
Consistent Labeling of Dynamic Maps
Using Smooth Trajectories

Diplomarbeit
von

Benjamin Niedermann

an der Fakultät für Informatik

Erstgutachter: Prof. Dr. Dorothea Wagner

Zweitgutachter: Prof. Dr. Peter Sanders

Betreuende Mitarbeiter: Dr. Martin Nöllenburg
Dipl.-Inform. Andreas Gemsa

Bearbeitungszeit: 19. Dezember 2011 – 18. Juni 2012

www.kit.edu
KIT – Universität des Landes Baden-Württemberg und

nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Institut für Theoretische Informatik

Lehrstuhl für Algorithmik I

Danksagung

An erster Stelle möchte ich Dr. Martin Nöllenburg und Andreas Gemsa danken, die diese
vorliegende Diplomarbeit mit großem Engagement betreut haben und die mir im letzten halben
Jahr mit vielen gewinnbringenden Diskussionen und Ratschlägen zur Seite standen. Ebenso
danke ich Frau Prof. Dr. Wagner für die Möglichkeit meine Diplomarbeit an ihrem Lehrstuhl
zu schreiben.

Nicht zuletzt gilt ein großer Dank Max Kramer sowie meinen zwei Geschwistern Felicitas
und Florian, die jeweils Teile dieser Diplomarbeit Korrektur gelesen haben. Insbesondere
danke ich Max Kramer für seine vielen nützlichen Hinweise bezüglich der Verständlichkeit der
Arbeit.

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen als
die angegebenen Quellen und Hilfsmittel verwendet habe.

Karlsruhe, den 18. Juni 2012 ..
Benjamin Niedermann

iii

Zusammenfassung

Die automatische Beschriftung von Karten gewinnt zunehmend an Bedeutung. Insbesondere
für Karten, die dynamisch erstellt werden oder auf die ausschließlich eine dynamische Sicht
zur Verfügung steht (z.B. wie im Anwendungsfall eines Navigationsgerätes), ist eine manuelle
Beschriftung nicht möglich. Daher wurde bereits viel Arbeit in die Erforschung von automa-
tischer Beschriftung von Karten investiert. Selbst im statischen Fall, also unter der Annahme,
dass sich die Orientierung, Skalierung und Position der Karte nicht ändert, fallen die meis-
ten Formulierungen von Beschriftungsproblemen in den Bereich der NP-Schwere. Folglich ist
im Bereich der dynamischen Kartenbeschriftung nicht mit besseren Ergebnissen zu rechnen
[KM03]. Gleichzeitig wurde mit diesem Ergebnis die Suche nach empirisch guten Heuristiken
und beweisbar guten Approximationsalgorithmen eröffnet.

Während in [BNPW10] das spezielle Problem betrachtet wird, dass sich die Skalierung der
Karte dynamisch und kontinuierlich verändert, werden in [GNR11] kontinuierlich rotierende
Karten betrachtet. Aufsetzend vor allem auf der letzten der beiden Arbeiten, wird in dieser
vorliegenden Diplomarbeit ein ähnliches Problem angegangen: Unter der Annahme, dass wir
auf eine gegebene Karte nur mit eingeschränktem Sichtfenster blicken, untersuchen wir den
Fall, dass wir für dieses Sichtfenster eine beliebige aber fest vorgegebene Trajektorie betra-
chten. Es stellt sich dann die Frage, inwiefern eine optimale Beschriftung ohne Überlap-
pung von Beschriftungselementen der Karte gefunden werden kann, wenn sich dieses Sichtfen-
ster bezüglich dieser Trajektorie ausrichtet und die sichtbaren Beschrifungselemente sich zu
Zwecken der besseren Lesbarkeit in ihrer Ausrichtung dem Sichtfenster anpassen. Diese Prob-
lemstellung leitet sich aus dem Anwendungsfall ab, dass man den Verlauf einer vorgegebenen
Route auf einer Karte verfolgt (z.B. mithilfe eines Navigationsgerätes oder Smartphones).

Für die Diskussion dieser Problemstellung ist die Arbeit in zwei Teile gegliedert: Im er-
sten Teil der Arbeit gehen wir näher darauf ein, wie eine solche Trajektorie modelliert werden
kann. Hierzu nehmen wir an, dass bereits ein Polygonzug vorgegebenen ist (eine übliche
Modellierung von Routen), der dann in eine glatte Kurve überführt werden soll. Um eine
diskretisierte Beschreibung dieser Kurve zu erhalten, setzen wir diese aus endlich vielen Kreis-
bögen zusammen. Hauptuntersuchungsgegenstand in diesem Teil der Arbeit ist die Frage, wie
ein Polygonzug P möglichst gut von einer glatten Kurve K approximiert werden kann, so
dass K kleine Schlingen und Ausreißer von P ausgleicht und dennoch in einem vorgegebenen
Bereich um P liegt.

Im zweiten Teil der Arbeit betrachten wir dann das eigentliche Beschriftungsproblem:
Zuerst gehen wir der Frage nach, wie ein entsprechendes Modell formuliert werden kann.
Aufbauend auf diesem Modell beschreiben wir dann Methoden, mit deren Hilfe man bestim-
men kann, wann sich zwei Beschrifungselemente überlappen und für welchen Zeitraum diese
Überlappung sichtbar ist. Hinzu werden wir zeigen, dass auch dieses Beschriftungsproblem
NP-schwer ist, so dass wir uns folglich auf die Suche nach entsprechenden Lösungen machen.
Präsentieren können wir schnelle Heuristiken und exakte ILP-Formulierungen. Um dieses
Heuristiken auch testen zu können, wurden große Teile der Arbeit bereits in die Praxis umge-
setzt, so dass wir empirische Ergebnisse auf Basis von Realweltdaten vorstellen können.

v

Contents

Contents 1

1 Introduction 3

2 Preliminaries 7

I Trajectories Consisting of Circular Arcs 11

3 Introduction 13

4 Related Work 17
4.1 Computing Polyarcs . 17
4.2 Line Stabbing . 19

5 Modeling the Corridor 23

6 Basic Algorithms 27
6.1 A Simple Algorithm for Gaining a Smooth Polyarc 27
6.2 A Polyarc with Minimum Number of Inflection Points 30

7 A Generalization of the Corridor 41

8 Basic Algorithms for the Generalized Corridor 49
8.1 One Starting Gate and Several End Gates 49
8.2 Computing a Polyarc Through Gates . 76

9 Advanced Algorithms for the Generalized Corridor 81
9.1 Optimizing the Length of a Polyarc Using Predefined Gates 81
9.2 Generalization of Gates . 83
9.3 Optimizing the Length of a Polyarc Using Generalized Gates 85

10 Handling Special Cases 89
10.1 Intersection Based Stabbing . 89
10.2 A Solution Based on Gates . 105
10.3 Circles of Different Radii . 106

11 Conclusion 109

II Consistent Labeling Based on Trajectories 111

12 Introduction 113

1

2 CONTENTS

13 Related Work 117

14 Model and Problem Definition 121

15 Visibility and Conflicts 135
15.1 Anchored Rectangles and Their Conflicts . 135
15.2 Labels in Conflict . 145
15.3 Visible Labels and Visible Conflicts . 146
15.4 Area Based Visibility for Labels . 151

16 Complexity 161
16.1 Complexity . 161
16.2 Trajectory Based Conflict Graph . 162

17 Algorithmic Approaches 165
17.1 Integer Linear Programming . 165
17.2 The Heuristics . 170

18 Experimental Evaluation 173
18.1 Setting . 173
18.2 Results of the Evaluation . 174

19 Conclusion 181

Bibliography 183

1. Introduction

With an increasing number of portable devices as navigation systems and smartphones, digital
maps play a more and more important role in daily life. Many people use these systems every-
day for finding the closest parking garage, a nearby restaurant or just the closest café. On the
other hand, the information that can be possibly depicted on a map increases unremittingly:
Apart from places of public interest as hospitals, libraries, and parks, every shop, every gas
station and every pub wants to show up on the most popular maps for portable devices in
order to attract customers.

Thus, it is all the more important to offer the user of such a device a clear non-distracting
view on the most important features of a map such that the map and the labels describing
the features of the map are still legible. Especially in the case that those devices are used
for purposes of navigation in road traffic, it is crucial for users of such a device that they
can obtain all relevant information of the considered map at a glance without endangering
their safety. Thus, the information of a map must be filtered first, before it can be presented.
Figure 1.1 illustrates the comparison of a map with and without filtering labels.

Great effort has already been made for finding appropriate approaches for filtering and
drawing labels clearly on a map1. First static maps have been considered, that is, maps that
do not change their scale, alignment or visible section, whereat we also call the latter one
the viewport of the map. Then a typical problem to be solved is called the label number
maximization problem: How can a maximum cardinality subset S of the given labels be found
such that all bounding boxes of the labels in S can be drawn without overlaps?

Moreover, further requirements must often be satisfied. For example a label should be
placed closely to the location that is described by that label or a certain point of that label

post box

Am Zirkel (P&C)

LitfassLitfass

telephone

telephone Apotheke am MarktplatzCafe am MarktEiscafe Cortina am Marktpl...
telephone

Napoleon

post boxMarktlcke
Irish Pub Sean O’Casey’s...

Eiscafe ”Da Vinci”

Lammbrunnen

Groherzog-Ludwig-Denkmal

Springbrunnen

Brunnenrecycling

Toilette MarktplatzToilette Marktplatzwaste basket

waste basketwaste basket

Multikulti

Sparkasse

Sparkasse ZeroBckeler

Nordsee

Besitos

City Treff

Commerzbank

Eisdiele Pierod

Maredo

Lwenapotheke

McDonald’s

Volksbank Karlsruhe

ViVA Restaurant

Schlossplatz

Mr. FalafelNoodelz

(a) Without label filter.

Am Zirkel (P&C)

Multikulti

Schlossplatz

City Treff

Napoleon

telephone
Cafe am Markttelephone

Lammbrunnen
BckelerSparkasse

Sparkasse

Maredo

ViVA Restaurant
recycling Brunnen

Besitos

post box

Litfass

Mr. Falafel

(b) With label filter.

Figure 1.1: Shows the center of Karlsruhe without and with using a label filter based on a
scale of 1:2000.

1For a summary of that work see Chapter 13 – Related Work

3

4 CHAPTER 1. INTRODUCTION

Label 5 Label 6Label 7

Label 0

Label 1

Label 2

Label 3

Label 4

Label 5

Label 6

Label 7

Label 0

Label 1

Label 2

Label 3

Label 4

Label 5

Label 6

Label 7

Label 0
Label 1

Label 2
Label 3

Label 4

Figure 1.2: Moving along a trajectory. The viewport changes over time such that the center
of the area moves along the trajectory and the axes of the area is adjusted to the direction of
the trajectory.

must coincide with that location. Anticipating, most of the labeling problems formulated in
such a way are NP-complete. Consequently, one often tries to find empirical good heuristics
and algorithms with provable approximation guarantee solving the labeling problem.

Dynamic maps bring the problem to the next stage: Now the map can also be changed
regarding its scale and alignment over time. Less research has been done for the dynamic label
number maximization problem than for the static case. One has to think about how conflicts
between labels can be resolved dynamically. To that end one first has to define an appropriate
behavior for labels such that distracting effects for labels as sudden changes of position and
size or frequent appearance and disappearance are omitted.

Most of the research has been done for the case that the observer of the map can interact
with that map freely1, e.g., continuously changing the zoom, rotation or viewport of the map.
However, for a lot of use cases, as for example navigation systems, the viewport of the map is
pre-defined, as one considers a pre-computed route that one wants to follow. In that case it
is likely that one can use that a priori information in order to gain solutions for the dynamic
labeling.

In this thesis we exactly consider the case that the viewport of the map changes over time
by following a pre-defined trajectory, as if we look at the map through the lens of a camera
moving continuously along the smooth trajectory (see Figure 1.2). Moreover, the orientation
of the viewport is adjusted to the direction of the trajectory such that moving along a curve
means that the viewport begins to rotate relative to the map. In order to be able to compute
the exact location and alignment of the viewport, we model trajectories by means of a chain
consisting of circular arcs. Inspired by polylines, we call that chain polyarc. Instantly, the
question arises how one can gain such a polyarc. We will introduce several approaches that
translate polygonal chains into polyarcs assuming that a polygonal chain models a route within
a street map.

Apart from trajectories, we assume that a set L = {l1, . . . , ln} of labels is given that is
related to a set of points P = {p1, . . . , pn} on the map such that pi is the rotation point for
the label li for all i with 1 ≤ i ≤ n. In order to sustain the legibility of the labels we also
require that the labels are axis-aligned to the viewport. Consequently, the labels also rotate
when the viewport rotates, which may have the effect that visible labels overlap for a certain
period of time (see Label 0 and Label 4 in Figure 1.2).

We are then going to answer the question how labels can be turned on and off in such
a way that an optimal number of labels is visible without overlaps, whereat we still have to
define what optimal means in that context. Further, we also have to think about the behavior
of a label, because we do not want the label to disappear and appear in a row such that it has
distracting effects on the observer of the map. We call that labeling problem the trajectory

5

Figure 1.3: A polygonal chain (black) with tolerance region (gray) approximated by a polyarc
(dashed curve). The gates of the polygonal chain are bold.

based labeling problem (TBLP).
In order to answer the arising questions, we divide this thesis into two parts. While the

first part explains how polygonal chains can be translated into polyarcs, in the second part
we analyze how TBLP can be modeled an solved based on polyarcs. Even though, the second
part uses the first part, both can be read independently from each other, as we use the first
part as black-box for the second part. In the following we summarize shortly their structure
and the main results we have achieved.

1. Part – Trajectories Consisting of Circular Arcs: In that part we explain how a
smooth trajectory can be obtained. As the main use case are navigation systems, we assume
that we are given a polygonal chain P , which is a common way to model routes within a street
map. We then explain how P can be transformed into a smooth curve K based on circular
arcs such that K approximates P appropriately, that is, it compensates little oscillations and
outliers of P still approximating its shape within a certain tolerance region.

To that end we follow two approaches: The first one is based on the idea that we translate
first P into a polygonal chain P ′ approximating P such that P ′ has minimal number of
segments and inflection points. We then translate P ′ into a polyarc by replacing its kinks
with circular arcs. Within this step we preserve the number of inflection points, however, we
have to introduce further segments so that we lose the optimality regarding the number of
segments. In particular for translating P into P ′, we introduce an approach that needs O(n)
time, when n denotes the size of P . As we also need O(n) time for resolving the kinks of P ′

by means of circular arcs, we obtain a procedure for translating P into a polyarc that needs
O(n) time in total.

The second approach is based on the idea that we directly find a polyarc approximating P .
For that purpose we introduce a tolerance region around P within the polyarc must lie.
Further, for each vertex p of P we define a line segment through p such that it divides the
tolerance region into two parts (see Figure 1.3). We call those line segments the gates of P .
Then we want to find a polyarc of minimal number of segments such that the transition of
two segments lies on a gate.

In order to solve the problem, we use circle shooting, a generalization of ray shooting: The
idea is that we translate the border of the tolerance region into obstacles that must not be
clashed by the polyarc we are looking for. We then compute for each gate g of P the last
gate reachable from g by shooting circular arcs to the consecutive gates such that they do not
clash with obstacles. To that end we generalize circle shooting: So far only approaches are
known that shoot a circular arc from a fixed point p to line segments in order to determine
the information whether the line segments are reachable from p. Our algorithm computes not
only for a fixed point but for a fixed line segment whether another line segment is reachable.

6 CHAPTER 1. INTRODUCTION

The time complexity of that algorithm lies within O(m) time when m denotes the number of
obstacles.

We then use this approach in order obtain an algorithm using O(n4) time that computes
a not necessarily smooth polyarc with minimal number of segments as described above. This
algorithm can be seen as a generalization of the approach described in [DRS08]. In order
to improve the running time, we introduce two variants of an approximative algorithm using
O(n2) time that returns a polyarc K lying within the tolerance region of P as follows:

1. K is not necessarily smooth and at most twice as long as the optimal solution.

2. K is smooth and at most three times as long as the optimal solution.

2. Part – Consistent Labeling Based on Trajectories: In that part of the thesis
we analyze the trajectory based labeling problem. For that purpose we use the first part
as a black-box and assume that we are given a trajectory based on polyarcs. We then first
adapt already known models [BDY06, GNR11, BNPW10] for the labeling problem in order
to formalize TBLP. In particular we solve the problem how the visibility of labels and the
visibility of overlaps of labels within a given viewport can be obtained and related to the given
trajectory.

Based on that model, we present a formal definition of TBLP requiring a certain behavior
of the labels: We follow the idea that a label may only be turned on or off within the viewport,
if there exists a direct reason why the state of the label is changed, e.g., the label begins or
end to overlap with another label. We use that idea to formulate three different variants of
TBLP requiring different label behavior.

In the model definition we assume that the duration of the visibility of a label is measured
by the length of the part of the trajectory for which the label is visible within the viewport.
We also discuss the alternative that comprises the area of the label that is visible within the
viewport. We give a detailed description how that visibility can be obtained.

Further, we prove that TBLP is NP-complete and present integer linear programs (ILP)
for the different variants of TBLP. Due to the NP-completeness of TBLP we give some
heuristics for solving TBLP and compare them to the ILPs by means of an implementation
of this part of the thesis using real world data. This implementation not only comprises an
automatic mode for benchmarks, but also a mode for interactive use.

General Notes for Reading this Thesis: Before we start with the first part of the thesis,
we present in Chapter 2 foundations that are necessary for reading the thesis. Further, each
of both parts contain an own introduction explaining the considered problem more precisely
and formally than it has been done so far. These introductions also describe the structure of
the part they belong to. In order to close the single parts, each part also contains a chapter
at its end summarizing the result we have achieved.

2. Preliminaries

In this chapter we explain some basic terms that we need for both parts, as for example curves,
circular arcs and polyarcs. In the two main parts of this thesis, we then extend and adapt
those terms from to time.

Curve: We define a curve c as a function c : [a, b] → R2 where −∞ ≤ a ≤ b ≤ ∞ (see
Figure 2.1). We require that except at a and b the curve c is differentiable. In the case that a
or b is not restricted we say that c is infinite otherwise finite. In the case that a is restricted
we call a the starting point of c. We then assume without loss of generality that a = 0.
Analogously, if b is restricted we say that b is the end point of c. We then assume with out
loss of generality that b = 1. Consequently a finite curve c is defined on the interval [0, 1].
Further, we call a number r ∈ [a, b] a position on or of c. For a finite curve c with starting
point p (c(0) = p) and end point q (c(1) = q) we also often write c = (p, q).

The direction of a curve c at a position r of c is defined as the derivative of c at r. For the
positions a and b we consider the one-sided limits.

Independently from whether a curve c is finite or infinite we assume that c has a pre-defined
orientation: For two different points p1 and p2 on c we say that p1 lies before p2 if there exist
positions r1 and r2 on c such that p1 = c(r1), p2 = c(r2) and r1 < r2. Analogously, we say
that p1 lies after p2 if there exist positions r1 and r2 on c such that p1 = c(r1), p2 = c(r2)
and r1 > r2. Thus, the starting point of a finite curve c lies before the end point of c occurs.
Note that in the case in which c intersects itself a point p1 can lie before and after a point p2.
The orientation of a curve also induces the terms left and right.

A curve c intersects itself if there are two positions r1 and r2 with r1 6= r2 on c such
that c(r1) = c(r2). We call a curve c a non-self-intersecting-curve if it does not intersect itself.
A curve c = (p, q) intersects or crosses another curve c′ = (p′, q′) at a point s if s is a point
of both curves, s 6∈ {p, q, p′, q′} and both curves switch sides at s. We also say that c and c′

intersect if there is at least one common point where both curves intersect each other. If c
and c′ have a point s in common but they do not intersect each other at s we say that they
touch each other at s.

For a finite directed curve c = (p, q) from p to q we call the semi-line ←−c which starts at p
having the opposite direction as c has at p the backward directed tangential continuation of c.
Analogously, we call the semi-line −→c which starts at q having the same direction as c has at q

left

right

c

c1

c2

c3

p
q

−→c←−c

Figure 2.1: Illustration of a curve c = (p, q). The curve c1 intersects c while the other two
curves c2 and c3 touch c.

7

8 CHAPTER 2. PRELIMINARIES

p1 p11

right kink left kink inflection point

l1 l10

Figure 2.2: Illustration of a polygonal chain. The illustrated polygonal chain first has three
right kinks, then three left kinks and finally two right kinks and one left kink.

the forward directed tangential continuation of c. Then we call the curve e assembled by ←−c , c
and −→c having the same orientation as c the extension of c.

On the geometric level we can imagine a curve c as a trajectory in the plane.

Lines: On the analytic level we see a line l as a curve with constant derivative and assume
implicitly that l is oriented. On the geometric level a line l is defined as usual by two points p
and q. In the finite case we call l = (p, q) a line segment which we also denote by pq.

Polygonal Chain: A polygonal chain P is a sequence of points p1, . . . , pn in the plane (see
Figure 2.2). We often identify the consecutively connecting line segments l1 = p1p2, . . . , ln−1 =
pn−1pn with P and also write P = (l1 = p1p2, . . . , ln−1 = pn−1pn). We call p1 the starting
point of P and pn the end point of P . Further, we call the intermediate points p2, . . . , pn−1
the kinks of P . More precisely a kink pi is a left kink if pi+1 lies to the left of the extension
of li−1 or on it. Analogously, a kink pi is a right kink if pi+1 lies to the right of the extension
of li−1 or on it. We call a kink pi an inflection point of P if the previous point pi−1 is a kink
of the opposite type.

Circular Arc: A circular arc is a segment of a circle. On the geometric level we therefore
define a circular arc A by three points p1, p2 and p3, where p1 is the starting point and p3 is the
end point (see Figure 2.3) and say that A goes from p1 to p3. We also write A = (p1, p2, p3).
If p2 is not specified yet, we write A = (p1, ·, p3), that is A is an arbitrary arc starting at p1
and ending at p3. From this direction we derive the terms left and right. Going the arc along
from p1 to p3, we also use terms describing a chronological order (e.g. first the arc touches a
left obstacle, then a right obstacle).

For a clockwise oriented circular arc A we also write
−→
A , and call it more short clockwise

arc (CA). Analogously, for a counterclockwise oriented circular arc A we also write
←−
A , and

call it more short counterclockwise arc (CCA).
The corresponding circle of a circular arc is the circle that has the identical center and

radius as A.
In order to have a flowing transition between clockwise arcs and counterclockwise arcs we

also describe an arc A = (p, ·, q) by its two end points and by its outgoing direction Φ(A) ∈
[−π,+π] that defines the direction of A at q regarding the line segment pq and the tangent
of A at q (see Figure 2.3). A negative outgoing direction is identified with clockwise arcs, a
positive outgoing direction is identified with counterclockwise arcs. Φ(A) = 0 means that A is
a line segment, in this case A is both a clockwise arc and a counterclockwise arc. Analogously,
we can define the incoming direction which is identified with the direction of A at p.

9

A

C

p1

p2

p3

φ(A)

left

right

Figure 2.3: Illustration of the concept of arcs. A clockwise arc A and its corresponding circle C
with a negative outgoing direction Φ(A).

