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Abstract. An st-path in a drawing of a graph is self-approaching if during a
traversal of the corresponding curve from s to any point t′ on the curve the distance
to t′ is non-increasing. A path has increasing chords if it is self-approaching in
both directions. A drawing is self-approaching (increasing-chord) if any pair of
vertices is connected by a self-approaching (increasing-chord) path.
We study self-approaching and increasing-chord drawings of triangulations and
3-connected planar graphs. We show that in the Euclidean plane, triangulations
admit increasing-chord drawings, and for planar 3-trees we can ensure planarity.
Moreover, we give a binary cactus that does not admit a self-approaching drawing.
Finally, we show that 3-connected planar graphs admit increasing-chord drawings
in the hyperbolic plane and characterize the trees that admit such drawings.

1 Introduction

Finding a path between two vertices is one of the most fundamental tasks users want
to solve when considering graph drawings. Empirical studies have shown that users
perform better in path-finding tasks if the drawings exhibit a strong geodesic-path
tendency [10,17]. Not surprisingly, graph drawings in which a path with certain properties
exists between every pair of vertices have become a popular research topic. Over the
last years a number of different drawing conventions implementing the notion of strong
geodesic-path tendency have been suggested, namely greedy drawings [18], (strongly)
monotone drawings [2], and self-approaching and increasing-chord drawings [1]. Note
that throughout this paper, all drawings are straight-line and vertices are mapped to
distinct points.

The notion of greedy drawings came first and was introduced by Rao et al. [18].
Motivated by greedy routing schemes, e.g., for sensor networks, one seeks a drawing,
where for every pair of vertices s and t there exists an st-path, along which the dis-
tances to t decrease in every vertex. This ensures that greedily sending a message to a
vertex that is closer to the destination guarantees delivery. Papadimitriou and Ratajczak
conjectured that every 3-connected planar graph admits a greedy embedding into the
Euclidean plane [16]. This conjecture has been proved independently by Leighton and
Moitra [13] and Angelini et al. [5]. Kleinberg [12] showed that every connected graph
has a greedy drawing in the hyperbolic plane. Eppstein and Goodrich [7] showed how to
construct such an embedding, in which the coordinates of each vertex are represented
using only O(log n) bits, and Goodrich and Strash [9] provided a corresponding succinct
representation for greedy embeddings of 3-connected planar graphs in R2. Angelini et



al. [3] showed that some graphs require exponential area for a greedy drawing in R2.
Wang and He [21] used a custom distance metric to construct planar, convex and suc-
cinct greedy embeddings of 3-connected planar graphs using Schnyder realizers [20].
Nöllenburg and Prutkin [14] characterized trees admitting a Euclidean greedy embed-
ding. However, a number of interesting questions remain open, e.g., whether every
3-connected planar graph admits a planar and convex Euclidean greedy embedding
(strong Papadimitriou-Ratajczak conjecture [16]). Regarding planar greedy drawings of
triangulations, the only known result is an existential proof by Dhandapani [6].

While getting closer to the destination, a greedy path can make numerous turns and
may even look like a spiral, which hardly matches the intuitive notion of geodesic-path
tendency. To overcome this, Angelini et al. [2] introduced monotone drawings, where
one requires that for every pair of vertices s and t there exists a monotone path, i.e., a
path that is monotone with respect to some direction. Ideally, the monotonicity direction
should be #»

st. This property is called strong monotonicity. Angelini et al. showed that
biconnected planar graphs admit monotone drawings [2] and that plane graphs admit
monotone drawings with few bends [4]. The existence of strongly monotone planar
drawings remains open, even for triangulations.

Both greedy and monotone paths may have arbitrarily large detour, i.e., the ratio
of the path length and the distance of the endpoints can, in general, not be bounded
by a constant. Motivated by this fact, Alamdari et al. [1] recently initiated the study of
self-approaching graph drawings. Self-approaching curves, introduced by Icking [11],
are curves where for any point t′ on the curve, the distance to t′ decreases continuously
while traversing the curve from the start to t′. Equivalently, a curve is self-approaching
if, for any three points a, b, c in this order along the curve, it is dist(a, c) ≥ dist(b, c),
where dist denotes the Euclidean distance. An even stricter requirement are so-called
increasing-chord curves, which are curves that are self-approaching in both directions.
The name is motivated by the characterization of such curves, which states that a curve
has increasing chords if and only if for any four distinct points a, b, c, d in that order, it
is dist(b, c) ≤ dist(a, d). Self-approaching curves have detour at most 5.333 [11] and
increasing-chord curves have detour at most 2.094 [19]. Alamdari et al. [1] studied
the problem of recognizing whether a given graph drawing is self-approaching as well
as connecting given points to a self-approaching drawing. They also gave a complete
characterization of trees admitting self-approaching drawings.

