
Morphing Polylines:

A Step Towards Continuous Generalization ⋆

Martin Nöllenburg a,∗, Damian Merrick b, Alexander Wolff c,
Marc Benkert a

aFaculty of Informatics, Karlsruhe University, P.O. Box 6980, 76128 Karlsruhe,

Germany.

bSchool of Information Technologies, University of Sydney, NSW 2006, Australia,

and National ICT Australia, Alexandria, NSW 1435, Australia.

cFaculteit Wiskunde en Informatica, Technische Universiteit Eindhoven,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

Abstract

We study the problem of morphing between two polylines that represent linear
geographical features like roads or rivers generalized at two different scales. This
problem occurs frequently during continuous zooming in interactive maps. Situa-
tions in which generalization operators like typification and simplification replace,
for example, a series of consecutive bends by fewer bends are not always handled
well by traditional morphing algorithms. We attempt to cope with such cases by
modeling the problem as an optimal correspondence problem between characteristic
parts of each polyline. A dynamic programming algorithm is presented that solves
the matching problem in O(nm) time, where n and m are the respective numbers
of characteristic parts of the two polylines. In a case study we demonstrate that the
algorithm yields good results when being applied to data from mountain roads, a
river and a region boundary at various scales.

Key words: continuous generalization, morphing, dynamic programming, line
simplification

⋆ This work was supported by grant WO 758/4-2 of the German Research Foun-
dation (DFG). National ICT Australia is funded through the Australian Govern-
ment’s Backing Australia’s Ability initiative, in part through the Australian Re-
search Council.
∗ Corresponding author. Tel. +49 (721) 608-7331; Fax +49 (721) 608-4211

Email addresses: noellenburg@iti.uka.de (Martin Nöllenburg),
dmerrick@it.usyd.edu.au (Damian Merrick).

URLs: win.tue.nl/~awolff (Alexander Wolff),

Preprint submitted to Elsevier 29 July 2008

1 Introduction

Visualization of geographic information in the form of maps has been estab-
lished for centuries. Depending on the scale of the map the level of detail
of displayed objects must be adapted in a generalization process. Be it done
manually or (semi-)automatically, generalization methods usually produce a
map at a single target scale. This is a well-studied field, surveyed, for example,
by Weibel and Dutton (1999).

In current, often web-based (Jones and Ware, 2005), geographic information
systems users can interactively zoom in and out of the map, ideally at arbitrary
scales and with smooth, continuous changes. However, current approaches are
often characterized by a fixed set of scales or by simply zooming graphically
without modifying map objects. In the first case the available scales do not
necessarily match the user’s desired scale. Moreover, stepping instead of zoom-
ing is susceptible to causing loss of context so that the user has to re-orientate.
However, if zooming is done purely graphically the quality of the map at the
desired scale often does not match the expected quality since the level of detail
is not adapted to the specific scale. To overcome these deficiencies continuous
generalization methods are needed that aim to generate maps that continu-
ously adapt the degree of generalization to the scale.

This paper studies the problem of continuously generalizing linear features like
rivers, roads, or region boundaries between their representations at two scales.
Instead of line-simplification methods with a single target scale, we consider
interpolating between a source and a target scale in a way that keeps the maps
at intermediate scales meaningful. In computer graphics and computational
geometry this interpolation process is known as morphing (Gomes et al., 1999).
Of specific interest in our context are morphing algorithms that can deal with
the effects of generalization operators like exaggeration and typification such
as reducing the number but increasing the size of road serpentines at the
smaller scale.

Our approach is designed to handle these effects. It consists of two steps. In the
optional first step our method partitions the input polylines into characteris-
tic segments with roughly uniform curvature (see Section 3.1). This yields a
segmentation of the polylines into straight parts and the various bends. Then,
based on an appropriate distance function for polylines, we compute an opti-
mum correspondence of the polyline segments at the two input scales in O(nm)
time using dynamic programming, where n and m are the respective numbers
of characteristic segments (see Sections 3.2 and 3.3). Unlike general morphing
algorithms this correspondence tries to match semantically identical segments
of the two polylines. Simple straight-line trajectories are used to define the

i11www.iti.uni-karlsruhe.de/group (Marc Benkert).

2

movement between corresponding points. We have implemented a prototype
of the algorithm and demonstrate its applicability in a case study for road
network data, the course of a river, and a region boundary (see Section 4).

2 Related work

Cecconi and Galanda (2002) study adaptive zooming for web applications
with a focus on the technical implementation. They use the standard Douglas-
Peucker line-simplification method (Douglas and Peucker, 1973) to generalize
linear features. While maps can be produced at arbitrary scales there is no
smooth animation of the zooming. A set of continuous generalization opera-
tors is presented by van Kreveld (2001), including two simple algorithms for
morphing a polyline to a straight-line segment. Continuous generalization for
building ground plans and typification of buildings is described by Sester and
Brenner (2004).

Existing algorithms for the geometric problem of finding an optimal intersection-
free geodesic morphing between two simple, non-intersecting polylines (Efrat
et al., 2001; Bespamyatnikh, 2002) cannot be applied here because in our
setting the pairs of polylines that we want to transform into each other gener-
ally do intersect. Surazhsky and Gotsman (2001a,b) compute trajectories for
intersection-free morphings of plane polygonal networks using compatible tri-
angulations. Similarly, Erten et al. (2004) give an algorithm for intersection-
free morphing of plane networks using a combination of rigid motion and
compatible triangulations. However, these approaches require a given corre-
spondence between network nodes. In the field of computer graphics, Cohen
et al. (1997) match point pairs of two (or more) parametric freeform curves.
They compute an optimal correspondence of the points with respect to a simi-
larity measure based on the tangents of the curves. The algorithm is similar to
ours in that it also uses dynamic programming to optimize the matching, but
it deals with uniformly sampled points rather than with context-dependent
characteristic segments of polylines. Samoilov and Elber (1998) extend the
method of Cohen et al. (1997) by eliminating possible self-intersections dur-
ing the morphing.