Polyarc: A polyarc is a sequence (A1, . . . , Am) of circular arcs such that each arc Ai with 1 <
i ≤ m starts at the point where its direct predecessor ends. By definition of a circular arc,
each polygonal chain is also a polyarc. In particular this means that every statement about
polyarcs are also true for polygonal chains. We call a polyarc smooth if for all arcs Ai, Ai+1

with 1 ≤ i < m it is true that the outgoing direction of Ai is equal to the incoming direction
of Ai+1.

Consecutively Disjoint: We call a sequence O1, . . . , On of objects consecutively disjoint,
if all consecutive pairs Oi, Oi+1 with 1 ≤ i < n are disjoint.

Operations on Sequences: Given two sequences A = (a1, . . . , an) and B = (b1, . . . , bm) of
arbitrary objects then we define the following operations on A and B:

A+B := (a1, . . . , an, b1, . . . , bm)

A ∪B := {a1, . . . , an} ∪ {b1, . . . , bm}
A ∩B := {a1, . . . , an} ∩ {b1, . . . , bm}

For a sequence O1, . . . , Om of sequences of arbitrary objects we write for O1 +O2 + . . .+Om
more shortly (O1, . . . , Om).

Part I

Trajectories Consisting of Circular
Arcs

11

3. Introduction

In this part of the thesis we take a detailed look at polyarcs: As already mentioned in Chap-
ter 1, in the second part of this thesis we then make use of those chains in oder to model the
trajectory of a tracking shot of a camera moving over a given map. To that end we assume
that we are given some polygonal chain P that describes that tracking shot. For example
we could have obtained P by computing a shortest path on a street network underlaying the
map. As we require that the tracking shot should not have any kinks but should be smooth,
we have to think about how a polygonal chain can be transformed into a smooth curve (see
Figure 3.1).

We also could have used some other concepts as splines (see [PBP02]), but circular arcs
and the resulting polyarcs lend themselves to be our choice: A polyarc is assembled by a
finite sequence of circular arcs that can be described by simple geometric tools. Thus, those
polyarcs can be handled efficiently by geometric algorithms, such that one still can derive
some guarantees.

In the following part, we describe different ways how polygonal chains can be transformed
into polyarcs preserving the following properties:

1. The distance between the polygonal chain P and the corresponding polyarc K should
be appropriate: Apparently, we should not transform P into an arbitrary polyarc K,
but K should sustain the shape of P such that it still conveys the course of P .

2. The polyarcK should have a minimum number of arcs and inflection points: The camera
should not lurch when moving over the map, but should move along P compensating
small wiggly lines of P .

To that end we define the corridor to be the area around P that contains exactly the points
having at most distance r to P , where r is a predefined number in R+. Then we describe
different approaches that mainly sustain the following properties of K:

K

P

Figure 3.1: A polyarc covering a polygonal chain.

13

14 CHAPTER 3. INTRODUCTION

• K starts within a certain radius around the starting point of P and

• K ends within a certain radius around the end point of P and

• the end points of the circular arcs of K lie in predefined areas and

• the circular arcs of K lie in a corridor that is formed around the polygonal chain.

In order to obtain K we follow two different approaches, which both lead to several algorithms
transforming P into K:

• The first approach is based on the idea that we first translate P into another polygonal
chain P ′, such that P ′ satisfies certain properties, e.g., minimum number of segments
or minimum number of inflection points. For that purpose we mainly use methods of
line stabbing. Afterwards, we translate P ′ into a smooth polyarc K. Applying this step,
we tolerate that some of the properties of P ′ are lost in order to obtain an aesthetically
looking chain.

This method is especially suited for the case that one wants to minimize the number of
inflection points of K without considering the number of necessary segments.

• In the second approach we try to directly find a polyarc K covering P without the
intermediate step of creating another polygonal chain. To that end we introduce a
method similar to line stabbing, but using circular arcs. Due to the nature of circular
arcs this is more time consuming than methods using line stabbing. Consequently, the
algorithms presented for this approach are more time consuming than the ones for the
first approach.

This method lends itself for minimizing the number of segments of K. We suggest
both solutions for only connected polyarcs still having kinks and solutions for smooth
polyarcs. In order to reduce the time complexity we also present some algorithms that
are approximative regarding the number of used segments, but faster.

We have structured the chapters as follows:

Chapter 4 – RelatedWork: In that chapter we shortly sketch the state of the art regarding
transforming polygonal chains into polyarcs. As we make use of some of the approaches, we
explain those in more detail, but still on an informal level.

Chapter 5 – Modeling the Corridor: As already mentioned in this introduction, we
require the polyarc to be contained within a pre-defined corridor surrounding the given polyg-
onal chain. In that chapter we describe how we model that corridor by geometric primitives
as lines and circles.

Chapter 6 – Basic Algorithms: We describe some basic approaches how a polygonal
chain can be transformed into a polyarc. While some of the approaches yield simple results,
that chapter already contains more sophisticated algorithms that make use of the first main
approach as presented before.

15

Chapter 7 – A Generalization of the Corridor: In order to introduce algorithms for
the second main approach as described above, we generalize the concept of a corridor. To that
end we take another view on the corridor of given polygonal chain P and describe it by means
of obstacles forming borders to the left and to the right of P .

Chapter 8 – Basic Algorithms for the Generalized Corridor: Based on the previous
chapter we then introduce algorithms working on the generalized corridor. First, we explain
how single arcs partly crossing the corridor can be obtained, and afterwards we describe
procedures how those arcs can be assembled to one polyarc such that it consists of a minimum
number of arcs.

Chapter 9 – Advanced Algorithms for the Generalized Corridor: In that chapter
we describe some optimizations of the previous introduced procedures and resolve drawbacks
of those procedures.

Chapter 10 – Handling Special Cases: Finally, we consider some special cases that we
have excluded before: For example so far we assume that the vertices of the given polygonal
chain have a certain distance in order to avoid the overlapping of certain parts of the corridor.
In that chapter we adapt the previous introduced algorithms for those special cases.

Chapter 11 – Conclusion: In the last chapter we summarize the results we have achieved
in the previous chapters and discuss future work that can be done for transforming polygonal
chains into polyarcs.

4. Related Work

Finding a polyarc K covering a given polygonal chain P is a special case of the problem of
finding an approximating curve of P . For that general case splines are an well studied approach
[PBP02]. However, as already mentioned in the introduction of this part, we consider polyarcs
instead of splines due to their simplicity.

Covering a polygonal chain by a polyarc based on a corridor is closely related to the
visibility problem in simple polygons: If we assume that we model the corridor as a simple
polygon, one elementary question is whether one can reach a point or edge of the polygon
from a fixed point by means of a circular arc contained in that polygon.

In the case that one uses lines instead of circular arcs the problem is normally called
ray shooting. It has been extensively investigated in [CG89, AGT86]. When using circular
arcs the problem is often called circle shooting [CW95, AS93]. Running times for solving the
circle shooting problem normally lie within O(n log n) time for pre-computing query structures
and in O(log2 n) time for a request if n is the size of the polygon, whereat the needed time
depends on how the pre-computation is done. All solutions have in common that they make
the assumption that one has given a fixed point for that one wants to solve the visibility
problem.

In the next section we sketch the results made by Drysdale et al. [DRS08]. They have
introduced two algorithms for finding a polyarc covering P . Then in the following section we
sketch the results achieved by Guibas et al. [GHMS91]. They have introduced fast line stabbing
algorithms in order to cover a sequence of circles. Later on we will use those algorithms as
one starting point for further algorithms.

4.1 Computing Polyarcs

In [DRS08] two algorithms are introduced for finding a polyarc K covering a given polygonal
chain P = (p1, . . . , pn) such that K respects the order of P and lies within a given corridor
which is called tolerance region R of P (see Figure 4.1). In order to preserve the order of P
they assume that P is divided into sub-regions by so called gates g1, . . . , gn. Each gate gi is
modeled by a line segment that goes through pi. Then the idea is that K has to cross all gates
in their particular order.

For the tolerance region R the authors require the following three properties:

1. “R is a simple polygon passing through all gate endpoints.”

2. “R does not intersect the interior of gates or cross the segments connecting corresponding
endpoints of successive gates.”

3. “No line through two points on successive gates gi and gi+1 crosses the portion of R
connecting gi with gi+1.”

It is remarkable that line segments of P which closely lie together can restrict the sub-
region of the other line segment (see gray regions in Figure 4.1). For a detailed description of
how to determine R they refer to [HE05].

17

18 CHAPTER 4. RELATED WORK

g1

g2

g3

g4

p1

p2

p3

p4

ε

Figure 4.1: The tolerance region of a polygonal chain. Shows the tolerance region R with
gates g1, . . . , g4 surrounding the polygonal chain p1, . . . , p4 such that the gray regions do not
belong to R. The drawing is inspired by Figure 1 of [DRS08].

The two main restrictions for the polyarc K covering P is that it must completely be
contained in R and that each circular arc of K must begin at a point pi of P and end at a
point pj of P with i < j.

First Algorithm: The first algorithm that they introduce yields a polyarc K that is not
necessarily smooth. The main idea of the algorithm is that for a point pi and a gate gj
through a point pj one can locate the centers of all circular arcs going through pi and gj in
two wedges wj and w′j located between pi and gj (see Figure 4.2a): The wedges are formed
by the two bisectors b1 and b2 between pi and q and pi and q′, where q and q′ are the end
points of gj . Based on this construction one can find for all following gates gi+1, gi+2, . . . of pi
corresponding wedges (wi+1, w

′
i+1), (wi+2, w

′
i+2), . . . (see Figure 4.2b).

Then the intersection of those wedges form the region of all centers for arcs going from pi
through all gates that are involved in that intersection. This observation can be systematically
used in order to obtain a graph encoding for each vertex pi the reachable gates. Then based
on an algorithm for the shortest path problem one can find a minimum long sequence of
connected circular arcs. The authors of [DRS08] prove that this algorithm needs O(n2 log n)
time.

Second Algorithm: The second algorithm makes use of biarcs, that is, a special composi-
tion of two circular arcs [HE05, Bol75]. The authors of [DRS08] characterize a biarc Bij with
end points pi and pj as:

• “Bij consists of two consecutive circular arcs a1, a2”

• “a1 is an oriented arc from pi to point pjoint and a2 is an oriented arc from pjoint to pj ;”

• “a1 matches the [pre-defined] tangent vector ti at the point pi and a2 matches the [pre-
defined] tangent vector tj at pj ;”

• “both arcs have a common tangent at pjoint , the joint of the biarc.”

They use the important observation that the locations of pjoint can be described by a circle,
which they call joint circle. By means of circle shooting they then determine for a point pi
of P the joint circles for pi+1, pi+2, . . . until they reach a point pj , such that the joint circle
of pi with pj+1 does not lie within R. Then they use those joint circles in order to obtain

4.2. LINE STABBING 19

1
2

1
2

1
2

1
2

c1

A1

c2

A2

pi

pj

gj

b1

b2

q

q′

w′
j

wj

(a) The gray wedges formed by the
two bisectors b1 and b2 of pi and q
and pi and q′ contain all centers of
possible arcs connecting pi with gi.

pi

pi+1

gi+1

wi+1

w′
i+1

wi+2

w′
i+2

gi+2

pi+2

A

(b) The gray wedges formed by the two bisectors b1
and b2 of pi and q and pi and q′ contain all centers
of possible arcs connecting pi with gi.

Figure 4.2: Region for centers.

O1 O2

t

t′

(a)

t

t′
Oi

(b)

Figure 4.3: Illustration of the corridor based on tangents. Inspired by Figure 13 and 14 of
[GHMS91].

biarcs lying in R. For the procedure they assume that for each point pi in P a tangent ti is
given, which is not defined explicitly.

4.2 Line Stabbing

In [GHMS91] the authors present based on [EW91] two algorithms for stabbing a line l through
a consecutively disjoint sequence O = (O1, . . . , On) of convex objects such that a maximum
long prefix O1, . . . , Oi is covered with respect to the order of those objects. We say that a line
segment l covers a sequence O1, . . . , Oi of objects with respect to their order, if one can find
for each object Oj with 1 ≤ j ≤ i a line segment of l′ that covers O1, . . . , Oj−1 not covering Oj .
They solve the problem of finding l in O(i) time and space using a algorithm based on greedy
methods.

20 CHAPTER 4. RELATED WORK

Mainly they iteratively go through the sequence of objects creating successively a corridor
whose existence is a witness for the existence of a line stabbing through the corresponding
objects. To that end the corridor is modeled by means of outer tangents between well-chosen
objects of the considered sequence such that it is guaranteed that the lines stabbing the
objects must lie within this corridor. Figure 4.3a illustrates the base case in which the corridor
comprises the first two objects O1 and O2. Figure 4.3b shows the corridor for the case that it
is already extended to the object Oi.

Further, they maintain two inner tangents t and t′ between objects of the already considered
sequence O1, . . . , Oi such that all lines stabbing the objects O1, . . . , Oi lie within the wedge
formed by t and t′, while t and t′ are obtained by means of the corridor. Then the basic
observation is that the object Oi can also be stabbed, if it lies at least partly in that wedge.

On that account it is crucial to be able to compute inner and outer tangents between
convex objects in order to use those algorithms. For circles it is easy to compute inner and
outer tangents. For convex polygons we refer to [OvL81] which describe in more detail how
one can maintain convex hulls dynamically: As a byproduct they also explain how to compute
outer tangents between two convex polygon using O(m logm) time and how to compute inner
tangents using O(m log2m) time, when m is the size of those polygons.

Back to [GHMS91]: They also adapt the approach as described above in order to be
capable to handle circles C1, . . . , Cn of unit size that may overlap. Since then the term of
stabbing is not unique anymore, they define four different types of stabbing order, which are
listed in the following:

1. l must exit the circles in the given order.

2. l must enter the circles in the given order.

3. l must exit and enter the circles in the given order.

4. l must hit pre-defined points p1, . . . , pn which lie in C1, . . . , Cn in the given order.

The problem of finding a maximum long prefix C1, . . . , Ci that can be stabbed by a line l
is then solved on the base of the algorithm described before. For the first three cases they
give algorithms that need O(i) time. For the last variant they offer a solution within O(i log i)
time, but all of the four variants need O(i) space. Later on when we make use those algorithms
we consider line segments that satisfies the first or the second variant.

In the final part of their work they present an algorithm for translating a polygonal chain P
into a simplified polygonal chain P ′ such that the line segments of P ′ stabs circles of given
radius which can be drawn around the vertices of P . To that end they consider the corridor
that arises considering those circles and their convex hull. They offer three possible locations
of the vertices of P ′:

1. The vertices may lie anywhere.

2. The vertices must lie somewhere within the corridor of P .

3. The vertices must lie within the pre-defined circles around the vertices of P .

Depending on whether one requires that the circles are consecutively disjoint and depending
on the visiting order, they give algorithms that need O(n2 log n), O(n2 log2) and O(n) time.
In this thesis we are mainly interested in the case that the objects are consecutively disjoint

4.2. LINE STABBING 21

so that one can solve that problem in O(n) time, respectively. Later, in Section 6.2 we suggest
an alternative algorithm for that case also using O(n) time bringing some benefits for our
purposes.

5. Modeling the Corridor

In this chapter we want to describe in more detail how we model the corridor for a given
polygonal chain P = (l1 = p1p2, l2 = p2p3, . . . , ln−1 = pn−1pn): As already mentioned in
Chapter 3, the corridor C of a polygonal chain consists of all points that have distance at
most r to P , where r is a pre-defined positive number. In order to be able to work with C we
describe C by geometrical primitives, namely line segments and circular arcs.

To that end we translate each line segment li = pipi+1 of P into a corridor segment as
presented in Figure 5.1a. We call the circles Ci and Ci+1 of radius r around pi and pi+1

connecting circles. For the beginning we assume that all connecting circles have the same
radius and that they are consecutively disjoint. In Chapter 10 we will discuss how to soften
these restrictions. But up to that chapter we always assume implicitly that those circles are
consecutively disjoint, if we do not state it otherwise. The border of the corridor segment is
defined by the outer tangents of Ci and Ci+1. Since li is oriented we can distinguish a left and
right border of the corridor segment.

Now we can define the corridor C of a polygonal chain as the sequence of the single corridor
segments obtained from l1, . . . , ln−1 (see Figure 5.1b). Obviously, the border of that construct
encircles exactly those points which have at most distance r to P . Further, we extend the
notion of left and right borders canonically to the corridor.

But if we only use the silhouette of the corridor for finding a polyarc K it could be that
we use arcs that do not come close enough to all points of P , that is, there are some points
on P which have a distance to K greater than r (see for example arc A′ in Figure 5.1b). On
that account we also involve the connecting circles of C in order to define when a circular arc
lies within C.

An arc A lies in a corridor segment if it is completely contained in the silhouette of the
segment. Further, A lies in a given corridor C if we can divide A into a polyarc of sub-arcs such
that each sub-arc lies within a corridor segment and each connection point of two consecutive
sub-arcs lies in a connecting circle of a corridor segment. By requiring that the connection
points of the sub-arcs must lie in the connecting circles we ensure that A is close enough to
the end points of the line segments in P .

For example in Figure 5.1b, the arc A lies in the given corridor C because we can divide A
into two sub-arcs such that each sub-arc is completely contained in the silhouette of a corridor
segment and both sub-arcs are connected within a connecting circle. In contrast A′ does not
lie in C because although it lies in two corridor segments, it cannot be divided into two sub-
arcs S1 and S2, such that the connection point of S1 and S2 lies in a connecting circle and
each of both sub-arcs are completely contained in a corridor segment.

Now we want to introduce the notion of covering in order to be able to precisely talk about
polyarcs that lie within a given corridor:

Definition 5.1. A sequence of circles C1, . . . , Cn is covered by a polyarc K with respect to
their order if

1. each circle Ci (1 ≤ i ≤ n) has some points PCi in common with K and

23

24 CHAPTER 5. MODELING THE CORRIDOR

r r
li

pi pi+1

(a) A single corridor segment based on the line segment li.

li

li−1

li+1

pi−1

pi
pi+1

pi+2

A

A′

(b) A corridor C for three line segments. By definition A
lies in C, while A′ does not lie in C.

Figure 5.1: Illustration of the concept of arcs.

C1

C2

C3

C4

C5

pK

K ′

Figure 5.2: Illustration of a polyarc covering circles. While K covers all circles with respect
to their order, the polyarc K ′ does not.

2. for each circle Ci (1 < i ≤ n) there is a point p ∈ PCi such that the prefix of K that
ends at p has with all circles C1, . . . , Ci−1 common points.

Note that the definition is well-formed because we require that K is oriented. On that
account we can speak about the prefix of K. Figure 5.2 illustrates the notion of covering
circles: We also allow that K first enters C4 before it enters C3. In that case C4 and C3 must
overlap and K must have at least one point p in common with the overlapping area.

We then extend this definition to the notion that K covers a corridor:

25

Definition 5.2. Given a polygonal chain P = (p1, . . . , pn) with corridor C and connecting
circles C1, . . . , Cn, a polyarc K covers the corridor C of P , if

1. all segments of K lie in C and

2. all connecting circles of C are covered with respect to their order.

The first requirement mainly ensures that K is adapted to C closely enough, while the
second one also ensures that the required order is maintained.

Finally we also want to introduce some abbreviations: We denote the corridor segment
consisting of the connecting circles Ci and Cj by (Ci, Cj). We define the sub-corridor of C that
starts with Ci and ends with Cj by C[Ci, Cj] (where i < j). Conceptually, we restrict the given
polygonal chain P to the sub-chain S starting with pi and ending with pj . Then C[Ci, Cj] is
equal to the corridor of S.

6. Basic Algorithms

In this chapter we present two algorithms for computing a polyarc K covering the corridor C
of a given polygonal chain P . In Section 6.1 we present an intuitive algorithm that directly
resolves the kinks of a polygonal chain in order to obtain K. In Section 6.2 we then introduce
an algorithm that first simplifies P to another polygonal chain P ′ such that P ′ consists of a
minimum number of line segments and inflection points still covering C. Then, based on the
previous algorithm we translate P ′ into a polyarc.

6.1 A Simple Algorithm for Gaining a Smooth Polyarc

In this section we introduce an algorithm using O(n) time that translates a given polygonal
chain P into a smooth polyarc K such that K covers the corridor of P . Mainly, the algorithm
follows the intuitive idea to translate left and right kinks in a combination of circular arcs. A
similar concept has already been used in [FL91].

Since we normally do not want to translate every kink of P into circular arcs, but would
like to have the possibility to cover several kinks by one segment of K, we assume that we also
have given a polygonal chain P ′ that simplifies P . Then we work on P ′ and the corridor C of P
in order to obtain K. The idea is that we choose P ′ based on P such that P ′ is optimal with
respect to criterion, e.g., P ′ consists of a minimum number of inflection points. In Section 6.2
we explain in more detail how to gain P ′, but for the moment assume that P ′ is given.

Translating P ′ into K can yield a loss of its optimality, but we introduce a threshold by
which we can control how close K is adapted to P ′: The closer K is adapted to P ′ the smaller
the circular arcs are. On that account we still give the user of the algorithm the decision
between optimality and quality of K.

Of course we have to require properties from P ′ so that we can always translate it into K
such that K respects the corridor of P . In order to be not too restrictive P ′ must only satisfy
the following property:

Property 6.1. P ′ covers the connecting circles of C such that each line segment of P ′ covers
at least two circles.

We now explain how one can translate two consecutive line segments of P ′ into a polyarc
that we can directly use for K. For that purpose we assume that P is given as P = (p1, . . . , pn)
and P ′ is given as P ′ = (l′1 = p′1p

′
2, . . . , l

′
m−1 = p′m−1p

′
m). Let C1, . . . , Cn be the sequence of

connecting circles of C, then we know for two l′i and l
′
i+1 in P ′ that l′i and l

′
i+1 meet around

a corridor segment (Cj , Cj+1), that is, l′i covers at least Cj of both circles and l′i+1 covers at
least Cj+1 of both circles (see Figure 6.1).

We divide the algorithm into two steps:

1. For two consecutive line segments l′i and l
′
i+1 we check whether the point p′i+1 lies out-

side (Cj , Cj+1). If that is the case we replace that kink with two other kinks having the
same orientation.

2. We resolve the kinks introducing arcs bridging those kinks.

27

28 CHAPTER 6. BASIC ALGORITHMS

l

Cj Cj+1

Cj−1 Cj+2

l′i l′i+1

p′
i+1

q q′

(a) The right kink lies outside the corridor segment.

l

l′i l′i+1

p′
i+1

Aq q′

(b) The right kink lies inside the corridor segment.

Figure 6.1: Resolving right kinks.

We now explain both steps in detail. Since left and right kinks can be handled analogously,
we only consider right kinks explaining both steps.

First Step: We go through all line segments of P ′ and check for two consecutive line seg-
ments l′i and l

′
i+1 whether p′i+1 lies outside the corridor segment (Cj , Cj+1) (as defined above).

