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Abstract. Greedy embedding (or drawing) is a simple and efficient
strategy to route messages in wireless sensor networks. For each source-
destination pair of nodes s, t in a greedy embedding there is always a
neighbor u of s that is closer to t according to some distance metric. The
existence of Euclidean greedy embeddings in R2 is known for certain graph
classes such as 3-connected planar graphs. We completely characterize the
trees that admit a greedy embedding in R2. This answers a question by
Angelini et al. (Graph Drawing 2009) and is a further step in characterizing
the graphs that admit Euclidean greedy embeddings.

1 Introduction

Message routing in wireless ad-hoc and sensor networks cannot apply the same
established global hierarchical routing schemes that are used, e.g., in the Internet
Protocol. A family of alternative routing strategies in wireless networks known as
geographic routing uses node locations as addresses instead. The greedy routing
protocol simply passes a message at each node to a neighbor that is closer to the
destination. Two problems with this approach are (i) that sensor nodes typically
are not equipped with GPS receivers due to their cost and energy consumption
and (ii) that even if nodes know their positions messages can get stuck at voids,
where no node closer to the destination exists.

An elegant strategy to tackle these issues was proposed by Rao et al [13]. It
maps nodes to virtual rather than geographic coordinates, on which the standard
greedy routing is then performed. A mapping that always guarantees successful
delivery is called a greedy embedding or greedy drawing.

The question about the existence of greedy embeddings for various met-
ric spaces and classes of graphs has attracted a lot of interest. Papadimitriou
and Ratajczak [12] conjectured that every 3-connected planar graph admits a
greedy embedding into the Euclidean plane. Dhandapani [5] proved that every
3-connected planar triangulation has a greedy drawing. The conjecture by Pa-
padimitriou and Ratajczak itself has been proved independently by Leighton and
Moitra [10] and Angelini et al. [4]. Kleinberg [9] showed that every connected
graph has a greedy embedding in the hyperbolic plane.

Since efficient use of storage and bandwidth are crucial in wireless sensor
networks, virtual coordinates should require only few, i.e., O(log n), bits in order
to keep message headers small. Greedy drawings with this property are called
succinct. Eppstein and Goodrich proved the existence of succinct greedy drawings
for 3-connected planar graphs in R2 [7], and Goodrich and Strash [8] showed



it for any connected graph in the hyperbolic plane. Wang and He [15] used a
custom distance metric and constructed convex, planar and succinct drawings
for 3-connected planar graphs using Schnyder realizers [14].

It has been known that not all graphs admit a Euclidean greedy drawing in
the plane, e.g., Kk,5k+1 (k ≥ 1) has no such drawing [12], including the tree K1,6.
Leighton and Moitra [10] showed that a graph containing at least six pairwise
independent irreducible triples (e.g., the complete binary tree containing 31 nodes)
cannot have a greedy embedding. They used this fact to present a planar graph
that admits a greedy embedding, although none of its spanning trees does. We
show that there are trees with no greedy drawing that contain at most five such
triples [11]. Further, some greedy-drawable trees have no succinct Euclidean
greedy drawing [3].

Self-approaching drawings [1] are a subclass of greedy drawings with the
additional constraint that for any pair of nodes there is a path ρ that is distance
decreasing not just for the node sequence of ρ but for any triple of intermediate
points on the edges of ρ. Alamdari et al. [1] gave a complete characterization of
trees admitting self-approaching drawings. Since self-approaching drawings are
greedy, all trees with a self-approaching drawing are greedy-drawable. However,
there exist numerous trees that admit a greedy drawing, but no self-approaching
one, and the characterization of those trees turns out to be quite complex.

Contributions. We give the first complete characterization of all trees that
admit a greedy embedding in R2 with the Euclidean distance metric. This solves
the corresponding open problem stated by Angelini et al. [2] and is a further
step in characterizing the graphs that have greedy embeddings. We show that
deciding whether T has a greedy drawing is equivalent to deciding whether
there exists a valid angle assignment in a certain wheel polygon. This includes
a non-linear constraint known as the wheel condition [6]. For most cases (all
trees with maximum degree 4 and most trees with maximum degree 5) we are
able to give an explicit solution to this problem, which provides a linear-time
recognition algorithm. For trees with maximum degree 3 we give an alternative
characterization by forbidden subtrees in the full version of this paper [11]. For
some trees with one degree 5 node we resort to using non-linear solvers. For trees
with nodes of degree ≥ 6 no greedy drawings exist.