3 Model and algorithm

In this paper, we consider the problem of morphing between two polylines, each
generalized at a different scale. An algorithmic solution for a pair of polylines
can be used to compute a morph between two networks of polylines with
identical topology by applying the polyline algorithm for each pair of polylines

3

in the network independently. Note, however, that our algorithm does not
take intersections between different polylines into account. Polygonal region
boundaries can be handled, too, by cutting the closed curves at a common
point, which then serves as first and last point of the corresponding polylines.
The algorithm can be further extended in a straightforward manner to finding
a series of morphs across many scales by solving each pair of networks at
neighboring scales independently.

The problem of morphing between two polylines is two-fold. Firstly, a cor-
respondence must be found between points on the two lines. Secondly, tra-
jectories that connect pairs of corresponding points must be specified. Here
our focus is on the correspondence problem. Once we have solved this, we will
simply use straight-line trajectories.

In addressing the correspondence problem, our goal is to match parts of each
polyline that have the same semantics, for instance, represent the same series
of hairpin bends in a road at two levels of detail. We wish to do this in a way
that allows the mental map to be retained as much as possible. The mental
map is the mental image a person builds of a diagram. Retention of the mental
map is believed to be important in continuous understanding of animated
diagrams; see for example Misue et al. (1995). To retain the mental map, it
can be useful to ensure that visual elements change as little as possible during
an animation. We therefore wish to minimize the movement of points from
one polyline to another. To create a morph with these desired properties, we
compute a correspondence between parts of the polylines that is optimum with
respect to a distance function defined between polyline segments. This distance
function aims to measure the required point movement. Naively, the segments
may simply be the individual line segments of the polylines. However, we can
improve the running time of our algorithm by detecting appropriate larger
characteristic segments consisting of multiple line segments as described in
Section 3.1. Whatever segments we use, the algorithm described in Section 3.2
computes an optimum correspondence for them.

Formally, we are given two (directed) polylines f and g in the plane R
2.

In the correspondence problem we need to find two continuous, monotone
parameterizations α : [0, 1] → f and β : [0, 1] → g, such that α(0) and β(0)
map to the first points of f and g and α(1) and β(1) map to the last points,
respectively. These two parameterizations induce the correspondence between
f and g: for each u ∈ [0, 1] the point α(u) is matched with β(u). The trajectory
problem asks for a family of trajectories σ(t, u) : [0, 1]2 → R

2 along which α(u)
moves to β(u), where t is a time point in the interval [0, 1]. In this paper we
simply use straight-line trajectories, thus connecting α(u) and β(u) by shortest
possible connections, that is, σ(t, u) = (1 − t)α(u) + tβ(u).

One issue with this formulation is that intersections between different parts

4

of a polyline may occur during the morph. We give a heuristic method in
Section 3.3.4 that may be implemented to avoid some typical cases of self-
intersections, namely if a pair of corresponding segments would intersect; inter-
sections may still occur in some cases between two different parts of the same
polyline or between different polylines in a network. The method of Surazh-
sky and Gotsman (2001b), who give a solution to the trajectory problem,
provides a workaround to this issue by computing more complex but therefore
intersection-free trajectories given our solution to the correspondence problem.
Since self-intersections were not an issue in the examples of our case study we
refrained from including their method in our prototype implementation.

3.1 Detection of characteristic points

Before solving the correspondence problem, we need to divide each polyline
into subpolylines to be matched up. We do this by locating points on each line
that are considered to be characteristic of the line; each of these characteristic
points then defines the end of one subpolyline and the start of another.

The simplest approach to locating such points is to assume that every point
defining a polyline is characteristic of the line. In this case, we solve the cor-
respondence problem on the set of line segments of the polyline and proceed
directly with the algorithm in Section 3.2. This method can produce good
results as we show in the case study in Section 4. Often, however, a lot of
points are needed to accurately depict a cartographic feature such as a river
or a road, and using all of these points as characteristic points can lead to high
running times. To avoid this, we present a method that selects a small subset
of characteristic points that still suffice to produce good results in significantly
less time.

Previous work on generalization notes the importance of inflection points, bend
points, and start- and endpoints in defining the character of a line (Plazanet
et al., 1995). We have performed initial experiments with detecting such points
automatically (Merrick et al., 2007), but found that the user had to manually
calibrate many parameters in order to obtain reasonable results for a particular
polyline. Furthermore, a set of parameters that produced a good solution for
one line did not necessarily lead to a good solution for another.

Instead, we detail here an approach that needs only a small set of parameters,
and is more robust to changes in the input data. Sezgin (2001, Chapter 5)
introduces a method for locating feature points of curves in the recognition
of hand-drawn sketches. Sezgin tries to model a given polyline with a Bézier
curve, and calculates the distance between the Bézier curve and the actual
polyline. If this distance is above a certain threshold, the polyline is divided

5

pi

pj

c1

c2

t̂1

t̂2

Fig. 1. A Bézier curve with control points 〈pi, c1, c2, pj〉 approximating a polyline
between points pi and pj .

in half and two new Bézier curves are created. This continues until a set of
Bézier curves has been generated each of which fits the polyline within the
given distance threshold. This process is similar to the classic Douglas-Peucker
line simplification method (Douglas and Peucker, 1973), but fitting Bézier
curves instead of straight lines. The points at which the Bézier curves start
and end then become the characteristic points of the polyline. This approach
tends to produce a set of points that is quite evenly spaced, since the point at
which each polyline is divided is arbitrarily chosen as its midpoint.

