An Improved Algorithm for the
Metro-Line Crossing Minimization Problem

Martin Nollenburg

Fakultét fir Informatik, Universitdt Karlsruhe (TH) and
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
noellenburg@iti.uka.de

Abstract. In the metro-line crossing minimization problem, we are given
a plane graph G = (V, E) and a set £ of simple paths (or lines) that
cover (G, that is, every edge e € F belongs to at least one path in L.
The problem is to draw all paths in £ along the edges of G such that the
number of crossings between paths is minimized. This crossing minimiza-
tion problem arises, for example, when drawing metro maps, in which
multiple transport lines share parts of their routes.

We present a new line-layout algorithm with O(|£|? - |V|) running time
that improves the best previous algorithms for two variants of the metro-
line crossing minimization problem in unrestricted plane graphs. For the
first variant, in which the so-called periphery condition holds and ter-
minus side assignments are given in the input, Asquith et al. [1] gave
an O(|£|® - |E|*®)-time algorithm. For the second variant, in which all
lines are paths between degree-1 vertices of G, Argyriou et al. [2] gave
an O((|E| + |£]?) - |E|)-time algorithm.

1 Introduction

Schematic metro maps are effective and popular visualizations of public trans-
port networks all over the world; see Ovenden’s comprehensive collection of
metro maps [3]. Several methods for automatically drawing metro maps have
been suggested in recent years [4-6]. These methods, however, focus on drawing
the underlying graph, that is, the graph that represents stations as vertices and
direct links between two stations as edges. This graph represents the infrastruc-
ture of the transport network, for example, railway tracks or roads. A schematic
layout of the underlying graph, whether created manually or by one of the ex-
isting methods mentioned above, does not necessarily yield a proper metro map
yet. The reason is that most real-world networks contain many different trans-
port lines whose routes partially overlap, that is, some edges of the underlying
graph are shared by multiple transport lines. In practice, each transport line is
therefore drawn in a distinct color along the edges of its path in the underlying
graph. Consequently, edges that belong to several lines consist in fact of a bundle
of colored parallel curves. As an example, Fig. 1 shows a detail of the metro map
of Cologne.

2 Martin Nollenburg

Keupstr. & -
Neusser Str./ Amsterdamer _Holweide
Gurtel Str./Gurtel Slabystr. Vischeringstr.
13

U] 13 V]
\ T m i Wichheiw
i Str.
Kinderkrankenhaus
U] ® / U Miilheim X [13]
orastr.@ Boltenstern- Wiener Platz ®
str. K-
Zoo/ Flora Mulheim D [‘Buchhein
Lohsestr. = Grinstr| & 3] Herler Str
Reichensperger- K- & B
platz Buchforst @ & Buchheim Frankfurter
[RB 25] Stegerwald- (& Waldecker Str.
Ebertplatz siedlung % RE1
= RE5
K RE7
Breslauer Messe / RB 48

Platz / Hbf

Deutz Koelnmesse

N O b8

@ — |
hristophstr./ Dom/ [U]

diapark Hbf Kbln
Hbf @&
f

m Deutz- Kalk m \@6
— 19 W9, Bf Deutz/ Kalker Bad Post N @
Thofplatz 7z 15w ’ 8 Kolnarena (Fachhochschule) Vingst "5 O
K 5

/A Heumarkt 7 Deutzer Freiheit

£ @ Suevenstr.

Fig. 1: Detail of the metro map of Cologne.

An immediate consequence of such a visualization is that there are situations
in which two lines in the—otherwise plane—metwork cross. Some line crossings
are mandatory, induced by the prescribed network topology, others depend on
the line orders in each vertex and can be avoided by choosing the right orders.
Hence, the metro-line crossing minimization (MLCM) problem arises as a sec-
ondary problem in the metro-map layout process: find an ordering of the parallel
lines along each edge of the underlying graph such that as few pairs of lines as
possible cross each other in the final layout. Additionally, the relative order of
lines traversing a vertex in the same direction must not change within this ver-
tex, that is, we do not allow to hide line crossings “below” the area occupied by
the representation of a vertex. Note that the MLCM problem is independent of
the actual layout of the underlying graph. The combinatorial embedding of the
underlying graph, which is usually defined by its geographic input embedding,
is all one needs to define the orderings of the parallel lines. Hence, algorithms
for MLCM can be used both for reducing line crossings in existing layouts and,
as a second step in combination with layout methods for the underlying graph,
for creating metro maps from scratch.