We note that every increasing chord drawing is self-approaching and strongly mono-
tone [1]. The converse is not true. A self-approaching drawing is greedy, but not necesser-
ily monotone, and a greedy drawing is generally neither self-approaching nor monotone.
For trees, the notions of self-approaching and increasing-chord drawing coincide.

Contribution. We obtain the following results on constructing self-approaching or
increasing-chord drawings.
1. We show that every triangulation has an increasing-chord drawing (answering an open
question of Alamdari et al. [1]) and construct a binary cactus that does not admit a self-
approaching drawing (Sect. 3). The latter is a notable difference to greedy drawings since
both constructions of greedy drawings for 3-connected planar graphs [5, 13] essentially
show that every binary cactus has a greedy drawing.



2. We show how to construct plane increasing-chord drawings for planar 3-trees (a
special class of triangulations) using Schnyder realizers (Sect. 4). To the best of our
knowledge, this is the first construction for this graph class, even for greedy and strongly
monotone plane drawings, which addresses an open question of Angelini et al. [2].
3. We show that, similarly to the greedy case, the hyperbolic plane H2 allows represent-
ing a broader class of graphs than R2 (Sect. 5). We prove that a tree has a self-approaching
or increasing-chord drawing in H2 if and only if it either has maximum degree 3 or is a
subdivision of K1,4 (this is not the case in R2; see the characterization by Alamdari et
al. [1]), implying every 3-connected planar graph has an increasing-chord drawing. We
also show how to construct planar increasing-chord drawings of binary cactuses in H2.

2 Preliminaries

For points a, b, c, d ∈ R2, let ray(a, b) denote the ray with origin a and direction
#»

ab

and ray(a,
#»

bc) the ray with origin a and direction
#»

bc. Let dir(ab) be the vector
#»

ab nor-
malized to unit length. Let ∠(

#»

ab,
#»

cd) denote the smaller angle formed by the two vectors
#»

ab and
#»

cd. For an angle α ∈ [0, 2π], let Rα denote the rotation matrix
(

cosα − sinα
sinα cosα

)
.

For vectors #»v1,
#»v2 with dir( #»v2) = Rα ·dir( #»v1), α ∈ [0, 2π), we write∠ccw( #»v1,

#»v2) :=
α. Further, let [ #»v1,

#»v2] denote the cone of directions { #»v | dir( #»v ) = Rβ · dir( #»v1),
β ∈ [0, α]}. Let |[ #»v1,

#»v2]| := α be its size. For a set of directions D, let D denote a
minimum cone of directions containing D, and let |D| = |D|. Note that if |D| < 180◦,
D is unique.

We reuse some notation from the work of Alamdari et al. [1]. For points p, q ∈
R2, p 6= q, let l+pq denote the halfplane not containing p bounded by the line through q
orthogonal to the segment pq. A piecewise-smooth curve is self-approaching if and
only if for each point a on the curve, the line perpendicular to the curve at a does not
intersect the curve at a later point [11]. This leads to the following characterization of
self-approaching paths.

Fact 1 (Corollary 2 in [1]). Let ρ = (v1, v2, . . . , vk) be a directed path embedded
in R2 with straight-line segments. Then, ρ is self-approaching if and only if for all
1 ≤ i < j ≤ k, the point vj lies in l+vivi+1

.

ρ

fron
t(ρ

)

Fig. 1: self-approaching
path ρ and front(ρ).

We shall denote the reverse of a path ρ by ρ−1. Let ρ =
(v1, v2, . . . , vk) be a self-approaching path. Define front(ρ) =⋂k−1
i=1 l+vivi+1

, see also Fig. 1. Using Fact 1, we can decide
whether a concatenation of two paths is self-approaching.