Our approach also fits Bézier curves to sections of the polyline, but proceeds
from the start of the polyline, greedily fitting as many points as possible and
starting a new Bézier curve when no more points can be fitted. Given two
points pi and pj in a polyline f = 〈p1, p2, . . . pn〉, we use the same Bézier curve
construction as Sezgin (2001): the points pi and pj become the first and last
control points of the curve, and two intermediate control points are defined as
c1 = pi+kt̂1 and c2 = pj +kt̂2, where k is one third of the length of the polyline
〈pi, pi+1, . . . , pj〉, t̂1 is the unit vector in the direction from pi to pi+1, and t̂2 is
the unit vector in the direction from pj to pj−1 (see Figure 1). Note that the
scaling factor k is an empirically determined value that has been reported as
working surprisingly well for approximating digitized curves by cubic Bézier
curves (Schneider, 1988; Sezgin, 2001).

The algorithm starts by fitting a Bézier curve to points 〈p1, p2, p3〉, then adds
one point from f at a time until the distance between the curve and the
polyline is greater than a given error threshold ε > 0. We use the following
simple method to calculate the distance between the curve and the polyline.
First, we resample both the polyline and the Bézier curve using the same
number x of points. That is, we place x points spaced evenly along the polyline,
from one end to the other, and do the same with the Bézier curve. Now we
find the maximum distance between any of these x points on the polyline and
its corresponding point on the resampled curve. The number x can be set
arbitrarily, but should be greater than the original number of points in the
given subpolyline. In our implementation (see Section 4), we set x to 300 if
an entire polyline is considered, or in the case of a subpolyline, decrease the
number proportionally according to the subpolyline’s length. It is possible to

6

use more sophisticated error measures here, such as the Fréchet metric (see
Section 3.3), but we found that this simple measure worked well in practice.

Once the distance error becomes larger than ε, we mark the last considered
point pj as characteristic point, and create a new Bézier curve for 〈pj, pj+1, pj+2〉.
After we have considered all points in f , we mark the last point pn as charac-
teristic, and we are done.

The output of our algorithm is the set of characteristic points, which sepa-
rate the different Bézier curves. Since we use cubic Bézier curves, which are
defined by four control points, any interval between two characteristic points
should represent at most a single left or right turn or a straight segment of
the polyline. More complex shapes cannot be approximated well by a cubic
Bézier curve.

Since the Bézier curve construction depends on the directions of edges in the
original polyline, a higher number of characteristic points may be generated in
noisy or poorly sampled sections of a polyline. To minimize this, a Gaussian
smoothing filter can be applied as a pre-processing step; see Lowe (1989)
for further details on Gaussian filtering and an efficient algorithm. We first
resample the polyline using a given number n′ of evenly spaced points. We
then apply a Gaussian filter with kernel width σ to the resampled line; this
essentially moves each point in the line to a weighted average of its neighbors’
positions (σ determines the size of the neighborhood that is used).

Applying the Gaussian filter can decrease small variations in direction along
the polyline so that each Bézier curve constructed is likely to fit more closely
along simple curved sections of the line. This can result in fewer extraneous
characteristic points, but can also increase the running time significantly. In
Section 4, we present results from the Bézier characteristic point detection
both with and without the Gaussian filter.

3.2 Finding an optimum correspondence

The previous section described a method for determining a set of characteristic
points of a polyline. By subdividing the polyline at the characteristic points
we obtain a set of subpolylines (or simply segments) that are intended to
represent contiguous and homogeneous stretches of the polyline like straight
sections or bends with constant curvature.

In this section we assume that the subdivisions of two input polylines f
and g into segments are given, for example, as the result of applying the
previous characteristic point detection. So let f be divided into n segments
(f1, . . . , fn), where each fi is a subpolyline or a single line segment, and let

7

g be divided into m segments (g1, . . . , gm). We will abbreviate a sequence of
segments fi, fi+1, . . . , fk (i ≤ k) by the notation fi...k.

Now we approach the correspondence problem. Basically there are three pos-
sibilities (C1)–(C3) for a correspondence involving a segment fi:

(C1) fi is mapped to a single characteristic point (i.e., fi disappears),
(C2) fi is mapped to a single segment gk,
(C3) fi is mapped to a merged sequence of segments gk...(k+r)

Analogously, we denote the three possible types of correspondence involving
a segment gj by (C1′)–(C3′). Clearly, the linear order of the segments along f
and g has to be respected by the assignment and each segment can only
take part in one of the six possibilities. Mathematically, we model a valid
set of such corresponding pairs as what we call a correspondence relation ρ ⊆
{1, . . . , 2n+1}×{1, . . . , 2m+1}, where a segment fi corresponds to the element
2i ∈ {1, . . . , 2n + 1} and the endpoints of fi correspond to 2i − 1 and 2i + 1.
Analogously, segment gj and its endpoints correspond to {2j−1, 2j, 2j +1} ⊆
{1, . . . , 2m+1} such that both ordered sets represent the alternating sequence
of characteristic points and segments of f and g, respectively. In order to be
valid, ρ has to satisfy the following properties (P1)–(P4) from the perspective
of polyline f :

(P1) ρ is monotone:
if (i, k) ∈ ρ, (j, ℓ) ∈ ρ, and i < j then k ≤ ℓ;

(P2) only contiguous sequences of points and segments can be mapped to an
element on the other polyline:
if (i, k) ∈ ρ, (i, ℓ) ∈ ρ, and k < ℓ then (i, k′) ∈ ρ for all k < k′ < ℓ;

(P3) a merged sequence of elements of one polyline has a unique corresponding
element on the other polyline:
if (i, k) ∈ ρ, (i, ℓ) ∈ ρ, and k 6= ℓ then (j, k) /∈ ρ and (j, ℓ) /∈ ρ for all
j 6= i;

(P4) all elements are covered by ρ:
for each i ∈ {1, . . . , 2n + 1} there is a j ∈ {1, . . . , 2m + 1} so that
(i, j) ∈ ρ;

Additionally, the symmetric properties from the perspective of g, denoted
(P1′)–(P4′), need to be satisfied.