Although we present our results in terms of the classic problem of visualizing
transportation networks, we note that the metro map metaphor has also been
used as a means to visualize potentially much larger networks in other fields, for
example, metabolic pathways [7]. Actually, the MLCM problem appears when-
ever multiple parallel edges in a graph need to be drawn separately along a
common geometric path with the minimum number of crossings among them.

Benkert et al. [8] introduced the general MLCM problem. Subsequently,
MLCM was considered in several variants and for different classes of under-

Improved Algorithm for Metro-Line Crossing Minimization 3

90 0

(a) With periphery condition. (b) Without periphery condition.

Fig.2: Layout of a terminus (middle vertex) with three terminating lines. The
layout in (b) introduces a gap between the continuing lines.

lying graphs [1,2,9], which are discussed in detail in Section 3. One important
variant, posed as an open problem by Benkert et al. [8] and addressed by Bekos
et al. [9] and by Asquith et al. [1], restricts the positions of each line’s start and
end point (called termini) to be left- or rightmost in the ordered sequence of
lines along the underlying edges leading to its termini. This restriction is called
the periphery condition and prevents gaps between continuing lines, see Fig. 2.
Gaps between parallel lines disrupt the uniform appearance of the underlying
edge and hence are to be avoided in order to improve readability. Apart from
avoiding gaps, an exposed outer position for terminating lines also allows for
better highlighting or labeling of the termini. Often the final destination of a
train or bus in a transport network is used to indicate its direction and hence
termini and their names should be prominent features that are easy to recognize
in a metro map. Many of the real-world maps in Ovenden’s collection [3] adhere
to the periphery condition, as does the metro map of Cologne in Fig. 1. Bekos et
al. [9] showed that the MLCM problem is NP-hard under the periphery condition
if each terminus can lie on either side of the respective final edge. On the other
hand, Asquith et al. [1] showed that the MLCM problem under the periphery
condition can be solved efficiently for general plane graphs if the terminus side
assignment is given as part of the input.

In this paper, we investigate the MLCM problem under the periphery con-
dition with terminus side assignments and present a new algorithm in Section 4
that solves this problem in O(|£|?-|V|) time for a graph G = (V, E) and a set of
lines £. The algorithm has two phases. First, for each pair of lines that share a
common subpath, we determine their required relative order at the end of their
common subpath. Then, in a second step, we iteratively insert one line at a time
into the layout such that the relative orders computed in the first phase are re-
spected and no unnecessary line crossings are created. Our algorithm improves
the algorithm of Asquith et al. [1] for the same problem, which has a running
time of O(|L|? - |E|*®). Our algorithm can also be used to solve a closely re-
lated problem considered by Argyriou et al. [2], where all lines must be paths
connecting two degree-1 vertices in (G. Hence, it also improves the algorithm of
Argyriou et al., which has a running time of O((|E| + |£|?) - | E|). These are the
only two variants of MLCM that are known to be efficiently solvable, and our
algorithm is to the best of our knowledge currently the fastest method to solve
both of them for general plane underlying graphs.

4 Martin Nollenburg

2 Model

The input to the MLCM problem is a metro graph (G, L), where G = (V, E) is a
planar embedded graph and L is a line cover of G, that is, a set of simple paths
(or lines) that cover G. Note that existing edge crossings in the input graph can
easily be modeled as dummy vertices. For notational convenience, we consider
each undirected edge {u,v} € E as a pair of directed edges uv and vu. Both
notations refer to the same single edge just from two different perspectives.

The vertices vy and vy, of a line £ = (vg,v1,...,v;) € L of length |¢| = k are
called the termini of £, the vertices vy, ...,vr_1 are called intermediate vertices
of £. An edge uv is included in a line ¢, in short uv € £, if u and v are consecutive
vertices in £. We denote as L, = Ly = {€ € L | uv € £} the set of all lines
that include an edge uv. The total edge size of L is defined as Np =, - |{| =
> wver [Luv|. Note that Nz € O(|L] - |V]) since [£| < [V for each line £ € L.