Our proofs are constructive, however, we ignore the possibly exponential
area requirements for our constructions. This is justified by the aforementioned
result that some trees require exponential-size greedy drawings [2]. Due to space
constraints several proofs are omitted; for details we refer to the full paper [11].

2 Preliminaries

In this section, we introduce the concept of the opening angle of a rooted
subtree and present relations between opening angles that will be crucial for the
characterization of greedy-drawable trees.
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Let T = (V,E) be a tree. A straight-line drawing Γ of T maps every node
v ∈ V to a point in the plane R2 and every edge uv ∈ E to the line segment
between its endpoints. We say that Γ is greedy if for every pair of nodes s, t there
is a neighbor u of s with |ut| < |st|, where |st| is the Euclidean distance between
points s and t. To ease notation we identify nodes with points and edges with line
segments. Furthermore we assume that all drawings are straight-line drawings.

It is known that for a greedy drawing Γ of T any subtree of T is represented
in Γ by a greedy subdrawing [2]. We define the axis of an edge uv as its
perpendicular bisector. Let huuv denote the open half-plane bounded by the axis
of uv and containing u. Let Tuuv be the subtree of T containing u obtained from T
by removing uv. Angelini et al. [2] showed that in a greedy drawing of T every
subtree Tuuv is contained in huuv. The converse is also true.

Lemma 1. Let Γ be a drawing of T with Tuuv ⊆ huuv ∀uv ∈ E. Then, Γ is greedy.

Angelini et al. [2] further showed that greedy tree drawings are always planar
and that in any greedy drawing of T the angle between two adjacent edges must
be strictly greater than 60◦. Thus T cannot have a node of degree ≥ 6.

Let ray(u, ~uv) denote the ray with origin u and direction ~uv. For u, v ∈ V , let

dT (u, v) be the length of the u-v path in T . For vectors ~ab, ~cd, let ∠ccw( ~ab, ~cd)

denote the counterclockwise turn (or turning angle) from ~ab to ~cd.

Lemma 2 (Lemma 7 in [2]). Consider two edges uv and wz in a greedy
drawing of T , such that the path from u to w does not contain v and z. Then,
the rays ray(u, ~uv) and ray(w, ~wz) diverge; see Fig. 1a.

Lemma 3. Let Γ be a greedy drawing of T , v ∈ V , deg(v) = 2, N(v) = {u,w}
the only two neighbors of v, and T ′ = T − {uv, vw} + {uw}. The drawing Γ ′

induced by replacing segments uv, vw by uw in Γ is also greedy.

Next we generalize some concepts from Leighton and Moitra [10]. For k =
3, 4, 5, we define an irreducible k-tuple as a k-tuple of nodes (b1, . . . , bk) in a
graph G = (V,E), such that deg(b1) = k, b1b2, b1b3, . . . , b1bk ∈ E (we call these
k − 1 edges branches of the k-tuple) and removing any branch b1bj disconnects
the graph. A k-tuple (b1, . . . , bk) and an l-tuple (x1, . . . , xl) are independent, if
{b1, . . . , bk} ∩ {x1, . . . , xl} = ∅, and deleting all the branches keeps b1 and x1
connected.

Let Γ be a greedy drawing of T . We shall consider subtrees Ti = (Vi, Ei) of
T , such that Ti has root ri, deg(ri) = 1 in Ti and vi is the neighbor of ri in Ti.
We define the polytope of a rooted subtree Ti as polytope(Ti) =

⋂{hwuw | uw ∈
Ei, uw 6= rivi, dT (w, ri) < dT (u, ri)}.

Definition 1 (Extremal edges). For j = 1, 2, let ajbj 6= viri be an edge of Ti,

dT (aj , ri) < dT (bj , ri), such that ∠ccw( ~viri, ~ajbj) is maximum for j = 1 and
minimum for j = 2. We call edges ajbj extremal.

Note that by Lemma 2, ray(aj , ~ajbj) and ray(vi, ~viri) diverge. In the following
two definitions, let ej = ajbj , j = 1, 2 be the extremal edges of Ti.
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Fig. 1: (a) Sketch of Lemma 2. (b) Subtree Ti with opening angle ∠Ti (orange), extremal
edges a1b1, a2b2 (blue) and apex xi (red). The subtree T riviri (gray triangle) must be
contained in the half-plane hriviri and the cone ∠Ti. (c) Subtree Tj with closed angle ∠Tj
and boundary segment p1p2. (d) Open angles of independent subtrees must contain
apices of each other.

