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Abstract. We study contact representations of edge-weighted planar graphs,
where vertices are rectangles or rectilinear polygons and edges are polygon con-
tacts whose lengths represent the edge weights. We show that for any given
edge-weighted planar graph whose outer face is a quadrangle, that is internally
triangulated and that has no separating triangles we can construct in linear time
an edge-proportional rectangular dual if one exists and report failure otherwise.
For a given combinatorial structure of the contact representation and edge weights
interpreted as lower bounds on the contact lengths, a corresponding contact repre-
sentation that minimizes the size of the enclosing rectangle can be found in linear
time. If the combinatorial structure is not fixed, we prove NP-hardness of deciding
whether a contact representation with bounded contact lengths exists.

Finally, we give a complete characterization of the rectilinear polygon complexity
required for representing biconnected internally triangulated graphs: For outer-
planar graphs complexity 8 is sufficient and necessary, and for graphs with two
adjacent or multiple non-adjacent internal vertices the complexity is unbounded.

1 Introduction

Representing graphs by intersections or contacts of geometric objects has a long history
in graph theory and graph drawing, which is covered in monographs and surveys [[12120].
For example, Koebe’s circle packing theorem from 1936 establishes that every planar
graph has a contact representation by touching disks (and vice versa) [[15]]; more recently
it was shown that every planar graph is the intersection graph of line segments [|6].

In this paper we are interested in a special class of contact representations for plane
graphs, namely hole-free side-contact representations using rectangles and rectilinear
polygons. In a rectilinear representation of a plane graph G = (V,E) every vertex v € V
is represented as a simple rectilinear polygon P(v) and there is an edge ¢ = uv € E if
and only if P(u) and P(v) have a non-trivial common boundary or contact path s(e) (i.e.,
length |s(e)| > 0). It is further required that the union J,cy P(v) forms a simple rectilin-
ear polygon itself, i.e., there are no holes in the representation. A standard assumption,
which we will make throughout this paper, is that G is an internally triangulated plane
graph. This excludes the degenerated case of four polygons that meet in a single point.
A rectangular dual [16]] of a graph G is a dissection of a rectangle into rectangles, which
represents G as a contact graph; rectangular duals are thus an interesting special case of
rectilinear representations, where all polygons and their union are rectangles. Rectangu-
lar duals and rectilinear representations with low-complexity polygons have practical
applications, e.g., in VLSI design, cartography, or floor planning and surveillance in
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buildings [21]]. In these applications, the area of vertex polygons and/or the boundary
length of adjacent polygons often play an important role, which immediately raises the
question of representing weighted graphs whose weights control these parameters.

Previously, rectilinear representations and rectangular duals have been studied only
for unweighted graphs [16}|18] and vertex-weighted graphs [2,3||10], where the polygon
areas must be proportional to the vertex weights. This paper covers the remaining open
aspect of representing edge-weighted graphs as touching rectilinear polygons. A natural
way of encoding edge weights in a rectilinear representation is to require that the contact
lengths of all adjacent vertex polygons are proportional to the given edge weights. So
we define an edge-proportional rectilinear representation (EPRR) of an edge-weighted
graph (G, : E — R™) as a rectilinear representation in which additionally the contact
length |s(e)| = w(e) for every edge e € E.

Related work. It is known that unweighted graphs always have a rectilinear representa-
tion using rectangles, L-shaped and T-shaped polygons, i.e., at most 8-gons, and that
there are some graphs for which complexity 8 is necessary [18}24]]. The class of un-
weighted graphs that have a rectangular dual is characterized as all plane triangulations
without separating triangles [|16,/17]]. Orientation-constrained rectangular duals have also
been considered [[10].