Such a correspondence relation ρ can be seen as a bipartite graph that is a
spanning forest in which all trees are (non-trivial) stars. A drawing of such a
graph is shown in Figure 2, where even-numbered vertices indicate segments
and odd-numbered vertices indicate characteristic points. Trees containing a
single even-numbered element, that is, a single segment, or trees with an odd-
numbered internal vertex represent correspondences of type (C1) or (C1′).
Trees containing exactly one even-numbered element on each side mean a

8

1
2

3
4

2m + 1

1
2

3
4

2n + 1

︸ ︷︷ ︸

ρ

f

︷ ︸︸ ︷

g

Fig. 2. Drawing of a correspondence relation ρ between two polylines f and g.

one-to-one correspondence of type (C2) or (C2′). Finally, stars with an even-
numbered internal vertex and at least two additional even-numbered elements
represent correspondences of type (C3) or (C3′).

Now assume that there is a distance function or morphing distance δ asso-
ciated with the morph between two (sub-)polylines. We suggest a morphing
distance in the next section, but Algorithm 1, which is formulated below, is
independent of the choice of the distance. It is based on dynamic programming
and computes a minimum-distance correspondence. Algorithm 1 recursively
fills a table T of size n×m, where entry T [i, j] stores the total distance or cost
of optimally morphing f1...i to g1...j. This total distance is computed as the sum
of a previous table entry and the additional distance involving pair (i, j) ac-
cording to one of the above six types of correspondence. Consequently, we can
obtain the cost of an optimum correspondence from T [n,m]. By keeping track
of optimum subsolutions we can reconstruct the optimum correspondence by
backtracking from T [n,m].

The required storage space and running time of filling the n × m table T
in Algorithm 1 is O(nmK), which equals O(nm) provided that the look-back
parameter K is constant. This parameter determines the maximum number
of polyline segments that can be merged in order to be matched with another
segment according to correspondences of types (C3) and (C3′). The final step
of reconstructing the actual correspondence is done by backtracking in T and
takes linear time. For this analysis we assumed that each distance δ(fi, gj) can
be computed in constant time. However, depending on which distance function
is used, the time complexity of computing the required distances needs to be
taken into account.

9

Algorithm 1: OptCor

Input: Polylines f = (f1, . . . , fn) and g = (g1, . . . , gm), distance
function δ.

Output: Optimum correspondence for f and g.
T [0, 0] = 01

T [0, j] = T [0, j − 1] + δ(ffirst
1 , gj), j = 1 . . . m2

T [i, 0] = T [i − 1, 0] + δ(fi, g
first
1), i = 1 . . . n3

for i = 1 to n do4

for j = 1 to m do5

T [i, j] =6

min







































T [i − 1, j] + δ(fi, g
last
j) type (C1)

T [i, j − 1] + δ(f last
i , gj) type (C1′)

T [i − 1, j − 1] + δ(fi, gj) type (C2)/(C2′)

T [i − 1, j − k] + δ(fi, g(j−k+1)...j), k = 2, . . . , K type (C3)

T [i − k, j − 1] + δ(f(i−k+1)...i, gj), k = 2, . . . , K type (C3′)

Store pointer to predecessor, i.e., to the table entry that yielded7

the minimum.
end8

end9

Generate optimum correspondence from T [n,m] using backtracking10

along pointers.

3.3 Distance functions

Algorithm 1 relies on a distance function δ that represents the cost of morphing
between two (sub-)polylines. Distance functions for polylines can be defined
in many ways. We consider three possible distance functions. Assume that two
polylines f ′ and g′ with uniform parameterizations α and β are given. Each
point α(u) on f ′ will move to β(u) on g′ along the straight-line trajectory
σ(t, u) = (1 − t)α(u) + tβ(u) of length |α(u) − β(u)|.

3.3.1 Width

The first distance function considers the longest such segment and is defined
as

δmax(f
′, g′) = max

u∈[0,1]
|α(u) − β(u)|. (1)

This value is also known as the width of the morph (Efrat et al., 2001). It can
be computed in linear time with respect to the complexity of the polylines.

10

3.3.2 Fréchet

Another well-known metric for polylines is the Fréchet metric. It is minimizing
the morphing width over all parameterizations of f ′ and g′ and is defined as

δF (f ′, g′) = min
α:[0,1]→f ′

β:[0,1]→g′

δmax(f
′, g′), (2)

where α and β are continuous, increasing functions. We used the implementa-
tion of the Fréchet metric of van Oostrum and Veltkamp (2004). The running
time of this implementation is O(mn log2(mn)), where m and n denote the
complexity of f ′ and the complexity of g′, respectively.

3.3.3 Integral

Finally, we define a new distance measure that takes into account how far all
points move during the morph by integrating over the trajectory lengths. This
morphing distance is defined as

δI(f
′, g′) =

∫ 1

0
|α(u) − β(u)|du (3)

and can be computed in linear time with respect to the complexity of f ′ and g′.