Fact 2. Let ρ1 = (v1, . . . , vk) and ρ2 = (vk, vk+1, . . . , vm)
be self-approaching paths. The path ρ1.ρ2 := (v1, . . . , vk, vk+1,
. . . , vm) is self-approaching if and only if ρ2 ⊆ front(ρ1).

A path ρ has increasing chords if for any points a, b, c, d in this order along ρ, it is
dist(b, c) ≤ dist(a, d). A path has increasing chords if and only if it is self-approaching
in both directions. The following result is easy to see.



Lemma 1. Let ρ = (v1, . . . , vk) be a path such that for any i < j, i, j ∈ {1, . . . , k−1},
it is ∠(−−−→vivi+1,

−−−−→vjvj+1) ≤ 90◦. Then, ρ has increasing chords.

Let G = (V,E) be a connected graph. A separating k-set is a set of k vertices whose
removal disconnects the graph. A vertex forming a separating 1-set is called cutvertex. A
graph is c-connected if it does not admit a separating k-set with k ≤ c− 1; 2-connected
graphs are also called biconnected. A connected graph is biconnected if and only if it
does not contain a cutvertex. A block is a maximal biconnected subgraph. The block-
cutvertex tree (or BC-tree) TG of G has a B-node for each block of G, a C-node for
each cutvertex of G and, for each block ν containing a cutvertex v, an edge between the
corresponding B- and C-node. We associate B-nodes with their corresponding blocks
and C-nodes with their corresponding cutvertices.

The following notation follows the work of Angelini et al. [5]. Let TG be rooted
at some block ν containing a non-cutvertex (such a block ν always exists). For each
block µ 6= ν, let π(µ) denote the parent block of µ, i.e., the grandparent of µ in TG.
Let π2(µ) denote the parent block of π(µ) and, generally, πi+1(µ) the parent block
of πi(µ). Further, we define the root r(µ) of µ as the cutvertex contained in both µ
and π(µ). Note that r(µ) is the parent of µ in TG. In addition, for the root node ν of
TG, we define r(ν) to be some non-cutvertex of ν. Let depthB(µ) denote the number
of B-nodes on the νµ-path in TG minus 1, and let depthC(r(µ)) = depthB(µ). If µ is a
leaf of TG, we call it a leaf block.

If every block of G is outerplanar, G is called a cactus. In a binary cactus every
cutvertex is part of exactly two blocks. For a binary cactus G with a block µ containing
a cutvertex v, let Gvµ denote the maximal connected subgraph containing v but no other
vertex of µ. We say that Gvµ is a subcactus of G.

A cactus is triangulated if each of its blocks is internally triangulated. A triangular
fan with vertices Vt = {v0, v1, . . . , vk} and root v0 is a graph on Vt with edges vivi+1,
i = 1, . . . , k − 1, as well as v0vi, i = 1, . . . , k. Let us consider a special kind of
triangulated cactuses, each of whose blocks µ is either an edge or a triangular fan with
root r(µ). We call such a cactus downward-triangulated and every edge of a block µ
incident to r(µ) a downward edge.

For a fixed straight-line drawing of a binary cactus G, we define sets U(G) =

{ #         »

r(µ)v | µ is a block of G containing v, v 6= r(µ)} and D(G) = { # »uv | # »vu ∈ U(G)},
i.e. the sets of upward and downward directions of G.

3 Graphs with Self-Approaching Drawings

A natural approach to construct (not necessarily plane) self-approaching drawings is to
construct a self-approaching drawing of a spanning subgraph. For instance, to draw a
graph G containing a Hamiltonian path H with increasing chords, we simply draw H
consecutively on a line. In this section, we consider 3-connected planar graphs and the
special case of triangulations, which addresses an open question of Alamdari et al. [1].
These graphs are known to have a spanning binary cactus [5, 13]. Angelini et al. [5]
showed that every triangulation has a spanning downward-triangulated binary cactus.
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Fig. 2: Drawing a triangulated binary cactus with increasing chords inductively. The drawings Γi,ε′

of the subcactuses, ε′ = ε
4k

, are contained inside the gray cones. It is β = 90◦−ε′, γ = 90◦+ε′/2.