For vertex-weighted graphs the goal is to find area-proportional rectilinear represen-
tations, in which the area of a polygon P(v) is proportional to the weight of vertex v. In
a series of papers the polygon complexity that is sufficient to realize any weighted graph
was decreased from 40 corners [7]] over 34 corners [[13]], 12 corners [4]], 10 corners [1]]
down to 8 corners [2]], which is best possible due to the earlier lower bound of 8 [24].
Weighted rectangular duals have also been studied before, e.g., van Kreveld and Speck-
mann [23]] presented several algorithms to compute rectangular duals with low area error.
Eppstein et al. [[10] gave a necessary and sufficient condition for rectangular duals to be
area-universal, i.e., rectangular duals that can realize arbitrary vertex weights without
changing their combinatorial structure. They also showed that for a given combinatorial
structure of the dual and given vertex weights it can be efficiently tested whether these
weights can be represented as the perimeters of the vertex rectangles rather than their
areas. Biedl and Genc [3|] showed that testing whether a rectangular representation with
prescribed areas exists is NP-hard if the complexity of the outer face is unbounded.

Drawing planar graphs with edge weights as standard node-link diagram, where
edge lengths are proportional to the edge weights is an NP-hard problem [9] but can be
decided in linear time for planar 3-connected triangulations [5].

Contribution. In Section [2] we consider rectangular duals. We present a linear-time
algorithm that decides whether a given graph G has an edge-proportional rectangular
dual (EPRD) and constructs it in the positive case (Section . Moreover, if the
combinatorial structure of the dual is specified, we use existing tools to find a rectangular
dual where |s(e)| > w(e) for all e € E and the size of the outer rectangle is minimum
(Section @]) On the other hand, without a fixed combinatorial structure, we prove
NP-hardness of the problem to find a representation where the lengths of the contact
segments are lower and upper bounded (Section [2.3)).
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In Section |3} we consider EPRRs and show that for representing outerplanar graphs
polygon complexity 8 is sometimes necessary and always sufficient. The class of out-
erpillars (outerplanar graphs whose weak dual is a caterpillar, i.e., a tree for which a
path remains after removing all leaves) always has EPRRs of complexity 6, but already
outerlobsters (outerplanar graphs whose weak dual is a lobster, i.e., a tree for which
a caterpillar remains after removing all leaves) require complexity 8. If, on the other
hand, the graph has two adjacent or multiple non-adjacent internal vertices, polygons
of unbounded complexity are sometimes necessary. This completely characterizes the
complexity of EPRRs for internally triangulated graphs.

2 Rectangular duals with contact length specifications

2.1 Rectangular duals with fixed contact lengths

He [11]] proved that a a planar graph G has a rectangular dual with four rectangles on
the boundary if and only if (1) every interior face of G is a triangle and the outer face
is a quadrangle, and (2) G has no separating triangles. We call a graph satisfying these
conditions properly triangular planar (PTP). Moreover, we denote the four vertices on
the boundary of the outer face by vy, vy, vs and vg in counterclockwise order.

A rectangular dual R of a PTP graph G = (V, E) defines an orientation and a partition
of the internal edges of G into two sets 71 and T,. The set 77 contains the edges e for
which s(e) is horizonal, the remaining edges are in 7. The orientation is obtained by
orienting uv € T from u to v if R(u) is below R(v), similarly uv € T3 is oriented from u
to v if R(u) is to the left of R(v). For a vertex v and one of the partitions T;, i = 1,2, we
denote by 7" (v) and 7,7 (v) the incoming and outgoing edges of v that are contained
in T;, respectively. The orientation and partition then satisfies the following properties.

1. For each vertex v, a counterclockwise enumeration of its incident edges starting with
the rightmost edge in 7,7 (v) encounters first the edges in 777 (v), then in 7,7 (v),
then in 7, (v) and finally in 7, (v), and

2. all interior edges incident to vy, v, vs and vg are in T} (vy), T, (vw), Ty (vs)
and T (vg), respectively.

We call any partition and orientation of the edges satisfying these properties a regular
edge labeling (REL). In his work, He [11]] showed that every PTP graph admits a REL,
and that a corresponding rectangular dual can be constructed from a REL in linear time.

It is not hard to see that a REL derived from an EPRD has additional properties,
following from the fact that for each rectangle the total length of the contacts on the left
and right side as well as on the top and bottom side are the same, respectively.

