light children. In case of a tie, we arbitrarily designate one
node as the heavy child of u. An edge of T is called heavy if it
connects a heavy child to its parent; all other edges are light.
The heavy edges induce a set of pairwise-disjoint heavy paths
in T that, together with the remaining leaves as single-vertex
heavy paths, form the HPD (see Fig. 5). Each node of T
belongs to exactly one heavy path. The decomposition tree
H(T) has the heavy paths as nodes and the light edges as
edges between two heavy paths.

Figure 5: The heavy path decomposition of a binary tree
T (top) and the corresponding decomposition tree H(T)
(bottom). Heavy edges are shown in bold. Light subtrees
are subtrees of nodes whose parent edge is a light edge.

With the above definitions,
P

v∈T smin(v) is the sum of
the subtree sizes of the light children over all nodes of T . By
definition of the HPD, a node u is the light child of some
node v if and only if u is the root of a heavy path (but not
the root of T). Thus the sum of the subtree sizes of the light
children equals the total size of the subtrees rooted at the
roots of heavy paths (except the heavy path at the root of
H(T)).

For a heavy path π let the light subtrees of π be the subtrees
rooted at the light children of nodes of π. The light subtrees
of π are pairwise-disjoint. Moreover, let π and π′ be heavy
paths at the same level of H(T) (a level in a tree is the set
of nodes at the same distance to the root). Clearly, the light
subtrees of π are disjoint from the light subtrees of π′. Thus,
the total size of the light subtrees of heavy paths at any one
level of H(T) is O(n). Harel and Tarjan [13] showed that
H(T) has O(logn) levels. Thus the total size of the light
subtrees of all heavy paths is O(n logn), and the lemma
follows.

Interestingly, the merge tree T has a natural embedding T
in the arrangement A (augmented with dummy lines where
necessary). The embedding T is the union of the median
levels of the clusters. An internal node of T corresponds to
a degree-3 node of T ; an edge of T between a child u and its
parent v is a path in T , namely the median level of the cluster
corresponding to u. In Fig. 6 one can see the embedding
of the merge tree produced by our implementation of the
algorithm (more details on the implementation are provided
in the next section).

The combined BO- and EW-sweeps described above build
the median levels for all clusters, and hence also the tree T .
Overall, this leads to our main result summarized in the
following theorem:

Theorem 5.3. The tree T that describes the optimal clus-
tered label placement for all zoom levels z ∈ (0,∞), can be
built in O(n log2 n+ γ logn) time, where γ is the combinato-
rial complexity of T .

6. PRACTICAL MATTERS
An important practical aspect of dynamic maps is that the

display area of a screen or a mobile device is limited. Our
algorithms in the previous sections were presented without

taking the limited area of the rectangular view R into account.
In this section, we discuss how the algorithms can be adapted
to produce boundary labelings for map views limited to a
screen of width ws and height hs. Furthermore, we report
on the implementation of our algorithms as a Java applet
showing their relevance in practice.

6.1 Extensions of the Model
Any particular view R, whose aspect ratio r matches the

aspect ratio ws/hs of the screen can be expressed by three
extended world coordinates introduced by Been et al. [2]
for dynamic map labeling. The coordinates define a three-
dimensional (x, y, z)-space where the x- and y-coordinates
are a position in the map plane, and the z-coordinate is a
zoom level. The view R = R(x, y, z) is then the axis-aligned
rectangle in the map plane with the bottom-left corner (x, y),
width wsz, and height hsz. User interaction (zooming and
panning) over time can now be easily expressed as a trajectory
of the view in extended world coordinates.

Visible Sites.
The first effect of displaying only a limited view R of the

map is that the set of sites, visible in R, changes as the
user pans and zooms the map. Let pi = (xi, yi) be a site in
P . The site is visible in a view R(x, y, z) if and only if the
following four inequalities hold:

xi − wsz ≤ x ≤ xi

yi − hsz ≤ y ≤ yi.
(1)

The inequalities (1) are linear in x, y, and z. Each inequal-
ity defines a halfspace bounded by a plane in the extended
world coordinates. Every view that corresponds to a point in
the intersection of these four halfspaces contains the site pi.
Let V be the arrangement of the 4n planes induced by all n
sites P = {p1, . . . , pn}; the complexity of V is O(n3). Every
point (x, y, z) within one cell of V defines a view R(x, y, z)
with the same set of visible sites. In particular, we can apply
our algorithms in each of the cells to have the optimal label
placement ready for any possible view that the user might
choose. As we track the user’s interaction trajectory in ex-
tended world coordinates we can detect when the trajectory
crosses the boundary of the current cell in V. At this point,
we simply switch to the solution for the adjacent cell in V.