Definition 2 (Open angle). Let ∠ccw( ~a1b1, ~a2b2) > 180◦. Then, polytope(Ti)
is unbounded, and we say that Ti is drawn with an open angle.
(a) If a1b1 6⊆ hb2a2b2 and a2b2 6⊆ hb1a1b1 , define ∠Ti = ha1a1b1 ∩ h

a2
a2b2

. Let xi be the
intersection of axis(a1b1) and axis(a2b2). We set apex(∠Ti) = xi; see Fig. 1b.

(b) If ajbj ⊆ hbkakbk for j = 1, k = 2 or j = 2, k = 1, let ∠Ti be the cone defined by
moving the boundaries of ha1a1b1 , ha2a2b2 to bj (bk ∈ ∠Ti), and apex(∠Ti) = bj.

We call ∠Ti the opening angle of Ti in Γ (orange in Fig. 1b). We write |∠Ti| = α,
where α is the angle between the two rays of ∠Ti.

Obviously, polytope(Ti) ⊆ ∠Ti in (a). This is also true in (b) by Observation 1.

Observation 1 Let h be an open half-plane and p /∈ h. Let h′ be the half-plane
created by a parallel translation of the boundary of h′ to p. Then, h ⊆ h′.

Definition 3 (Closed and zero angle). Let ∠ccw( ~a1b1, ~a2b2) < 180◦ (or =
180◦). Let Ci = ha1a1b1 ∩ h

a2
a2b2

, and let pj be the midpoint of ej. We denote the
part of Ci bounded by segment p1p2 containing r by ∠Ti and say that Ti is drawn
with a closed (or zero) angle; see Fig. 1c. We write |∠Ti| < 0 (or = 0).

We say that two subtrees T1, T2 are independent, if T2 \ {r2} ⊆ T r1v1r1 and T1 \
{r1} ⊆ T r2v2r2 . If T1 and T2 are independent, then T2\{r2} ⊆ hr1v1r1 and T1\{r1} ⊆
hr2v2r2 in Γ . Also, if r2 /∈ T r1v1r1 , then r2 = v1.

Lemma 4. Let Ti and Tj be independent, |∠Ti|, |∠Tj | > 0 in Γ . Then, apex(∠Ti) ∈
∠Tj and apex(∠Tj) ∈ ∠Ti.

Lemma 5 (generalization of Claim 4 in [10]). Let Ti, Tj be two independent
subtrees. Then, either |∠Ti| > 0 or |∠Tj | > 0.

We shall use the following lemma to provide a certificate of non-existence of a
greedy drawing.

Lemma 6. Let Ti, i = 1, . . . , d be pairwise independent subtrees, and αi = |∠Ti|.
Then,

∑
i=1,...,d,αi>0 αi > (d− 2)180◦.
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Fig. 2: Illustration of Lemma 8. (a) Greedy drawing Γ . Edges a1b1, a2b2 are extremal.
Dotted blue: bounding cone of T ′. (b) Greedy drawing Γ ′. Subtree T vrv has been moved
to a new point p /∈ V and drawn infinitesimally small. (c) Drawings Γ and Γ ′ for the
case when a1,b1 lie on the r-b2-path. Here, p = b2 ∈ V .

Let T contain a set of nk irreducible k-tuples, k = 3, 4, 5, that are all pairwise
independent. Leighton and Moitra [10] showed that for n3 ≥ 6 no greedy drawing
of T exists. We generalize this result slightly:

Lemma 7. No greedy drawing of T exists if n3 + 2n4 + 3n5 ≥ 6.

2.1 Shrinking lemma

We now present a lemma which is crucial for later proofs. Let the bounding cone
of a subtree T vrv + rv defined for an edge rv in a greedy drawing Γ of T be the

cone with apex v and boundary rays ray(v, ~a1b1) and ray(v, ~a2b2) for extremal
edges a1b1, a2b2 of T vrv + rv that contains the drawing of T vrv.

Lemma 8. Let T = (V,E) be a tree and T ′ = T vrv + rv, rv ∈ E, a subtree of T .
Let Γ be a greedy drawing of T , such that |∠T ′| > 0. Then, there exists a point p
in the bounding cone of T vrv, such that shrinking T vrv infinitesimally and moving
it to p keeps the drawing greedy, and |∠T ′| remains the same.