As already mentioned we assume that p′i+1 is a right kink. If p′i+1 lies outside of (Cj , Cj+1),
we can conclude that p′i+1 must lie to the left of (Cj , Cj+1), because otherwise l′i could not
cover Cj , while l′i+1 is covering Cj+1. We resolve the right kink at p′i+1 by introducing two
new right kinks, that lie within (Cj−1, Cj), (Cj , Cj+1) or (Cj+1, Cj+2). To that end we draw a
line l through (Cj , Cj+1) such that l is parallel to the borders of (Cj , Cj+1) (see Figure 6.1a).
Since both l′i and l

′
i+1 intersect the left border of (Cj , Cj+1) and both lines cover at least two

circles, we know that l intersects both lines in points q and q′ forming right kinks such that q
and q′ lie within (Cj−1, Cj), (Cj , Cj+1) or (Cj+1, Cj+2). Conceptually, we then replace p′i+1

with q and q′ in P ′.
We do not explain which of the possible lines going through the corridor one should take. It

is likely that one want to take a line that lies to the left of pjpj+1 connecting the centers of Cj
and Cj+1, because then one increases the distance between q and the right border of (Cj , Cj+1)
and the distance between q′ and the right border of (Cj , Cj+1). Why this can be useful is
explained after we have described the second step.

Second Step: After applying the previous step, we now can assume that all kinks lie within
the corridor. Again we iterate through all line segments of P ′ including the new ones added
in the first step. For two consecutive lines l′i and l

′
i+1 we resolve the kinks as follows (again

explaining only right kinks): Let l be the bisector of l′i and l
′
i+1, then we draw an arc A such

6.1. A SIMPLE ALGORITHM FOR GAINING A SMOOTH POLYARC 29

A

l′i
l′i+1

A1

A2

(a) Alternative for the case that the A (dotted) has
a too small radius.

l′i l′i+1

A1

A2

(b) Alternative for the case
that the angle between l′i
and l′i+1 is too small.

Figure 6.2: Alternative constructions.

that its center lies on l and A touches l′i and l
′
i+1 in points q respective q′ (see Figure 6.1b).

Further, we require that A lies within in the corresponding corridors and that q lies on the
second half of l′i and q

′ lies on the first half of l′i+1. The two last requirements guarantee that
we obtain a smooth chain when apply the same approach on the previous and the following
kink.

We again leave the question be unanswered how to choose the arcs exactly. For aesthetic
reasons we suggest maximizing the radius of the arcs, such that they cover the corridor as
much as possible. Analyzing both steps, we can state that none of the steps increases the
number of inflection points in P ′, because we only consider one kink type.

However, K can have more segments than the original polygonal chain P ′ has: Since in
the first step we introduce for each kink at most two vertices (q and q′) but delete one (p′i+1),
we obtain at most 2m vertices after the first step, if m is the number of vertices in P ′. In
the second step we introduce for each intermediate vertex one arc, such that we introduce at
most 2m − 2 vertices in total in the second step. Summarizing we obtain at most 4m − 2
vertices. Since due to Property 6.1 it is true that m ≤ n we also can conclude that K has at
most 4n− 2 vertices, where n is the size of P . The following theorem sums up the results:

Theorem 6.1. Given two polygonal chains P and P ′ such that P ′ satisfy Property 6.1. Let n
be the number of vertices in P , then we can obtain a smooth polyarc K such that

1. K has at most 4n− 2 vertices and

2. K has the same number of inflection points as P ′

in O(n) time and O(n) space.

Alternative Constructions: Depending on P ′ it is possible that the arcs in K are shorter
than desired or have a small radius. We show how one can solve this problem based on
thresholds. Again, we only discuss right kinks, since left kinks can be handled analogously:

We observe that if l′i and l
′
i+1 meet in a right kink at the point p′i+1, then the radius of the

arc A bridging p′i+1 becomes smaller the closer p′i+1 lies to the right border of the corridor.
We suggest a solution based on a threshold rmin stating the smallest allowed radius: If all
possible arcs bridging p′i+1 fall short of rmin, then we introduce the solution as depicted in
Figure 6.2a: We smoothly continue the line segment l′i by an arc A1 and let A1 fade to another
arc A2 touching l′i+1.

Analogously, we introduce alternative constructions for the case that the angle between l′i
and l′i+1 is smaller then a pre-defined threshold αmin(see Figure 6.2b).

30 CHAPTER 6. BASIC ALGORITHMS

Note that both corrections are only suggestions and that there are many other alternative
constructions. In order to keep the number of newly introduced segments and inflection points
small, one should think about constructions that consist of few segments and inflection points.
Although we lose the optimality regarding P ′, such constructions avoid too small radii and
angles. For the presented alternative constructions the next lemma follows directly:

Lemma 6.1. Using the presented alternative constructions K has at most twice as many
inflection points as P ′.

6.2 A Polyarc with Minimum Number of Inflection Points

Based on the section before, we introduce an approach that yields for a given polygonal
chain P = (p1, . . . , pn) a smooth polyarc K, such that K has a minimum number of inflection
points. Let C1, . . . , Cn be the connecting circles of the corridor C of P , then the main idea is
to find a polygonal chain P ′ such that

1. P ′ covers C satisfying Property 6.1 (see Page 27) and

2. P ′ has a minimum number of inflection points.

Since P ′ satisfying Property 6.1, we then can apply the approach of Section 6.1 in order to
obtain K. Depending on whether we also use alternative constructions in order to compensate
small angles and radii we either get a solution where K has the same number of inflection
points as P ′ or at most twice as many.

We therefore focus on the question how to obtain P ′. Mainly we try to find a minimum
number of line segments l1, . . . , lm covering the circles C1, . . . , Cn with respect to their order.
In [GHMS91] the authors suggest a similar method based on line stabbing, which also results a
polygonal chain P ′ that covers all circles (see Section 4.2). We present the following algorithm
as an alternative which persuades with its simplicity. Further, it allows to plug in different
methods for covering circles by one line. For example for circles of the same radius there
are fast algorithms for line stabbing, while for circles of different sizes that may overlap the
algorithms become slower (see [GHMS91] and [EW91]).

Besides, introducing our algorithm goes along with introducing terminology that are help-
ful for proving that P ′ has a minimum number of inflection points, which is not proven in
[GHMS91]. The main concept of this section is presented in the following definition:

Definition 6.1. Given a sequence S = (C1, . . . , Cn) of circles, then we call a line b a bridge
with anchors Ci, Cj and Ck (1 ≤ i ≤ j < k ≤ n) if

1. b covers the sequence Ci, . . . , Cj , . . . , Ck with respect to their order, and

2. Ck is the last circle in S that can be covered by a line that also covers Cj, and

3. Ci is the first circle in S that can be covered by a line that also covers Cj and Ck.

Figure 6.3 illustrates the presented definition: The idea of a bridge is starting from a
circle Cj we want to stab as many successors of Cj as possible and then based on those
circles we want to cover as many predecessors of Cj as possible. Note that Ci and Cj are not
necessarily different circles. This can happen, if going backwards from Ck the circle Cj is the
last circle that can be covered by the same line. Further, it follows directly from the definition

6.2. A POLYARC WITH MINIMUM NUMBER OF INFLECTION POINTS 31

C1

C4
C2

C7

b

b′

−→
b

←−
b′

Figure 6.3: Illustration of bridges. The figure shows the bridge (b, C1, C1, C4) and the
bridge (b′, C2, C4, C7).

that all bridges b with the same intermediate anchor Cj cover also the same first anchor Ci
and the same last anchor Ck .

Notations: We also often call (b, Ci, Cj , Ck) bridge for a bridge b with anchors Ci, Cj
and Ck and see b as an oriented line going from Ci (first anchor) through Cj (intermediate
anchor) to Ck (last anchor). Moreover, the semi-line that begins at the starting point of b and
extends b to its forward direction is denoted by

−→
b and is called the forward directed extension

of b. Analogously, the semi-line that begins at the end point of b and extends b to its opposite
direction is denoted by

←−
b and is called the backward directed extension of b.

We now introduce three procedures that helps us to compute bridges and K.

The Procedure coverCirclesWithLine: For the following part we need a procedure that
computes for a given sequence C1, . . . , Cn of circles a line l covering as many circles as possible
starting at C1. We call that procedure coverCirclesWithLine. As already presented in
Section 4.2 the authors of [GHMS91] have presented an approach for computing such a line l
using O(n) time. To that end they require that C1, . . . , Cn have the same radius or do not
overlap. Later on in Section 9.3.1 we will also describe an alternative procedure using O(n2)
time that can help to define more precisely how the line is chosen if it is not unique. But since
for the explanation of the following algorithms we only need the result of this method and are
not interested how l has been computed, we use coverCirclesWithLine as a black-box and
assume that it needs O(n) time. The next procedure is then based on this one and computes
bridges.

The Procedure bridge: If we have a sequence C1, . . . , Cn of circles and an index i with 1 ≤
i ≤ n we can easily compute a bridge b for a given intermediate anchor Ci. First we apply
coverCirclesWithLine on the sequence Ci, . . . , Cn in order to obtain a line l of maximum
length that covers the prefix of that sequence. Let Ck be the last circle covered by l, then
we apply coverCirclesWithLine on the inverted sequence Ck, . . . , C1. We again get a line b.
Let Ci be the circle with smallest index covered by b. Then by Definition 6.1 the line b is
a bridge with anchors Ci, Cj and Ck. We denote the procedure computing the bridge for a
given circle Cj by bridge. It results in a tuple (b, Ci, Cj , Ck). We need O(n) time and O(n)
space for that procedure.

The Procedure coverAllCircles: Now we can introduce a procedure that computes a
minimum sequence of bridges covering a given sequence of circles. In more detail, the pro-
cedure coverAllCircles returns for a given sequence of circles C1, . . . , Cn a minimum se-

32 CHAPTER 6. BASIC ALGORITHMS

quence b1, . . . , bm of bridges covering the circles with respect to their order such that the
intermediate anchor of a bridge bi (1 < i ≤ m) corresponds to the last anchor of its predeces-
sor bi−1. To that end we follow a greedy method: Let C be the circle of the current focus that
is set to C1 at the beginning, then we compute the bridges iteratively. In the i-th step of the
iteration we compute the i-th bridge bi by applying bridge on C1, . . . , Cn and C as the given
intermediate anchor. Let C ′ be the last anchor of bi, then we set C := C ′ before we continue
with the next iteration step. We abort the procedure when C = Cn (Algorithm 1 illustrates
the procedure).

Algorithm 1: coverAllCircles
input : A sequence C1, . . . , Cn of circles.
output: A minimum sequence b1, . . . , bm of bridges covering C1, . . . , Cn with respect to

their order, such that the intermediate anchor of bi (1 < i ≤ n) corresponds to
the last anchor of its predecessor bi−1.

C ← C1;1

m← 1;2

while C 6= Cn do3

bi ← bridge((C1, . . . , Cn),C);4

// Let C ′ be the last of the last anchor of bi.
C ← C ′;5

m← m+ 1;6

return b1, . . . , bm;7

Since a bridge (l, Ci, Cj , Ck) covers as many circles as possible from Cj to Ck which are not
covered by the previous bridge, we can conclude that coverAllCircles returns a minimum
sequence of bridges covering C1, . . . , Cn. We derive the following theorem:

Theorem 6.2. Given a sequence C1, . . . , Cn of circles. We can compute a minimum se-
quence b1, . . . , bm of bridges covering C1, . . . , Cn with respect to their order in O(n) time.

Proof. It remains to reason about the running time: As every circle acts at most as last anchor
for one bridge and as intermediate anchor for the following bridge we can observe that each
circle is covered by at most two bridges. For each bridge we need at most O(n) time. Further,
for computing a single bridge b = (Ci, Cj , Cj) we only consider the circles Ci−1, . . . , Ck+1. On
that account if we take a view from the side of amortization, we also can say that for each
circle Ci with 1 ≤ i ≤ n we spend at most O(1) time per circle. Since we have n circles we
derive the claim of the theorem.

Using those bridges we can simplify a polygonal chain P to another polygonal chain P ′.
The next procedure describes in more detail how we do this.

The Procedure simplifyPolygonalChain: Given a polygonal chain P = (p1, . . . , pn) with
corridor C and corresponding connecting circles C1, . . . , Cn. Further, let b1, . . . , bm be a min-
imum sequence of bridges covering P such that for two consecutive bridges b, b′ with an-
chors (Ci, Cj , Ck) and (Cr, Cs, Ct) it is true that i ≤ j < r ≤ k = s < t. Then the procedure
yields a polygonal chain P ′ such that P ′ satisfies Property 6.1. For a number j with 1 ≤ j ≤ n
we define Bj to be the set containing all bridges with intermediate anchor Cj . We then intro-

6.2. A POLYARC WITH MINIMUM NUMBER OF INFLECTION POINTS 33

b1

b2

−→
b1

←−
b2

p p2

q1 Cs

p1

q2

Figure 6.4: Illustration of combinable bridges. The figure shows two bridges b1 and b2 such
that the oriented extensions intersect in a point p outside of the corridor.

duce the following definition, which helps us to describe in which cases we can connect two
consecutive bridges:

Definition 6.2 (Combinable Bridges). Given a polygonal chain P of size n with corridor C
and connecting circles C1, . . . , Cn. Let Bj and Bs be two sets of bridges such that the bridges
in Bj have the anchors (Ci, Cj , Cs) and the bridges in Bs have the anchors (Cr, Cs, Ct) with i ≤
j < r ≤ s < t.

We call two bridges b1 = p1q1 ∈ Bj and b2 = p2q2 ∈ Bs combinable if
−→
b1 and

←−
b2 intersect

at a point p such that l1 = p1p and l2 = pq2 do not each intersect the border of C[Ci, Ct] twice.

Figure 6.4 illustrates combinable bridges and Figure 6.5 illustrates not combinable bridges.
In the latter case the line pkp intersects the right border of the corridor twice, so that bk
and bk+1 are not combinable.

Obviously, if b1, . . . , bm only consists of consecutive combinable bridges, we can use the
extensions of those bridges in order to obtain a polygonal chain P ′ that satisfies Property 6.1.
In particular the definition allows that both l1 and l2 intersect the border once.

Further, we make the observation for combinable bridges that if one of both line segments
intersects the border only once, the other must also intersect the border so that they can
intersect at the point p (see Figure 6.4). Consequently, p lies outside of C[Ci, Ct] and both
lines intersects the same side of C[Ci, Ct], namely either the left or right side. On that account,
if l1 and l2 intersect in a right kink, p must lie to the left of C[Ci, Ct]. Analogously having a
left kink at p it must lie to the right of C[Ci, Ct]. However, since not all consecutive bridges
are combinable, we apply the following procedure on the given bridges b1, . . . , bm:

We connect two consecutive bridges bk = pkqk and bk = pk+1qk+1 by just extending them
until they intersect. In particular we use

−→
bk and

←−−
bk+1 in order to obtain the intersection point p.

In the general case we then use p as a vertex for P ′, such that regarding the order of P ′ it
lies between the vertices obtained by the bridges bk−1, bk and by the bridges bk+1 and bk+2.
But we also have to consider three special cases describing not combinable bridges. For that
purpose let (Ci, Cj , Cs) be the anchors of bk and let (Cr, Cs, Ct) be the anchors of bk+1, then
the special cases are:

1. bk and bk+1 are parallel or

2. pkp intersects the border of C[Ci, Ct] twice or

34 CHAPTER 6. BASIC ALGORITHMS

bk

bk+1
l′

−→
bk

←−−
bk+1

pk

pk+1

qk+1qk p
p′

p′′

Figure 6.5: Illustration of non-combinable bridges. The figure shows two bridges bk and bk+1

such that the forward directed extension of bk intersects the corridor twice. The line segment l′

shows how bk and bk+1 can be connected.

3. pqk+1 intersects the border of C[Ci, Ct] twice.

In these cases we introduce a line l′ that connects bk and bk+1 such that l′ covers at least
two circles in C[Ci−1, Ct+1] and corresponds to the direction of the corridor (see Figure 6.5).
We always can introduce l′ because bk and bk+1 cover at least one common circle. We then
introduce the intersection points p′ and p′′ of l′ with bk and bk+1 in P ′ instead of p.

Obviously, we can check for the special cases in O(t− i) time. For each bridge b we have
to do this at most twice: Once when we connect b with its predecessor and once when we
connect b with its successor. Since for every circle C there are at most two bridges covering C,
we can say (amortized) that for each circle C we spend O(1) time. Hence, we obtain a running
time of O(n) time for connecting m bridges covering n circles.

From the definition of the algorithm it follows directly that P ′ satisfies Property 6.1.
It remains to show the optimality of P ′, that is, P ′ has a minimum number of inflection
points. We first show that the kink of two combinable bridges also fixes the kink of all others
combinable bridges covering the same circles:

Lemma 6.2. Given a polygonal chain P = (p1, . . . , pn) with corridor C, and connecting cir-
cles C1, . . . , Cn. Let Bj and Bs be two sets of bridges such that the bridges in Bj have the
anchors (Ci, Cj , Cs) and the bridges in Bs have the anchors (Cr, Cs, Ct) with i ≤ j < r ≤ s < t.

If there are bridges b1 = p1q1 ∈ Bj and b2 = p2q2 ∈ Bs such that
−→
b1 and

←−
b2 intersect at a

point p in a right (left) kink, then for all bridges b3 ∈ Bj and b4 ∈ Bs the following statement
is true:

If
−→
b3 and

←−
b4 intersect, then the intersection is a right (left) kink.

Proof. Assume the contrary, that is, there are two bridges b1 = p1q1 ∈ Bj and b2 = p2q2 ∈ Bs
such that

−→
b1 and

←−
b2 intersect in a right kink at a point p, but there are also two bridges b3 =

p3q3 ∈ Bj and b4 = p4q4 ∈ Bs such that
−→
b3 and

←−
b4 intersect in a left kink at a point p′. We

denote the polygonal chain (p1, p, q2) by P1,2 and the polygonal chain (p3, p
′, q4) by P3,4.

For the beginning assume that b1 6= b3 and b2 6= b4. Then there are three cases:

1. P1,2 and P3,4 do not intersect (see Figure 6.6a) or

2. P1,2 and P3,4 intersect once (see Figure 6.6b) or

3. P1,2 and P3,4 intersect twice (see Figure 6.6c).

In the first two cases we can easily find a line segment l, such that if P1,2 lies on the right
hand side of l, then P3,4 lies on the left hand side of l. In the third case we define l to be the

6.2. A POLYARC WITH MINIMUM NUMBER OF INFLECTION POINTS 35

p1 p2

p

p′

p3 p4

l

(a) 1. Case: P1,2 and P3,4 do not
intersect.

p1 p2

p
p′

p3 p4

l

(b) 2. Case: P1,2 and P3,4 intersect
once.

p1 p2

p

p′

p3 p4

l

(c) 3. Case: P1,2 and P3,4 inter-
sect twice.

p1

p2

p
p′

p3 p4

l

(d) Special Case: b1 = b3

Figure 6.6: Illustration of the proof for Lemma 6.2.

line going through both intersection points. On that account we have found a line covering
the circles Ci, . . . , Ct, a contradiction to the definition of Bj and Bs.

In the case that b1 = b3, we can use
−→
b1 as l (see Figure 6.6d) and analogously if b2 = b4

we can use
←−
b2 .

Remember that a bridge bk covers as many circles as possible starting from its intermediate
anchor. Then on account of this lemma and since the intermediate anchor of a bridge bk is
the last circle covered by the predecessor bk−1, we know that if b1, . . . , bm only consists of
consecutive combinable bridges, P ′ is optimal. It remains to show that if there are two not
combinable bridges bk and bk+1, we have to introduce a further change of left and right kinks
by connecting bk and bk+1 by a line segment l′ as described above.

We first show that if there are two non-combinable consecutive bridges bk and bk+1 then
we cannot find other bridges having the same anchors such that they are combinable. To that
end we first show that for a set Bj of bridges the oriented extensions of those bridges cannot
intersect different sides of the corridor:

Lemma 6.3. Given a polygonal chain P of size n with corridor C and connecting circles
C1, . . . , Cn. Let Bj be the set of bridges with anchors (Ci, Cj , Ck).

If k < n, then either for all bridges b ∈ Bj it is true that
−→
b intersects the right side of the

corridor of (Ck, Ck+1) or for all bridges b ∈ Bj it is true that
−→
b intersects the left corridor

of (Ck, Ck+1).

Proof. For each bridge b ∈ Bj the line
−→
b must intersect either the left or the right border

of (Ck, Ck+1), because otherwise Ck would not be the last circle that can be covered by b (see
Figure 6.7). Assume that there are two bridges b1 and b2 in Bj , such that

−→
b1 intersect the

right border of (Ck, Ck+1) and
−→
b2 the left border. Then the lines l1 and l2 extending

−→
b1 and

−→
b2

must intersect at point p forming two wedges: We can draw a line l through p and Ck+1 such

36 CHAPTER 6. BASIC ALGORITHMS

Ck
Ck+1

b1

b2

−→
b2

−→
b1

l

Figure 6.7: Illustration of the proof for Lemma 6.3. The forward directed extensions of
the bridges b1 and b2 intersect the right and left border of the corridor segment (Ck, Ck+1),
respectively.

that going along the corridor it first lies to the right of
−→
b1 and to the left of

−→
b2 and after p

to the left of
−→
b1 and to the right of

−→
b2 . As l lies within the wedges formed by

−→
b1 and

−→
b2 , it

must cover at least all circles also covered by
−→
b1 and

−→
b2 . For the same reason it also must be

contained in C[Ci, Ck]. As l covers Ck and Ck+1, it also must be contained within C[Ck, Ck+1].
Consequently, l forms a bridge covering the circles C1, . . . , Ck+1, which is a contradiction to
the definition of Bj .

We can introduce the same lemma for the case that we consider the backwards directed
extensions of bridges. Due to symmetries, the proof can be done analogously.

Lemma 6.4. Given a polygonal chain P of size n with corridor C and connecting circles
C1, . . . , Cn. Let Bj be the set of bridges with anchors (Ci, Cj , Ck).

If 1 < i, then either for all bridges b ∈ Bj it is true that
←−
b intersects the right corridor

of (Ci−1, Ci) or for all bridges b ∈ Bj it is true that
←−
b intersects the left corridor of (Ci−1, Ci).

Now we analyze the different cases of being not combinable. We begin with bridges that
are parallel:

Lemma 6.5. Given a polygonal chain P of size n with corridor C and connecting circles
C1, . . . , Cn. Let Bj and Bs be two sets of bridges such that the bridges in Bj have the an-
chors (Ci, Cj , Cs) and the bridges in Bs have the anchors (Cr, Cs, Ct) with i ≤ j < r ≤ s < t.

If there are bridges b1 ∈ Bj and b2 ∈ Bs such that b1 and b2 are parallel then there are no
two bridges b3 ∈ Bj and b4 ∈ Bs such that they are combinable.

Proof. By definition of Bj and Bs the circle Cs is the last circle covered by b1 and Cr is
the first circle covered by b2. Assume for the beginning that b2 lies to the right of b1 (see
Figure 6.8). Then

−→
b1 must intersect the left border of the corridor segment (Cs, Cs+1) and

←−
b2

must intersect the right border of the corridor segment (Cr−1, Cr). Then from Lemma 6.4 and
Lemma 6.3 we know that for all bridges b ∈ Bj the semi-extension

−→
b must intersect the left

border of (Cs, Cs+1) and that for all bridges b ∈ Bs the semi-extension
←−
b must intersect the

right border of (Cr−1, Cr).
Now assume the contrary of the claim, that is, there are two bridges b3 ∈ Bj and b4 ∈ Bs

which are combinable. Then from the previous reasoning we can conclude that
−→
b3 must

intersect the left border of (Cs, Cs+1) and
←−
b4 must intersect the right border of (Cr−1, Cr).