Visible Labels.
The bounded area of the view also has an effect on the

label placement, as the user zooms and pans, even when the
set of visible sites does not change. Obviously, for a given
label height hl on screen, not more than bhs/hlc labels can be
placed along the boundary. Furthermore, when labels move
vertically – either due to panning or in order to maintain
their optimal positions according to our algorithms during
zooming – they might move beyond the boundaries of the
screen. To avoid this, motion of a label should be stopped as
soon as it reaches the top or bottom screen boundary. Next,
we describe how to do this for the upper boundary of the
screen; the situation with the lower boundary is symmetric.

The ordinate of the upper boundary of the view R(x, y, z)
is uR(x, y, z) = y + hsz. Let C be the topmost cluster
of labels. Our solution from the previous section specifies,
for any zoom level z, an index of a site from C and the
placement of the label for that site. This allows us to calculate
the ordinates of the upper and lower boundaries of C as

two functions uC(z) and lC(z) of the zoom level z. When
following the user’s interaction trajectory we keep track of
uR(x, y, z) and uC(z). Whenever uC(z) > uR(x, y, z) we
switch to a different solution for the placement of cluster C
by setting the upper boundary of the label stack to uR(x, y, z).
Knowing the number of labels in C and the zoom level z
we can immediately compute the new corresponding lower
boundary function l′C(z). Just as the topmost cluster C
observes the upper boundary uR(x, y, z), any other cluster
C′ observes the actual lower boundary l′C′′(z) of its upper
neighbor C′′ in an analogous way. (Note that if C′′ was not
involved in a collision with a cluster or screen boundary, then
l′C′′(z) = lC′′(z); otherwise l′C′′(z) is computed based on the
collision.)

When panning the view, it can also happen that the origi-
nal upper boundary of some cluster C moves below the upper
screen boundary (or the lower boundary of the cluster C′

above it), i.e., uC(z) ≤ uR(x, y, z) (or uC(z) ≤ l′C′(z)). In
this case we simply switch back to the original placement of
C computed by the algorithm from the previous section.

6.2 Implementation
We implemented our dynamic boundary labeling algo-

rithms as a Java applet, which is available (including the
source code) at http://cs.helsinki.fi/group/compgeom/

boundarylabeling/. Figure 6 shows a screenshot. The im-
plementation allows the user to add sites to the map manually
or randomly and to assign site priorities. The latter feature
is used to select the K most important sites to be labeled
if only K labels are available, e.g., to avoid placing more
than the maximum possible number bhs/hlc of labels, or to
avoid clutter on screen. The user can specify the maximum
number of visible labels.

Our implementation does handle the two extensions of
the model for visible sites and visible labels described in
Section 6.1. For visible sites, however, we currently do not
compute the arrangement of planes in the extended world
coordinates. Rather we recompute the line arrangement
every time a site enters or leaves the current view. Also,
instead of implementing the EW-sweep with the optimal but
complicated O(logn)-time dynamic convex hull algorithm [8],
we use a simpler convex hull structure with O(n) query time.
Our experimental results below and hands-on experience with
the applet show that despite the recomputations and the
straight-forward way to build the tree, our simple approach
is still fast enough for real-time map labeling.

Experimental Results.
We measured the performance of the implementation to

see whether it is fast enough in practical cases. Even for
random inputs with about a thousand sites the merge tree
generation takes only a few tens of milliseconds on a standard
PC with 2.13Ghz processor. So there is no visible delay in
our interactive application.

To get an idea of the problem complexity in practice, we
took for every n from 1 to 4000 the average complexity of
the median level and merge tree over 5 instances of n sites
distributed uniformly at random in the rectangular viewing
area. Both σ and γ exhibited very slightly superlinear growth
with relatively small deviations in our tests, see Fig. 7. Due
to the dummy medians, the complexity of the median level
for even n is twice as large as that for odd n (this is the
reason why σ appears as two lines on the plot).