3.1 Increasing-chord drawings of triangulations

We show that every downward-triangulated binary cactus has an increasing-chord draw-
ing. The construction is similar to the one of the greedy drawings of binary cactuses in
the two proofs of the Papadimitriou-Ratajczak conjecture [5, 13]. Our proof is by induc-
tion on the height of the BC-tree. We show that G can be drawn such that all downward
edges are almost vertical and the remaining edges almost horizontal. For vertices s, t,
an st-path with increasing chords goes downwards to some block µ, then sideways to
another cutvertex of µ and, finally, upwards to t. Let #»e1,

#»e2 be vectors (1, 0)>, (0, 1)>.

Theorem 1. Let G = (V,E) be a downward-triangulated binary cactus. For any 0◦ <
ε < 90◦, there exists an increasing-chord drawing Γε of G, such that for each vertex v
contained in some block µ, v 6= r(µ), the angle formed by

#         »

r(µ)v and #»e2 is at most ε2 .

Proof. Let G be rooted at block ν. As our base case, let ν = G be a triangular fan
with vertices v0, v1, . . . , vk and root v0 = r(ν). We draw v0 at the origin and distribute
v1, . . . , vk on the unit circle, such that ∠( #»e2,

#      »v0v1) = kα/2 and ∠( #     »v0vi,
#           »v0vi+1) = α,

α = ε/k; see Fig. 2a. By Lemma 1, path (v1, . . . , vk) has increasing chords.
Now let G have multiple blocks. We draw the root block ν, v0 = r(ν), as in the

previous case, but with α = ε
2k . Then, for each i = 1, . . . , k, we choose ε′ = ε

4k and
draw the subcactus Gi rooted at vi inductively, such that the corresponding drawing Γi,ε′
is aligned at #     »v0vi instead of #»e2; see Fig 2b. Note that ε′ is the angle of the cones (gray)
containing Γi,ε′ . Obviously, all downward edges form angles at most ε2 with #»e2.

We must be able to reach any t in anyGj from any s in anyGi via an increasing-chord
path ρ. To achieve this, we make sure that no normal on a downward edge of Gi crosses
the drawing of Gj , j 6= i. Let Λi be the cone with apex vi and angle ε′ aligned with
#     »v0vi, v0 6∈ Λi (gray regions in Fig. 2b). Let sli and sri be the left and right boundary rays
of Λi with respect to #     »v0vi, and hli, h

r
i the halfplanes with boundaries containing vi and

orthogonal to sli and sri respectively, such that v0 ∈ hli∩hri . Define ♦i = Λi∩hri−1∩hli+1

(thin blue quadrangle in Fig. 2c), and analogously ♦j for j 6= i. It holds ♦j ⊆ hri ∩hli for
each i 6= j. We now scale each drawing Γi,ε′ such that it is contained in ♦i. In particular,
for any downward edge uv in Γi,ε′ , we have Γj,ε′ ⊆ ♦j ⊆ l+uv for j 6= i. We claim that
the resulting drawing of G is an increasing-chord drawing.



Consider vertices s,t of G. If s and t are contained in the same subgraph Gi, an
increasing-chord st-path in Gi exists by induction. If s is in Gi and t is v0, let ρi be the
svi-path in Gi that uses only downward edges. By Lemma 1, path ρi is increasing-chord
and remains so after adding edge viv0.

Finally, assume t is in Gj with j 6= i. Let ρj be the tvj-path in Gj that uses only
downward edges. Due to the choice of ε′, hri ∩ hli ⊆ front(ρi) contains v1, . . . , vk in its
interior. Consider the path ρ′ = (vi, vi+1, . . . , vj). It is self-approaching by Lemma 1;
also, ρ′ ⊆ front(ρi) and ρj ⊆ front(ρ′). It also holds ρj ⊆ ♦j ⊆ front(ρi). Fact 2 lets
us concatenate ρi, ρ′ and ρ−1

j to a self-approaching path. By a symmetric argument, it is
also self-approaching in the opposite direction and, thus, is increasing-chord. �

Since every triangulation has a spanning downward-triangulated binary cactus [5],
this implies that planar triangulations admit increasing-chord drawings.

Corollary 1. Every planar triangulation admits an increasing-chord drawing.