On that account they cannot intersect outside of C[Ci, Ct], because otherwise they would not
be combinable. But after

−→
b3 has intersected

←−
b4 it begins to lie between

←−
b4 and

←−
b2 . Either it

then intersects the right border of (Cs, Cs+1) in order to circumvent Cs+1 or it covers Cs+1.
Both are contradictions.

6.2. A POLYARC WITH MINIMUM NUMBER OF INFLECTION POINTS 37

b1

−→
b1

b2
←−
b2

Ci

Cj

Cs

Cr

Ct

Cs+1

Cr−1

Figure 6.8: Illustration of the proof for Lemma 6.5.

b1

b2 −→
b2←−

b2

pp1 q1 l1

p2

q2

Cr=s

Ci Ct

Figure 6.9: Illustration of the proof for Lemma 6.6.

We can argue analogously, if b2 lies to the left of b1.

Now we consider the cases that the lines pkp and pqk+1 intersect the border twice. Due to
symmetry we only consider one case, and derive the lemma for the other case analogously.

Lemma 6.6. Given a polygonal chain P of size n with corridor C and connecting circles
C1, . . . , Cn. Let Bj and Bs be two sets of bridges such that the bridges in Bj have the an-
chors (Ci, Cj , Cs) and the bridges in Bs have the anchors (Cr, Cs, Ct) with i ≤ j < r ≤ s < t.

If there are bridges b1 = p1q1 ∈ Bj and b2 = p2q2 ∈ Bs such that
−→
b1 and

←−
b2 intersect

at a point p and l1 = p1p intersects the border of C[Ci, Ct] twice, then there are no two
bridges b3 ∈ Bj and b4 ∈ Bs such that they are combinable.

Proof. In this proof we denote the line segment pq2 by l2. We distinguish the two cases that l1
leaves the corridor the first time intersecting the left border or the right border. We begin
with the case that l1 intersects the left border:

It is easy to see that if l1 leaves the corridor intersecting the left border then it must
enter the corridor again intersecting the left border (see Figure 6.9). In order that l1 can
leave and enter the corridor it must intersect

←−
b2 at p after it has entered the corridor. On

that account it hits
←−
b2 from the left hand side forming a left kink. Thus, in order that

←−
b2

cannot cover Cr−1 it must intersect the right border of (Cr−1, Cr). Then, from Lemma 6.4
and Lemma 6.3 we know that for all bridges b ∈ Bj the semi-extension

−→
b must intersect the

left border of (Cs, Cs+1) and that for all bridges b ∈ Bs the semi-extension
←−
b must intersect

the right border of (Cr−1, Cr).
Now assume the contrary of the claim, that is, there are two bridges b3 ∈ Bj and b4 ∈ B−s

which are combinable. Since both are combinable,
−→
b3 and

−→
b4 must intersect in a point p, that

either lies in or to the right of C[Ci, Ct]. Note that p cannot lie to the left of C[Ci, Ct] because
then p would be a right kink which is a contradiction to Lemma 6.2 and the fact that

−→
b1 and

←−
b2

intersect in a left kink. But if p lies in or to the right of C[Ci, Ct] being a left kink,
−→
b1 must

intersect the right border of (Cs, Cs+1), which is a contradiction to the reasoning above.

38 CHAPTER 6. BASIC ALGORITHMS

b1
−→
b1

b2
←−
b2

Ci

Cj

Cs

Cr

Ct

Cs+1

Cr−1

l1 l2

l3

l′
b′

b′′

Figure 6.10: Illustration for alternative polygonal chains. Shows that the polygonal
chain (l1, l2, l3) has the same number pf inflection points as the solution with bridges.

The analogous lemma then says:

Lemma 6.7. Given a polygonal chain P of size n with corridor C and connecting circles
C1, . . . , Cn. Let Bj and Bs two sets of bridges such that the bridges in Bj have the an-
chors (Ci, Cj , Cs) and the bridges in Bs have the anchors (Cr, Cs, Ct) with i ≤ j < r ≤ s < t.

If there are bridges b1 = p1q1 ∈ Bj and b2 = p2q2 ∈ Bs such that
−→
b1 and

←−
b2 intersect

at a point p and l2 = pq2 intersects the border of C[Ci, Ct] twice, then there are no two
bridges b3 ∈ Bj and b4 ∈ Bs such that they are combinable.

We can combine the preceding lemmas to the following theorem:

Theorem 6.3. Given a polygonal chain P of size n with corridor C and connecting cir-
cles C1, . . . , Cn. Let Bj and Bs two sets of bridges such that the bridges in Bj have the an-
chors (Ci, Cj , Cs) and the bridges in Bs have the anchors (Cr, Cs, Ct) with i ≤ j < r ≤ s < t.

Two bridges b1 ∈ Bj and b2 ∈ Bs are combinable if and only if for all pairs (b3, b4) ∈ Bj×Bs
it is true that b3 is combinable with b4.

Proof. “⇒” Follows directly from Lemma 6.5, Lemma 6.6 and Lemma 6.7.
“⇐” True due to simple logical considerations.

Up to now we only have compared combinable bridges of the same set Bj and Bs, but it
also could be that we can avoid the change between left and right kinks effected by l′, if we
cover the same circles as covered by Bj and Bs by three connected line segments l1, l2 and l3
such that they are not of maximum length (see Figure 6.10). We use the notation of that
figure. We know that the kink between b′ and l1 is always the same independent from how
we choose l1. Analogously, we can state the same for l3 and b′′. Since all pairs of Bj × Bs
are not combinable (Theorem 6.3), there must be a reason why: There must be circles which
can only be covered by an S-shaped polygonal chain. Independent of how we choose l1, l2
and l3, we always have to introduce a change between left and right kinks. On that account
it is consistent to choose l1 as an extension of a bridge in Bj , l3 as an extension of a bridge
in Bs and l2 as l′. Besides, the optimality of changes this also yields that P ′ is of minimum
length under all polygonal chains satisfying Property 6.1.

Finally we can introduce the next theorem summarizing the results of this section:

Theorem 6.4. Given a polygonal chain P of size n, then we can compute in O(n) time a
minimum long polygonal chain P ′ satisfying Property 6.1 such that P ′ has a minimum number
of changes between left and right kinks.

Further,we can compute a smooth polyarc covering P in O(n), such that the polygonal
chain P ′ on which K is based has a minimum length and a minimum number of intersection
points.

6.2. A POLYARC WITH MINIMUM NUMBER OF INFLECTION POINTS 39

Proof. The first part follows from the reasoning above.
For the second part we first obtain P ′ from P by applying simplifyPolygonalChain. Then

we apply the approach of Section 6.1 on P ′. We can do this because P ′ satisfies Property 6.1.

7. A Generalization of the Corridor

In this chapter we take another view on the corridor C of a polygonal chain P as defined in
Chapter 5. The idea is that the left side and the right side of C can be seen as two sequences
of obstacles that must not be clashed by the polyarc we are looking for. More precisely we
require that the elements of the right side lie to the right of the polyarc and analogously that
the elements of the left side lie to the left of the polyarc. To that end we define an obstacle
as:

Definition 7.1 (Obstacle). An obstacle is a finite open Jordan curve in the plane.

Although we define obstacles very general as curves and do the corresponding proofs based
on that assumption we normally imagine an obstacle as a line segment or a circular arc.
Especially on the implementation level it is crucial to have simple geometrical primitives
describing obstacles in order to keep the obstacles usable.

Since later on an arc A goes through a field of obstacles, such that a pre-defined set of
those obstacles lies to the left and the others to the right of A we distinguish a priori between
left obstacles and right obstacles. We define whether an obstacle lies on the correct side of an
arc:

Definition 7.2. Let A be an arbitrary arc with corresponding circle C, then we say that a
right obstacle r lies on the correct side of A if the following three statements are true:

1. If A is clockwise oriented, then r does not lie outside of C.

2. If A is counterclockwise oriented, then r does not lie inside of C.

3. If A is a straight line segment, then r does not lie to the left of C.

Analogously, we say that a left obstacle l lies on the correct side of A if the following three
statements are true:

1. If A is clockwise oriented, then l does not lie inside of C.

2. If A is counterclockwise oriented, then l does not lie outside of C.

3. If A is a line segment, then l does not lie to the right of C.

The definition is illustrated in Figure 7.1. We have to introduce the third requirement
because a line segment has both a clockwise orientation and a counterclockwise orientation
corresponding circle. On that account the definition is well-formed. Further, due to the
definition we also allow obstacles to touch arcs, that is, an arc and an obstacle may have
points in common. More precisely we define:

Definition 7.3. An obstacle o touches an arc A if o lies on the correct side of A and A and o
have at least one point in common.

41

42 CHAPTER 7. A GENERALIZATION OF THE CORRIDOR

A

r

r

l
l

r

r

r/l

l

l

(a) A is clockwise oriented.

A

r

r

l
l

r

r

r/l

l

l

(b) A is counterclockwise oriented.

Figure 7.1: Illustration of arcs and obstacles. Wedges marked with r are right obstacles and
wedges marked with l are left obstacles. The dotted obstacles do not lie on the correct side
of A, while the others do. Further bold obstacle touch A.

Figure 7.2: Illustration of the idea of gates.

Due to this definition (see Figure 7.1), we only call the relation that A and o have a
common point a touching relation if the obstacle also lies on the correct side of A. In all cases
that do not satisfy the requirements of the definition, we say that o clashes with A. This also
includes the case that o does not lie on the correct side of A and does not have any points
with A in common. Later on we define the clashing of an obstacle and an arc more precisely
in order to have terminology for defining the position of a clash.

But first we want to introduce the next concept: We know that the polyarc we are looking
for must pass the connecting circles of the corridor segments. In particular that means that
for each connecting circle C we can find a curve c contained in C which the chain must pass
through (see Figure 7.2). In accordance with [DRS08] we call those curves gates:

Definition 7.4. We call an oriented finite curve g = (π, ω) with starting point π and end
point ω a gate if

• the tangential continuations −→g and ←−g do not intersect each other, and

• ←−g and −→g do not intersect g, and

• for all points p in the plane and all points p1 and p2 on g it is true, that for all
arcs A1 = (p, ·, p1) and A2 = (p, ·, p2) that do not intersect g there is for any point p′

on g between p1 and p2 an arc A′ = (p, ·, p′) that lies between A1 and A2 and does not
intersect g.

We call the curve assembled by←−g , g and −→g having the same orientation as g the extension
of g. Since g is oriented, we say that a point q ∈ g lies to the left of a point q′ ∈ g if going
from π to ω we first visit q′ and then q.

43

g

←−g

−→g

q
q′

π

ω

e

frontback

(a) A gate g with tangen-
tial continuations.

p

c

A1

A2 π

ω

(b) The curve c is not a gate.

g
π

ω

A

A′

B

B′

(c) A ends wrongly at g and A′ starts
wrongly at g. The arc B touches g and
the arc B′ crosses g.

Figure 7.3: Illustration of a single gate. The gray curve illustrates the extension of the gate.

The definition is illustrated in Figure 7.3a. The first two requirements ensure that a gate g
does not form any kinds of loops, while the third requirement ensures that the reachable
segment on g regarding a point p can be described by a closed interval. Note that the third re-
quirement also demands that the arcs do not intersect g (see Chapter 2, curves). For example
Figure 7.3b shows a curve that cannot be a gate: We cannot find an arc between A1 and A2

which reaches p without intersecting c. Later on we will show for several geometric primi-
tives that they fit the definition of gates. But first we want to talk about some terminology
describing gates:

We call the right side of g the front of g and the left side of g the back of g. Later on we
use the front of a gate g as the side of g at which an arc may start and analogously the back
of g as the side where an arc may end. We say that an arc A starts or ends wrongly at g if it
intersects the extension of g after/before it starts/ends at g (see arcs A and A′ in Figure 7.3c).
For this definition keep in mind that the extension of g also consists of g itself.

If an arc A does not start or end wrongly at a gate g, we distinguish two types of connections
between A and g: We say that an arc A touches a gate g if A starts or ends at g and its
corresponding circle lies only on one side of the extension of the gate (see arc B in Figure 7.3c).
We also write g ‖ A in order to express that g touches A. If the corresponding circle lies on
both sides of the gate (see arc B′ in Figure 7.3c) then we say that A crosses g. We also
write g 6 | A in order to express that g crosses A.

The concept of gates is not new, but has been already used in [DRS08] by assuming that
a gate is a line segment. Due to the simplicity of line segments, we also first use line segments

44 CHAPTER 7. A GENERALIZATION OF THE CORRIDOR

as gates and assume that they are pre-defined in our corridor. In Section 9.2 we also consider
gates based on circular arcs, in order to circumvent the problem of choosing good gates which
arises in [DRS08]. We now show that line segments are gates by proving that a subset of
curves are gates.

Lemma 7.1. Let g = (π, ω) be a finite non-self-intersecting curve without inflection points
such that the tangential continuations of g do not intersect each other and do not intersect g,
then g is a gate.

Proof. By definition of g the tangential continuations of g do not either intersect each other
or g. It remains to show the third requirement of a gate. For that purpose consider an
arbitrary point p in the plane and two distinct points p1 and p2 on g. Further, let A1 = (p, ·, p1)
and A2 = (p, ·, p2) be two arbitrary arcs that do not intersect g (see Figure 7.4).

Now assume that there is a point p′ between p1 and p2 on g that is not reachable by an
arc A′ which lies between A1 and A2 such that it does not intersect g.

First assume that A1 and A2 intersect at another point t. We draw an arc A′ from p
through t to p′ (see Figure 7.4a). Since arcs can only intersect twice, the only intersection
points of A′ with A1 and A2 are p and t. On that account and due to p′ lies to the left of p1
and to the right of p2, we can conclude that from p to t the arc A1 lies firstly to the left
of A′ and afterwards to the right of A′. Analogously, from p to t the arc A2 lies to the right
of A′ and then to the left of A′. Consequently, A′ lies between A1 and A2. Due to the loss of
inflection points of g we also know that A′ does not intersect g. Note that the arguments are
independent from the orientation of the arcs.

If A1 and A2 only intersect in p, we consider the corresponding circle C1 and C2 of A1

and A2 and distinguish two cases:
If C1 and C2 intersect in another point t (see Figure 7.4b), we draw an arc A′ from p

through p′, such that it corresponding circle C ′ also goes through t. Since C ′ intersects A1

and A2 twice, A′ can only intersect A1 and A2 in p. As p′ lies between p1 and p2, A′ must
lie to the left of A1 and to the right of A2. Consequently, A′ lies between A1 and A2 and
because of g does not have any inflection points the arc A′ cannot intersect g. Again, it was
not necessary to consider the orientation of the arcs.

If C1 and C2 only intersect in p, we can find a circle C ′ that goes through p and p′ such
that C ′ only intersects C1 and C2 once (see Figure 7.4c). Then either C1 or C2 is fully
contained in C ′, while the other fully contains C ′. On that account we can use C ′ in order
to obtain an arc A′ that lies between A1 and A2. Again, we apply the argument of inflection
points in order to guarantee that A′ does not intersect g.

We can directly conclude that

Corollary 7.1. An oriented line segment πω is a gate g with starting point π and end point ω.

We do not want to generalize the corridor too much. For example we still want that two
gates representing two connecting circles of the same corridor segment can be connected by
a line segment without clashing obstacles or that obstacles between two consecutive gates do
not overlap each other. We formalize this and other technical requirements as follows:

Definition 7.5 (Feasible Constellation). Given two gates g1 = (π1, ω1) and g2 = (π2, ω2)
with extensions e1 and e2, a sequence L = (l1, ..., lm) of left obstacles and a sequence R =
(r1, . . . , rm) of right obstacles. We call the tuple (g1, g2, L,R) a feasible constellation of two
consecutive gates with obstacles if

45

t

p2

p1

p
A1

A2

A′

g

p′

(a)

p
q2

q1

p′A1

A′
A2

g

C1

C2

C ′

t

(b)

g

A1

A2

A′

p1

p2p
p′

C1

C2

C ′

(c)

Figure 7.4: Illustration of the proof for Lemma 7.1. The arc A′ is dashed.

1. r1 = π1, rm = π2, l1 = ω1, lm = ω2.

2. g1 and g2 do not have any common points.

3. There is an oriented line l crossing first g1 and then g2 such that

a) l first hits the back of g1 and then the back of g2 and

b) l has only one common point with each gate and

c) there is no left obstacle lying to the right of l and

d) there is no right obstacle lying to the left of l.

4. There is no arc touching e1, lj, li and then e2 for any i < j.

5. There is no arc touching e1, rj, ri and then e2 for any i < j.

6. Left and right obstacles do not have common points.

We often say more shortly a feasible constellation (g1, g2, L,R) with extensions e1 and e2.
Further, let (g1, g2, L,R) and (g2, g3, L

′, R′) be two feasible constellations with g1 6= g3, L∩
L′ = ∅ and R ∩ R′ = ∅ then we call the composition (g1, g3, L + L′, R + R′) also a feasible
constellation.

Figure 7.5 illustrates the definition: In particular the third requirement also states that
obstacles can have common points with l. Requirement four and five say that there is a
particular order arcs can touch left respective right obstacle. It also ensures that obstacles
between two consecutive gates cannot overlap. Figure 7.5b shows two gates with obstacles
where the fourth requirement is satisfied but the fifth is not satisfied, because we can find an
arc connecting g1 with g2 which touches first r2 and then r1.

46 CHAPTER 7. A GENERALIZATION OF THE CORRIDOR

g1 g2

r1
r2

r3
r4r5

l1

l2 l3 l4
l5

π1 π2

ω1 ω2

l

(a) A feasible constellation: r2 and r4 are dummy
obstacles.

l1 l2 l3 l4

g1 g2

r1
r2

l5

l

π1 π2

ω1

ω2

(b) Not a feasible constellation.

Figure 7.5: Illustration of a feasible constellation.

l1 l2

l3

l4

l5

r1 r2 r3 r4
r5

r6

r7

s1

s2

g1 g2

g3l6

l7

π1 π2

ω1 ω2

π3

ω3

Figure 7.6: Illustration of two corridor segments translated into gates and obstacles. The
obstacles are depicted as black and gray bold segments and points. The points l3 and l5 are
dummy obstacles. Further l1 = ω1, l4 = ω2, l7 = ω3, r1 = ω1, r4 = ω2 and r7 = ω3.

Further, we require that there is always the same number of left obstacles and right obsta-
cles (which is not satisfied in Figure 7.5b). Later we use this requirement in order to define
valid arcs. Note that this is not a real restriction, because we always can add a constant num-
ber of left and right obstacles that never clash with arcs in order to satisfy the requirement.
We call such obstacles also dummy-obstacles. Figure 7.5a illustrates how a corridor segment
can be translated into a feasible constellation where we have chosen the gates arbitrarily.

Figure 7.6 shows the translation of two consecutive corridor segments into gates and ob-
stacles: In particular the figure shows the three feasible constellations

c1 = (g1, g2, (l1, . . . , l4), (r1, .., r4)), c2 = (g2, g3, (l4, . . . , l7), (r4, . . . , r7))

and c3 = (g1, g3, (l1, . . . , l7), (r1, . . . , r7)).

The last constellation is feasible by definition because it is composed by the feasible constella-
tions c2 and c3. Note that a composed feasible constellation can consist of obstacles that may
overlap.

Since in Section 9 we discuss in more detail how one can choose gates appropriately, the
gates are depicted arbitrarily in the figures. Further, the presented translation of two consecu-
tive corridor segments induces the translation of a whole corridor C into feasible constellations.
It follows directly from the translation that the resulting feasible constellations for the single
corridor segments can be composed to one feasible constellation that comprises the whole
corridor C.

Analyzing feasible constellation we often get in touch with arcs that clash obstacles. We
already have defined the notion of clashing but we also want to have the possibility to talk
about the location of the clash:

47

g1 g2A

A′ oj

li

Figure 7.7: Clashing location of an arc. The arc A′ is witness that the left obstacle li clashes
the arc A before oj touches A.

Definition 7.6 (Clashing Location).
Given a feasible constellation (g1, g2, L = (l1, ..., lm), R = (r1, . . . , rm)) with extensions e1
and e2. Let A be an arbitrary arc and let oj be an arbitrary right or left obstacle in L ∪ R
touching A. Further, let li be a left obstacle clashing A. Then we say

1. the left obstacle li clashes A before oj if there is an arc A′ that first touches e1, then li,
then oj and finally e2.

2. the left obstacle li clashes A after oj if there is an arc A′ that first touches e1, then oj,
then li and finally e2.

We define analogously the same terminology for right obstacles.

Figure 7.7 illustrates the definition. Note that an obstacle oi can only clash before or after
another obstacle oj regarding an arc A if oj touches A. Further, by definition it is possible
that oi clashes A before and after oj . Based on this terminology we can introduce valid arcs:

Definition 7.7. Given two gates g1 and g2 with extensions e1 and e2, left obstacles L =
(l1, ..., lm) and right obstacles R = (r1, ..., rm). Then an arc A = (p1, p2, p3) is called valid
with respect to (g1, g2, L,R) if all of the following requirements are met:

(1) p1 lies on g1 and p3 lies on g2.

(2) A does not start at g1 wrongly and A does not end at g2 wrongly.

(3) All obstacles of L lie to the left of A.

(4) All obstacles of R lie to the right of A.

(5) If two obstacles oi, oj ∈ L ∪ R with i < j touch A, then the touching point of oi lies
before the touching point of oj on A.

(6) If two obstacles ri ∈ R and li ∈ L (of the same index) touch A, then either ri touches A
before li does or li touches A before ri does.

Requirement (2) says that an arc A must respect the forward direction of the gate it
reaches. In particular by requirements (5) and (6) of the definition we also want that there is
certain kind of equal valued pairs consisting of one left obstacle and one right obstacle having
the same index, that is, the definition does not require a certain touching order between a left

48 CHAPTER 7. A GENERALIZATION OF THE CORRIDOR

and right obstacle having the same index. This is more a technical detail, which is later on
used in the presented algorithms.

If an arc A passes through a sequence of gates, we denote the sub-arc of A connecting two
gates gi, gj of this sequence by A[gi, gj]. Then we can formalize the problem we want to solve
as follows:

Problem 7.1.
Given n feasible constellations (g0, g1, L1, R1), (g1, g2, L2, R2), . . ., (gn−1, gn, Ln, Rn) where
Li = (li,1, . . . , li,ki) and Ri = (ri,1, . . . , ri,ki) with ki ∈ N.

Then we want to find a sequence A1 = (p1, ·, q1), . . . , Am = (pm, ·, qm) of arcs, such that m
is minimized and

1. all arcs start and end at gates, and

2. p1 lies on g0 and qm lies on gn, and

3. pi+1 = qi for all i ∈ {1, . . . ,m− 1}, and

4. for two consecutive gates gi−1 and gi connected by the arc A, the sub-arc A[gi−1, gi] is
valid with respect to (gi−1, gi, Li, Ri), and

5. each arc Ai (1 ≤ i ≤ m) crosses all gates lying between the starting gate and the end
gate of Ai.