Each vertex u has a cyclic sequence of) - [Ly | consecutive ports, one for
each line of each incident edge uv. Each port is a point on the boundary of the
geometric representation of u, at which the individual lines in | J,, ¢ Luo enter
(or leave) u. We are interested in the order in which the lines in £,, connect to
the consecutive subsequence of ports of u (and of v) that correspond to the lines
along edge uv. So for each edge uv € E, we define two line orders <{i, and <},
of Ly, in the endpoints of wv. For two lines ¢; and ¢2 in L., we write £1 <!, lo
(or ¢4 <%, o) if £; is right of ¢3 at the endpoint uw (or v) with respect to
the direction of uv. Note that the orders are reversed if we use the oppositely
directed edge vu instead of wwv, that is, ¢; <l ¥ if and only if lo <V, 4.
The sorted sequence of the lines in £,, with respect to <!, is denoted as sl ;
analogously sy, is the sorted sequence of lines with respect to <%,. Again, the
sequences s;,, and sy, are the reversed sequences of s;;, and s;,,,.

A line crossing is a crossing between two lines /1 and /> along a shared
edge uv. The two lines cross on uv if ¢; <}, lo and ¢y <!, ¢; or vice versa.
Abstracting from geometry, the number of line crossings along an edge uv is
thus equal to the number of inversions in the sequences s;,, and s,,,.

In order to avoid confusion for the map viewer, it is not allowed to hide line
crossings “below” a vertex. To that end we define a line order <;,, to be compatible
with the vertex v if the following holds. Apart from uv, let vwy, vws, ..., vwy be
the other edges incident to v in counterclockwise order starting from uv. We con-
sider the sequence s;,, and the concatenated sequence s’ = [[;_; sb,,.. Then <7,
is compatible with v if s¥, is a subsequence of s’. In other words, the lines that
enter v through the edge uv and leave v through the edges vwy, vws, ..., vwy do
not change their relative order. We say that a vertex v is admissible if the line
orders for all incident edges are compatible with v.

3 MLCM variants and previous work

In this section we present four different variants of the MLCM problem that
have been considered in the literature so far. Previous results and the results
obtained in this paper are summarized in Table 1.

Improved Algorithm for Metro-Line Crossing Minimization 5

problem graph class | restrictions ‘ result ‘ reference
MLCM single edge uv - O(|Luv]?) 8]
path - NP-hard [9]
MLCM-P plane graph - ILP + MLCM-PA |[1]
path 2-side model|O(|£] - |V]) [9]
left-to-right tree|2-side model|O(|£] - |V]) 9]
MLCM-PA |plane graph - o(L? - |E|*?) 1]
plane graph 2-side model|O(|V| - (|E| + |£])) |[2]

plane graph - o(L]*-|V]) Theorem 1
left-to-right tree|2-side model|O(|£] - |V]) [9]
plane graph 2-side model|O(|V] - (|1E| + |£])) |[2]
MLOM-TL | lane graph — |oWE+ 121 - 1ED|[2]

plane graph - o(L]*-|V]) Corollary 1
Table 1: Overview of results for the MLCM problem and its variants. Algorithmic
results are given by their running time.

The original metro-line crossing minimization problem as introduced by
Benkert et al. [8] is as follows.

Problem 1 (MLCM). Given a metro graph (G = (V, E), L), find for each edge
uv € E two line orders <%, and <}, of the lines in £,, such that the number

of line crossings is minimal and all vertices are admissible.

A solution to MLCM is denoted as a line layout. Benkert et al. [8] gave a
quadratic-time algorithm to solve MLCM for a single edge of G. Their algorithm
does not extend to larger subgraphs and it is a remaining open problem whether
MLCM is NP-hard in its general form.

We have already introduced the periphery condition, which additionally re-
quires that each line terminates in an outer or peripheral position in each of
its two termini (recall Fig. 2). Formally, this means that for each vertex v and
each edge uv all lines in L, for which v is a terminus, must be placed in the
beginning or in the end of the sequence s!,,. In other words, no terminating line
can lie between two continuing lines in the order <j,. We denote the following
variant as MLCM with periphery condition (MLCM-P).