Figure 6: A screenshot of our implementation. The left
pane of our applet is the map; the right pane shows the line
arrangement A and highlights the merge tree T in red.

Figure 7: Average complexity σ of the median level (blue)
and γ of the merge tree T (red) for random inputs.

7. DISCUSSION
In this paper we introduced the dynamic (one-sided) bound-

ary labeling problem as an extension of the static boundary
labeling problem. We designed, analyzed, and implemented
efficient algorithms to compute and maintain clustered and
non-clustered optimal label placements during user inter-
actions that are composed of zooming and panning a map
view.

Our algorithms for dynamic labeling are output-sensitive:
their running times are a sum of the preprocessing time
(O(n logn) or O(n log2 n)) and a term that depends on the
output complexity (σ – the complexity of the median level in
the line arrangement A, and γ – the complexity of the merge
tree T). The dependence on the complexities is reasonably
good: we spend only O(logn) time for each “breakpoint” of
the solution. Our experiments suggest that the complexities
are almost linear in practice, but it would still be interesting
to give worst-case upper bounds on σ and γ.

In general, the best bounds on the complexity of the me-
dian level in a line arrangement are currently Ω(n1+ε) [17]

and O(n4/3) [9]. But the arrangement A has the special
property that the slopes of the lines are consecutive integers.
Edelsbrunner et al. [10] present a lower bound of Ω(n logn)

http://cs.helsinki.fi/group/compgeom/boundarylabeling/
http://cs.helsinki.fi/group/compgeom/boundarylabeling/

on the number of halving lines for points with consecutive
integer abscissas; by the duality of the median level in a
line arrangement and the set of halving lines in a point set,
the complexity σ of A can thus be Ω(n logn), too. Can
Tóth’s [17] construction of the Ω(n1+ε) lower bound on the
number of halving lines be adapted so that the points’ abscis-
sas are {1, . . . , n}? On a similar note, it would be interesting
to have bounds on the combinatorial complexity of our merge
tree T .

In our extended dynamic boundary labeling model (Sec-
tion 6.1), we define a three-dimensional arrangement V of
planes. We observed that the labeling solutions for all map
views represented by the points in one cell of V are based on
the same line arrangement A or merge tree T , respectively.
It is an interesting open question whether we can precompute
A and T for all O(n3) cells of V more efficiently than by
applying our algorithms separately for each cell.

One of the constraints in static boundary labeling is to
find labelings, in which no two leaders intersect. It is thus a
natural and open question to ask for crossing-free dynamic
labelings. A major concern with dynamic crossing removal
is, however, that the vertical order of the labels is modified
every time a crossing is removed. This may lead to frequent
and rather drastic changes of the labeling, to which the user
has to readjust mentally at every such event. Recall that
(dynamic) crossing removal and leader length minimization
are independent problems since the label positions and the
total leader length are not affected by removing crossings [5].

We suggest the following semi-dynamic compromise to
balance the trade-off between the visual quality of a snapshot
of the labeling at any time and the visual quality of the whole
animation during user interaction. Instead of requiring that
every frame of the animation must be a crossing-free labeling,
we remove crossings only when the user stops moving the
map view; this can be done in O(n logn) time [6]. Upon
resumption of the movement, we keep the current order of
the labels until the next break. To support the preservation
of the mental map during crossing removal, the swapping
of label positions can be animated so that all changes are
continuous.

Another open problem is two- or four-sided dynamic bound-
ary labeling, which could in general yield labelings with
shorter leaders and more or larger labels. One advantage
of one-sided dynamic labelings, however, is that they pre-
serve the user’s mental map better than multi-side labelings,
in which labels could frequently switch sides during user
interaction. As a compromise, we suggest a similar semi-
dynamic approach as for crossing removal. Every time the
user stops moving, we can apply the existing algorithms for
static multi-side boundary labeling [5] to compute an optimal
solution. During user interaction, however, we stick to the
existing assignment of the labels to the boundaries of the
map view, and apply our one-sided algorithms separately to
each boundary side of the labeling.

Acknowledgments. We thank Jie Gao, Alon Efrat, David
Eppstein and Jukka Suomela for discussions and the anony-
mous reviewers for helpful suggestions. This research was
supported in part by the German Research Foundation under
grant NO 899/1-1 and by Academy of Finland grant 118653
(ALGODAN).