Z ole) = Z ole), Z w(e) = Z ole). (1)
e€T{ (v) ecT 7 (v) ec€Ty (v) e€T,” (v)

We call any REL satisfying this condition an edge proportional REL (EPREL). In
the following we show that a weighted PTP graph G = (V, E) has a unique EPREL, if
one exists. Moreover, we show how to test the existence of such an EPREL in linear
time and how to construct a corresponding EPRD.
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Fig. 1: Prior to the insertion of the next inner rectangle there is always a U-shape for
which there exists a vertex whose corresponding rectangle needs to be inserted at the
lower left corner of the U-shape in a unique way.

Lemma 1. For an inner vertex v, any one of the sets T, (v), T, (v), T, (v) or T, (v)
of an EPREL completely fixes the orientation and the partition of the edges incident to v.
A corresponding orientation and partition can be found in O(deg(v)) time if it exists.

Proof. Assume T} (v) is known, the other cases are symmetric. Let @1 = Yoe7:(,) @(e)
and let further @; = (¥,,,cx @(uv) — 2®;) /2. It follows from condition (1)) that necessar-
ily ¥eers(v) = Leer;? (v) = @2. Due to the requirement of the REL for the ordering of
the edges around v, there is at most one way to orient and partition the edges incident
to v such that condition (1)) holds. It can be found in O(deg(v)) time by a simple counter-
clockwise traversal of the edges incident to v, starting from the last edge in the known
set T, (v). O

Observe that if the partition and orientation of the edges incident to a vertex v is
determined, the shape of the rectangle representing v is completely fixed. Moreover, the
conditions on the edges incident to vy, vy, vs and vg completely specify a rectangle R;
into which the remaining rectangles have to be inserted. We construct an ordering of the
internal vertices vy, ..., v,—4 such that we can iteratively apply Lemma[I|to determine
uniquely the shape of their rectangle as well as the position where they have to be inserted
in R;. Since we are completely guided by necessary conditions, this either results in a
correct EPRD, or the procedure fails at some point, in which case an EPRD does not
exist.

We maintain the following invariants in each step i.

1. The position and dimension of R(vy),...,R(v;) are uniquely determined.

2. All contacts between already inserted rectangles or the boundary polygon R; have
correct lengths.

3. The upper boundary of the polygon Uj-le(vj) UR(vs) UR(vw) UR(vE) is an x-
monotone chain.

Note that initially i = 0 and all properties hold. By the third property there exists
a U-shape on the upper boundary whose bottom side is horizontal, i.e., there are two
vertical segments adjacent to and above the bottom side. Let u be the lowest rectangle
bounding this U-shape from the left and let uy,...,u; denote the rectangles bounding
the U-shape from below; see Fig. [I} The corner at R(u) and R(u;) implies that if G
admits an EPRD, then there exists a unique vertex v that is not yet inserted, and that is
incident to both u and u;. We choose this vertex as the next vertex v;. Its adjacencies to
the vertices uy,...,u; for some j < k completely determine its contacts from below, and
hence 77" (v). By Lemma its shape is completely determined. Moreover, the position
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is fixed as well due to the corner between R(u) and R(u;). This implies Invariant 1.
Invariant 2 is either satisfied or an EPRD does not exist since we only followed necessary
conditions. Finally, Invariant 3 holds due to the choice of the U-shape. The whole
algorithm can be implemented to run in linear time.

Theorem 1. For an edge-weighted PTP graph G there exists at most one EPRD. It can
be computed in linear time if it exists.

2.2 Rectangular duals with minimum contact lengths

Next we consider a slightly relaxed version of the problem, where we assume that the
input consists of a REL, which combinatorially describes the rectangular dual, and a
weight function specifying minimum contact lengths for all edges. The task is then to
find a rectangular dual according to the given REL that minimizes the total size of the
layout. Note that in this setting any instance is feasible since any given rectangular dual
can be scaled to become a feasible solution.