3.3.4 Extensions

Relying on a distance function that only takes into account trajectory lengths
does not comprehend all aspects that a human expert would consider when
trying to match polyline segments optimally. Thus we define further terms
that can optionally be added to one of the above base distances.

The first idea is to take into account the length difference of the two sub-
polylines f ′ and g′. Subpolylines that have about the same length seem to be
preferable to subpolylines of very different lengths. We simply define the cost
as the length difference

clen(f
′, g′) =

∣

∣

∣ |f ′| − |g′|
∣

∣

∣. (4)

The second idea considers the orientation of the two subpolylines. We want
to give preference to matching pairs of subpolylines that are more or less
translates. The translation vector of a corresponding pair α(u) and β(u) is
simply the vector β(u) − α(u). These translation vectors themselves define a
curve γ(u) = β(u) − α(u) for u ∈ [0, 1] which is again a polyline in our case,
see Figure 3. Thus we can define the length of this polyline γ as a translation

11

cost of the morph between f ′ and g′:

ctnl(f
′, g′) = |γ|. (5)

Note that f ′ and g′ are translates if and only if γ has length zero, that is, all
translation vectors are equal; the more the translation vectors vary the larger
the translation cost.

α(0)

α(1/3)

α(2/3) α(1)

β(0) β(1/3) β(2/3) β(1)

;

γ(0)

γ(1/3)

γ(2/3)
γ(1)

(0, 0)
f

g

Fig. 3. The curve γ defined by the parameterizations α of f and β of g.

The actual distance function δ to be used in Algorithm 1 can thus be expressed
as a linear combination of a base distance and the above cost terms clen and ctnl.
In our implementation the morphing cost δ(fi, gj) of two subpolylines fi and gj

is further weighted by the ratio (|fi|+ |gj|)/(|f |+ |g|) of the total length of fi

and gj and the total length of the containing polylines f and g. This accounts
for the relative visual importance of the pair (fi, gj).

Finally, we wish to avoid self-intersections in the morph. We can do this locally
by setting the effective morphing distance to ∞ if matching two segments
causes a self-intersection in the morph between them. However, in rare cases
intersections between two non-corresponding subpolylines may still occur.

4 Case study

We evaluate our algorithms on three different types of polyline data: (1) a
mountain road network in the French Alps, (2) river data, and (3) provin-
cial borders in Germany. We do a detailed case study for the road data and
briefly present one example for the course of a river and for a region boundary,
respectively.

All experiments were performed on an AMD Athlon XP 2600+ PC with 1.5GB
main memory running under SuSE Linux 10.1. The characteristic point de-
tection was implemented in C++ and compiled with gcc 4.2.1; the OptCor

algorithm was implemented and tested in Java 1.5.

12

Road 2

Road 1

Fig. 4. Road network in the French Alps from the BD Cartor map series at scale
1:50,000. The highlighted regions are shown in more detail in Figures 5, 6, and 15.

4.1 Road network data

We first tested our implementations with a data set of roads in the French
Alps from the BD Cartor and the TOP100 series maps produced by the IGN
Carto2001 project (Lecordix et al., 2005). For each road, we used a polyline
from BD Cartor at scale 1:50,000, and a generalized version of the same road
at scale 1:100,000 from the Carto2001 TOP100 maps. The complete data
comprises 382 roads and is shown in Figure 4. Details about the network size
and the number of characteristic points can be found in Table 1. Running
times of the Bézier analysis and the OptCor algorithm are given in Table 2.
Note that in practice the computation of the optimum correspondence is part
of the preprocessing of the data, while the actual morph using straight-line
trajectories is computed at interactive speed. Thus even the running times
of OptCor in the column all points seem acceptable. Due to the size of
the network, we will evaluate our method exemplarily for a subnetwork and
two single roads that are marked with circles in Figure 4. The morph of the
complete network as well as animations of further examples can be found on
our web site 1 .

1 http://i11www.iti.uni-karlsruhe.de/morphingmovies

13

http://i11www.iti.uni-karlsruhe.de/morphingmovies

characteristic points

roads points ε = 1 ε = 25

network s ns s ns

1:50,000 382 13345 9889 6916 2915 2742
complete

1:100,000 382 10869 7904 5601 2535 2387

1:50,000 94 1656 1410 930 481 442
subnet

1:100,000 94 1291 1061 739 417 390

1:50,000 1 190 112 95 32 32
Road 1

1:100,000 1 155 90 72 26 28

1:50,000 1 85 68 42 18 16
Road 2

1:100,000 1 120 73 53 17 15

Table 1
Sizes of the example networks (s: smoothed, ns: non-smoothed).

characteristic points

all ε = 1 ε = 25 man-

network points s ns s ns ual

Bézier – 7.72 0.51 12.22 0.69 –
complete

OptCor 99.84 84.10 43.06 14.83 13.17 –

Bézier – 2.40 0.07 3.70 0.13 –
subnet

OptCor 5.88 6.57 2.78 1.29 1.10 –

Bézier – < 0.01 < 0.01 < 0.01 < 0.01 –
Road 1

OptCor 3.15 2.49 1.39 0.62 0.59 0.62

Bézier – < 0.01 < 0.01 < 0.01 < 0.01 –
Road 2

OptCor 1.15 1.18 0.60 0.32 0.27 0.31

Table 2
Running times (in seconds) for Bézier analysis and OptCor (s: smoothed, ns:
non-smoothed).

We start by showing the characteristic points detected for Road 1 in Figure 5
and for Road 2 in Figure 6. To conserve space, we show only those at scale
1:100,000 here; the comparison of the results holds also at the 1:50,000 scale.
Figures 5a and 6a show all vertices of the polylines as characteristic points.
Clearly, these points are very dense where the roads have sharp bends and
are more spaced out in parts of less curvature. Thus using all points as char-
acteristic points allows the algorithm to finely adjust the correspondence in

14

(a) All points. (b) Smoothed, ε = 1. (c) Non-smoothed, ε = 1.