Problem 2 (MLCM-P). Given a metro graph (G = (V, E), L), find for each edge
uv € I two line orders <@, and <}, of the lines in £, such that the number of
line crossings is minimal, all vertices are admissible, and each terminating line
is placed at a peripheral position in each of its two termini.

Bekos et al. [9] showed that MLCM-P is NP-hard, even if G is a path, and
Asquith et al. [1] formulated an integer linear program (ILP) to solve MLCM-P.
Still, Problem 2 gives rise to a closely related (but computationally feasible)
variant that additionally specifies in the input fixed terminus sides for each line.

We denote this variant as MLCM with periphery condition and terminus side
assignments (MLCM-PA).

6 Martin Nollenburg

Problem 3 (MLCM-PA). Given a metro graph (G = (V,E), L) and terminus
side assignments for all lines in £, find for each edge uv € E two line orders <j;,
and <}, of the lines in £,, such that the number of line crossings is minimal,
all vertices are admissible, and each terminating line is placed at a peripheral

position on the specified side of each of its two termini.

Problem 3 occurs in situations, in which, for example, the physical location
of the tracks or the bus stop of the terminating line in a terminus yields this in-
formation. Alternatively, the optimal terminus side assignments can be obtained
from the ILP formulation of Asquith et al. [1]. Asquith et al. also presented
an O(|L|? - |E|*?)-time algorithm to solve MLCM-PA for general plane graphs.
Bekos et al. [9] gave two algorithms to solve MLCM-PA in the restricted 2-side
model for paths and for a special class of left-to-right directed trees with bounded
vertex degree in O(|£| - [V]) time, respectively. In the 2-side model, all vertices
are drawn as rectangles and all lines are drawn as z-monotone paths that pass
through vertices from the left to the right side. Argyriou et al. [2] recently pre-
sented an algorithm to solve MLCM-PA in the 2-side model for general plane
graphs in O(|V|- (|E| + |£])) time.

Another interesting MLCM variant restricts the lines in £ to terminate at
degree-1 vertices only, that is, all termini in (G, £) are leaves of G.

Problem 4 (MLCM-T1). Given a metro graph (G = (V,E),L) in which the
degree of any terminus v of any path in £ equals 1, find for each edge uv € F
two line orders <, and <7, of the lines in £,, such that the number of line
crossings is minimal and all vertices are admissible.

Problem 4 is of practical interest since in many real-world networks trans-
port lines lead from one terminus station in the outskirts of a city through
the city center to another terminus station in the outskirts. This is exactly the
situation in which lines terminate at leaves of the underlying graph. Argyriou
et al. [2] presented an algorithm to solve MLCM-T1 in general plane graphs
in O((|E| + |£|?) - |E|) time. For MLCM-T1 in the previously mentioned 2-side
model, they improved the running time to O((|E| + |£|) - [V]).

We observe that a line layout for an MLCM-T1 instance trivially satisfies the
periphery condition. Since each terminus v is a degree-1 vertex in G, there cannot
be any continuing lines in v, and any position in the line order at v is peripheral
by definition. Furthermore, there is no need to distinguish two different sides for
the assignment of the terminus positions: not being separated by a continuing
line, the two sides of the edge leading to v coincide. Hence, we can reduce any
MLCM-T1 instance to an equivalent MLCM-PA instance by assigning all lines
that terminate at the same leaf v to the same terminus side. This actually means
that there is no restriction to the line order in v at all, and we indeed model the
general setting of MLCM-T1. Obviously, the reduction takes only linear time.
This is summarized in the following lemma.

Lemma 1. An instance of MLCM-T1 can be reduced to an equivalent instance
of MLCM-PA in linear time.

Improved Algorithm for Metro-Line Crossing Minimization 7
4 An improved algorithm for MLCM-PA

In this section we present our main result, an O(|£]? - |[V|)-time algorithm for
MLCM-PA and MLCM-T1 in general plane graphs. We first show a simple
lemma about the line crossings in an optimal layout for an MLCM-PA instance.
We define a line crossing of two lines in a metro graph (G, £) to be unavoidable,
if it is present in any line layout of (G, L).

Lemma 2. Given a metro graph (G, L) and terminus side assignments for all
lines in L, all line crossings in a crossing-minimal line layout are unavoidable
Crossings.