Using the method of He [[11] we can construct in linear time a rectangular dual R of
the PTP graph G that realizes the given REL, but does not yet satisfy the edge-length
constraints. We can either modify He’s algorithm to directly compute a suitable RD
in linear time, or take a slightly different perspective on the problem. The rectangular
dual R of G can also be seen as an orthogonal representation with rectangular faces
of the dual graph G* of G, where every degree-3 vertex corresponds to a face of G
and every orthogonally drawn edge corresponds to two adjacent faces. This allows
us to use a modified version of a linear-time compaction algorithm for orthogonal
drawings [8l Chapter 5.4] that respects the minimum contact length @(e) for each e € E
as the minimum length of the corresponding dual edge e*. The main idea of the approach
is to define two independent planar edge-weighted st-graphs Mo and Nyr, the first one
using the edges in 77, the other one the edges in 7>. Tamassia [[22]] described an algorithm
to compute two weighted topological numberings on Ny, and Nyer from which the
coordinates of all vertices of R (or G*) can be obtained. These numberings immediately
minimize the total height, total width and area of R subject to the length constraints.

Theorem 2. For a weighted PTP graph (G, ®) with a given REL, a corresponding
rectangular dual with minimum width, height, and area of the inner rectangles can be
computed in linear time such that each edge e is represented by a contact of length at
least @ (e).

In particular, if the given REL is an EPREL, the algorithm computes an EPRD.

Corollary 1. A weighted PTP graph admits an EPREL if and only if it admits an EPRD.

2.3 Rectangular duals with minimum and maximum contact lengths

Unlike in the case of precisely specified or lower-bounded contact lengths covered in
the previous sections, the problem becomes NP-hard if we are given lower and upper
bounds for the contact lengths and need to decide the existence of a rectangular dual
respecting these bounds.
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Fig. 2: Basic building block consisting of a 5-vertex graph (blue), three 7-vertex graphs
(green), and four additional vertices (white and purple). The edge weights in (a) are
o(e) = B(e) = d for an edge e labeled with a single value d (with d = 1 for unlabeled
edges) and a(e) = 1, B(e) = 2 for the label 1 : 2. Figures (b) and (c) show the only two
valid rectangle realizations.

Theorem 3. Given a PTP graph G = (V,E) with two edge-weight functions o, : E —
R™ with a(e) < B(e) for all e € E, it is NP-hard to decide if G has a rectangular dual
R ={R(v) | v €V} so that for every edge uv € E the contact segment s(e) has length

a(e) <|[s(e)| < B(e).

Proof. The proof is a gadget proof reducing from the NP-complete problem PLANAR
3SAT [19]. PLANAR 3SAT is the satisfiability problem for Boolean formulae ¢ in
conjunctive normal form with at most three variables per clause, which are planar in
the way that the induced bipartite variable-clause graph Hy consisting of a vertex for
every variable, a vertex for every clause, and an edge for every occurrence of a variable
in a clause is planar. Such a graph Hy can be drawn on a grid of polynomial size with
all variable vertices placed on a horizontal line and the clause vertices connected in a
comb-shaped manner from above or below that line [[14]]. In our reduction, we create an
edge-weighted PTP graph G for a planar 3Sat formula ¢, which has a rectangular dual
mimicking the above mentioned drawing of Hy if and only if ¢ is satisfiable.

The basic building block for the variable gadgets and their links to the clause gadgets
is a 5-vertex graph flanked by three auxiliary isomorphic 7-vertex graphs, see Figure 2]
The important property of this subgraph is that it has only two valid realizations as a
rectangle contact graph, one of which encodes the value true, the other one the value
false, and both of which have the same outer shape. Any other attempt to realize this
subgraph violates either the edge length constraints or requires non-rectangular vertex
regions. Here we omit the detailed arguments due to space restrictions.