The fourth requirement states that between two consecutive gates gi−1 and and gi an arc
can only clash obstacles that belong to the feasible constellation (gi−1, gi, Li, Ri). On that
account arcs can clash with obstacles only locally: By means of that requirement we achieve
that two overlapping corridor segments do not influence each other, but the obstacles clash
only parts of the polyarc that actually passes the corridor segment.

So far we have formalized the problem of covering a polygonal chain by a polyarc using
the terminology of gates and obstacles, whereat we make the restriction that arcs are only
allowed to start and end at predefined gates. Later, we loosen this restriction, but in the next
chapter we first want to explain how one can solve Problem 7.1.

8. Basic Algorithms for the Generalized
Corridor

After we have described in Chapter 7 a way to generalize the corridor C, which we have in-
troduced in Chapter 5, we now present basic algorithms that work on that generalization.
In particular in this chapter we assume that we are given a sequence of feasible constella-
tions (g0, g1, L1, R1), (g1, g2, L2, R2), . . . , (gn−1, gn, Ln, Rn) based on n + 1 consecutive gates.
Each constellation represents one corridor segment of C. In Section 8.1 we first introduce a
fundamental algorithm that helps us to compute circular arcs connecting g0 with its succes-
sors g1, . . . , gn such that those resulting arcs respect the order of C. Then based on that
algorithm we explain in Section 8.2 how one can gain a polyarc (not necessarily smoothly
connected) covering C.

In order to express how an arc is clashed by obstacles we introduce the following termi-
nology describing sequences of touching events by regular expressions: Given two gates g1 =
(π1, ω1) and g2 = (π2, ω2), then we define the sequence σ(A) of touching events of A over the
alphabet Σ = {r, l, π1, π2, ω1, ω2}, where the letters have the following meaning:

r: A is touched by a right obstacle.

l: A is touched by a left obstacle.

π1: A ends at the right end point of g1 (Analogously π2, ω1 and ω2).

In order to describe the sequence σ(A) of an arc A = (p, ·, q) we use regular expressions. For
example σ(A) = [r]l∗rπ2 means that going from p to q along A, A optionally first touches one
right obstacle, then an arbitrarily long sequence of left obstacles (empty sequence included),
afterwards one right obstacle and finally A ends at π2. We also describe sequences by terms
having the shape ..x..y..z ∈ σ(A), where x, y and z are placeholders for single letter of Σ.
The expression can be interpreted as: We can remove letters from the sequence σ(A) such
that the sequence xyz remains. If .. is placed at the beginning or at the end of a sequence,
this means that the sequence does not start directly at the starting gate or at the end gate.
For example ..l..r ∈ σ(A) means, that A is touched by a left obstacle, such that the touching
point does not lie on the starting gate, and then A is touched by an obstacle from the right
side, which also can happen on the end gate. Note that for a reasonable choice of obstacles
that the only obstacles lying on a gate should be the starting and end point of the same gate.

8.1 One Starting Gate and Several End Gates

For solving Problem 7.1 we analyze a similar problem that considers only one starting gate g0
and several end gates g1, . . . , gn in order to compute the last reachable gate from g0. To that
end we try to compute to for each gate gi with 1 ≤ i ≤ n a valid arc that goes from g0 to gi:

Problem 8.1. Given n feasible constellations (g0, g1, L1, R1), . . . , (gn−1, gn, Ln, Rn) where
Li = (li,1, . . . , li,ki) and Ri = (ri,1, . . . , ri,ki) with ki ∈ N.

49

50 CHAPTER 8. BASIC ALGORITHMS FOR THE GENERALIZED CORRIDOR

Then we want to find a sequence A1 = (p1, ·, q1), . . . , Am = (pm, ·, qm) of arcs, such that m
is maximized and

1. pi lies on g0 for all i ∈ {1, . . . , n}, and

2. qi lies on gi, and

3. each arc Ai (1 ≤ i ≤ m) crosses all gates lying between g0 and gi, and

4. for two consecutive gates gi−1 and gi connected by the arc A the sub-arc A[gi−1, gi] is
valid with respect to (gi−1, gi, Li, Ri).

At the end of this section we present an algorithm for solving this problem using O(n2)
time and O(n) storage. To that end we analyze the problem step by step: First we consider
only two gates g1 and g2 and give criteria how they can be connected by valid arcs. Afterwards
we generalize this knowledge in order to solve Problem 8.1.

8.1.1 Two Consecutive Gates

In this part we consider one feasible constellation (g1, g2, L,R) and describe how g1 and g2
can be connected by valid arcs. If there is a valid arc connecting g1 and g2 we have to answer
which of the points on g2 are reachable from g1. To that end we first define sets containing
all reachable points:

Definition 8.1 (Reachable Points). Given a feasible constellation (g1, g2, L,R). For a point p
on g1 the set

−→R(p) contains all points q on g2 for which a valid arc A = (p, ·, q) exists.
Analogously, we define for a point q on g2 the set

←−R(q), which contains all points p on g1 for
which a valid arc A = (p, ·, q) exists.

We call these sets reachable points of p respective of q.
Further, we define the reachable points of g1 as

−→R =
⋃
p∈g1
−→R(p) and the reachable points

of g2 as
←−R =

⋃
q∈g2
←−R(q).

Using the following lemma we show that the reachable points of a point p on g1 or on g2
describe a closed line segment. Consequently, we can describe the reachable points of p by a
closed interval.

Lemma 8.1. Given a feasible constellation (g1, g2, L,R). For each point p on g1 its set of
reachable points

−→R(p) is either empty or it can be described by an interval [r, l] ⊆ [0, 1] on g2
such that ∀λ ∈ R : λ ∈[r, l]⇔ g2(λ) ∈ −→R(p).

Proof. Obviously,
−→R(p) can be empty for a point p on g1. If

−→R(p) is not empty, the claim
follows directly from the definition of a gate. Since obstacles are allowed to touch obstacles
the interval is closed.

For the opposite direction we can prove the very same:

Lemma 8.2. Given a feasible constellation (g1, g2, L,R). For each point q on g2 its set of
reachable points

←−R(q) is either empty or can be described by an interval [r, l] ⊆ [0, 1] on g1
such that ∀λ ∈ R : λ ∈[r, l]⇔ g1(λ) ∈ ←−R(q).

Proof. Can be proven analogously to Lemma 8.1.

8.1. ONE STARTING GATE AND SEVERAL END GATES 51

From both lemmas we can derive the following corollary:

Corollary 8.1. Both the reachable points
−→R of g1 and the reachable points

←−R of g2 can be
described by closed intervals [r1, l1] and [r2, l2].

The next step is, that we explain how one can compute the reachable points, that is, we
show how one can find unique arcs reaching the extremes of the reachable points. Due to
symmetry we restrict the following analysis on the leftmost point that is reachable from g1.

Since there can be several arcs having the same end points, we introduce the concept of
tight arcs in order to obtain unique arcs. One can imagine a tight arc as a kind of elastic strap
that is tighten by pulling its ends away from each other. Such a strap normally forms a line
segment (Φ(A) = 0), if there is not any reason why it should behave otherwise. In the case
that there is a reason for bending, than a tight arc bends as little as possible. The following
definition formalizes this observation:

Definition 8.2 (Tight Arc). Given a feasible constellation (g1, g2, L,R). Let A = (p, ·, q) be
a valid arc connecting g1 and g2. Then we call A a tight arc, if for all other valid arcs A′ =
(p, ·, q) connecting the same points holds that the outgoing direction of A′ is greater than A by
amount: |Φ(A′)| > |Φ(A)|.

Note that the definition is consistent, because two arcs connecting the same end points and
having the same outgoing direction are equal. From this observation we can directly conclude
the following lemma:

Lemma 8.3. Given a feasible constellation (g1, g2, L,R) and a tight arc A = (p, ·, q) connect-
ing g1 with g2, then A is unique.

The following lemma states that a tight arc only bends if it is necessary:

Observation 8.1. Given a feasible constellation (g1, g2, L,R) and a tight arc A = (p, ·, q)
connecting g1 with g2. Then the following statements are true:

1. If A is not touched by a left obstacle, then Φ(A) ≤ 0.

2. If A is not touched by a right obstacle, then Φ(A) ≥ 0.

3. If A is touched neither by a left obstacle nor by a right obstacle, then Φ(A) = 0.

4. If Φ(A) < 0 then there is at least one right obstacle that touches A between p and q
(..r.. ∈ σ(A))

5. If Φ(A) > 0 then there is at least one left obstacle that touches A between p and q
(..l.. ∈ σ(A))

Having this vocabulary we now characterize the tight arcs by sequences of obstacles touch-
ing them. Since we do not restrict the outgoing direction of an arc, there can occur one special
case where the obstacles are far away from the given gates. To that end we define the left
boundary respective the right boundary of two gates g1 and g2 as:

Definition 8.3 (Left Boundary/Right Boundary).
Given a feasible constellation (g1 = (π1, ω1), g2 = (π2, ω2), L,R). The left boundary of g1
and g2 is the arc A connecting ω1 with ω2 such that A touches g1 or g2 and its outgoing
direction is maximized.

Analogously we define the right boundary of g1 and g2.

52 CHAPTER 8. BASIC ALGORITHMS FOR THE GENERALIZED CORRIDOR

A′

A

g1

g2
π1

π2

ω1

ω2

Figure 8.1: Illustration of the left boundary of two gates

Figure 8.1 illustrates the left boundary: There is always one arc A connecting ω1 with ω2

such that A touches g1 and there is always one arc A′ connecting ω1 with ω2 such that A′

touches g2. The left boundary arc is the arc with maximal outgoing direction (In Figure 8.1
arc A). Later on we will explain how one can handle the special case that there is an obstacle
clashing the boundary, but for the beginning we assume that these boundaries are not clashed
by any obstacles. Then we can use the next lemma to obtain for a point p on g1 the rightmost
point on g2 that is reachable from p:

Lemma 8.4 (Fixed Starting Point).
Given a feasible constellation (g1 = (π1, ω1), g2 = (π2, ω2), L,R), such that g2 is reachable
from g1 and the left boundary of g1 and g2 is not clashed by a right obstacle. Let p be an
arbitrary point on g1 and let q be an arbitrary point in

−→R(p).
Then q is the rightmost point reachable from p if and only if for the tight arc A = (p, ·, q)

it is true that

S1: Φ(A) = 0 ∧ π2 = q, or

S2: Φ(A) < 0 ∧ ..r..π2 ∈ σ(A), or

S3: Φ(A) ≤ 0 ∧ (A ‖ g1 ∨A ‖ g2) ∧ ..r ∈ σ(A), or

S4: l..r ∈ σ(A).

Proof. “⇒": Assume that q is the rightmost point reachable from p. Then a tight arc A =
(p, ·, q) exists, because otherwise q would not be reachable from p. By Lemma 8.3, this arc is
unique. We make a case distinction between q = π2 and q 6= π2.

First let q = π2, then A touches at least one right obstacle, namely π2. If A touches also a
left obstacle between p and q, then S4 is true. If A is not touched by a left obstacle, then by
Observation 8.1 for the outgoing direction of A it is true that Φ(A) ≤ 0. If Φ(A) = 0 then S1
is true and if Φ(A) < 0 then by Observation 8.1 the statement S2 is true.

8.1. ONE STARTING GATE AND SEVERAL END GATES 53

So let q 6= π2, then we only have to show that A is of type S3 or S4: Since q 6= π2, the
arc A must touch another right obstacle, because otherwise q is not the rightmost reachable
point. If A is touched by left obstacles before it touches a right obstacle, then S4 is true. So
let left obstacles only touch A, after all right obstacles have touched A: rr∗l∗ = σ(A). We
denote the last right obstacle touching A by ri.

Assume A does not touch g1 and g2 when it is clockwise oriented, that is, S3 does not
hold. Then we can draw an arc A′ from p to a point q′ on g2, such that q′ lies to the right
of q. Further, we choose A′ such that it first lies to the left of A′ and intersects A after ri
has touched Ai (see Figure 8.2a). Note that this is only possible, because we require, that
no right obstacle clashes the left boundary arc of g1 and g2, and if A is clockwise oriented
then it does not touch g1 or g2. Since A′ first lies to the left of A and intersects A after ri
has touched A and rr∗l∗ = σ(A), we can guarantee that A′ is a valid arc. We only have to
choose the distance between q and q′ appropriately small. But then the existence of A′ is a
contradiction to that q is the rightmost point reachable from p.

”⇐“: Assume that for A = (p, ·, q) one of the four statements is true and A is a tight arc
with respect to p and q, but q is not the rightmost point reachable from p. Obviously S1
and S2 cannot be true for A, because then q would be π2, the rightmost reachable point
from g1. We therefore only consider S3 and S4. In both cases A touches at least one right
obstacle different to π1.

If q is not the rightmost point reachable from p, then there is another point q′ satisfying
this property (By Lemma 8.1 the reachable points of a given point can be described by a
closed interval). Let A′ = (p, ·, q′) be an arbitrary valid arc connecting p and q′.

Assume that S3 is true and A touches g1 (see Figure 8.2b). In order for A′ to reach a
point q′ that lies to the right of q, A′ must start with another direction at g1 as A has. If it
starts such that it lies first to the left of A, it must intersect the extension of g1: A′ has not
the same direction at p as g has. Due to the differentiability of g1 then A′ must start at g1
such that it intersects the extension of g1 again in order to reach g2. Consequently, A′ starts
wrongly from g1.

On that account, assume that A′ firstly lies to the right of A. Since A and A′ have the
point p in common, they can only intersect once more. But this is not possible, because
then A′ could not reach q′ anymore. On that account A′ completely lies to the right of A and
the only way for A to reach a right obstacle is at p. This is a contradiction to A touches a
right obstacle different to p.

Now assume that S3 is true and A touches g2 (see Figure 8.2c). Then A′ lies first to
the left of A in order to circumvent the right obstacle touching A. After A has touched the
last right obstacle, A′ intersects A the second time. Since A is clockwise oriented, A′ then is
contained in the corresponding circle of A. Due to A only touches g2, A′ cannot reach g2.

Finally let S4 be true for A (see Figure 8.2d), that is, A first touches a left obstacle li
and then a right obstacle rj . Consider the case that A′ lies first on the left hand side of A.
Consequently it must intersect A before A touches li. However,from that moment on it remains
to the right of A, so that it clashes with rj . Thus, A′ must first lie to the right side of A. In
order to circumvent rj it intersects A once. But then A′ has intersected A twice in total and
must therefore stay on the left hand side of A. On that account, A cannot reach a point q′ to
the right of q.

The following lemma shows the symmetric version of Lemma 8.4 and can be maximum
analogously.

54 CHAPTER 8. BASIC ALGORITHMS FOR THE GENERALIZED CORRIDOR

g1 g2

p
q

q′

A

A′

(a) First right then left ob-
stacles touch A.

p

q

q′

A

A′

g1
g2

(b) S3 is true for A and A ‖ g1.

g1 g2

p

q

A

A′

C

(c) S3 is true for A and A ‖ g2.

A

A′

g1
g2

p
q

q′

li

rj

(d) S4 is true for A.

Figure 8.2: Illustration of the proof for lemma 8.4.

Lemma 8.5. Fixed Starting Point (Symmetric Version) Given a feasible constellation (g1 =
(π1, ω1), g2 = (π2, ω2), L,R), such that g2 is reachable from g1 and the left boundary of g1
and g2 is not clashed by a right obstacle. Let q be an arbitrary point on g2 and let p be an
arbitrary point in

←−R(q).
Then p is the rightmost point reachable from q if and only if for the tight arc A = (p, ·, q)

holds that

S1′: Φ(A) = 0 ∧ π1 = p or

S2′: Φ(A) < 0 ∧ π1..r.. ∈ σ(A) or

S3′: Φ(A) ≤ 0 ∧ (A ‖ g1 ∨A ‖ g2) ∧ r.. ∈ σ(A) or

S4′: r..l ∈ σ(A).

Up to now we have fixed one point p either on g1 or on g2 and have described how one
can define a unique valid arc that connects the rightmost point on the other gate reachable
from p. In the following we want to discuss, how one can find a valid tight arc A = (p, ·, q)
such that q is the rightmost point on g2 reachable from g1 and p is the rightmost point on g1
reachable from q.

Definition 8.4 (Rightmost Arc/Leftmost Arc). Given a feasible constellation (g1, g2, L,R).
Let q be the rightmost point on g2 reachable from g1 and let p be the rightmost point on g1

8.1. ONE STARTING GATE AND SEVERAL END GATES 55

that reaches q, then we call the tight arc A = (p, ·, q) rightmost arc (with respect to the
direction (g1, g2)).

Analogously we define the leftmost arc of a feasible constellation.

Having this definition the following lemma generalizes Lemma 8.4 and Lemma 8.5:

Lemma 8.6 (Variable Starting Point).
Given a feasible constellation (g1 = (π1, ω1), g2 = (π2, ω2), L,R), such that g2 is reachable
from g1 with respect to the obstacles. Further there is no right obstacle clashing the left bound-
ary arc of g1 and g2. Let A = (p, ·, q) be a tight arc, then the following statement holds:

A is the rightmost arc if and only if

R1 : Φ(A) = 0 ∧ π1..π2 ∈ σ(A) or

R2 : Φ(A) < 0 ∧ π1..r..π2 ∈ σ(A) or

R3 : Φ(A) ≤ 0 ∧ (A ‖ g1 ∨A ‖ g2) ∧ r..π2 ∈ σ(A) or

R4 : Φ(A) ≤ 0 ∧ ((A ‖ g1 ∧ ..l..r.. ∈ σ(A)) ∨ (A ‖ g2 ∧ l..r.. ∈ σ(A))) or

R5 : r..l..r ∈ σ(A).

Proof. “⇒”: We assume that A = (p, ·, q) is the rightmost arc with respect to (g1, g2, L,R).
By Definition 8.4 the arc A is a tight arc and q is the rightmost point reachable from p and
vise versa. Therefore by Lemma 8.4 and by Lemma 8.5 at least one of the conditions S1-S4
and at least one of the conditions S1′-S4′ is true for A. In Table 8.1 we present the different
combinations. For the most combinations one can directly see which of the conditions R1-R5
must follow. For example if S1 and S1′ are true for A (first group, first line in Table 8.1),
then A is a straight line that starts at π1 and ends at π2. Consequently A is of type R1. Some
of the combinations cannot occur at the same time, so for example S2 and S1′ (first group,
second line in Table 8.1). For other combinations the choice of the obstacles (for example the
obstacle is a vertex of a gate or not) is crucial. That cases are indicated by a star (?). In the
following we only will discuss those cases. All of them have in common, that S3 is true for A,
that is, A is clockwise oriented, touches g1 or g2 and touches a right obstacle ri, which is not
necessarily different from π2.

Assume that further S1′ is true, then A is a straight line starting at π1. If ri = π2
then A satisfies R1. So let ri 6= π2, that is, A does not end at π2. Without loss of generality
we assume that ri is the last right obstacle touching A. Then a left obstacle must touch A
before ri touches A, because otherwise we can find a valid arc A′ going from a point p′ on g1 to
a point q′ on g2, such that p′ lies to the left of p and q′ lies to the right of q and A′ intersects A
after ri has touched A (see Figure 8.3a). We only have to set the distance between p′ and p
and the distance between q and q′ appropriate small in order to achieve that A′ is valid. On
that account A touches first a right obstacle (at π1), then a left obstacle and finally a right
obstacle. Thus, A is of type R5.

Now assume that S2′ is true, then A is clockwise oriented, starts at π1 and touches a right
obstacle rj , that must be different from π2. If ri = π2 then by the previous argumentation,
we know that A is of type R2. So assume that ri 6= π2, that is, A ends to the left of π2. We
can argue as in the previous case, that is, for the same reasons there must be a left obstacle
touching A, before A is touched by the last right obstacle. Again A is of type R5.

56 CHAPTER 8. BASIC ALGORITHMS FOR THE GENERALIZED CORRIDOR

Finally assume that S3′ is true, then (apart from the properties concluded by S3) A
touches a right obstacle rj , which is not necessarily different to π1. If ri = π2, then R3 is
true. So assume that ri 6= π2 so that A ends to the left of π2. We can argue in the same
way as above, that there must be a left obstacle touching A, before the last right obstacle
touches A. If rj = π1, then A touches first a right obstacle, then a left obstacle and finally a
right obstacle. Consequently, A is of type R5. If rj 6= π1, it can happen that all left obstacles
touch A, before any right obstacle has touched A. In this case A satisfies R4.

“⇐′′: Let for the tight arc A = (p, ·, q) one of the conditions R1-R5 be true. We have to
show that A is the rightmost arc with respect to (g1, g2, L,R), that is, q is the rightmost point
reachable from g1 and p is the rightmost point reachable from q. Obviously, when R1 or R2
is true for A this property holds.

If R3 is true for A, then it also reaches π2. Therefore q is again the rightmost point
reachable from g1. By S3′ of Lemma 8.5 we also can conclude that p is the rightmost point
reachable from q.

Now assume that R4 is true for A, that is, A is clockwise oriented, touches g1 or g2 and
first touches a left obstacle and then a right obstacle. Assume by contrary that q is not the
rightmost point reachable from g1, then there must be another valid arc A′ = (p′, ·, q′), such
that q′ lies to the right of q (see Figure 8.3b and 8.3c). In both cases g1 ‖ A and g2 ‖ A the
arc A′ must either start to the left of A or to the right of A and not at p, because due to
Lemma 8.4 the point q is the rightmost point reachable from p. If A′ starts to the left of A
in both cases it also must end to the left of A in order to circumvent the left obstacle as well
as the right obstacle. If A′ starts to the right of A in the first case (g1 ‖ A), A′ intersects
the corresponding circle of A twice before it reaches g2. On that account it must end to
the left of A. In the second case (g2 ‖ A) it can only reach g2 if A′ ends to the left of A,
because A′ must circumvent the same right obstacle as A and A touches g2. Consequently, q
is the rightmost point reachable from g1. Then we also know from S3′ of Lemma 8.5 that p is
the rightmost point reachable from q.

Finally, assume that R5 is true for A, that is, A is first touched by a right obstacle r1, then
by a left obstacle l and afterwards again by a right obstacle r2 (see Figure 8.3d). Assume by
contrary that q is not the rightmost point reachable from g1. Then there is a valid arc A′ =
(p′, ·, q′), such that q′ lies to the right of q. Due to Lemma 8.4 we know that p′ 6= p.

Going from g1 to g2 let A′ first lie to the right of A, then it must intersect A before A
touches r1. In order to avoid a clash with l, A′ must again intersect A switching from the
left hand side to the right hand side of A. But then it cannot circumvent r2, since it cannot
intersect A anymore. On that account A′ must first lie on the left hand side of A. In
order to avoid a clash with l, A′ must intersect A before l touches A. Afterwards it must
intersect again A, switching from the right hand side to the left hand side of A, so that it
circumvents r2. But then A′ must remain to left of A. Consequently q′ cannot lie to the
right of q and q therefore must be the rightmost reachable point from g1. Then we also know
from S4′ of Lemma 8.5 that p is the rightmost point reachable from q.