3.2 Non-triangulated cactuses

The above construction fails if the blocks are not triangular fans since we now cannot
just use downward edges to reach the common ancestor block. Consider the family of
rooted binary cactuses Gn = (Vn, En) defined as follows. Graph G0 is a single 4-cycle,
where an arbitrary vertex is designated as the root. For n ≥ 1, consider two disjoint
copies of Gn−1 with roots a0 and c0. We create Gn by adding new vertices r0 and b0
both adjacent to a0 and c0; see Fig. 3a. For the new block ν containing r0, a0, b0, c0, we
set r(ν) = r0. We select r0 as the root of Gn and ν as its root block. For a block µi
with root ri, let ai, bi, ci be its remaining vertices, such that biri /∈ En. For a given
drawing, due to the symmetry of Gn, we can rename the vertices ai and ci such that
∠ccw( #    »rici,

#    »riai) ≤ 180◦. We now prove the following negative result.

Theorem 2. For n ≥ 9, Gn has no self-approaching drawing.

The outline of the proof is as follows. We show that every self-approaching drawing Γ
of G9 contains a self-approaching drawing of G3 with the following properties.
1. If µi is contained in the subcactus rooted at cj , each self-approaching biaj-path uses
edge biai, and analogously for the symmetric case; see Lemma 5.
2. Each block is drawn significantly smaller than its parent block; see Lemma 6(i).
3. If the descendants of block µ form subcactuses Gk with k ≥ 2 on both sides, the
parent block of µ must be drawn smaller than µ; see Lemma 6(ii).

Obviously, the second and third conditions are contradictory. The following lemmas
will be used to show that the drawings of certain blocks must be relatively thin, i.e., their
downward edges have similar directions; see the full version for the omitted proofs [15].

Lemma 2. For cactus G = (V,E) and s, t ∈ V , consider cutvertices v1, . . . , vk lying
on any st-path in G in this order. Then, the path (s, v1, . . . , vk, t) is drawn greedily, i.e.,
each of its subpaths is greedy. In particular, ray(v1, s) and ray(vk, t) diverge.

Obviously, this divergence property also holds for a self-approaching drawing of
any cactus. From now on, we consider a fixed self-approaching drawing Γ of G9. For
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Fig. 3: (a) cactuses Gn; (b),(c) construction for Lemma 5; (d) subcactus G5 providing the contra-
diction in the proof of Theorem 2.

a block µ of G9 with root r = r(µ), we write Gr for (G9)rµ, i.e., the binary cactus
subgraph of G9 rooted at r. We write Ur for the set of directions of the upward edges
of Gr and define Ir = Ur. Using Lemma 2, we can show that vectors in Uai ∪U ci have
the following circular order: first vectors in Uai , then vectors in U ci . It follows easily:
min{|Iai |, |Ici |} < |Iri |/2. Thus, we can provide a bound for the smallest of the cones
of a subcactus depending on the depth of its root.

Lemma 3. Every self-approaching drawing ofG9 contains a cutvertex r̄ with depthC(r̄) =
4 and |I r̄| < 22.5◦.

Let r̄ be a cutvertex from Lemma 3 in the fixed drawing, and let ε := |I r̄|. Then,
Gr̄ is isomorphic to G6. From now on, we only consider non-leaf blocks µi and ver-
tices ri, ai, bi, ci in Gr̄. We shall sometimes name the points a instead of ai etc. for
convenience. We assume ∠( #»e2,

# »ra), ∠( #»e2,
#»rc) < ε/2. The following lemma is proved

using basic trigonometric arguments.

Lemma 4. It holds: (i) ∠abc ≥ 90◦; (ii) Ga ⊆ l+ba, Gc ⊆ l+bc; (iii) ∠bar ≤ 90◦ + ε,
∠bcr ≤ 90◦ + ε. (iv) For vertices u in Ga, v in Gc of degree 4 it is ∠( # »uv, #»e1) ≤ ε/2.

We can now describe block angles at ai, ci more precisely and characterize certain
self-approaching paths in Gr̄. We show that a self-approaching path from bi downwards
and to the left, i.e., to an ancestor block µj of µi, such that µi is in Gcj , must use ai.
Similarly, a self-approaching path downwards and to the right must use ci. Since for
several ancestor blocks of µi the roots lie on both of these two kinds of paths, we can
bound the area containing them and show that it is relatively small. This implies that the
ancestor blocks are small as well, providing a contradiction.

Lemma 5. Consider non-leaf blocks µ0, µ1, µ2, such that r(µ1) = c0 and µ2 in Ga1;
see Fig. 3b. (i) It is ∠r2a2b2,∠r2c2b2 ∈ [90◦, 90◦+ ε], b2 lies to the right of ray(r2, a2)
and to the left of ray(r2, c2). (ii) Each self-approaching b2a0-path uses a2; each self-ap-
proaching b2c1-path uses c2.