Several copies of the building block can be attached to each other both vertically
and horizontally so that the green 7-vertex subgraphs link two adjacent blue 5-vertex
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Fig. 3: Clause gadget for the clause ¥V yV Zin the state x =0, y = 1, z = 1. The contact
length |s(/r)| of the two yellow rectangles R(/) and R(r) is 20.

subgraphs. This synchronizes the states of all blocks: either all linked blocks are in the
true state or all are in the false state. This allows us to create horizontal variable gadgets
with vertical branches leading towards the clause gadgets. Two different variable gadgets
are separated by three buffer vertices (or rectangles) that do not link the gadget states.

It remains to describe the clause gadget, whose rectangular layout is shown in
Figure [3] It takes three inputs, two from the left side and one from below or above
depending on whether the clause gadget is placed above or below the variable row.
Note that the input from below or above is duplicated. Each input port consists either
of an inverter gadget (light gray in Figure [3), which inverts the state of the incoming
truth value or a replicator gadget (dark gray in Figure [3), which simply copies the
incoming truth value. The type of the port gadget depends not only on whether the literal
in the clause is positive or negative, but also on the position of the port in the clause
gadget: The top left and the bottom right ports use an inverter for a positive literal and a
replicator for a negative one; the bottom left and top right ports use a replicator for a
positive literal and an inverter for a negative one. This configuration has the following
effect on the two core rectangles R(!) and R(r) of the clause gadget, whose contact
length is bounded by a.(Ir) = 19 and (Ir) = 20. Every false literal stretches its adjacent
rectangle R(/) or R(r) by a length of 1 (in fact by a length of 2 for R(r) since the last
literal is duplicated). If all literals are true then both R(!) and R(r) have height 19 and
also |s(Ir)| = 19. By inspecting all cases one can see that as long as one literal is true
we have 19 < |s(Ir)| < 20, but as soon as all three literals are false the contact length
becomes |s(Ir)| = 21 violating the specified upper bound. This is exactly the behavior
needed for the reduction.

In order to create an actual PTP graph, the remaining gaps between the described
gadgets must be filled by dummy rectangles, i.e., dummy vertices in Gy. Since Hy can
be drawn on a grid of polynomial size it is clear that Gy also has polynomial size. O
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A variant of the problem with lower bounded contact lengths and upper bounded
rectangle areas turns out to be NP-hard as well as the next theorem shows. The proof is
very similar to the proof of Theorem [3]and omitted due to space constraints.

Theorem 4. Given a PTP graph G = (V,E) with an edge-weight function © : E — R*
and a vertex-weight function y:V — R, it is NP-hard to decide if G has a rectangular
dual R={R(v) | v € V} so that

(i) for every edge e € E the contact segment s(e) has length |s(e)| > (e) and
(ii) for every vertex v € V the rectangle R(v) has area |R(v)| < y(v).

3 Length-universal rectilinear layouts

In this section we consider the number of bends required for constructing edge-proportional
rectilinear representations (or EPRRs for short) of internally triangulated planar graphs G =
(V,E,®). In our proofs we assume that the graphs are biconnected because every in-
ternally triangulated graph can be made biconnected by adding vertices in the outer
face. Since our representations preserve the outerplanar embedding, the removal of the
corresponding polygons does not create holes.

The complexity of a rectilinear polygon p is its number of bends, and is denoted
by k(p). The complexity of an EPRR P is k(P) := max,cy k(P(u)). The complexity of a
graph G with weight function ® is k(G, ®) = minpep k(P), where P denotes all EPRRs
of (G, ). For a graph class G, the complexity is the maximum complexity for any graph
from G with any weight function @, i.e., k(G) = maxgeg max,,. p_,p+ k(G, ®). We are
interested in determining k(G) for different classes of graphs.

Theorem 5. For any biconnected internally triangulated graph G with two adjacent
internal vertices and any positive integer ko, there exists a weight function @ such
that k(G, @) > ko.

Let T denote the class of biconnected internally triangulated graphs containing no
adjacent internal vertices; we have k(I) > kg for any positive integer k.