8. REFERENCES
[1] K. Been, E. Daiches, and C. Yap. Dynamic map

labeling. IEEE Trans. Visualization and Computer
Graphics, 12(5):773–780, 2006.

[2] K. Been, M. Nöllenburg, S.-H. Poon, and A. Wolff.
Optimizing active ranges for consistent dynamic map
labeling. Comput. Geom. Theory & Applications,
43(3):312–328, 2010.

[3] M. Bekos, M. Kaufmann, M. Nöllenburg, and
A. Symvonis. Boundary labeling with octilinear leaders.
Algorithmica, 57(3):436–461, 2010.

[4] M. Bekos, M. Kaufmann, K. Potika, and A. Symvonis.
Multi-stack boundary labeling problems. In Proc.
Found. Softw. Technol. and Theor. Comput. Sci.
(FSTTCS’06), LNCS 4337, pp. 81–92, Springer, 2006.

[5] M. Bekos, M. Kaufmann, A. Symvonis, and A. Wolff.
Boundary labeling: Models and efficient algorithms for
rectangular maps. Comput. Geom. Theory &
Applications, 36:215–236, 2007.

[6] M. Benkert, H. Haverkort, M. Kroll, and M. Nöllenburg.
Algorithms for multi-criteria boundary labeling. J.
Graph Algorithms Appl., 13(3):289–317, 2009.

[7] M. d. Berg, O. Cheong, M. v. Kreveld, and
M. Overmars. Computational Geometry: Algorithms
and Applications. Springer, 2008.

[8] G. S. Brodal and R. Jacob. Dynamic planar convex
hull. In Proc. 43rd Symp. Foundations of Comput. Sci.
(FOCS 2002), pp. 617–626, 2002.

[9] T. K. Dey. Improved bounds for planar k -sets and
related problems. Discrete Comput. Geom.,
19(3):373–382, 1998.

[10] H. Edelsbrunner, P. Valtr, and E. Welzl. Cutting dense
point sets in half. Discrete Comput. Geom.,
17(3):243–255, 1997.

[11] H. Edelsbrunner and E. Welzl. Constructing belts in
two-dimensional arrangements with applications. SIAM
J. Comput., 15:271–284, 1986.

[12] D. Halperin. Arrangements. In J. E. Goodman and
J. O’Rourke, eds., Handbook of Discr. and Comput.
Geom., Ch. 24, pp. 529–562, 2004.

[13] D. Harel and R. E. Tarjan. Fast algorithms for finding
nearest common ancestors. SIAM J. Comput.,
13(2):338–355, 1984.

[14] M. Kaufmann. On map labeling with leaders. In
S. Albers, H. Alt, and S. Näher, editors, Efficient
Algorithms, LNCS 5760, pp. 290–304, Springer, 2009.

[15] I. Petzold. Beschriftung von Bildschirmkarten in
Echtzeit. PhD thesis, Universität Bonn, 2003.

[16] I. Petzold, G. Gröger, and L. Plümer. Fast screen map
labeling—data-structures and algorithms. In Proc. 23rd
Intl. Cartographic Conf. (ICC’03), pp. 288–298, 2003.

[17] G. Tóth. Point sets with many k-sets. Discrete Comput.
Geom., 26(2):187–194, 2001.

[18] E. R. Tufte. The Visual Display of Quantitative
Information. Graphics Press, 2nd edition, 2001.

[19] M. v. Kreveld. Geographic information systems. In J. E.
Goodman and J. O’Rourke, eds., Handbook of Discr.
and Comput. Geom., Ch. 58, pp. 1293–1314, 2004.

[20] A. Wolff and T. Strijk. The map-labeling bibliography.
http://i11www.iti.uka.de/~awolff/map-labeling/

bibliography/, 2006.

http://i11www.iti.uka.de/~awolff/map-labeling/bibliography/
http://i11www.iti.uka.de/~awolff/map-labeling/bibliography/

	Introduction
	Preliminaries
	Model
	Output-Sensitive Sweeps

	Dynamic Labeling
	Clustered Labeling
	Dynamic Clustered Labeling
	Practical matters
	Extensions of the Model
	Implementation

	Discussion
	References