Proof. By definition every unavoidable crossing is present in any crossing-minimal
line layout. We want to show that the opposite is also true: every line crossing
in a crossing-minimal line layout is unavoidable.

So let ¢1 and ¢5 be two lines that cross in a crossing-minimal line layout along
an edge uv. By P = (wo,...,w; = 4, wit+1 = v,...,wk), 0 < i < k, we denote
the maximal common subpath of ¢; and ¢ that contains uv. First of all note
that the crossing along wv is the only crossing of ¢; and ¢ along P; any two
consecutive crossings of two lines along a common subpath could be removed
by routing the upper line just below the lower line along the edges between the
two crossings—this contradicts the optimality of the line layout and has been
observed by Asquith et al. [1] before.

We can assume that ¢; <!, ¢3 and 5 <! ¢;. Since there is a single crossing
between {1 and /3 along P, this implies that ¢; <30, f2 and £y <p* .~ f1. This
inversion of ¢ and {5 in the line orders of vertices wy and wy, is either enforced
by the combinatorial embedding of G' as the line orders <j°, and <jgr
must be compatible with wy and wy, (if the respective line continues beyond wy
or wy) or by the given terminus side assignment (if the respective line terminates
at wy or wy). The only case where the relative order of ¢; and ¢ is not fixed by
the compatibility requirements or the terminus side assignments is if both lines
terminate at the same vertex, say wg, and are assigned to the same terminus
side. In that case, however, they can always be reordered in <0, such that
they reflect their relative order in <jj* =~ and the crossing would disappear.
This contradicts the optimality of the layout.

We conclude that the crossing of ¢; and /5 is unavoidable: the relative order
of £1 and ¢5 at one end of P is the inverse of their order at the other end of P
due to the given terminus side assignments or the compatibility requirements for

the embedding of G. a

Lemma 2 implies that there is a line layout that realizes exactly the unavoid-
able crossings and, consequently, that any such layout is optimal. Algorithm 1
constructs such a line layout. It first computes all maximal common subpaths of
all pairs of lines to determine their relative orders as induced by the topology or
the terminus side assignments. In a second phase all lines are iteratively inserted
into the line orders of their edges and the final line layout is fixed.

8 Martin Nollenburg

Algorithm 1: MLCM-PA line layout

Input: metro graph (G, £), terminus side assignments for all £ € £
Output: line orders <3, <y, for all edges uv € E

/* Phase 1 */
foreach (61752) € L x [,7 /1 ;é 52, 0= (’Uo,’l)l, .. .,’Uk) do
compute set A({1,¢2) of all maximal common subpaths of ¢; and ¢,
foreach (vi, vit1,...,v;) € A(f1,£2) do
if 02 leaves {1 towards the left or terminates left of £1 in v; then

for/ =ito j—1do

| side(ly, f2, vivigr) < left

else
for(=itoj—1do
| side(ly, fa, viviyr) < right

* Phase 2 */
oreach ¢ = (vg,v1,...,vx) € L do
fori=0to k—1do

L insert ¢ into <p¢

=N

ViVi41
. . Vit+1
insert £ into <v§1+w+1

Theorem 1. Given a metro graph (G, L) and terminus side assignments for
all lines in L, Algorithm 1 computes a crossing-minimal line layout under the
periphery condition in O(|L|- Nz) time.

Proof. In Phase 1 of Algorithm 1 we compute the value of a binary variable
side(¢1, €2, uv) for each triple of two lines ¢; and ¢5 and an edge uv such that wv
is a common edge of ¢; and ¢5. This value represents the side to which line /o
tends with respect to ¢; on edge uv. So if side({1, €2, uv) = left (right), we know
that at the end of the maximal common subpath of ¢; and /5 that contains uv
the line ¢5 must be placed left (right) of ¢;.

In order to compute the set A(¢y,¢2) of maximal common subpaths of ¢;
and ¢ we walk along ¢; = (v, ..., v;) and check for each edge v;v;+1 whether £o
shares that edge with ¢;. If this is the case, we either open a new subpath or
extend the current subpath. Otherwise we close the current subpath if there
is one. We assume that the input (G, £) contains a Boolean edge-line array of
size |E| x |£] so that we can check whether a line uses an edge in constant time.