Due to symmetries we can formulate the same lemma for leftmost arcs:

Lemma 8.7 (Variable Starting Point (Symmetric Version)). Given a feasible constellation
(g1 = (π1, ω1), g2 = (π2, ω2), L,R), such that g2 is reachable from g1 with respect to the
obstacles. Further there is no left obstacle clashing the right boundary arc of g1 and g2.
Let A = (p, ·, q) be a tight arc, then the following statement holds:

A is the leftmost arc if and only if

8.1. ONE STARTING GATE AND SEVERAL END GATES 57

ri

g1 g2

p

q

A

A′
p′ q′

(a) There is no left obstacle
touching A before ri touches
A.

g1 g2

A

p

q

(b) R4 is true for A and A ‖
g1.

A

g1
g2

p

q

(c) R4 is true for A and A ‖ g2.

A

A′

g1 g2r1

l

r2

p
q

p′

q′

(d) R5 is true for A.

Figure 8.3: Illustration of the proof for Lemma 8.6.

L1 : Φ(A) = 0 ∧ ω1..ω2 ∈ σ(A) or

L2 : Φ(A) > 0 ∧ ω1..l..ω2 ∈ σ(A) or

L3 : Φ(A) ≥ 0 ∧ (A ‖ g1 ∨A ‖ g2) ∧ l..ω2 ∈ σ(A) or

L4 : Φ(A) ≥ 0 ∧ ((A ‖ g1 ∧ ..r..l.. ∈ σ(A)) ∨ (A ‖ g2 ∧ r..l.. ∈ σ(A))) or

L5 : l..r..l ∈ σ(A).

So far we have introduced lemmas characterizing the right and leftmost arcs in the case
that there are no obstacles clashing either the left or right boundary. We still have to discuss
the case that there is an obstacle clashing a boundary. Again due to symmetries we only
consider the left boundary clashed by a right obstacle.

Lemma 8.8. Given a feasible constellation (g1 = (π1, ω1), g2 = (π2, ω2), L,R), such that g2 is
reachable from g1 and there is a right obstacle r ∈ R clashing the left boundary of g1 and g2.

Then there is no valid arc with respect to (g1, g2, L,R).

Proof. We only consider the feasible constellation (g1, g2, ∅, r) containing the right obstacle r
which clashes the left boundary, because if no valid arc exists for (g1, g2, ∅, r) then no valid
arc for (g1, g2, L,R) exists. Assume the contrary, that is, there is a valid arc A with respect
to (g1, g2, ∅, r) (see Figure 8.4). Further, let A′ denote the left boundary. Since A′ connects

58 CHAPTER 8. BASIC ALGORITHMS FOR THE GENERALIZED CORRIDOR

Lemma 8.4 Lemma 8.5 Lemma 8.6

S1 Φ(A) = 0 ∧ π2 = q

S1′ Φ(A) = 0 ∧ π1 = p R1
S2′ Φ(A) < 0 ∧ π1..r.. ∈ σ(A) −
S3′ Φ(A) ≤ 0 ∧ (A ‖ g1 ∨A ‖ g2) ∧ r.. ∈ σ(A) R3
S4′ r..l ∈ σ(A) R5

S2
Φ(A) < 0 ∧ ..r..π2 ∈
σ(A)

S1′ Φ(A) = 0 ∧ π1 = p −
S2′ Φ(A) < 0 ∧ π1..r.. ∈ σ(A) R2
S3′ Φ(A) ≤ 0 ∧ (A ‖ g1 ∨A ‖ g2) ∧ r.. ∈ σ(A) R3
S4′ r..l ∈ σ(A) R5

S3
Φ(A) ≤ 0∧ (A ‖ g1 ∨
A ‖ g2) ∧ ..r ∈ σ(A)

S1′ Φ(A) = 0 ∧ π1 = p ?
S2′ Φ(A) < 0 ∧ π1..r.. ∈ σ(A) ?
S3′ Φ(A) ≤ 0 ∧ (A ‖ g1 ∨A ‖ g2) ∧ r.. ∈ σ(A) ?
S4′ r..l ∈ σ(A) R5

S4 l..r ∈ σ(A)

S1′ Φ(A) = 0 ∧ π1 = p R5
S2′ Φ(A) < 0 ∧ π1..r.. ∈ σ(A) R5
S3′ Φ(A) ≤ 0 ∧ (A ‖ g1 ∨A ‖ g2) ∧ r.. ∈ σ(A) R5
S4′ r..l ∈ σ(A) R5

Table 8.1: Possible combinations of Lemma 8.4 and Lemma 8.5. A star (?) in the last column
means that the result is ambiguous (see proof of Lemma 8.6).

ω1

ω2

g1 g2

A′

A

Figure 8.4: Illustration of the proof for Lemma 8.8.

8.1. ONE STARTING GATE AND SEVERAL END GATES 59

ω1 with ω2, we know that A also must connect ω1 with ω2. In order to circumvent r, it must
completely lie to the left of A′, but then it either starts or ends wrongly at g1 respective g2.

It remains to show that we actually can compute right and leftmost arcs. Consider the
case R4, and assume that we are given an arc A such that R4 is true for A. Consequently,
there is a left obstacle l touching A then a right obstacle r touching A and A touches g1 or
g2. In order to be able to compute A we have to assure that there is only a finite set of arcs
satisfying the same properties as A with respect to the same obstacle l, r and the gates g1
and g2. The next lemma formulates this more precisely:

Lemma 8.9. Given a feasible constellation (g1 = (π1, ω1), g2 = (π2, ω2), L,R), an arbitrary
left obstacle l and two arbitrary right obstacles r and r′, then the following statements hold:

1. There is at most one valid arc A that satisfies R1.

2. There is at most one valid arc A that satisfies R2 such that it touches r.

3. There is at most one valid arc A that satisfies R3 such that it touches r.

4. There is at most one valid arc A that satisfies R4 such that it first touches l and then r.

5. There is at most one valid arc A that satisfies R5 such that it first touches r then l and
finally r′.

Proof.
There is at most one valid arc A that satisfies R1: Since R1 means that A is a line
segment connecting π1 with π2 we can directly conclude the claim.

There is at most one valid arc A that satisfies R2 such that it touches r: Assume
the contrary, that is, there is another arc A′ satisfying R2 with respect to r (see Figure 8.5a).
Since A and A′ already have two points in common, one arc must lie completely to the left of
the other. Without loss of generality let A be that arc. We know from both arcs that they are
touched by r which is different to π1 and π2, but then r must clash A′ in order to reach A.

There is at most one valid arc A that satisfies R3 such that it touches r: Assume
that there is another arc A′ satisfying R3 with respect to r. Then A′ touches either g1 or g2
and ends at π2. We first show that A and A′ cannot touch different gates. For that purpose
assume without loss of generality that A touches g1 and A′ touches g2 and both cross the
other gate (see Figure 8.5b). Then we can again argue that A′ must lie completely to the
left of A, so that r cannot touch A′ without clashing A. On that account assume that both
touch the same gate. Due to symmetries we only consider the case that A and A′ touch g2
(see Figure 8.5c): Since both have the same direction at g2, the corresponding circles can only
have one common point, namely π2. But then we again derive the case that one arc lies to
the left of the other arc.

60 CHAPTER 8. BASIC ALGORITHMS FOR THE GENERALIZED CORRIDOR

r

A

A′

g1 g2

π1 π2

(a)

A

A′

g1

g2

π2r

(b)

π2

A

A′

g1

g2

r

(c)

A′

A

g1
g2

C

C ′

l

r
t

t′

(d)

A′

A

g1
g2

l

r′
r

(e)

Figure 8.5: Illustration of the proof for Lemma 8.9.

There is at most one valid arc A that satisfies R4 such that it touches first l and
then r: Again assume that there is another arc A′ satisfying R4 with respect to l and r
(see Figure 8.5d). Note that both arcs are clockwise oriented. Since left and right obstacles
are not allowed to have common points (see Definition 7.5), both arcs must intersect twice
at points t and t′ in order to guarantee that each arc has the possibility to touch first l and
then r. Since A 6= A′ the arcs must have different radii. Without loss of generality let A be
that one with smaller radius. Consider the corresponding circles C and C ′ of A and A′: Then
we know that C is contained in C ′ from t′ to t going along C clockwise. In particular that
means that both the starting point and the end point of A must be contained in C ′. On that
account in order that g1 and g2 can have common points with A, both gates must cross C ′.
In particular this means that they also cross A′ which is a contradiction to the assumption
that at least one of both gates touches A′.

There is at most one valid arc A that satisfies R5 such that it touches first r
then l and finally r′: Let A′ be another arc that satisfies R5 with respect to r, l and r′

(see Figure 8.5e). In order that both arcs have access to the right obstacle they must intersect
twice, because otherwise there are too few changes between A and A′ such that both cannot
touch all obstacles as required. But even if they intersect twice, one of both arcs starts to the

8.1. ONE STARTING GATE AND SEVERAL END GATES 61

right of the other and consequently ends to the right of the other. Without loss of generality
let A be that arc. Since left and right obstacles are not allowed to have common points, the
only touching order for A′ is that it is first touched by left obstacles, then by right obstacles
and finally by left obstacles, which contradicts the assumption.

Due to that lemma we know that we actually can compute arcs of the different types,
assuming that the gates and obstacles are given in such a way that we can compute touching
points of arcs with obstacles. In the next section we assemble the results to an algorithm.

8.1.2 Algorithm for Computing Right- and Leftmost Arcs

In this part of the chapter we consider n feasible constellations (g0, g1, L1, R1), (g1, g2, L2, R2),
. . . ,(gn−1, gn, Ln, Rn). Based on Section 8.1.1 we introduce an algorithm solving Problem 8.1,
that is, the algorithm computes arcs connecting g0 with the other gates. For that purpose
we extend the definition of Problem 8.1 by introducing left and rightmost arcs. Again due
to symmetries we only consider rightmost arcs. The only change we apply to the problem
definition is that we do not want to find arbitrary valid arcs but rightmost arcs:

Problem 8.2. Given n feasible constellations (g0, g1, L1, R1), . . . , (gn−1, gn, Ln, Rn) where
Li = (li,1, . . . , li,ki) and Ri = (ri,1, . . . , ri,ki) with ki ∈ N.

Then we want to find a sequence A1 = (p1, ·, q1), . . . , Am = (pm, ·, qm) of rightmost arcs,
such that m is maximized and

1. pi lies on g0 for all i ∈ {1, . . . , n} and

2. qi lies on gi and

3. each arc Ai (1 ≤ i ≤ m) crosses all gates lying between g0 and gi and

4. for two consecutive gates gi−1 and gi connected by the arc A the sub-arc A[gi−1, gi] is
valid with respect to (gi−1, gi, Li, Ri).

We denote the sequence consisting of the first i sequences Ri by R1 . . . Ri and analogously
we denote the sequence consisting of the first i sequences Li by L1 . . . Li. Now, we explain
a procedure, which we call connectGatesByRightMostArc, solving Problem 8.2 (Algorithm 2
gives pseudo-code):

Starting with the pair (g0, g1) we compute iteratively for each pair (g0, gi) with 1 ≤ i ≤ n
a rightmost arc Ai with respect to (g0, gi, L1 . . . Li, R1 . . . Ri). Obviously, if we cannot find
such an arc Ai, that is, gi is not reachable from g0, there also cannot be arcs Ai+1, . . . , Am
connecting g0 with the following gates. We therefore can stop the procedure if we reach a
gate gi that is not reachable from g0. On that account we also have found a maximum number
of gates reachable from g0.

In order to find a rightmost arc Ai with respect to (g0, gi, L1 . . . Li, R1 . . . Ri) we first check
whether the left boundary of g0 and gi is clashed by a right obstacle. Due to Lemma 8.8 there
is no valid arc connecting g0 with gi. Since we do want that all intermediate gates are passed
correctly, we abort at this point the procedure returning A1, . . . , Ai−1.

If there is no right obstacle clashing the left boundary of g0 and gi we try to find an arc
that satisfies one of the cases stated in Lemma 8.6:

R1 : Φ(A) = 0 ∧ π1..π2 ∈ σ(A) or

62 CHAPTER 8. BASIC ALGORITHMS FOR THE GENERALIZED CORRIDOR

Algorithm 2: connectGatesByRightMostArc
input : n feasible constellations (g0, g1, L1, R1), (g1, g2, L2, R2), . . . , (gn−1, gn, Ln, Rn),

where Li = (li,1, . . . , li,ki) and Ri = (ri,1, . . . , ri,ki) with ki ∈ N.
output: A set {A1, . . . , An} of arcs such that for all i ∈ {1, . . . , n} holds that if gi is

reachable from g0 then Ai is a rightmost arc with respect to
(g, gi, L1 . . . Li, R1 . . . Ri), otherwise Ai = nil.

// In the following Ci denotes the corresponding circle of Ai.

C0 ← nil;1

for i← 1 to n do2

if a right obstacle clashes the left boundary of g0 and gi then3

return {A1, . . . , Ai, nil, . . . , nil}; /* set has n elements and Ai = nil. */4

Ai ← computeR1Arc(g0, gi, (L1, . . . , Li), (R1, . . . , Ri));5

if Ai 6= nil then continue;6

Ai ← computeR2Arc(g0, gi, (L1, . . . , Li), (R1, . . . , Ri));7

if Ai 6= nil then continue;8

Ai ← computeR3Arc(g0, gi, (L1, . . . , Li), (R1, . . . , Ri));9

if Ai 6= nil then continue;10

Ai ← computeR4Arc(g0, gi, (L1, . . . , Li), (R1, . . . , Ri));11

if Ai 6= nil then continue;12

if i > 1 and all obstacles of Li lie to the left of Ci−1 and all obstacles of Ri lie to13

the right of Ci−1 then
Ai ← part of Ci−1 that goes from g0 to gi;14

continue;15

Ai ← computeR5Arc(g0, gi, (L1, . . . , Li), (R1, . . . , Ri),Σi−1
j=1kj);16

if Ai 6= nil then continue;17

return {A1, . . . , Ai, nil, . . . , nil}; /* set has n elements and Ai = nil. */18

return {A1, . . . , An};19

R2 : Φ(A) < 0 ∧ π1..r..π2 ∈ σ(A) or

R3 : Φ(A) ≤ 0 ∧ (A ‖ g1 ∨A ‖ g2) ∧ r..π2 ∈ σ(A) or

R4 : Φ(A) ≤ 0 ∧ ((A ‖ g1 ∧ ..l..r.. ∈ σ(A)) ∨ (A ‖ g2 ∧ l..r.. ∈ σ(A))) or

R5 : r..l..r ∈ σ(A).

We first try to find a valid arc satisfying R1. If there is such an arc Ai, we know by
Lemma 8.6 that Ai is a rightmost arc and that we can continue with the pair (g0, gi+1). To
that end we introduce the procedure computeR1Arc which returns a rightmost arc of type R1
if and only if there is such an arc. Otherwise if we can guarantee that there is not such
an arc, we consecutively apply the same procedure on R2, R3 and R4. Again we introduce
procedures which we use as black-boxes for the moment: computeR2Arc, computeR3Arc and
computeR4Arc. If we even cannot find a rightmost arc of type R4 we check for R5 by first
considering the corresponding circle Ci−1 of the previous arc Ai−1. If this arc does not exist

8.1. ONE STARTING GATE AND SEVERAL END GATES 63

drawArcR3(g1 = (π1, ω1),r,g2 = (π2, ω2)): Returns a clockwise arc A from e1
through the right obstacle r to e2 such that A ends at π2 and A touches e1 or e2.

drawArcR4(g1 = (π1, ω1),l,r,g2 = (π2, ω2)): Returns a clockwise arc A that goes
from e1 through l and then through r to e2 such that A touches e1 or e2.

drawArcR5(g1 = (π1, ω1),r1,l,r2,g2 = (π2, ω2)): Draws an arc A that goes from r1,
through l to r2 in that particular order. If this is not possible, it returns nil.

Table 8.2: Procedures for drawing arc. The extension of g1 is denoted by e1 and the extension
of g2 is denoted by e2.

because i = 1, we continue with the next step. Otherwise we check for all obstacles in Li
and Ri whether they lie on the correct side of Ai−1. If the check is positive, we can directly
use Ci−1 to obtain Ai. We just take the part of Ci−1 that goes from g to gi. Note that both
checks can only be positive if Ai−1 is of type R5. Otherwise we would have found a rightmost
arc of type R1−R4 in the previous steps.

If the check is not positive or i = 1, we know that at least one obstacle in Ri and Li must
touch Ai (if this arc exists). Since R5 is defined as the sequence r..l..r, we know that Ai must
at least touch a right obstacle in Ri. Providing this information we again call a black-box
procedure called computeR5Arc which computes a rightmost arc of type R5 if it exists.

As already mentioned above, if we cannot even find a valid arc satisfying R5 we can
stop the whole procedure. In that case we have found a maximum number of rightmost
arcs: A1, . . . , Ai−1. In the case that we can find valid arcs for all end gates g1, . . . , gn we
obviously also have found a maximum number of rightmost arcs A1, . . . , Am with m = n.

Now we explain the single procedures in more detail. For that purpose we first introduce
the procedures clash, drawArc and check, which we will need in order to describe the other
procedures.

The Procedure clash: Given an arc A and an obstacle o, then the procedure checks
whether o clashes A as follows: By definition of the problem we only consider obstacles o that
belong to a feasible constellation (gi−1, gi, Li, Ri) of two consecutive gates gi−1 and gi. We
denote the extensions of gi−1 and gi by ei−1 and ei. First we compute the part Ai of A that
goes from ei−1 to ei. If this part does not exist, we state that o clashes A. Otherwise we check
whether o lies on the correct side of Ai. If o lies on the wrong side of Ai, we again state that o
clashes A. In the opposite case we return that o does not clash A.

The Procedure drawArc: Table 8.2 lists several variations of this procedure which are used
to draw some arc between two gates. Note that all variants of those procedures return an
unique arc. The use of this procedure should become more clear in following.

The Procedure check: Given a feasible constellation (g1, g2, L,R) and an arc A. The
procedure checks whether A is valid with respect to (g1, g2, L,R) by checking all properties
required by Definition 7.7. Obviously the procedure takes O(m) time, whereat the check
whether an obstacles clashes A dominates the time complexity. If A is valid, we say that the
result of this procedure is positive otherwise negative.

64 CHAPTER 8. BASIC ALGORITHMS FOR THE GENERALIZED CORRIDOR

The Procedure computeR1Arc: Given a feasible constellation (g1 = (π1, ω1), g2 = (π2, ω2),
L,R). The procedure returns a rightmost arc of type R1 if and only if there is such an arc. For
that purpose the procedure draws a line segment A between π1 and π2. Afterwards its checks
using clash whether any obstacle clashes A. In the negative case it returns A, otherwise it
returns that there is not such an arc. Obviously the procedure satisfies its postcondition. It
takes O(m) time.

The Procedure computeR2Arc: Given a feasible constellation (g1 = (π1, ω1), g2 = (π2, ω2),
L = (l1, . . . , lm), R = (r1, . . . , rm)). The procedure returns a rightmost arc of type R2 if there
is such an arc. Based on the arc A = π1π2 it iteratively considers right obstacles ri. If ri
clashes with A, we modify A by drawing a new arc A = (π1, ri, π2). Technically, we have to
show that after modifying A, an already considered right obstacle cannot clash A. Since we
do the analogous proof for computeR3Arc, we resign to do this proof at this place.

After we have considered all right obstacles, we check the resulting arc using check. In
the negative case we return A, otherwise we state that there is no such arc. Obviously the
procedure satisfies its postcondition. It takes O(m) time.

The Procedure computeR3Arc: Given a feasible constellation (g1 = (π1, ω1), g2 = (π2, ω2),
L = (l1, . . . , lm), R = (r1, . . . , rm)) with extensions e1 and e2. We describe a procedure that
yields a rightmost arc A of type R3 with respect to (g1, g2, L,R), if there exists such an arc and
otherwise it states that there is not such an arc. Algorithm 3 gives corresponding pseudo-code.

The main idea is that starting only with g1, g2 and π2 we first iteratively add the right
obstacles r1, . . . , rm−1 to that constellation. To that end we start with the arc that corresponds
to the line segment π1π2. Each time when we add a right obstacle ri, we check whether ri
clashesA. If this is not the case, we consider the next right obstacles. Otherwise we overwriteA
by a new clockwise arc that touches ri and π2 and that touches e1 or e2. As we already have
called computeR1Arc and computeR2Arc we know that there must be at least one right obstacle
that clashes the initial arc and from the following lemma we know that for a new arc A the
previous right obstacles do not clash with A.

Algorithm 3: computeR3Arc
input : A start gate g1 = (π1, ω2), an end gate g2 = (π2, ω2), left obstacles

L = (l1, . . . , lm) and right obstacles R = (r1, . . . , rm).
output: If there is a rightmost arc A with respect to (g1, g2, L,R) such that R3 is true

for A, then A is returned, otherwise nil is returned.
1

A← π1π2;2

for i← 1 to m do3

if clash(A, ri) then4

A← drawArcR3(g1,ri,g2);/* See Table 8.2 */5

if check(g1, g2, A, L, R) then6

return A;7

return nil;8

Lemma 8.10. Given two gates g1 = (π1, ω1), g2 = (π2, ω2) with extensions e1, e2 and right
obstacles R = (r1, . . . , rk) such that

8.1. ONE STARTING GATE AND SEVERAL END GATES 65

rk

ri

t A

A′

g1

g2

π1

π2

e1

e2

ω1

ω2

(a) t lies before rk touches A′.

g1

g2

rk

ri

A

A′

t

π1

π2

e1
e2

ω1

ω2

(b) t lies after rk touches A′.

Figure 8.6: Illustration of the proof for Lemma 8.10.

1. there is a clockwise arc A that touches π2 and a right obstacle in (r1, . . . , rk−1). Further,
it touches e1 or e2 and clashes with rk, and

2. there is a clockwise arc A′ going from e1 through rk to π2 touching e1 or e2.

Then A′ does not clash with any obstacle in R.

Proof. Assume the contrary, that is, there is a right obstacle ri with 1 ≤ i ≤ k− 1 clashing A′

(see Figure 8.6). In order to clash ri and circumvent rk the arc A′ must intersect A twice:
Once at π2 and once at a point t somewhere between e1 and e2. We distinguish two cases
where t can lie. But for both cases holds that A and A′ cannot arrive at π2 having the same
direction regarding e2, because otherwise they could not intersect twice.

If t lies before rk touches A′ (going from e1 to e2, see Figure 8.6a), then A′ first lies on the
right hand side of A and after t on the left hand side. In order that A′ starts from e1, A must
cross e1. Due to A′ ends on the left hand side of A and both are clockwise oriented, A must
also cross g2, because otherwise A would intersect e2. On that account A can touch neither e1
nor e2.

If t lies after rk touches A′ (going from e1 to e2, see Figure 8.6b), then A′ first lies on
the left hand side of A and after t on the right hand side of A. This time A′ crosses e1,
because otherwise A could not start from e1. Since at the end A lies to the right of A′, A′

must cross e2, because otherwise A would intersect e2 (A and A′ do not arrive at π2 having
the same direction regarding e2).

We continue this procedure until we have considered all right obstacles in R. After travers-
ing all right obstacles A does not clash any right obstacles. This directly follows from the
previous lemma.