(d) Smoothed, ε = 25. (e) Non-smoothed, ε = 25. (f) Manual selection.

Fig. 5. Characteristic points for Road 1 (generalized) with Bézier threshold ε.

parts of high curvature. Applying the Bézier analysis described in Section 3.1
reduces the number of characteristic points in particular within dense parts of
the roads, as can be seen in the subsequent Figures 5b–5e and Figures 6b–6e.
For a low threshold value of ε = 1 each bend is still covered by several charac-
teristic points while a higher threshold of ε = 25 leads to finding roughly one
characteristic point per bend, just as a human expert would do.

Also note that using Gaussian smoothing prior to the Bézier analysis tends to
identify more characteristic points than in the same setting without smooth-
ing. This is perhaps unexpected, since the smoothing was intended to reduce
extraneous characteristic points in noisy sections of a polyline. In fact, the re-
sampling that is performed prior to smoothing creates a much larger number
of points that can be chosen as characteristic points. Due to this, it is possible
that the Bézier analysis produces a larger number of characteristic points after
smoothing, particularly if ε is very low (note how more points are produced
when ε = 1 but not when ε = 25).

Note that almost all of the characteristic points marked by the smoothed
Bézier analysis lie on line segments between original polyline vertices. This
means that the complexity of the polylines is increased artificially by insert-
ing a large number of characteristic points. The unsmoothed cases are more
restricted in that only input points can become characteristic points. Finally,
for comparison, Figures 5f and 6f show the results of manually selecting charac-
teristic points located in the peaks of the bends. The number of characteristic

15

(a) All points. (b) Smoothed, ε = 1. (c) Non-smoothed, ε = 1.

(d) Smoothed, ε = 25. (e) Non-smoothed, ε = 25. (f) Manual selection.

Fig. 6. Characteristic points for Road 2 (generalized) with Bézier threshold ε.

points for each example is given in Table 1. Due to the relatively small size
of these two examples the running times of the Bézier analyses were below
0.01 seconds, see Table 2. For the selected subnetwork (see Figure 15) and the
complete network Table 2 shows that the Bézier analysis without Gaussian
smoothing remains very fast with up to 0.69 seconds. Smoothing, however,
increases the running times to values between 2.4 and 12.22 seconds.

Next, we show the results of the OptCor algorithm for Road 1 and Road 2
using the previously described settings for partitioning the roads. In all our ex-
amples the OptCor algorithm uses as distance function an equally weighted
sum of the integral distance δI and extensions clen and ctnl as described in
Section 3.3. The reason for the first choice was that δI turned out to yield
better results than both morphing width and Fréchet distance. The look-back
parameter was set to K = 5. Sequences of snapshots of the final morphs are
shown in Figures 7 and 8 for Road 1, and in Figures 9 and 10 for Road 2.
In each snapshot, previous frames are shown in increasingly light shades of

grey to assist perception of the animation. For the purpose of comparison,
we show in the same way the result of applying naive linear interpolation, in
Figures 8c and 10c, to produce morphs for Road 1 and Road 2, respectively.
Linear interpolation matches each point on one polyline to the point at the

16

Region A

Region B

(a) All points. (b) Non-smoothed, ε = 1.

Region B

(c) Non-smoothed, ε = 25.

Fig. 7. Road 1 morphs generated by OptCor.

same relative distance from the start on the other polyline. We omit the case
[smoothed, ε = 1] from the figures here; the quality is comparable to the case
[all points].

Four pairs of regions have been circled and labeled “Region A” through to
“Region D” in the snapshots. Close-ups of these regions are given in Fig-
ures 11–14 for a detailed analysis of the morphs. Road 1 is an example where
the generalization process applied typification in order to reduce a series of

17

(a) Smoothed, ε = 25. (b) Manual placement.

Region A

(c) Linear interpolation
(without OptCor).

Fig. 8. Road 1 morphs generated by OptCor.

three bends to two bends in Region A. The generalized version of Road 2 on
the other hand exaggerates the bends in Regions C and D, which is also the
case in Region B of Road 1.

The morph of Region A shown in Figure 11 must deal with the fact that one
bend in a series of three bends disappears in the generalized version. While
linear interpolation (Figure 11b) collapses two bends completely in order to

18

Region C

Region D

(a) All points. (b) Non-smoothed, ε = 1. (c) Non-smoothed, ε = 25.

Fig. 9. Road 2 morphs generated by OptCor.

recreate one, all points (Figure 11a) merges two bends into a single bend,
which we believe is preferable. It is perhaps arguable whether this is the best
solution, however. There is obviously a trade-off between obtaining a smooth
morph that retains the mental map, and producing the optimal diagram at a
fixed scale. If a user stops zooming at an intermediate scale where the merging
process is not quite completed it could make sense to continue merging (but
keeping the scale) until the representation of the bends is acceptable.

The morph of Region B in Figure 12 shows a case where the unsmoothed
Bézier analysis with ε = 25 produces far too much excess movement, compared
to all points (and others). This is due to a rather poor placement of the
characteristic points in this case as almost the same number of characteristic
points (see Table 1) in the examples of Figures 12a and 12b leads to a much
better morph comparable to all points in Figure 12a. Figure 12b also shows
another undesirable effect: occasionally, especially for higher values of ε, two

19

(a) Smoothed, ε = 25.

Region D

(b) Manual placement.

Region C

(c) Linear interpolation
(without OptCor).