For each subpath A\ = (v;,viq1,...,v;) € A(f1,42) we need to determine
whether /5 tends left- or rightward along A with respect to £1, that is, whether
at the end of A\ the line /5 must be left or right of ;. There are three cases to
consider.

(1) If v; = vy, that is, £; terminates in v;, and ¢ does not terminate in v,
then ¢y tends leftward (rightward) if ¢; is assigned a right (left) terminus
position, respectively.

Improved Algorithm for Metro-Line Crossing Minimization 9

(2) If v; = vg and ¢3 also terminates in v;, then either ¢; and ¢; are assigned
to different terminus sides and /2 tends to its assigned side, or both are
assigned to the same side. In the latter case, 5 shall stay on the same side
of /1 as in the first vertex v; of A. So if ¢5 enters v; to the left of /1, then /o
also tends leftward along A; otherwise it tends rightward.

(3) If v; # v then {5 tends leftward if either ¢5 is assigned to terminate on the
left in v; or £5 continues along an edge v;w that is left of £; in the embedding
of the underlying graph G; otherwise ¢y tends rightward.

In all three cases the value of side({1, £2, uv) is either an immediate consequence
of the lines’ terminus assignments or can be determined by a constant-time query
for the relative order of three incident edges in the embedding of G.

Summarizing the above, Phase 1 takes O(|£| - N) time and space since we
check for each edge of each line if any of the other lines in £ share the edge;
if this is the case we assign the leftward /rightward value to the corresponding
variable.

In Phase 2 the actual line layout is computed by iteratively fixing the course of
each line. We show the correctness of the algorithm by maintaining two invariants
during Phase 2.

Invariant 1 There are no invalid intra-vertex crossings, that is, for each vertex
u and each edge wv the line order <! is compatible with u.

Invariant 2 All line crossings are unavoidable crossings with respect to the
input embedding of G and the given terminus side assignments.

Inserting the first line as the only line into the empty line orders clearly
satisfies both invariants. So assume that we already have a partial line layout that
satisfies the invariants and that we want to insert the next line £ = (vg,v1,...,vg)
into this partial layout.

We start by inserting ¢ into the order <°, . Let’s assume £ is assigned to
a left terminus in vy with respect to the first edge vov; (for a right terminus
the insertion is analogous). If £ is currently the only line with a left terminus on
this edge, we insert £ as the last edge into <39, . Otherwise we scan the lines
with a left terminus in <j°, , starting with the largest (or leftmost) element,
for the first line ¢’ for which side(¢, ¢',vov1) = right. We insert £ into <30,
immediately after (or left) of ¢’. This first insertion does not create any intra-
vertex crossings, so Invariant 1 is clearly satisfied. Furthermore, if there are
multiple lines terminating along vgv; on the same side as ¢ then ¢ is inserted
exactly between those lines that tend leftward and those lines that tend rightward
with respect to £. Hence all those lines are already on the correct side of ¢ and
no line crossings are created; Invariant 2 is satisfied.

Next, we consider inserting £ into the order <ji,, fori > 0 such that Invari-
ant 1 is satisfied. If one of the neighboring lines in the previous line order <ji .
also continues along v;v; 1, then £ simply keeps its position directly next to that
line. Since the previous layout did not contain any invalid intra-vertex crossings
and £ follows a previous line, Invariant 1 is still satisfied. This case is illustrated

in Figure 3a, where the red line ¢; follows the neighboring black line through the

10 Martin Noéllenburg

él \ 62 <7Ji <vi+1
/ ViVi41 ViVit1
Vi Vi Vit+1

(a) Lines ¢; and /¢ are in- (b) Line ¢ is inserted into <., , so that Invariant 2 is

serted so that Invariant 1 is maintained. The values side(, -, v;v;41) are indicated

maintained. for all lines.

Fig. 3: Insertion of lines into an existing partial line layout.

vertex. Otherwise, if £ is the only line continuing along v;v;11, we scan <gi, .,
starting with the smallest (rightmost) element, for the first line ¢, whose previ-
ous edge wuv; is left of £ in the embedding of G or that terminates in v; with a left
terminus along v;v;11. We insert £ immediately before ¢ in NCANE This is illus-
trated in Figure 3a by the blue line /5 which is inserted immediately before the
yellow line ¢'. If no line ¢’ is found then ¢ becomes the largest (leftmost) element
in <ii,,.,- The chosen position for £ ensures that <j7, remains compatible
with v; and that Invariant 1 is satisfied.