Note that the resulting A is not necessarily a valid arc. For example it still can clash with
left obstacles or reach g1 or g2 from the wrong side. We therefore use the function check in
order to determine whether A is valid. If the check is positive, by Lemma 8.6 we have found a
rightmost arc of type R3 with respect to (g1, g2, L,R). Otherwise we end the procedure stating
that there is no rightmost arc of type R3 with respect to (g1, g2, L,R). From the following
lemma we can conclude that this is sound.

Lemma 8.11. Given a feasible constellation (g1=(π1, ω1), g2=(π2, ω2), L = (l1, . . . , lm), R =
(r1, . . . , rm)) with extensions e1 and e2, such that there is a clockwise arc A which touches π2

66 CHAPTER 8. BASIC ALGORITHMS FOR THE GENERALIZED CORRIDOR

g1
g2A

ri

lj
A′

(a) t lies before rk touches A′.

g1
g2A

ri

A′
lj

(b) t lies after rk touches A′.

Figure 8.7: Illustration of the proof for Lemma 8.11.

and a right obstacle ri in R. Further, it touches e1 or e2 and does not clash with any right
obstacle.

If the result of check(A, g1, g2, L, R) is negative, there is no rightmost arc of type R3
with respect to (g1, g2, L,R).

Proof. The function check checks for several things, for example whether A reaches g1 and g2.
But since not reaching g1 or g2 is equivalent with clashing obstacles, we only have to consider
the case that check fails for A because it clashes a left obstacle lj . Assume that there is a
rightmost arc A′ of type R3. Then A′ must circumvent ri and lj . There are two cases: Either
lj clashes with A before ri touches A or vise versa. In both cases there must be an intersection
of A and A′ between ri and lj (see Figure 8.7). Then we can apply the very same arguments
as in Lemma 8.10.

The approach that we have described returns a rightmost arc of type R3, if such an
arc exists. Otherwise it returns that there is no such arc. Obviously, we consider each right
obstacle and each left obstacle at most twice. Thus, the algorithm has a running time of O(m).

Summarizing this part, we can introduce the following lemma:

Lemma 8.12. Given two gates g1 = (π1, ω1), g2 = (π2, ω2), left obstacles L = (l1, . . . , lm)
and right obstacles R = (r1, . . . , rm).

If g2 is reachable from g1 by an arc of type R3 with respect to (g1, g2, L,R), then the proce-
dure computeR3Arc returns a rightmost arc of type R3 with respect to (g1, g2, L,R), otherwise
it returns that this connection is not possible. To that end it uses O(m) time and O(m) storage.

The Procedure computeR4Arc: Within this procedure (see Algorithm 4) we mainly call
the recursive procedure computeR4ArcRecursive that returns a clockwise arc A touching a
left obstacle ls and a right obstacle rt with 1 ≤ s ≤ t ≤ m such that

1. A touches e1 or e2 and

2. A touches first ls and then rt and

3. all clashes of left obstacles li with A occur after A touches rt and

4. all clashes of right obstacles ri with A occur before A touches ls.

8.1. ONE STARTING GATE AND SEVERAL END GATES 67

Later on we explain how computeR4ArcRecursive exactly works, but for the beginning
assume that A is given. The four properties do not imply that A is a valid arc: It can be
that A does not reach g1 or g2 or from the wrong side or that it clashes obstacles before ls
or after rt. In order to check for this, we apply the procedure check (Algorithm 4 illustrates
computeR4Arc). If the result of check is positive we know due to Lemma 8.6 that A is the
rightmost arc with respect to (g0, gi, L1 . . . Li, R1 . . . Ri), otherwise we abort the procedure
returning that there is no rightmost arc with respect to (g0, gi, L1 . . . Li, R1 . . . Ri). The
following lemma shows that this is sound.

Lemma 8.13. Given a feasible constellation (g1=(π1, ω1), g2=(π2, ω2), L = (l1, . . . , lm), R =
(r1, . . . , rm)) with extensions e1 and e2. If there exists an clockwise arc A touching a left
obstacle ls and a right obstacle rt with 1 ≤ s ≤ t ≤ m, such that

1. A touches e1 or e2, and

2. A touches first ls and then rt, and

3. all clashes of left obstacles li with A occur after A touches rt, and

4. all clashes of right obstacles ri with A occur before A touches ls, and

5. there exists a left or right obstacle clashing A,

then there is no rightmost arc of type R4 with respect to (g1, g2, L,R).

Proof. Assume the contrary, that is, there is a clockwise arc A as described in the lemma and
there is a rightmost arc A′ of type R4 with respect to (g1, g2, L,R). Obviously A′ must also
circumvent the obstacles ls and rt.

Assume that A clashes with a left obstacle li after it touches rt (see Figure 8.8a). Since A′ is
valid, it must circumvent li still being clockwise oriented. To that end it must first intersect A
between the point where A touches ls and the point where A touches rt. We denote this point
by t. Then it must intersect A a second time between the point where A touches rt and the
end point of A. We denote that point by t′. Since both arcs are clockwise oriented, we know
that the part of A′ from g1 to t must be completely contained in the corresponding circle C
of A. The same applies on the part of A′ that goes from t′ to g2. Since A only touches e1
or e2 and the radius of A′ is strict less than the radius of A according to the arguments stated
before, A′ cannot reach one of both gates.

Assume that A clashes with a right obstacle ri before it touches ls (see Figure 8.8b). Again
we can argue that there must be two intersection points t and t′ between A and A′ in order
that A′ can circumvent first ri, then ls and finally rt. This time the part of A that goes from e1
to t and the part of A that goes from t′ to g2 must completely lie in the corresponding circle C ′

of A′. But then e1 or e2 can only touch A if g1 and g2 cross A′, which is a contradiction to
the assumption that A′ is of type R4.

Since we call computeR4ArcRecursive only once and check needs O(m) time assuming
that computeR4ArcRecursive needs O(m) time yields a total running time of O(m).

The Procedure computeR4ArcRecursive: We assume that we are given a feasible constel-
lation (g1 = (π1, ω1), g2 = (π2, ω2), L = (l1, . . . , lm), R = (r1, . . . , rm)), whereat we denote the
the extensions of g1 and g2 by e1 and e2. The procedure yields a clockwise arc A touching a
left obstacle ls and a right obstacle rt with 1 ≤ s ≤ t ≤ m such that

68 CHAPTER 8. BASIC ALGORITHMS FOR THE GENERALIZED CORRIDOR

π1

π2
ω1

ω2

e1

g1

e2

g2

rt

ls
A

A′

li
t

t′

(a) A left obstacle li clashes A.

π1

ω1
ω2

e1

g1

e2

g2

rt

ls

A

A′
t t′

π2

C′

ri

(b) A right obstacle ri clashes A.

Figure 8.8: Illustration of the proof for Lemma 8.13.

1. A touches e1 or e2 and

2. A touches first ls and then rt and

3. all clashes of left obstacles li with A occur after A touches rt and

4. all clashes of right obstacles ri with A occur before A touches ls.

We describe a recursive approach (Algorithm 5 illustrates the procedure): First we draw an
arc A that touches l1 and rm in that particular order. Further, we require that A touches e1
or e2. Since we do not care about the validity of the arc we always can draw such an arc
(by using drawArcR4). If m = 1 we have reached the end of the recursion, that means we
return A.

Algorithm 4: computeR4Arc
input : A feasible constellation

(g1 = (π1, ω1), g2 = (π2, ω2), L = (l1, . . . , lm), R = (r1, . . . , rm)).
output: If there is a rightmost arc A with respect to (g1, g2, L,R) such that R3 is true

for A, then A is returned, otherwise nil is returned.
A← computeR4ArcRecursive(g0, gi, L, R);1

if check(g1, g2, Ai, L, R) then return A;2

return nil;3

If m > 1 it can be that A is clashed by obstacles. In order to resolve such clashes, we go
from l1 to lm and from rm to r1 through the obstacles in an alternating way, that is, when
we have considered a left obstacle, the next obstacle is a right one and vise versa. We denote
the index of the currently considered left obstacle by i and analogously we denote the index
of the currently considered right obstacle by j. We start with i := 1 and j := m. In the k-th
alternating step considering a left or right obstacle we check whether that obstacle clashes
with A:

If k is odd we consider a left obstacle. To that end we first refresh the current index
by setting i := i + 1. Afterwards we check whether A clashes with li. If this is not the
case we continue with the (k+1)-th step considering a right obstacle, otherwise we return
computeR4ArcRecursive(g1,g2, (li, . . . , lm), (ri, . . . , rm)).

8.1. ONE STARTING GATE AND SEVERAL END GATES 69

Algorithm 5: computeR4ArcRecursive
input : A feasible constellation (g1 = (π1, ω1), g2 = (π2, ω2), L = (l1, . . . , lm),

R = (r1, . . . , rm)) with extensions e1 and e2.
output: A clockwise arc A touching a left obstacle ls and a right obstacle rt, such that

i.) A touches e1 or e2, ii.) A touches first ls and then rt, iii.) all clashes of left
obstacles li with A occur after A touches rt, iv.) all clashes of right obstacles
ri with A occur before A touches ls.

i← 1, j ← m, k ← 1;1

A← drawArcR4(g1,l1,rm,g2);/* See Table 8.2 */2

while i < j do3

if k mod 2 = 1 then4

// Consider left obstacles.
i← i+ 1;5

if clash(A, li) then6

return computeR4ArcRecursive(g1,g2,(li, . . . , lm),(ri, . . . , rm));7

else8

// Consider right obstacles.
j ← j − 1;9

if clash(A, rj) then10

return computeR4ArcRecursive(g1,g2,(l1, . . . , lj),(r1, . . . , rj));11

k ← k + 1;12

return A;13

If k is even we consider a right obstacle. We proceed analogously: We first refresh the
current index by setting j := j−1. Then we check whether A clashes with rj . If this is not the
case, we continue with the (k+1)-th step, otherwise we return computeR4ArcRecursive(g1,g2,
(l1, . . . , lj), (r1, . . . , rj)).

We stop the alternating procedure if i = j and return A. The correctness of the algorithm
follows from the next lemma:

Lemma 8.14. Given a feasible constellation (g1=(π1, ω1), g2=(π2, ω2), L = (l1, . . . , lm), R =
(r1, . . . , rm)) with extensions e1 and e2.

The procedure computeR4ArcRecursive computes a clockwise arc A touching a left obstacle
ls and a right obstacle rt with 1 ≤ s ≤ t ≤ m, such that

1. A touches e1 or e2 and

2. A touches first ls and then rt and

3. all clashes of left obstacles li with A occur after A touches rt and

4. all clashes of right obstacles ri with A occur before A touches ls.

Proof. We do an induction over m. Let m = 1, that is, L = (l1) and R = (r1). By the
definition of the algorithm we first draw the arc A, such that A goes from l1 through r1
touching g1. Obviously i = 1 = j and the algorithm returns A. Note that A is not valid, but
it satisfies the required properties.

70 CHAPTER 8. BASIC ALGORITHMS FOR THE GENERALIZED CORRIDOR

l1

rm

e1

e2

A

li

A′
rt

ls

lj

(a)

l1

rm

e1

e2

A

A′

ri

ls

rt

rj

(b)

Figure 8.9: Illustration of the proof for Lemma 8.14.

So assume that we have shown the correctness for sequences of obstacles having the
size m − 1 or less. Consider the case that the sequences have size m: L = (l1, . . . , lm)
and R = (r1, . . . , rm). Again the method first draws an arc A that touches first l1 and
then rm. Further, A touches e1 or e2. Then the procedure searches for the first obstacle
clashing A considering the left and right obstacles in an alternating way. If we cannot find
any obstacle clashing A, we return A because the properties are met for A. If there is a clash,
we distinguish the cases whether a left or a right obstacle clashing A is found first.

Let li ∈ L be the first obstacle clashing A, then we call computeR4ArcRecursive (g1,g2,
(li, . . . , lm), (ri, . . . , rm)) (see Figure 8.9a) gaining an arc A′. We denote that arc by A′.
By induction we know that A′ satisfies the required properties with respect to (li, . . . , lm)
and (ri, . . . , rm). In particular A′ touches a left obstacle ls and a right obstacle rt with i ≤
s ≤ t ≤ m. We have to show that (l1, . . . , li−1) do not clash A′ before A′ touches rt. (Note
that (r1, . . . , ri−1) are allowed to clash A′). Assume that there is a left obstacle lj with 1 ≤
j ≤ i− 1 clashing A′ before A′ touches rt. First, we show that the clash must occur before ls
touches A′. Assume that the clash occurs after ls touches A′, then by Definition 7.6 there
is an arc A′′ going from e1 to ls then to lj and finally to e2. Since j < s this contradicts
that (g1, g2, L,R) is a feasible constellation. On that account the clash of lj must occur
before ls touches A′. In order to circumvent li the arc A′ must lie on the left hand side of A
at least until it touches ls. But then lj must also clash A in order to clash A′, which is a
contradiction to j < i and li is the first left obstacle clashing A.

Due to symmetries we can analogously argue for the case that rj ∈ R is the first right
obstacle clashing A (see Figure 8.9b).

It remains to analyze the running time and the space requirement:

Lemma 8.15. Given two gates g1 = (π1, ω1), g2 = (π2, ω2), left obstacles L = (l1, . . . , lm)
and right obstacles R = (r1, . . . , rm).

The function computeR4ArcRecursive uses O(m) time and O(m) storage.

Proof. In order to analyze the running time of computeR4ArcRecursive we estimate the total
number T (m) of all loop cycles in computeR4ArcRecursive (see Algorithm 4), that is, T (m)

8.1. ONE STARTING GATE AND SEVERAL END GATES 71

also counts the cycles used by the recursive calls. We will show that T (m) has an upper bound
of 2m by using induction. Let k be a counter of the loop of computeR4ArcRecursive that is in-
creased after every cycle by one starting with one. Obviously, calling computeR4ArcRecursive
recursively has the effect that the loop stops.

If m = 1 we can easily show the base case of the induction. Assume therefore that for
all sequences of obstacles with less than m obstacles the claim holds. Obviously, if there are
no clashes with obstacles, the loop needs m cycles because each time we either increase i or
decrease j. So assume that there is an obstacle o that clashes with the given arc A after k
cycles.

If k is odd, o is a left obstacle. According to this we call computeR4ArcRecursive(g1, g2,
(li, . . . , lm), (ri, . . . , rm)), where i = k−1

2 + 2. By induction we know that the running time of
that call consumes at most 2 · (m− k−1

2 − 2) cycles. On that account we know

T (m) ≤ k + 2 ·
(
m− k − 1

2
− 2

)
= 2m− 3 ≤ 2m

If k is even, o is a right obstacle. Then we call computeR4ArcRecursive(g1,g2, (l1, . . . , lj),
(r1, . . . , rj)), where j = m− (k2 − 1). By induction we know that the running time of that call
consumes at most 2 · (m− k

2) cycles.

T (m) ≤ k + 2 ·
(
m− k

2

)
= k + 2 ·m− k = 2m

Since each cycle of the loop takes O(1) time if we conceptually ignore the recursive calls
we obtain a running time of O(m) in total for the loop.

The space requirement follows directly from the fact that we can store both kinds of
obstacles in lists.

The Procedure computeR5Arc: We assume that we are given a feasible constellation (g1 =
(π1, ω1), g2 = (π2, ω2), L = (l1, . . . , lm), R = (r1, . . . , rm)) and a natural number k > 1, such
that if there is a rightmost arc A of type R5 connecting g1 with g2, then there is a right
obstacle ri with k ≤ i ≤ m touching A. Further, there are no rightmost arcs of type R1-R4
for that constellation. Note that this also implies that m > 1, because otherwise we can find
a rightmost arc of type R1.

In order to compute a valid arc of type R5, we introduce computeR5ArcRecursive that
computes for each right obstacle ri with k ≤ i ≤ m an arc A touching a right obstacle rs and
a left obstacle lt such that

1. A touches first rs, then lt and finally ri and

2. all clashes of left obstacles lk with A occur before A touches rs or after A touches ri and

3. all clashes of right obstacles rk with A occur after A touches ri.

Likewise to R4 the three properties do not imply that A is a valid arc. We again use the
procedure check in order to check for this. In the positive case due to Lemma 8.6 we have
found a rightmost arc. Consequently, we can return A. If the check was negative, we consider
the next right obstacle (The whole procedure is illustrated in Algorithm 6). The following
lemma shows that we do not miss a rightmost arc.

72 CHAPTER 8. BASIC ALGORITHMS FOR THE GENERALIZED CORRIDOR

A

A′

rs

lt

r
g1 g2

(a) A left obstacle li clashes A.

r ri
g1 g2

A

A′

lt

rs

(b) A right obstacle ri
clashes A.

Figure 8.10: Illustration of the proof for Lemma 8.16.

Lemma 8.16. Given a feasible constellation (g1 = (π1, ω1), g2 = (π2, ω2), L = (l1, . . . , lm),
R = (r1, . . . , rm)), with extensions e1 and e2. Further, a right obstacle r is given with r 6= r1. If
there exists a clockwise arc A touching a right obstacle rs, a left obstacle lt with 1 ≤ s ≤ t ≤ m,
such that

1. A touches first rs, then lt and finally r and

2. all clashes of left obstacles lk with A occur before A touches rs or after A touches r and

3. all clashes of right obstacles rk with A occur after A touches r.

4. there exists an obstacle clashing A.

then there is no rightmost arc A′ of type R5 with respect to (g1, g2, L,R) such that A′ touches r.

Proof. Assume the contrary, that is, there is a clockwise arc A as described in the lemma and
there is a rightmost arc A′ of type R5 with respect to (g1, g2, L,R) such that A′ touches r.
According to 4. there is a left or right obstacle clashing A.

We first assume that a left obstacle li clashes A before rs touches A or after r touches A
(see Figure 8.10a). In both cases A′ must circumvent li, rs, lt and r. But to that end it must
be S-shaped.

So assume that a right obstacle ri clashes A (see Figure 8.10b). This must take place
after r has touched A. In order to circumvent rs, lt, r and ri the arc A′ must first lie to the
left of A, then to the right of A and finally to the left of A such that one of both intersection
lies between rs and lt, and the second one between lt and r (r touches A′). But then it is not
possible to find obstacles touching A′ such that r..l..r ∈ σ(A′). The arc A prohibits A′ from
touching obstacles in that particular order.

If we have considered all right obstacles ri with k ≤ i ≤ m, but we could not find a rightmost
arc of type R5 touching one of those ri we abort the whole procedure stating that there is no
rightmost arc of type R5 with respect to (g0, gi, L,R). This is sound because we assume that
if there is a rightmost arc of type R5 then it touches a right obstacle ri with k ≤ i ≤ m.
Since the procedure computeR4ArcRecursive is called at most k times assuming that it
uses O(m) time yields a total running time in O(k ·m).

The Procedure computeR5ArcRecursive: We assume that we are given a feasible constel-
lation (g1 = (π1, ω1), g2 = (π2, ω2), L = (l1, . . . , lm), R = (r1, . . . , rm)) and a right obstacle r,

8.1. ONE STARTING GATE AND SEVERAL END GATES 73

Algorithm 6: computeR5Arc
input : A feasible constellation (g1 = (π1, ω1), g2 = (π2, ω2), L = (l1, . . . , lm),

R = (r1, . . . , rm)) and a number k ∈ N such that if there is a rightmost arc of
type R5 with respect to (g1, g2, L,R), then a right obstacle ri with k ≤ i ≤ m
touches that arc. Further, there are no rightmost arcs of type R1-R4 with
respect to (g1, g2, L,R).

output: If there is a rightmost arc A with respect to (g1, g2, L,R) such that R3 is true
for A, then A is returned, otherwise nil is returned.

for i← k to m do1

A← computeR5ArcRecursive(g0, gi, L1 . . . Lm, R1 . . . Rm, ri);2

if A 6= nil and check(g1,, g2, A, (L1, . . . , Li), (R1, . . . , Ri)) then3

return A;4

return nil;5

Algorithm 7: computeR5ArcRecursive
input : A feasible constellation (g1 = (π1, ω1), g2 = (π2, ω2), L = (l1, . . . , lm),

R = (r1, . . . , rm)) and a right obstacle r with r1 6= r.
output: An arc A touching a right obstacle rs, a left obstacle lt with 1 ≤ s ≤ t ≤ m,

such that 1. A touches first rs, then lt and finally r, 2. all clashes of left
obstacles with A occur before A touches rs or after A touches r, 3. all clashes
of right obstacles with A occur after A touches r..

i← 1, j ← m, k ← 1;1

A← drawArcR5(g1, r1, lm, r, g2);/* See Table 8.2 */2

if A = nil then3

if i = j then return nil;4

return computeR5ArcRecursive(g1, g2, (l1, . . . , lm−1), (r1, . . . , rm−1), r)5

while i < j do6

if k is odd then7

i← i+ 1;8

if clash(A, ri) then9

return computeR5ArcRecursive(g1, g2, (li, . . . , lm), (ri, . . . , rm), r);10

else11

j ← j − 1;12

if clash(A, lj) then13

return computeR5ArcRecursive(g1, g2, (l1, . . . , lj), (r1, . . . , rj), r);14

return A;15

74 CHAPTER 8. BASIC ALGORITHMS FOR THE GENERALIZED CORRIDOR

r1

l

r2

A

(a)

r1 r2

A

l

(b)

Figure 8.11: Illustration of the procedure drawArcR5. Both drawings show the case that it is
not possible to draw an arc touching first r1, then l and finally r2. A depicts the arc where
the orientation of the obstacles is respected, e.g. l lies on the left hand side of A. The dashed
bows show arcs which do not respect the orientation of the obstacles.

whereat we denote the extension of g1 and g2 by e1 and e2 (Algorithm 7 illustrates the pro-
cedure). The procedure yields an arc A touching a right obstacle rs and a left obstacle lt
with 1 ≤ s ≤ t ≤ m such that

• A touches first rs, then lt and finally r, and

• all clashes of left obstacles lk with A occur before A touches rs or after A touches r, and

• all clashes of right obstacles rk with A occur after A touches r.

The approach we take is very similar to that one computing an arc of type R4. We again
describe a recursive approach. During the whole procedure we fix r to be an obstacle touching
the arc we are looking for. Thus, only rs and lt are variable.

We begin with an arc A that touches first r1 then lm and finally r (using drawArcR5). If
we cannot draw such an arc (see Figure 8.11), this happens because we can only find circles
touching first r1 then r and finally lm (respecting their orientation left and right). In that
case we know that lm cannot be involved in the arc we are looking for. If m = 1 we can
conclude that there is not a rightmost arc A of type R5 touching r. Otherwise we return
computeR5ArcRecursive(g1, g2, (li, . . . , lm−1), (ri, . . . , rm−1), r).

If we can draw A, then we iterate through the obstacles in order to resolve clashes. To
that end we go from r1 to rm and from lm to l1 in an alternating way, that is, after we have
considered a left obstacle we consider a right obstacle and vise versa. We denote the index
of the right obstacle currently considered by i and the index of the left obstacle currently
considered by j. We initialize i with 1 and j with m and stop the alternating procedure
if i = j returning A. In the k-th step of the algorithm we either consider a right obstacle or a
left obstacle:

If k is odd, we consider a right obstacle. For that purpose we first refresh the in-
dex i by setting i := i + 1. Then we check whether ri clashes with A. If this is not
the case, we continue with the next alternating step k + 1. If there is a clash, we call
computeR5ArcRecursive(g1,g2,(li, . . . , lm),(ri, . . . , rm), r) recursively and return the result.