Proof. For the first part of the theorem let G be a biconnected internally triangulated
graph with two adjacent internal vertices u# and v. We define o such that w(e) = 1 for
all e # uv and @(uv) = ko - (deg(u) + deg(v) — 2) =: M. Now, in any contact representa-
tion the polygon P(u) U P(v) has a boundary of length deg(u) 4 deg(v) —2. On the other
hand, this polygon necessarily contains the contact path of length M corresponding to
the edge uv. This path has at least M /(deg(u) + deg(v) —2) = ko bends as it would cross
the boundary of P(u) UP(v) otherwise.

For the second part, consider the graph K4 with internal vertex x, outer vertices a,b, ¢
and all edge weights set to 1 except for w(ax) = 2. Since @(ax) > ®(bx) + w(cx) the
path s(ax) must have a bend. Now consider a fan-graph on k + 2 vertices with center
vertex a, and insert into each fan triangle 7' a new internal vertex x7 connected with edges
of weight 2 to a and weight 1 to the other two vertices of 7. By the above observation
the polygon P(a) needs one bend per path s(axr) for all ko fan triangles 7. O

This shows that to achieve positive results, we may allow only few isolated interior
vertices. Thus we consider outerplanar graphs and graphs with one internal vertex.
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Fig. 4: A graph that does not admit an EPRR with 6-gons for d = 55; thin edges have
weight 1 and thick edges have weight 4.

Proposition 1. For the class O of biconnected internally triangulated outerplanar
graphs k(O) > 8.

Proof. Consider the family of graphs depicted in Figure[#a] We show that if all thin edges
have weight 1 and the thick edges have weight 4, then for d = 55, the corresponding
weighted graph (G, @) does not admit a representation with complexity less than 8.
Assume for contradiction that P is a representation with complexity at most 6. (Note that
the complexity of a rectilinear polygon is always even.)

Claim. There exists a chain Q = {v;,...,v;+g} such that the contacts between P(x)
and P(v) with v € Q all lie on a common line.

This follows easily from the fact that there are 55 vertices on the path vy,...,v,, and
to avoid all such chains Q, P(x) would need to bend at least once every 9th contact. But
then we get at least [55/9] = 7 bends on P(x).

Claim. Let i and Q be chosen as in the previous claim, and without loss of generality
assume that their contacts lie on a common horizontal line. Then for j =i+3,...,i+5,
we have that P(v;) has height more than 3.

Assume for a contradiction that the height of P(v;) is at most 3. Then, as P(v;) has
perimeter at least 2-4 45 = 13, it must be realized as an L-shape with an overhang of
width at least 2, say to the left. It follows that P(v;_1) has height at most 1; see Fig.
But then P(v;_») has perimeter at most 4 as it is enclosed in a 1 x 1-box, a contradiction.
The case that the overhang is to the right is symmetric. This proves the second claim.

Now consider P(v;;4). Either its left or right side does not have a bend, and hence
is a vertical segment of length at least 3. Without loss of generality assume that it is
the right side. We then consider v;;4 and v;;5, and their common neighbor ;4. The
situation is depicted in Fig. 4c| The path s(r;14v;y5) has length 1, and thus bends at the
reflex point of P(v;ys). Since both P(vi14) and P(v;;5) have height at least 3 and P(r;14)
has perimeter at least 10, P(r;+4) needs two bends in order to achieve the correct contact
lengths with both of them; a contradiction to the assumption that P has complexity 6. O

On the other hand, we describe an algorithm that produces for any outerplanar
graph G with weight function ® a representation with complexity 8.

Proposition 2. For the class O of internally triangulated outerplanar graphs k(O) < 8.
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Fig. 5: Construction of a rectilinear representation by 8-gons for an outerplanar graph.
(a) A triangle with reference edge e, forming the base case. (b) Inserting P(w) into the
U-shape of uv (red), creating new U-shapes for uw and vw (green).

Proof. We show that for any biconnected outerplanar graph G = (V,E) with weight
function w and a reference edge e € E on the outer face, there exists an EPRR P such
that for each edge uv on the outer face with uv # e, there exists a U-shape whose left
and right boundary are formed by the polygons P(u) and P(v), whose open side points
to the top, and whose width is at most £/2, where € is the smallest weight of all edges.