It remains to determine the position of ¢ in the order <.:3!,,. Figure 3b
illustrates the situation. We scan the already determined line order <ji, for
the smallest (rightmost) line ¢; left of ¢ for which side(, ¢}, v;v;41) = left and for
the largest (leftmost) line ¢, right of ¢, for which side(?, ¢,., v;v;41) = right. Note
that it is possible that one or both lines ¢; and ¢,- do not exist. If they exist, these
two lines ¢; and £, are the closest lines to ¢ that are already on the correct side.
Since Invariant 2 holds for the previous partial layout, ¢; and ¢, do not cross
each other along v;v;y1, that is, £, <p:, . ¢ and £, <wibti, 4. Obviously, £
may not cross either of them and we must insert ¢ between ¢, and ¢; in <y},
(otherwise Invariant 2 will be violated). More precisely, we insert ¢ immediately
left of the largest (leftmost) line ¢ in the interval [(,, ;] of <ui§!,, for which
side(?, ¢', v;v;41) = right, see Figure 3b. If £,. (¢;) does not exist we symbolically
assign ¢, = —oo (¢} = 00) so that the interval [¢,,¢;] may become unbounded.
The position of ¢ is determined as before. If there is no line ¢ then ¢ becomes
the rightmost line in <ui5/, ;.

We claim that in the assigned position ¢ crosses only lines that were to its
left and tend to the right or lines that were to its right and tend to the left—
crossings that are unavoidable. Assume to the contrary that ¢ crosses a line £
that was to its left and also tends to the left. Since we insert ¢ immediately to
the left of ¢/, the two lines ¢ and ¢ also cross each other. This is a contradiction
to Invariant 2 for the previous partial layout, though, since { crosses ¢ from
left to right but eventually needs to cross ¢ again from right to left in order

to reach its leftward destination. If there is no line ¢ then £ is the rightmost

Improved Algorithm for Metro-Line Crossing Minimization 11
line in <yi$. , by definition and cannot cross /. Similarly, assume that ¢ crosses
a line ¢ that was to its right and also tends to the right. Then ¢ <oitiia 1
since otherwise we would have placed ¢ left of £ in the interval [¢,,¢;]. But this
means that ¢ crosses ¢; from right to left, which again violates Invariant 2 for
the previous partial layout: there must be a second crossing, where ? crosses
from left to right in order to reach its rightward destination. If ¢; = co we would
have placed ¢ left of which is also a contradiction. So Invariant 2 holds for the
selected position of £.

Finally, we show that Invariant 1 holds for the position of ¢ in <3/, ,. The
first possibility for a violation is a line ? with side(¥, €A7 v;U;11) = left that is still
to the right of £ but does not continue further along v; 1v;12. By definition ? can
only be right of £ if £ <y .. . But then Invariant 1 would have been violated
before by ¢ and ¢'. The other possibility for a violation of Invariant 1 is a line l
with side(?, /, v;V;+1) = right that is still to the left of £ but does not continue
further along v;;1v;42. By definition this can only be the case if £, <u5L,, £
But this means that Invariant 1 would have been violated before by {and 0.

Since both invariants hold at the end of Algorithm 1, we have proven its
correctness. By Invariant 1 all vertices are admissible, and by Invariant 2 the
final line layout realizes exactly the unavoidable crossings and is thus crossing-
minimal by Lemma 2. The running time of Phase 1 is O(|£| - Nz). The running
time of Phase 2 is again O(|L] - N) since there are 2N insertion operations,
each of which determines a position for the current line by scanning the line
orders of size O(|L]) of the current edge. O

We note that the size of a solution for MLCM-PA is £2(N.) and thus the
running time of our algorithm is only a factor of |£| away from the output size.
Since for the total edge size N, we have Nz € O(|L] - |V]), the running time of
Algorithm 1 can also be expressed as O(|L|? - |V]).

By Lemma 1, we can reduce any instance of MLCM-T1 to an equivalent
instance of MLCM-PA in linear time. We thus obtain the following corollary.