Proof. Let ei = aibi, i = 1, 2, be the two extremal edges of T ′ in Γ , ρi the
r-bi-path, and ai ∈ ρi; see Fig. 2 for a sketch. We distinguish two cases:

(1) Edge e1 is not on ρ2 and edge e2 is not on ρ1. Then, {a1, b1} ⊆ ha2a2b2 ,
and {a2, b2} ⊆ ha1a1b1 . Let `i be the line parallel to axis(ei) through bi and p the
intersection of `1 and `2; see Fig. 2a. Let v0 ∈ V be the last common node of ρ1
and ρ2, and let ηi be the v0-bi-path in T , i = 1, 2.

We now define three intermediate drawings. Let Γ1 be the drawing gained
by replacing T ′ in Γ by the edge rv0 and the two paths η1 and η2, and let Γ2 =
Γ1 − η1 − η2 + {v0b1, v0b2}; see Fig. 3a. By Lemma 3, both Γ1 and Γ2 are greedy.
Let Γ3 = Γ2 − {v0b1, v0b2}+ {v0p}. Let V1 be the node set of T rvr with addition
of v0. Note that the nodes in V1 have the same coordinates in Γ , Γ1, Γ2 and Γ3.
Further, since v0 ∈ haiaibi for i = 1, 2, p lies inside the angle ∠b1v0b2 < 180◦.

We have to prove the greediness of Γ3. Since p /∈ V , it doesn’t follow directly
from Lemma 3. We first show that for an edge xy in Γ3, xy 6= v0p, where x is

5



v0

r

b1 b2a1 a2

p

(a) Γ1, Γ2, Γ3

v0

a1
b1

a2

b2

p
`1 `2

y

x

(b)

v0

b1
b2

p

`1 `2

q

m1
m2

Λ

(c)

Fig. 3: Proof of Lemma 8. (a): Intermediate drawings Γ1 (black and red), Γ2 (black and
green) and Γ3 (black and blue). (b): For an edge xy /∈ T vrv, its axis doesn’t cross v0b1,
v0b2. It also doesn’t cross v0p due to Lemma 2. (c): It is Λ ⊆ hv0v0p.

closer to v0 in T than y, it holds p ∈ hxxy. Edge xy is also contained in Γ1. Nodes x,
v0 and ai lie on the y-bi-path in T , i = 1, 2. Hence, {v0, a1, a2, b1, b2} ⊆ η1 ∪ η2 ⊆
hxxy, therefore, axis(xy) doesn’t cross edges v0b1, v0b2. Now assume p /∈ hxxy.
Then, axis(xy) must cross v0p, b1p and b2p (but not v0bi); see Fig. 3b. This is

only possible if for some i ∈ {1, 2}, rays ray(x, ~xy) and ray(ai, ~aibi) are parallel
or converge, which is a contradiction to Lemma 2.

Next, we show that V1 ⊆ hv0pv0 . Without loss of generality, let v0b1 be directed
upwards to the left and v0b2 upwards to the right. Note that a1 lies to the right
of v0b1 and a2 to the left of v0b2 (otherwise, the edge aibi would not be extremal
in T ′). Hence, ∠v0bip ≥ 90◦. Let Λ be the opening angle of the subtree induced
by edges {rv0, v0b1, v0b2} with root r in Γ2 (blue in Fig. 3c). It is Λ ⊆ hv0pv0
(see [11]). Hence, V1 ⊆ Λ ⊆ hv0pv0 . This proves the greediness of Γ3. Due to the
extremality of a1b1, a2b2, p lies in the bounding cone of T ′.

Removing v0 and connecting r to p keeps the drawing greedy. Finally, we
acquire Γ ′ by drawing the subtree T vrv of T infinitesimally small at p. Let C1 be
the cone ∠T ′ in the original drawing Γ , and C2 the cone bounded by `1 and `2,
ai ∈ C2. By Observation 1, C1 ⊆ C2. Consider an edge e in T vrv, e /∈ {e1, e2} in Γ .
Let ` be the line parallel to axis(e) through p. Due to the extremality of e1, e2,
cone C2 lies on one side of `. Therefore, since V1 ⊆ C2, the drawing Γ ′ is greedy,
and it is ∠T ′ = C2. Since `i is parallel to axis(aibi), |∠T ′| in Γ ′ is as big as in Γ .