For a triangle uvw with reference edge uv this is obviously possible; see Fig.[5a] We
construct the drawing inductively. Let G be an arbitrary graph with reference edge e.
Since G is outerplanar and has more than three vertices, it has a degree-2 vertex w that
is not adjacent to e. By induction G — w has a desired representation P with respect to
the reference edge e. Let u and v denote the two neighbors of w, which are connected
by an edge on the outer face of G —w. Note that the presence of edge uv implies that
G —w remains biconnected. By the properties of P, there is a U-shape for the edge uv.
We then insert a new polygon P(w) into this U-shape as illustrated in Fig.|5b| Obviously,
this preserves all invariants. a

Propositions andimply that for the class O of outerplanar graphs, we have k(O) =
8. We remark that our technique for representing outerplanar graphs with 8-gons extends
to graphs with a single internal vertex, by wrapping the drawing around this central
vertex while creating the U-shapes for the outer edges. Moreover, in the outerplanar case,
it is simultaneously possible to achieve given areas for all vertices by suitably stretching
the polygons to satisfy the area demands. Next, we consider special cases and show that
outerpaths (outerplanar graphs whose weak dual is a path) require six bends, and that six
bends suffice for outerpillars. The proof of the next proposition is omitted.

Proposition 3. For the class P of internally triangulated outerpaths k(P) > 6.
Proposition 4. For the class P’ of internally triangulated outerpillars k(P') < 6.

Proof. Let G’ be an outerpillar. As a first step, we pick the outerpath G C G’ that is
obtained by removing all but the two outermost degree-2 vertices of G; see Fig. @ Let P
be the path that is dual to G. The path P splits the boundary of the outer face of G
into two paths 7 = uy,...,u; and m = vy,..., v, that are internally disjoint, and that
share exactly their endpoints, i.e., u; = v; and uy = vy, both of which have degree 2
in G. Let H be larger than the maximum weight, and let W denote the total weight
of all internal edges. Construct a 2H x W box, split it horizontally into two boxes of
size H x W. We then split the upper box into k — 2 rectangles P(u3),...,P(ux_1) such
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Fig. 6: Construction of an EPRR with 6-gons for outerpillars. Input graph with an
outerpath subgraph, drawn with a thick boundary (left). An EPRR of the outerpath with
U-shapes for the remaining vertices shown as tiled rectangles (right).

that the width of P(;) is the sum of the weights of all internal edges of G incident to ;.
We split the lower box into boxes for v, ..., v, analogously; see Fig.[6] Observe that
this ensures correct contact lengths for all internal edges of G. Next, we place rectangles
for u; and uy as boxes to the left and right of the drawing such that they have the correct
contact lengths. This ensures correct contact lengths except for internal vertices of ;
and 7, respectively, that are adjacent. They touch in a segment of length H, which is too
long. To remedy this, we remove for any such pair v;v;;1 occurring in this order on 7;
or M a corner of the rectangle of v;;1. This corner is chosen such that its width is at
most half the smallest contact length, and such that afterwards |s(viviy1)| = 0(vivit1).
This finishes the construction for outerpaths. For the more general case of outerpillars
observe that there is a small U-shaped gap between any adjacent pair of vertices on the
outer face, and we can hence use the same approach as in the proof of Proposition2]to
attach further leaves to the central outerpath determined by the spine P. Note that the
polygons can be stretched such that one contact has the correct length, so that only six
bends are necessary. a

This completely characterizes the complexity of length-universal layouts for inter-
nally triangulated graphs. As we have seen outerplanar graphs whose dual is a caterpillar
require complexity 6. The dual of the example graph showing that the 8 bends are
necessary is a lobster. Hence our results are best possible.

One disadvantage is that our drawings have an outer face of high complexity. How-
ever, we can show that one cannot do better. If one limits the complexity of the outer face
to some fixed number K, then there exist outerplanar graphs that require complexity ko
for any positive integer ko > K.
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