Fig. 10. Road 2 morphs generated by OptCor.

neighboring characteristic segments form a sharp “kink” during the morph,
which our algorithm currently cannot detect and avoid.

Region C in Figure 13 shows a series of bends that are exaggerated slightly
in the generalized road. While the all points morph (and the other OptCor

morphs in Figures 9 and 10) correctly widen the bends and keep the shape
intact, linear interpolation collapses the bends completely in order to open
them up in the inverse direction with a lot of point movement. This shows
again the importance of finding a correspondence that minimizes the defined
morphing distance.

Finally, Region D in Figure 14 is another example where two bends are exag-
gerated. This time the all points morph does not increase the bends nicely but
rather creates an intermediate “appendix” to bend at the right-hand side. In

20

(a) All points.

(b) Linear interpolation.

Fig. 11. Close-up of Region A (Road 1).

(a) All points.

(b) Unsmoothed, ε = 25.

Fig. 12. Close-up of Region B (Road 1).

21

(a) All points.

(b) Linear interpolation.

Fig. 13. Close-up of Region C (Road 2).

(a) All points.

(b) Manual placement.

Fig. 14. Close-up of Region D (Road 2).

22

contrast, the manually placed points (as well as the setting smoothed, ε = 25)
lead to a morph without undesired intermediate effects.

We also applied OptCor to the subnetwork highlighted in Figure 4, and we
show the result using all points as the set of characteristic points in Figure 15a.
Figure 15b shows the linear interpolation of this subnetwork for comparison.
Although the networks are drawn in the same size for all three scales it is still
difficult to make out the details of such a complex example in this format,
but on close inspection one can notice a lot more movement in the linear
interpolation compared to the OptCor morph, particularly in the highlighted
areas. Like in the examples Road 1 and Road 2, the linear interpolation again
flattens some bends completely before they reappear (highlighted area in the
middle). In the OptCor morph of that area one bend collapses while another
one expands. Again the amount of point movement is much less than in the
linear interpolation.

4.2 River data

As another class of polylines we consider a portion of the course of the river
Elbe in Brandenburg, Germany. This example stems from the DTK1000 and
the Verwaltungsgrenzen 1:2,500,000 data sets (c© Bundesamt für Kartographie
und Geodäsie, Frankfurt am Main, 2008). The data from the first set is aimed
at a target scale of 1:1,000,000 and consists of a polyline with 308 points, the
data from the second set is aimed at 1:2,500,000 and uses 210 points.

Figure 16 shows a sequence of snapshots from the OptCor morph using all
input points as characteristic points in comparison to the linear interpolation
of the same data. The representation of the river at the small scale has far less
detail than its representation at the large scale, for example, almost all smaller
crenulations disappear in the generalized small-scale version. The running time
of the OptCor algorithm was 4.8 seconds for this instance. We can draw
the same conclusions as previously for the road data: the OptCor morph
succeeds in matching semantically equivalent parts of the river at both scales
resulting in a smooth morph with almost no excess movement. On the other
hand, the naive linear interpolation in Figure 16b again erroneously collapses
some major bends at intermediate scales before making them reappear at the
target scale. This creates unnecessary movement and alters the general shape
of the river at intermediate steps, especially in the upper part highlighted in
Figure 16. The quality of the morphs using characteristic points detected by
the Bézier analysis was—similarly to the road network—comparable to the
morph using all points; these morphs, too, did not exhibit the rather poor
behavior of the linear interpolation.

23

(a) All points OptCor morph. (b) Linear interpolation.

Fig. 15. Morph of a subnetwork.

4.3 Provincial border data

Our final example shows that our method can also deal with polygon data. The
source of this example is the boundary of the province Hamburg, Germany
from the same data sets as the river data in the previous example. The polygon

24

(a) All points OptCor morph. (b) Linear interpolation.

Fig. 16. Morph of a portion of the course of the river Elbe.

uses 361 points at the scale 1:1,000,000 and 147 points at the scale 1:2,500,000.
Both polygons were transformed into polylines by cutting them at a similar
point that served as start- and endpoint of the polylines.

Figure 17 shows a sequence of snapshots from the OptCor morph using all
input points as characteristic points in comparison to the linear interpolation
of the same data. The shape is generalized quite strongly for the smaller scale

25

and the crenulations disappear almost completely. The running time of the
OptCor algorithm was 1.8 seconds. While not much movement is visible in
the left part of the contour for both morphs, the linear interpolation performs
poorly in the upper right part and also the transformation of the lower in-
dentation is noticeably better in the OptCor morph (see the highlighting in
Figure 17). This shows again that our algorithm is indeed able to retain the
viewer’s mental map of the contour by finding the optimal correspondence
between the characteristic parts of the two input polylines.

5 Concluding remarks

We have presented and evaluated an algorithm to compute an optimum cor-
respondence for two polylines that are partitioned into a set of characteristic
segments, respectively. Moreover we have introduced a heuristic method to
compute these characteristic segments by fitting Bézier curves to the poly-
lines. Our case study indicates that the morphs computed by our method
successfully transform the shape of one polyline into another while preserving
the mental map of the viewer. These results extend to networks of multiple
polylines as well as to polygonal regions. Using the individual line segments of
the polylines as the characteristic segments yields good results but at the cost
of higher running times. We found that our method for detecting characteristic
points reduces the number of characteristic segments while at the same time
the quality of the morphs remains generally high. Thus we propose our algo-
rithm as a step towards a more global approach for continuous generalization
that also takes the context of further non-linear data layers like point data into
account. Apart from this grand challenge our algorithms could be improved in
a number of ways. First, ensuring that self-intersections do not occur during
a morph can be accomplished by utilizing the algorithm of Surazhsky and
Gotsman (2001b) to compute non-linear trajectories to morph points. Further
investigation would be necessary to avoid intersections between different poly-
lines in a network. Secondly, it follows from the results in our case study that
improved morphs can be obtained in some cases by manually selecting the
positions of characteristic points. This asks for a deeper exploration of what
constitutes a “good” set of characteristic points. Given a reasonable definition
of this, an optimization problem could be formulated for improved character-
istic point detection. Finally, even with manually chosen characteristic points,
the OptCor algorithm can still produce an occasional “kink” during morphs.
It may be possible to design an extension to the distance function that mini-
mizes the occurrence of such kinks.