Corollary 1. Given a metro graph (G, L) in which the degree of any terminus v
of any line in L equals 1, we can use Algorithm 1 to compute a crossing-minimal
line layout in O(|L| - N¢) time.

5 Conclusions

In this paper we have presented a new algorithm that improves the best previous
algorithms for both the MLCM-PA and the MLCM-T1 problem. The running
time of the new algorithm is O(|£| - Nz), where Nz € O(|£| - |[V]).

We conclude with two observations about practical MLCM instances as
found, for example, in Ovenden’s book [3]. First, the number of lines |£| in
a transport network is usually much smaller than the size of the underlying
graph G. Since the output size is already (2(N;), our algorithm runs in linear

12 Martin Noéllenburg

time if the number of lines is constant. Second, many lines in practice indeed ter-
minate at degree-1 vertices of the underlying graph as modeled in the MLCM-T1
variant. Still, most networks also have some lines that start or end in non-leaf
vertices. We therefore suggest to use the ILP formulation of Asquith et al. [1] (or
a simple exhaustive-search algorithm) to determine an optimal terminus side as-
signment for those lines. We can then transform the original MLCM-P instance
together with the additional terminus side assignments into an MLCM-PA in-
stance that can be solved efficiently with our algorithm.

There are a few remaining open problems in MLCM. First of all, it is still an
unsolved question whether the general MLCM problem (without periphery con-
dition) is NP-hard for general plane graphs or even for paths. Another interest-
ing open question is whether the NP-hard problem MLCM-P is fixed-parameter
tractable for a suitable small parameter, such as the maximum multiplicity of
the edges. Furthermore, no approximation algorithms for MLCM-P are known
so far.

Acknowledgments. We thank Joachim Gudmundsson, Damian Merrick, and
Thomas Wolle for initial discussions about the problem during a visit in Sydney.

References

1. Asquith, M., Gudmundsson, J., Merrick, D.: An ILP for the metro-line crossing
problem. In Harland, J., Manyem, P., eds.: Proc. 14th Computing: The Australasian
Theory Symp. (CATS’08). Volume 77 of CRPIT., Australian Comput. Soc. (2008)
49-56

2. Argyriou, E., Bekos, M.A., Kaufmann, M., Symvonis, A.: Two polynomial time
algorithms for the metro-line crossing minimization problem. In Tollis, I.G., Patrig-
nani, M., eds.: Proc. 16th Internat. Symp. Graph Drawing (GD’08). Volume 5417
of Lecture Notes Comput. Sci., Springer-Verlag (2009) 336-347

3. Ovenden, M.: Metro Maps of the World. Capital Transport Publishing (2003)

4. Stott, J.M., Rodgers, P.: Metro map layout using multicriteria optimization. In:
Proc. 8th Internat. Conf. Information Visualisation (IV’04), IEEE (2004) 355-362

5. Hong, S.H., Merrick, D., do Nascimento, H.A.D.: Automatic visualization of metro
maps. J. Visual Languages and Computing 17 (2006) 203224

6. Nollenburg, M., Wolff, A.: A mixed-integer program for drawing high-quality metro
maps. In Healy, P., Nikolov, N.S.; eds.: Proc. 13th Internat. Symp. Graph Drawing
(GD’05). Volume 3843 of Lecture Notes Comput. Sci., Springer-Verlag (2006) 321-
333

7. Hahn, W.C., Weinberg, R.A.: A subway map of cancer pathways (2002) Poster in
Nature Reviews Cancer.

8. Benkert, M., Nollenburg, M., Uno, T., Wolff, A.: Minimizing intra-edge crossings
in wiring diagrams and public transportation maps. In Kaufmann, M., Wagner, D.,
eds.: Proc. 14th Internat. Symp. Graph Drawing (GD’06). Volume 4372 of Lecture
Notes Comput. Sci., Springer-Verlag (2007) 270-281

9. Bekos, M.A., Kaufmann, M., Potika, K., Symvonis, A.: Line crossing minimization
on metro maps. In Hong, S.H., Nishizeki, T., Quan, W., eds.: Proc. 15th Inter-
nat. Symp. Graph Drawing (GD’07). Volume 4875 of Lecture Notes Comput. Sci.,
Springer-Verlag (2008) 231242