Proof. (i) Assume ∠r2a2b2 < 90◦. Then, all self-approaching b2a0 and b2c1-paths must
use c2. By Lemma 4(iv), the lines through a0c2 and c2c1 are “almost horizontal”, i.e.,
∠( #      »a0c2,

#»e1), ∠( #     »c2c1,
#»e1) ≤ ε/2. Since r2c2 is “almost vertical”, r2 must lie below these

lines and it is ∠a0c2r2, ∠c1c2r2 ∈ [90◦ − ε, 90◦ + ε]; see Fig. 3c. First, let b2 lie to the
left of ray(r2, c2). Then, b2 is above a0c2, and it is ∠r2c2b2 = ∠a0c2r2 + ∠a0c2b2 ≥
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Fig. 4: Showing the contradiction in Theorem 2.

(90◦ − ε) + 90◦. Now let b2 lie to the right of ray(r2, c2). Then, b2 is above c2c1, and it
is ∠r2c2b2 = ∠c1c2r2 +∠c1c2b2 ≥ (90◦ − ε) + 90◦. Since ε < 22.5◦, this contradicts
Lemma 4(iii). Similarly, ∠r2c2b2 ≥ 90◦. Thus, by Lemma 4(iii), ∠r2c2b2,∠r2c2b2 ∈
[90◦, 90◦ + ε]. Since ∠a2b2c2 ≥ 90◦, b2 lies to the right of ray(r2, a2) and to the left
of ray(r2, c2). (If b2 lies to the left of both rays, it is ∠a2b2c2 = ∠(

#      »

a2b2,
#     »

c2b2) ≤
2ε < 90◦.) (ii) Similarly, if a self-approaching b2a0-path uses c2 instead of a2, it
is ∠r2c2b2 ≥ 180◦ − ε. The last part follows analogously. �

From now on, let µ0 be the root block of Gr̄ and µ1, µ2, µ3 its descendants such
that r(µ1) = c0, r(µ2) = a1, r(µ3) ∈ {a2, c2}; see Fig. 3d. Light gray blocks are the
subject of Lemma 6(i), which shows that several ancestor roots lie inside a cone with
a small angle. Dark gray blocks are the subject of Lemma 6(ii), which considers the
intersection of the cones corresponding to a pair of sibling blocks and shows that some
of their ancestor roots lie inside a narrow strip; see Fig. 4a for a sketch.

Lemma 6. Let µ be a block in Gc2 with vertices a, b, c, r(µ). (i) Let µ have depth 5
inGr̄. Then, the cone l+ba∩ l+bc contains r(µ), r(π(µ)), r(π2(µ)) and r(π3(µ)). (ii) Let µ
have depth 4 in Gr̄. There exist u in Ga and v in Gc of degree 4 and a strip S containing
r(µ), r(π(µ)), r(π2(µ)) = r(µ2), such that u and v lie on the different boundaries of S.

Again, we consider two siblings and the intersection of their corresponding strips,
which forms a small diamond containing the root of the ancestor block; see Fig. 4b, 4c.

Lemma 7. Consider block µ = µ3 containing r = r(µ), a, b, c, and let rπ := r(π(µ3)).
It holds: (i) |rπr| ≤ (1+2 tan ε)(tan ε)2

cos ε (|ra|+ |rc|); (ii) |ra|, |rc| ≤ |rrπ|(tan ε)2.

For ε ≤ 22.5◦, the two claims of Lemma 7 contradict each other. This concludes the
proof of Theorem 2.