26

(a) All points OptCor morph. (b) Linear interpolation.

Fig. 17. Morph of the provincial border of Hamburg.

27

6 Acknowledgments

The authors thank Sébastien Mustière for providing us with the Carto2001
data and the Bundesamt für Kartographie und Geodäsie for the German
provincial borders data. We also thank the anonymous referees for their valu-
able suggestions.

References

Bespamyatnikh, S. (2002). An optimal morphing between polylines. Interna-
tional Journal of Computational Geometry & Applications , 12(3), 217–228.

Cecconi, A. and Galanda, M. (2002). Adaptive zooming in Web cartography.
Computer Graphics Forum, 21(4), 787–799.

Cohen, S., Elber, G., and Bar-Yehuda, R. (1997). Matching of freeform curves.
Computer-Aided Design, 29(5), 369–378.

Douglas, D. and Peucker, T. (1973). Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature. The
Canadian Cartographer , 10(2), 112–122.

Efrat, A., Har-Peled, S., Guibas, L. J., and Murali, T. M. (2001). Morphing
between polylines. In Proc. 12th ACM-SIAM Sympos. Discrete Algorithms
(SODA’01), pages 680–689.

Erten, C., Kobourov, S. G., and Pitta, C. (2004). Intersection-free morphing
of planar graphs. In G. Liotta, editor, Proc. 11th International Symposium
on Graph Drawing (GD’03), volume 2912 of Lecture Notes in Computer
Science, pages 320–331. Springer-Verlag.

Gomes, J., Darsa, L., Costa, B., and Velho, L. (1999). Warping and Morphing
of Graphical Objects . Morgan Kaufmann, San Francisco.

Jones, C. B. and Ware, J. M. (2005). Map generalization in the Web age.
International Journal of Geographical Information Science, 19(8–9), 859–
870.

Lecordix, F., Jahard, Y., Lemarié, C., and Hauboin, E. (2005). The end of
Carto 2001 project: Top100 based on bdcarto database. In Proc. 8th ICA
Workshop on Generalisation and Multiple Representation, A Coruña, Spain.

Lowe, D. (1989). Organization of smooth image curves at multiple scales.
International Journal of Computer Vision, 3(2), 119–130.

Merrick, D., Nöllenburg, M., Wolff, A., and Benkert, M. (2007). Morphing
polygonal lines: A step towards continuous generalization. In Proc. 15th
Annual Geographical Information Science Research Conference UK (GIS-
RUK’07), pages 390–399, Maynooth, Ireland.

Misue, K., Eades, P., Lai, W., and Sugiyama, K. (1995). Layout adjustment
and the mental map. Journal of Visual Languages and Computing , 6(2),
183–210.

Plazanet, C., Affholder, J.-G., and Fritsch, E. (1995). The importance of

28

geometric modeling in linear feature generalization. Cartography and Geo-
graphic Information Systems, 22(4), 291–305.

Samoilov, T. and Elber, G. (1998). Self-intersection elimination in metamor-
phosis of two-dimensional curves. The Visual Computer , 14, 415–428.

Schneider, P. J. (1988). Phoenix: An Interactive Curve Design System Based
on the Automatic Fitting of Hand-Sketched Curves . Master’s thesis, De-
partment of Computer Science, University of Washington.

Sester, M. and Brenner, C. (2004). Continuous generalization for visualization
on small mobile devices. In P. Fisher, editor, Developments in Spatial Data
Handling – Proc. 11th International Symposium on Spatial Data Handling
(SDH’04), pages 355–368. Springer-Verlag.

Sezgin, T. M. (2001). Feature Point Detection and Curve Approximation for
Early Processing of Free-Hand Sketches . Master’s thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, Cambridge, MA, USA.

Surazhsky, V. and Gotsman, C. (2001a). Controllable morphing of compatible
planar triangulations. ACM Transactions on Graphics, 20(4), 1–21.

Surazhsky, V. and Gotsman, C. (2001b). Morphing stick figures using op-
timized compatible triangulations. In Proc. Ninth Pacific Conference on
Computer Graphics and Applications (PG’01), pages 40–49.

van Kreveld, M. (2001). Smooth generalization for continuous zooming. In
Proc. 20th International Cartographic Conference (ICC’01), pages 2180–
2185.

van Oostrum, R. and Veltkamp, R. C. (2004). Parametric search made prac-
tical. Computational Geometry: Theory and Applications, 28, 75–88.

Weibel, R. and Dutton, G. (1999). Generalising spatial data and dealing with
multiple representations. In P. A. Longley, M. F. Goodchild, D. J. Maguire,
and D. W. Rhind, editors, Geographical Information Systems – Principles
and Technical Issues , volume 1, chapter 10, pages 125–155. John Wiley &
Sons.

29

	Introduction
	Related work
	Model and algorithm
	Detection of characteristic points
	Finding an optimum correspondence
	Distance functions

	Case study
	Road network data
	River data
	Provincial border data

	Concluding remarks
	Acknowledgments