(2) Now assume a1b1 lies on ρ2. Let Γ4 be the drawing obtained by replacing T ′

in Γ by edge rb2. By Lemma 3, Γ4 is greedy. It is b2 ∈ hb1a1b1 . Similar to (1), we
acquire Γ ′ by drawing the subtree T vrv of T infinitesimally small at p = b2. Then,
|∠T ′| remains the same as in Γ , see Fig. 2c. ut

3 Opening angles of rooted trees

The main idea of our decision algorithm is to process the nodes of T bottom-up
while calculating tight upper bounds on the maximum possible opening angles
of the considered subtrees. If T contains a node of degree 5, it cannot be drawn
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Fig. 4: (a)–(e): Possible cases when combining subtrees to maintain an open angle.
Subtrees T1, T2 have opening angles ∈ (90◦, 120◦). In case VII ((f)) or in case VI
(|∠Ti| ≤ 90◦ in IV or V for one i ∈ {1, 2}) no open angle is possible.

with an open angle, since each pair of consecutive edges forms an angle strictly
greater than 60◦. In this section, we consider trees with maximum degree 4.

If a subtree T ′ can be drawn with an open angle ϕ − ε for any ε > 0, but
not ϕ, we say that it has opening angle ϕ− and write |∠T ′| = ϕ−. For example, a
triple has opening angle 120− and a quadruple 60−. We call a subtree non-trivial
if it is not a single node or a simple path. Figure 4 shows possibilities to combine
or extend non-trivial subtrees T ′, T1, T2. We shall now prove tight bounds on
the possible opening angles for each construction. As we shall show later, only
cases I–V are feasible for the resulting subtree to have an open angle. To compute
the maximum opening angle of the combined subtree T in cases I–V, we use the
following strategy. We show that applying Lemma 8 to T ′ does not decrease the
opening angle of T in a drawing. Hence, it suffices to consider only drawings in
which T ′vrv is shrunk to a point. We then obtain an upper bound by solving a
linear maximization problem. Finally, we construct a drawing with an almost-
optimal opening angle for T inductively using an almost-optimal construction
for T ′. We give a proof for case II, see [11] for the remaining cases.

Lemma 9. Let T ′ be a subtree with ∠T ′ = ϕ−, and consider the subtree T =
T ′ + rr0 + ra1 + a1a2 + . . . + am−1am in Fig. 4b. Then |∠T | = (45◦ + ϕ

2 )− if

ϕ > 90◦ (case (i)), and |∠T | = ϕ− if ϕ ≤ 90◦ (case (ii)).

Proof. First, let m = 1. (i) Consider a greedy drawing Γ of T . Let a1r be drawn
horizontally and v above it and to the left of axis(ra1); see Fig. 5a,b,d. Due to
Lemma 2, the right boundary of ∠T is formed by axis(ra1). The left boundary
is either formed by (1) the left boundary of ∠T ′ (see Fig. 5a), or (2) by axis(rv)
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Fig. 5: Optimal construction and tight upper bound for case II.
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Table 1: Computing maximum opening angle of the combined subtree T . Let |∠Ti| = ϕ−i ,
ϕi ≥ ϕi+1, and |∠Ti| = ϕi = 180◦ if Ti is a path.

case ϕ1 ϕ2 ϕ3 maximum |∠T |
I (0◦, 180◦] - - ϕ1

−

II.i 180◦ (90◦, 120◦] - (ϕ2
2

+ 45◦)− ∈ (90◦, 120◦)
II.ii 180◦ (0◦, 60◦] - ϕ2

− ∈ (0◦, 60◦)
III 180◦ 180◦ (0◦, 120◦] ϕ3

2
− ∈ (0◦, 60◦)

IV (90◦, 120◦] (90◦, 120◦] - (ϕ1 + ϕ2 − 180◦)− ∈ (0◦, 60◦)

V 180◦ (90◦, 120◦] (90◦, 120◦] ( 3
4
ϕ2 + 1

2
ϕ3 − 112.5◦)

− ∈ (0◦, 60◦)
VI (0◦, 120◦] (0◦, 90◦] - < 0◦

VII (0◦, 120◦] (0◦, 120◦] (0◦, 120◦] < 0◦

(Fig. 5b). We apply Lemma 8 to T ′vrv in Γ and acquire Γ ′, in which T ′vrv is
drawn infinitesimally small. In Γ ′, axis(ra1) remains the right boundary of ∠T .
In case (1), the left boundary of ∠T is again formed by the left boundary of ∠T ′,
and |∠T | remains the same. In case (2), the subtree T ′vrv must lie to the right
of ~rv in Γ (since each edge in it is oriented clockwise relative to ~rv), and so does
the point p from Lemma 8. Thus, the edge rv is turned clockwise in Γ ′, and |∠T |
increases; see Fig. 5c. Thus, to acquire an upper bound for |∠T | it suffices to only
consider drawings in which T ′vrv is drawn infinitesimally small. Let α = ∠a1rv.
Then, for ϕ = |∠T | it holds: ϕ ≤ 180◦ − α, ϕ < ϕ− 90◦ + α; see the blue and
green angles in Fig. 5d. Thus, ϕ lies on the graph f(α) = 180◦ − α or below
it and strictly below the graph g(α) = ϕ − 90◦ + α. Maximizing over α gives
ϕ < 45◦ + ϕ