4 Planar Increasing-Chord Drawings of 3-Trees

In this section, we show how to construct planar increasing-chord drawings of 3-trees.
We make use of Schnyder labelings [20] and drawings of triangulations based on them.
For a plane triangulation G = (V,E) with external vertices r, g, b, its Schnyder labeling



is an orientation and partition of the interior edges into three trees Tr, Tg, Tb (called
red, green and blue tree), such that for each internal vertex v, its incident edges appear
in the following clockwise order: exactly one outgoing red, an arbitrary number of
incoming blue, exactly one outgoing green, an arbitrary number of incoming red, exactly
one outgoing blue, an arbitrary number of incoming green. Each of the three outer
vertices r, g, b serves as the root of the tree in the same color and all its incident interior
edges are incoming in the respective color. For v ∈ V , let Rrv (the red region of v) denote
the region bounded by the vg-path in Tg, the vb-path in Tb and the edge gb. Let |Rrv|
denote the number of the interior faces in Rrv. The green and blue regions Rgv, Rbv are
defined analogously. Assigning v the coordinates (|Rrv|, |Rgv|, |Rbv|) ∈ R3 results in a
plane straight-line drawing of G in the plane {x = (x1, x2, x3) | x1 +x2 +x3 = f −1}
called Schnyder drawing. Here, f denotes the number of faces of G. For a thorough
introduction to this topic, see the book of Felsner [8].

For α, β ∈ [0◦, 360◦], let [α, β] denote the corresponding counterclockwise cone of
directions. We consider drawings satisfying the following constraints.

Definition 1. Let G = (V,E) be a plane triangulation graph with a Schnyder labeling.
For 0◦ ≤ α ≤ 60◦, we call an arbitrary planar straight-line drawing of G α-Schnyder if
for each internal vertex v ∈ V , its outgoing red edge has direction in [90◦− α

2 , 90◦+ α
2 ],

blue in [210◦ − α
2 , 210◦ + α

2 ] and green in [330◦ − α
2 , 330◦ + α

2 ] (see Fig. 5a).

According to Def. 1, classical Schnyder drawings are 60◦-Schnyder. The next lemma
shows an interesting connection between α-Schnyder and increasing-chord drawings.

Lemma 8. 30◦-Schnyder drawings are increasing-chord drawings.

Proof. Let G = (V,E) be a plane triangulation with a given Schnyder labeling and Γ
a corresponding 30◦-Schnyder drawing. Let r, g, b be the red, green and blue external
vertex, respectively, and Tr, Tg, Tb the directed trees of the corresponding color.

Consider vertices s, t ∈ V . First, note that monochromatic directed paths in Γ have
increasing chords by Lemma 1. Assume s and t are not connected by such a path. Then,
they are both internal and s is contained in one of the regions Rrt , Rgt , Rbt . Without loss
of generality, we assume s ∈ Rrt . The sr-path in Tr crosses the boundary of Rrt , and we
assume without loss of generality that it crosses the blue boundary of Rrt in u 6= t; see
Fig. 5b. The other cases are symmetric.

Let ρr be the su-path in Tr and ρb the tu-path in Tb; see Fig. 5c. On the one hand,
the direction of a line orthogonal to a segment of ρr is in [345◦, 15◦] ∪ [165◦, 195◦]. On
the other hand, ρb is contained in a cone [15◦, 45◦] with apex u. Thus, ρ−1

b ⊆ front(ρr),
and ρr.ρ−1

b is self-approaching by Fact 2. By a symmetric argument it is also self-ap-
proaching in the other direction, and hence has increasing chords. �

Planar 3-trees are the graphs obtained from a triangle by repeatedly choosing a
(triangular) face f , inserting a new vertex v into f , and connecting v to each vertex of f .

Lemma 9. Planar 3-trees have α-Schnyder drawings for any 0◦ < α ≤ 60◦.

Proof. We describe a recursive construction of an α-Schnyder drawing of a planar 3-tree.
We start with an equilateral triangle and put a vertex v in its center. Then, we align
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Fig. 5: (a)–(c) 30◦-Schnyder drawings are increasing-chord; (d),(e) special case of planar 3-trees.

the pattern from Fig. 5a at v. For the induction step, consider a triangular face xyz
and assume that the pattern is centered at one of its vertices, say x, such that the other
two vertices are in the interiors of two distinct cones; see Fig. 5d. It is now possible
to move the pattern inside the triangle slightly, such that the same holds for all three
vertices x, y, z; see Fig. 5e. We insert the new vertex at the center of the pattern and
again get the situation as in Fig. 5d. �

Lemmas 8 and 9 provide a constructive proof for the following theorem.

Theorem 3. Every planar 3-tree has a planar increasing-chord drawing.

5 Self-Approaching Drawings in the Hyperbolic Plane

Kleinberg [12] showed that any tree can be drawn greedily in the hyperbolic plane H2.
This is not the case in R2. Thus, H2 is more powerful than R2 in this regard. Since self-
approaching drawings are closely related to greedy drawings, it is natural to investigate
the existence of self-approaching drawings in H2.