2 . We can achieve ϕ = (45◦ + ϕ
2 )− by choosing α = 135◦ − ϕ

2 + ε′ and
drawing T ′vrv sufficiently small with |∠T ′| = ϕ− ε for sufficiently small ε, ε′ > 0.

(ii) Obviously, |∠T ′| ≥ |∠T |. For the second part, see Fig. 5e. We choose
∠a1rv = 90◦ − ε

2 and draw ra1long enough, such that its axis doesn’t cross T ′vrv.
We rotate T ′vrv such that the right side of the opening angle ∠T ′ and rv form an
angle 3ε

2 . Then, the opening angle ϕ′ of the drawing is defined by the left side
of ∠T ′ and the axis of ra1 and is ϕ− ε.

For m ≥ 2, draw a2, . . . , am collinear with ra1 and infinitesimally close to a1.
ut

Tight upper bounds on opening angles of the combined subtree T for all possible
cases are listed in Table 1. Note that no bounds in (120◦, 180◦) and (60◦, 90◦]
appear. See [11] for the proofs of cases III–VII.

4 Arranging rooted subtrees with open angles

In this section, we consider the task of constructing a greedy drawing Γ of T
by combining independent rooted subtrees with a common root. The following
problem (restricted to n ∈ {3, 4, 5}) turns out to be fundamental in this context.

Problem 1. Given n angles ϕ0, . . . , ϕn−1 > 0◦, is there a convex n-gon P
with corners v0, . . . , vn−1 (in arbitrary order) with interior angles ψi < ϕi for
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maximize ε under:
ε, αi, βi, γi ∈ [0, 180],
i = 0, . . . , n− 1;
βi + ε ≤ αi, γi + ε ≤ αi,
βi + γi+1 + ε ≤ ϕi

αi + βi + γi = 180,
α0 + . . .+ αn−1 = 360,∏n−1

i=0 sinβi =
∏n−1

i=0 sin γi

(a) optimization problem (*)

α0α1
α2
α3
α4

β1

β2 β3

β4

γ0

γ1

γ2

γ3

ϕ0

γ4

v0

v1

v2 v3

v4

β0

(b)

v0

v1

v2 v3

v4

(c)

Fig. 6: (a) Optimization problem (*); (b) sketch for (*). (c) Solving (*) lets us construct
greedy drawings by placing sufficiently small drawings of subtrees at n-gon corners.

i = 0, . . . , n− 1, such that the star K1,n has a greedy drawing with root r inside
P and leaves v0, . . . , vn−1?

If Problem 1 has a solution we write {ϕ0, . . . , ϕn−1} ∈ Pn. It can be solved using
a series of optimization problems as in Fig. 6a (one for each fixed cyclic ordering
of (ϕ1, . . . , ϕn)). The last constraint in (*) follows from applying the law of sines
and is known as the wheel condition in the work of di Battista and Vismara [6].

Lemma 10. It is {ϕ0, . . . , ϕn−1} ∈ Pn if and only if there exists a solution
of (*) with ε > 0 for an ordering (ϕ0, . . . , ϕn−1).

Deciding whether a solution of (*) with ε > 0 exists is in fact equivalent to
deciding whether the wheel condition can be satisfied in the interior of a 2n− 1-
dimensional simplex; see [11] for more details.

Theorem 1. For n = 3, 4, 5, consider trees Ti, i = 0, . . . , n − 1 with root r,
edge rvi in Ti, deg(r) = 1 in Ti, Ti ∩ Tj = {r} for i 6= j, such that each Ti has
a drawing with opening angle at least 0 < ϕi − ε < 180◦ for any ε > 0. Then,
tree T =

⋃n−1
i=0 Ti has a greedy drawing with |∠Ti| < ϕi for all i = 0, . . . , n− 1 if

and only if {ϕ0, . . . , ϕn−1} ∈ Pn.