We shall use the Poincaré disk model for H2, in which H2 is represented by the unit
diskD = {x ∈ R2 : |x| < 1} and lines are represented by circular arcs orthogonal to the
boundary of D. For an introduction to the Poincaré disk model, see e.g. Kleinberg [12]
and the references therein.

First, let us consider a tree T = (V,E). A drawing of T in R2 is self-approaching
if and only if no normal on an edge of T in any point crosses another edge [1]. The
same condition holds in H2; see full version for the proof [15]. According to the
characterization by Alamdari et al. [1], some binary trees have no self-approaching
drawings in R2. We show that this is no longer the case in H2.

Theorem 4. Let T = (V,E) be a tree, such that each node of T has degree either 1
or 3. Then, T has a self-approaching drawing in H2, in which every arc has the same
hyperbolic length and every pair of incident arcs forms an angle of 120◦.

Proof. For convenience, we subdivide each edge of T once. We shall show that both
pieces are collinear in the resulting drawing Γ and have the same hyperbolic length.

First, consider a regular hexagon 7 = p0p1p2p3p4p5 centered at the origin o of D;
see Fig. 6a. In H2, it can have angles smaller than 120◦. We choose them to be 90◦ (any
angle between 0◦ and 90◦ would work). Next, we draw a K1,3 with center v0 in o and
the leaves v1, v2, v3 in the middle of the arcs p0p1, p2p3, p4p5 respectively.
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Fig. 6: Constructing increasing-chord drawings of binary trees and cactuses in H2.

For each such building block of the drawing consisting of a K1,3 inside a regular
hexagon with 90◦ angles, we add its copy mirrored at an arc of the hexagon containing
a leaf node of the tree constructed so far. For example, in the first iteration, we add
three copies of 7 mirrored at p0p1, p2p3 and p4p5, respectively, and the corresponding
inscribed K1,3 subtrees. The construction after two iterations is shown in Fig. 6b. This
process can be continued infinitely to construct a drawing Γ∞ of the infinite binary tree.
However, we stop after we have completed Γ for the tree T .

We now show that Γ∞ (and thus also Γ ) has the desired properties. Due to isometries
and the aforementioned sufficient condition, it suffices to consider edge e = v0v1 and
show that a normal on e does not cross Γ∞ in another point. To see this, consider Fig. 6a.
Due to the choice of the angles of 7, all the other hexagonal tiles of Γ∞ are contained in
one of the three blue quadrangular regions �i := l+v0vi \ (l+vip2i−1

∪ l+vip2i−2
), i = 1, 2, 3.

Thus, the regions l+v1p1 and l+v1p0 (gray) contain no point of Γ∞. Therefore, since each
normal on v0v1 is contained in the “slab” D \ (l+v0v1 ∪ l+v1v0) bounded by the diameter
through p2, p5 and the line through p0, p1 (dashed) and is parallel to both of these lines,
it contains no other point of Γ∞. �

We note that our proof is similar in spirit to the one by Kleinberg [12], who also used
tilings of H2 to prove that any tree has a greedy drawing in H2.

As in the Euclidean case, it can be easily shown that if a tree T contains a node v of
degree 4, it has a self-approaching drawing in H2 if and only if T is a subdivision ofK1,4

(apply an isometry, such that v is in the origin of D). This completely characterizes the
trees admitting a self-approaching drawing in H2. Further, it is known that every binary
cactus and, therefore, every 3-connected planar graph has a binary spanning tree [5, 13].

Corollary 2. (i) A tree T has an increasing-chord drawing in H2 if and only if T either
has maximum degree 3 or is a subdivision ofK1,4. (ii) Every binary cactus and, therefore,
every 3-connected planar graph has an increasing-chord drawing in H2.

Again, note that this is not the case for binary cactuses in R2; see the example in
Theorem 2. We use the above construction to produce planar self-approaching drawings
of binary cactuses in H2. We show how to choose a spanning tree and angles at vertices
of degree 2, such that non-tree edges can be added without introducing crossings; see
Fig. 6c for a sketch and the full version [15] for the proof.



Corollary 3. Every binary cactus has a planar increasing-chord drawing in H2.
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