Proof. First, consider a drawing of K1,n with edges rvi that solves Pn, and,
without loss of generality, let the angles be ordered such that ψi := ∠vi−1vivi+1 <
ϕi. We create a greedy drawing Γ of T by drawing (Ti)

vi
rvi infinitesimally small

at vi with opening angle ϕi − ε > ψi for a sufficiently small ε > 0 and orienting
it such that vj ∈ ∠Ti for all j 6= i; see Fig. 6c.

Now assume a greedy drawing Γ0 of T with |∠Ti| < ϕi, i = 0, . . . , n − 1
exists. For one i, it might be |∠Ti| < 0 in Γ0. Then, there also exists a greedy
drawing Γ , in which 0 < |∠Tj | < ϕj , j = 0, . . . , n− 1. By Lemma 5, the subtree
T = {rvi}+

⋃
j 6=i Tj must have an open angle in Γ0. We then obtain Γ by making

the edge rvi sufficiently long inside ∠T and drawing Ti with |∠Ti| > 0, such that
T ⊆ ∠Ti and Ti ⊆ ∠T .

We apply Lemma 8 to T0, then to T1, . . . , Tn−1 and obtain a greedy drawing Γ ′

of T with opening angles ∠Ti of same size, such that each subtree (Ti)
vi
rvi is
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Table 2: Solving non-linear problem Pn explicitly. Let ϕi ≥ ϕi+1, ϕi ∈ (0◦, 60◦] ∪
(90◦, 120◦] ∪ {180◦},

∑n−1
i=0 ϕi > (n− 2)180◦. See the full version for the proofs.

n case {ϕ0, . . . , ϕn−1} ∈ Pn iff

3, 4 always
5 ϕ0 = . . . = ϕ3 = 180◦ always
5 ϕ0 ≤ 120◦ always
5 ϕ0 = . . . = ϕ2 = 180◦ ϕ3 + ϕ4 > 120◦

5 ϕ0 = ϕ1 = 180◦ ϕ2 + ϕ3 + ϕ4 > 240◦

5 ϕ0 = 180◦, ϕ1, ϕ2, ϕ3 ∈ (90◦, 120◦], ϕ4 ≤ 60◦ ?
5 ϕ0 = 180◦, ϕ1, . . . , ϕ4 ∈ (90◦, 120◦] ?

drawn infinitesimally small at vi. For n = 4, 5, for each pair of consecutive
edges rvi, rvj in Γ ′ the turn from rvi to rvj is less than 180◦, so r lies inside
the convex polygon with corners v0, . . . , vn−1. Therefore, Γ ′ directly provides a
solution of Pn. For n = 3, v1 might lie inside angle ∠v0rv2 ≤ 180◦. However,
since ϕ0 + ϕ1 + ϕ2 > 180◦, it is {ϕ0, ϕ1, ϕ2} ∈ P3; see Table 2. ut
Although Problem (*) is non-linear, we are almost always able to give tight
conditions for the existence of the solution; see Table 2, which summarizes all
possible cases. The last two cases for n = 5 are the only remaining ones to consider
(for ϕ3 + ϕ4 > 120◦, ϕ2 + . . .+ ϕ4 > 240◦, ϕ1 + . . .+ ϕ4 > 360◦). In practice, it
is possible to either strictly prove {ϕ0, . . . , ϕ4} /∈ P5 or numerically construct a
solution for many such sets of angles. If we drop the last constraint in (*), we
acquire a linear program which has a constant number of variables and constraints
and can be solved in O(1) time. If it has no solution for any cyclic order of ϕi,
neither has P5. For example, this is the case for {180◦, 105◦, 105◦, 105◦, 60◦}.
If this linear program has a solution, we can try to solve (*) using nonlinear
programming solvers. However, if the non-linear solver finds no solution, we
obviously have no guarantee that none exists. In [11], we present examples of
trees for which we could prove the existence of a greedy drawing by solving P5

using MATLAB. Further, we formulate a sufficient condition for the first of the
two above cases.

5 Recognition algorithm

Maximum degree 4. In this section we formulate Algorithm 1, which decides
for a tree T with maximum degree 4 whether T has a greedy drawing. First, we
describe a procedure to determine the tight upper bound for the opening angle
of a given rooted subtree. Let N(v) denote the neighbors of v ∈ V in T . After
processing a node v, we set a flag p(v) = true. Let Np(v) = {u | uv ∈ E,p(u) =
true}, and ∠optimal the new tight upper bound calculated according to Table 1.

Lemma 11. Procedure getOpenAngle is correct and requires time O(|V |).
Proof. The algorithm processes tree nodes bottom-up. For v ∈ V , let πv be the
parent of v, deg(v) = dv, Tv = T vπvv + πvv with root πv. For a subtree with one
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Procedure getOpenAngle(T ,r)

Input : tree T = (V,E), root r ∈ V ,
dr = 1

Result: tight upper bound on |∠T |,
0 if no open angle possible.

p(r)← false
for v ∈ V \ {r} do

if dv = 5 then return 0
else if dv = 1 then

p(v)← true
∠(v)← 180

else p(v)← false
while ∃v ∈ V : ¬ p(v)
& |Np(v)| = dv − 1

if ∀u ∈ Np(v) : ∠(u) = 180 then
∠(v)← 180− (dv − 2) · 60

else if case I,. . . ,V applicable
then ∠(v)← ∠optimal(Np(v))
else return 0
p(v)← true

return ∠(v) for {v} = N(r)

Algorithm 1: hasGreedyDrawing(T )

Input : tree T = (V,E), max deg 4
Result: whether T has a greedy drawing
for v ∈ V do

if dv = 1 then
p(v)← true; ∠(v)← 180

else p(v)← false
while ∃v ∈ V : ¬ p(v) & |Np(v)| ≥ dv − 1

if |Np(v)| = dv then
return

∑
u,uv∈E ∠(u) > (dv − 2)180

else if ∀u ∈ Np(v) : ∠(u) = 180 then
∠(v)← 180− (dv − 2) · 60

else if case I,. . . ,V applicable then
∠(v)← ∠optimal(Np(v))

else
w ← N(v)−Np(v)
∠(w)← getOpenAngle(Twvw + vw, v)
return ∠(w) > 0
&

∑
u,uv∈E ∠(u) > (dv − 2)180

p(v)← true

or two nodes, define its opening angle as 180◦. We prove the following invariant
for the while loop: For each v ∈ V with p(v) = true, ∠(v) > 0 stores a tight
upper bound for the opening angle in a greedy drawing of Tv.

The invariant holds for all leaves of T after the initialization. The first if -
statement inside the while body ensures that if all nodes in Tv except v have
degree 1 or 2, then ∠(v) = 180 if dv = 1, 2 in T , ∠(v) = 120 if dv = 3 and
∠(v) = 60 if dv = 4. Now consider the first else clause inside the while loop.
Assume p(v) = false, |Np(v)| = dv − 1 and the invariant holds for all subtrees Tu,
u ∈ Np(v). If one of the cases I–V can be applied to v and subtrees Tu, then,
after the current loop, ∠(v) > 0 stores the tight upper bound for the opening
angle in a greedy drawing of Tv; see Table 1. Otherwise, we have case VI or VII,
and Tv cannot be drawn with an open angle. Each node v is processed in O(dv),
and if for u ∈ N(v) − Np(v), it holds |Np(u)| ≥ du − 1 after processing v, we
put u in a queue. Hence the running time is O(|V |). ut
Algorithm 1 also requires O(|V |) time and is similar to Procedure getOpenAngle,
except that T now does not have a distinguished root. We proceed from the leaves
of T inwards, until we reach some “central” node v with neighbors {u1, . . . , udv},
such that a greedy drawing of T exists only if all tight upper bounds ϕi on
|∠(Tui

vui
+ vui)| are positive. Then, we report true if and only if

∑dv
i=1 ϕi >

(dv − 2)180◦. See [11] for the formal correctness proof.

Maximum degree 5 and above. If T contains a node v with deg(v) ≥ 6, no
greedy drawing exists. Also, a greedy-drawable tree can have at most one node
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of degree 5 by Lemma 7, otherwise, there are two independent 5-tuples. For
unique r ∈ V , deg(r) = 5, consider the five rooted subtrees T0, . . . , T4 attached

to it and the tight upper bounds ϕi on |∠Ti|. If σ =
∑4
i=0 ϕi ≤ 540◦, T cannot

be drawn greedily. The converse, however, does not hold. By Theorem 1, a greedy
drawing exists if and only if {ϕ0, . . . , ϕ4} ∈ P5. To decide whether {ϕ0, . . . , ϕ4} ∈
P5, we apply the conditions from Table 2. If in the remaining case ϕ0 = 180◦,
ϕ1, . . . , ϕ4 ≤ 120◦ (i) the sufficient condition does not apply, (ii) the linear
relaxation of Problem (*) has a solution, but (iii) the non-linear solver finds none,
we report uncertain. The full formulation of this algorithm as well as uncertain
examples can be found in [11].
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