If k is even, we consider a left obstacle. Accordingly we first refresh the index j by
setting j := j−1. Again we check whether lj clashes with A. In the negative case we continue

8.1. ONE STARTING GATE AND SEVERAL END GATES 75

with the next alternating step, otherwise we call computeR5ArcRecursive(g1, g2, (l1, . . . , lj),
(r1, . . . , rj), r) recursively and return the result.

We first reason about the correctness of the algorithm. To that end we show the following
lemma:

Lemma 8.17. Given a feasible constellation (g1=(π1, ω1), g2=(π2, ω2), L = (l1, . . . , lm), R =
(r1, . . . , rm)) with extensions e1 and e2. Further, a right obstacle r with r1 6= r.

The call computeR5ArcRecursive (g1,g2,L,R,r) yields an arc A touching a right obstacle
rs, a left obstacle ls and r with 1 ≤ s ≤ t ≤ m, such that

1. A touches first rs, then lt and finally r and

2. all clashes of left obstacles lk with A occur before A touches rs or after A touches r and

3. all clashes of right obstacles rk with A occur after A touches r

if such an arc exists, otherwise it states the opposite.

Proof. Analogously to Lemma 8.14 we do an induction over m. Let m = 1, that is, L = (l1)
and R = (r1). By the definition of the algorithm we first draw the arc A, such that A goes
from r1 through l1 to r. If this is not possible we know that there cannot be an arc we are
looking for. Otherwise i = 1 = j and the algorithm returns A. Note that A is not necessarily
valid, but it satisfies the required properties.

So assume that for sequences of obstacles with size less than m the claim holds. We now
show that it also holds for sequences L = (l1, . . . , lm), R = (r1, . . . , rm) of obstacles with sizem.
Again we first draw the arc A that goes from r1 through lm to r. If we cannot draw A, we
return the result of computeR5ArcRecursive(g1,g2, (li, . . . , lm−1), (ri, . . . , rm−1),r), because
we know that lm is not involved in the arc we are looking for.

If we can draw A, the procedure then searches for the first obstacle clashing A considering
the left and right obstacles in an alternating way. If we cannot find such obstacles, we know
that A satisfies the requirements. Otherwise we distinguish the cases whether a left or a right
obstacle clashing A is found first.

Let ri ∈ R be the first obstacle clashing A (see Figure 8.12), then the method returns
the arc computed by computeR5ArcRecursive(g1,g2, (li, . . . , lm), (ri, . . . , rm),r). We denote
that arc by A′. By induction we know that A′ satisfies the required properties with respect to
(li, . . . , lm) and (ri, . . . , rm). In particular A′ touches a right obstacle rs and a left obstacle lt
such that i < s ≤ t. We have to show that r1, . . . , ri−1 do not clash A′. (Note that l1, . . . , li−1
are allowed to clash A′.) Assume that there is an obstacle rj with 1 ≤ j ≤ i−1 clashing A′. We
first show that the clash occurs before rs touches A′. For that purpose assume the contrary,
then by Definition 7.6 there is an arc that goes from e1 to rs, then to rj and finally to e2. Due
to j < s this is a contradiction to (g1, g2, L,R) is a feasible constellation. Since ri clashes A
but not A′, A′ must lie to the left of A at least until it touches rs. On that account rj must
clash with A in order clash with A′, but this is a contradiction to j < i and ri is the first
obstacle clashing A.

We can analogously argue for the case that lj ∈ L is the first obstacle clashing A.

Since computeR4Arc and computeR5Arc do not differ in their structure, we can directly con-
clude the following lemma about the running time and space requirements of computeR5Arc:

Lemma 8.18. Given two gates g1 = (π1, ω1), g2 = (π2, ω2), left obstacles L = (l1, . . . , lm)
and right obstacles R = (r1, . . . , rm).

76 CHAPTER 8. BASIC ALGORITHMS FOR THE GENERALIZED CORRIDOR

rs
rt

l

ri

A

A′

e1

e2

rj

r

Figure 8.12: Illustration of the proof for Lemma 8.17.

Algorithm 4 uses O(m) time and O(m) space.

Proof. See proof of Lemma 8.15.

Summary
We have shown for computeR1Arc, computeR2Arc, computeR3Arc, computeR4Arc and
computeR5Arc that each of them has a running time in O(m) when the number of obstacles
passed to these methods is denoted by m. Obviously we only consider n pairs of gates:
(g0, g1), . . . , (g0, gn). On that account we gain a total running time of O(n2 · m). Since for
two consecutive gates gi−1, gi there are only a constant number of obstacles we can conclude
that m ∈ O(n).
Since rightmost arcs and leftmost arcs are symmetric, we can easily modify
connectGatesByRightMostArc in order to obtain leftmost arcs. We denote the corresponding
procedure by connectGatesByLeftMostArc. Then we summarize the results in the following
theorem:

Theorem 8.1. We can solve Problem 8.2 and it symmetric variant in O(n2 · m) time us-
ing O(n+m) space.

Further, if between all consecutive pairs of gates only a constant number of obstacles occur
then we can solve Problem 8.2 and it symmetric variant in O(n2) time using O(n) space.

Summarizing we have explained how to solve Problem 8.1:

Corollary 8.2. We can solve Problem 8.1 in O(n2 ·m) time using O(n+m) storage.
Further, if between all consecutive pairs of gates only a constant number of obstacles occur

then we can solve Problem 8.2 and it symmetric variant in O(n2) time using O(n) space.

8.2 Computing a Polyarc Through Gates

In this section we introduce some tools for connecting gates with polyarcs of valid arcs us-
ing the procedures connectGatesByRightMostArc and connectGatesByLeftMostArc (see Sec-
tion 8.1.2) as black-boxes. Further, for the following algorithms we introduce the concept of
restricting gates, that is, given a gate g we restrict it to a sub-interval. Conceptually we just
move the obstacles of g to the boundaries of the interval we want to restrict to.

8.2. COMPUTING A POLYARC THROUGH GATES 77

The Procedure restrictGates: Given a sequence of feasible constellations (g0, g1, L1, R1),
(g1, g2, L2, R2),. . ., (gn−1, gn, Ln, Rn), the first procedure we introduce computes for each
gate gi the points from which gn can be reached by at least one polyarc of valid arcs. Ac-
cording to Lemma 8.1 the procedure results in n − 1 closed intervals which later on can be
used as restrictions of gates. We go through the gates twice, once from g0 to gn and then
from gn to g0. Traversing the gates firstly, we compute for two consecutive gates gi and gi+1

the reachable points on gi+1 regarding gi and gi+1. If we cannot reach gi+1 we also know
that gn is not reachable from g0. By Lemma 8.1 the reachable points can be described by a
closed interval segment I. Before we go over to the next pair gi+1 and gi+2 we restrict gi+1

to I. After reaching gn we apply the same approach vise versa (Algorithm 8 illustrates the
procedure). Obviously, for each restricted gates hold, that from each point, there is a polyarc,
such that gn is reachable. But we also can guarantee that we do not lose points from which gn
is reachable by restricting the gates. Since we only consider each gate twice and we can com-
pute the reachable points between two consecutive gates in O(1) time, the whole procedure
needs O(n) time.

Algorithm 8: restrictGates
input : Feasible constellations (g0, g1, L1, R1), (g1, g2, L2, R2),. . ., (gn−1, gn, Ln, Rn)
output: Closed intervals I0, . . . , In−1 describing the points on g1, . . . , gn from which gn

is reachable by a polyarc.
for i← 0 to n− 1 do1

Ar ← connectGatesByRightMostArc((gi, gi+1, Li+1, Ri+1));2

Al ← connectGatesByLeftMostArc((gi, gi+1, Li+1, Ri+1));3

Restrict gi+1 to end points of Ar and Al;4

for i← n down to 1 do5

Ar ← connectGatesByRightMostArc((gi, gi−1, Li, Ri));6

Al ← connectGatesByLeftMostArc((gi, gi−1, Li, Ri));7

// Let pr be the starting point of Ar at gi−1 and let pl be the
starting point of Al at gi−1.

Ii ← [pr, pl]8

Pipes and the Procedure computePipeSegments: We assume that we are given a sequence
of feasible constellations (g0, g1, L1, R1), (g1, g2, L2, R2),. . ., (gn−1, gn, Ln, Rn). In order to
combine the procedures connectGatesByRightMostArc and connectGatesByLeftMostArc we
introduce pipe segments:

Definition 8.5 (Pipe Segment).
Given the feasible constellations (g0, g1, L1, R1), (g1, g2, L2, R2), . . . , (gn−1, gn, Ln, Rn). For
two gates gi and gj with i < j we call (I1, I2) a pipe segment between gi and gj if I1 de-
scribes the reachable interval on gi and I2 describes the reachable interval on gj with respect
to (gi, gj, Li . . . Lj, Ri . . . Rj).

We denote the pipe segment between two gates by P (gi, gj) and I1 by in(P (gi,j)) and I2
by out(P (gi, gj)).

Applying Theorem 8.1, for two gates gi, gj with i < j we can compute the pipe segments
P (gi, gi+1), P (gi, gi+2), . . . , P (gi, gj) in O((j − i)2) time. We just compute the right and left-
most arc from gi to gj in order to obtain I2 and the right- and leftmost arc from gj to gi to

78 CHAPTER 8. BASIC ALGORITHMS FOR THE GENERALIZED CORRIDOR

obtain I1. On that account we also identify a pipe segment P (gi, gj) with the corresponding
left and rightmost arcs. We denote that procedure by computePipeSegments.

In order to connect two gates g1 and gn using several pipe segments we introduce the next
term:

Definition 8.6 (Valid Chain of Pipe Segments).
Given n feasible constellations (g0, g1, L1, R1), (g1, g2, L2, R2), . . . , (gn−1, gn, Ln, Rn) and a se-
quence p1, p2, . . . pm of pipe segments.

The sequence is called a valid chain of pipe segments if for all consecutive pipe segments
pi = P (ga, gb), pi+1 = P (gc, gd) it is true that gb = gc and in(pi+1) ⊆ out(pi).

We also call a valid chain of pipe segments pipe.

The Procedure computePipe: Now we introduce a procedure which computes for a given
sequence of feasible constellations (g0, g1, L1, R1), (g1, g2, L2, R2),. . ., (gn−1, gn, Ln, Rn) a valid
chain of pipe segments using a greedy approach. To that end we first restrict the gates
g0, . . . , gn using restrictGates. If the result is that gn is not reachable from g0 we propagate
this result to the caller, otherwise we proceed as follows: First we compute all pipe segments
starting at g0 using the procedure computePipeSegments. From the resulting pipe segment we
take that pipe segment P (g0, gi) with greatest index i and call it p1. If i = n we have reached gn
and we therefore return p1. Otherwise we restrict gi to out(P (g0, gi)) and apply the very same
procedure on (gi, gi+1, Li+1, Ri+1), . . . , (gn−1, gn, Ln, Rn) in order to obtain a pipe segment p2.
We continue computing pipe segments pi until we have reached gn. Due to restricting the gates
by restrictGates we know that we will reach gn. Further, by definition of the algorithm we
know that in(pi) ⊆ out(pi+1) for two consecutive pipe segments we reach. On that account
we obtain a valid chain p1, . . . , pm of pipe segments. (Algorithm 9 illustrates the procedure.)
Since for each pipe segment pi the procedure computePipeSegments needs O(i2) time and
pipe segments do not overlap we can conclude that the procedure has a running time of O(n2)
using O(n) space. Then we can use the next procedure in order to translate a valid chain of
pipe segments into a polyarc.

The Procedure computePolyarc: Assume that we are given a sequence of feasible constel-
lations (g0, g1, L1, R1), (g1, g2, L2, R2), . . . , (gn−1, gn, Ln, Rn) and a corresponding valid chain
p1, . . . , pm of pipe segments connecting g0 with gn. Using these pipe segments this procedure
computes a polyarc A1, . . . , Am of valid arcs connecting g0 with gn. For that purpose we start
with pm and choose an arbitrary point in out(pm) on gn. From this point we compute a right-
most arc to the start gate of pm using the procedure connectGatesByRightMostArc. Then
we apply the same procedure for pm−1 and so on until we reach the gate g0. Since we consider
a valid chain of pipe segments we know that we always reach g0. Again we can argue that for
each pipe segment pi we need O((n− i)2) time calling connectGatesByRightMostArc. Since
pipe segments do not overlap we therefore can conclude a running time in O(n2). Further,
we know that for each pipe pi segment we only need O(n − i) space calling the procedure
connectGatesByRightMostArc. On that account we obtain space requirement of O(n).

Up to now, the procedure does not necessarily yield a minimum long chain of arcs. In the
next chapter we discuss how such a optimal chain can be obtained.

8.2. COMPUTING A POLYARC THROUGH GATES 79

Algorithm 9: computePipe - Greedy
input : Sequence of feasible constellations (g0, g1, L1, R1), (g1, g2, L2, R2),. . .,

(gn−1, gn, Ln, Rn)
output: Valid chain p1, . . . , pm of pipe segments connecting g0 with gn, if this is

possible, otherwise nil.
if restrictGates((g0, g1, L1, R1),. . ., (gn−1, gn, Ln, Rn)) returns ’gn not reachable’1

then
return nil;2

g ← g0;3

i← 1;4

while g 6= gn do5

(p′1 = P (g0, g1), ..., p
′
m = P (g0, gm))← computePipeSegments((g0, g1, L1, R1),. . .,6

(gn−1, gn, Ln, Rn));
g ← gm;7

pi ← p′m;8

i← i+ 1;9

return p1, . . . , pi−1;10

9. Advanced Algorithms for the Generalized
Corridor

So far we have presented how one can compute polyarcs of valid arcs through given feasible
constellations (g0, g1, L1, R1), (g1, g2, L2, R2), . . . , (gn−1, gn, Ln, Rn), but we have not talked
about the optimality of those chains yet. For example computePipe does not necessarily return
a minimum number of pipe segments applied on given feasible constellations. Consequently,
converting the resulting pipe into a polyarc using computePolyarc may not yield a minimum
number of circular arcs. Further, we only know that the resulting chains are connected, but
they are not necessarily smooth. In the following we present algorithms optimizing the length
of the resulting chain while also considering smooth solutions.

9.1 Optimizing the Length of a Polyarc Using Predefined
Gates

In this section we present how one can solve Problem 7.1, that is, we assume that a sequence
(g0, g1, L1, R1), (g1, g2, L2, R2), . . . , (gn−1, gn, Ln, Rn) of feasible constellations is given and we
want to find a minimum long polyarc (A1, . . . , Am) of valid arcs covering the gates. We do
not require that the resulting chain is smooth.

Basically, we do an extensive search in oder to find the shortest pipe connecting g0 with gn.
To that end we introduce a queue Q that contains triples of the form (gi, [a, b], p), where gi is a
gate, [a, b] ⊆ [0, 1] is an interval on gi and p is a pipe segment. Later on, p is the segment that
is responsible for creating that triple. Further, we denote the currently shortest path by Pmin
and the predecessor of a pipe segment p by pred(p). We initialize Q with (g0, [0, 1], ∅).

As long as Q is not empty we take the next element (gi, [a, b], p) from Q and try to com-
pute the pipe segments P (gi, gi+1), P (gi, gi+2), . . . , P (gi, gn) with respect to the interval [a, b],
that is, we restrict gi to [a, b]. We can do this by calling computePipeSegments. For each
pipe segment P (gi, gj) with j < n that we could create, we add (gj , out(P (gi, gj)), P (gi, gj))
to Q. Further on we set the predecessor pred(P (gi, gj)) of P (gi, gj) to p. If we also could
compute P (gi, gn), we have reached the last gate: By traversing the predecessors of P (gi, gn)
we obtain a chain of pipe segments that connect g0 with gn. If this chain has fewer segments
than Pmin, we refresh Pmin using the recently obtained path.

After Q is empty we can apply computePolyarc on Pmin in order to obtain a polyarc
from Pmin. (Algorithm 10 illustrates the procedure.) The following lemma shows the correct-
ness of this procedure as well as its time complexity and space requirement.

Theorem 9.1.
Given n feasible constellations (g0, g1, L1, R1),(g1, g2, L2, R2),. . .,(gn−1, gn, Ln, Rn). We can
obtain a minimum long polyarc of valid arcs covering g0, . . . , gn in O(n4) time using O(n3)
space.

Proof. First we reason about the correctness of the presented approach. We mainly analyze
the part in which we create the pipe Pmin. To that end we show that in each cycle we

81

82 CHAPTER 9. ADVANCED ALGORITHMS FOR THE GENERALIZED CORRIDOR

Algorithm 10: computePolyarc
input : A sequence (g0, g1, L1, R1), (g1, g2, L2, R2), . . . , (gn−1, gn, Ln, Rn) of feasible

constellations.
output: If gn is reachable from g0 then a polyarc of valid arcs and minimum length

otherwise nil.
Q← a queue initialized with (g0, [0, 1], ∅);1

Pmin ← nil;2

while Q is not empty do3

Take next element (gi, [a, b], p) from Q;4

Restrict gi to [a, b];5

p1, . . . , pm ← computePipeSegments((gi, gi+1, Li+1, Ri+1), . . . , (gn−1, gn, Ln, Rn));6

forall pj ∈ {p1 . . . pm} do7

// Let g be the end gate of pi
pred(pj)← p;8

if g 6= gn then9

Add (g, out(pj), pj) to Q;10

else11

Obtain path P from predecessors of p;12

if Pmin = nil or |P | < |Pmin| then Pmin ← P ;13

if Pmin = nil then14

return Pmin;15

return computePolyarc(Pmin,(g0, g1, L1, R1), . . . , (gn−1, gn, Ln, Rn))16

only add elements (gi, [a, b], p) to Q where p is the end segment of a valid chain starting
at g0. We do an induction over the order of the queue. In the first cycle we take from Q
the element (g0, [0, 1], ∅). Then we try to compute P (g0, g1), P (g0, g2), . . . , P (g0, gn) and for
each pipe segment P (g0, gi) that we could obtain we add (gi, out(P (g0, gi)), P (g0, gi)) to Q.
Obviously, each pipe segment P (g0, gi) is a valid chain containing only one element starting
at g0.

So assume that we extract an element (gi, [a, b], p), then we try to compute P (gi, gi+1), P (gi,
gi+2), . . . , P (gi, gn) with respect to the interval [a, b]. For each pipe segment p′ that we could
compute we therefore know that in(p′) ⊆ out(p). Since p is end point of a valid chain C, the
pipe segment p′ is end point of the chain C + p′.

On that account we only consider valid chains connecting g0 with gn when we refresh Pmin.
Since we do an extensive search considering all possibilities we can be sure that we find the
shortest valid chain of pipe segments connecting g0 with gn.

Now we analyze the running time and space requirement. We first show that the search
tree for an extensive search has O(n3) nodes:

For gate g0 we compute n pipe segments P (g0, g1), P (g0, g2), . . . , P (g0, gn) in the worst
case. For the next gate g1 we compute n− 1 pipe segments P (g1, g2), P (g1, g3), . . . , P (g0, gn)
in the worst case. Since for g2 we created the pipe segments P (g0, g2) and P (g1, g2) we
compute 2 · (n− 2) pipe segments. Analogously for g3 we create 3 · (n− 3) pipe segments and
so forth. On that account in the worst case we create

n+ Σn
i=1i · (n− i) ≤ n+ nΣn

i=1i = O(n3)

9.2. GENERALIZATION OF GATES 83

pi−1 pi

pi+1

gi−1
gi

gi+1

gi+2

pi+2A

Figure 9.1: Illustration of how to choose gates. Although the arc A is contained in the corridor
it does not cross gi+1.

pipe segments. Since for two gates gi, gj with i < j we can compute the pipe segments
P (gi, gi+1), P (gi, gi+2), . . . , P (gi, gj) in O((j−i)2) time, we know that we need amortized O(n)
time per pipe segment. Consequently we need O(n4) time and O(n3) storage.

Remark: Since we do not have to store all pipe segments for the whole processing time
we also can reduce space requirements, but we let the detailed analysis of this optimization
remain open.

For this algorithm we have assumed that fixed gates are given. We have not explained
yet how we can gain such gates. Looking back where we came from we have some corridor
consisting of corridor segments (see Chapter 5). Each of those segments begins and ends with
a circle which we have called connecting circle, because they are the common part of two
segments. The idea is to choose for every connecting circle a secant being a gate that must be
crossed by the polyarc we are looking for. Since the center of such a connecting circle is also
end and start point of two line segments l1 and l2 that belong to the polygonal chain we want
to cover, the bisectors of the orthogonal lines regarding those line segments lend themselves to
be the gates (see gi in Figure 9.1). Depending on the angle between l1 and l2 we also suggest
to take the bisector of l1 and l2 (see gi+1 Figure 9.1). Independently how we choose the gates,
we can always find arcs that lie within the corridor without iterating through all gates (see A
in Figure 9.1). On that account using gates yields only a approximative solution. Still, the
suggested optimization is a generalization of the approach presented in [DRS08]. Summarizing
we can state that the presented optimization

• yields a not necessarily smooth polyarc of optimal length regarding predefined gates,
and

• yields an approximation solution if we consider all possibilities how gates can be chosen,
whereat we can not estimate the quality factor, and

• need O(n4) time and O(n3) space.

9.2 Generalization of Gates

In this section we generalize gates in order to compensate the drawbacks of the previous
approach. To that end we assume that we are given a polygonal chain P = (l1, . . . , ln) and the

84 CHAPTER 9. ADVANCED ALGORITHMS FOR THE GENERALIZED CORRIDOR

pi−1 pi

pi+1

gi−1

gi

gi+1

gi+2

pi+2

li
li+1

li−1

(a) The circles illustrate the single gates, whereat the incoming gate is
depicted by a dotted line and the outgoing gate is depicted by a black
continuous line.

g
li

li+1

g
li

li+1

→

(b) Illustrates the restriction of a sub-gate.

Figure 9.2: Illustration of generalized gates.

corresponding corridor C consisting of n corridor segments as defined in Chapter 5. Then we
extend the concept of gates. Up to now we only have considered line segments as gates, but we
have defined a gate to be a non-self-intersecting curve that satisfies some certain properties.
On that account it is very likely that one also can use other geometrical primitives for gates:

We show that circles can also be gates using a little technical trick: The idea is that we
soften the restriction that two consecutive arcs we are looking for must end at the very same
point on their common gate. From now on we also allow arcs to end at different points on the
same gate. On that account we can divide a single gate g into an incoming gate ↓ g and an
outgoing gate ↑ g (see Figure 9.2). We represent both sub-gates as sub-segments of g, which
are chosen independently from each other. In the case that g is a circle this consequently
means that the incoming gate as well as the outgoing gate are sub-arcs of g. As the name
already states the incoming gate ↓ g is responsible for the arcs that arrive at g. Thus, we only
consider the back of ↓ g. Analogously, the outgoing gate ↑ g is responsible for the arcs that
leave g and we therefore only consider the front of ↑ g. The gap between an arc A that arrives
at g and an arc A′ that leaves at g then can bridged by introducing at least one new arc lying
in g so that it connects the end point of A with the starting point of A′.

Now, we first show that circular arcs can be used as incoming and outgoing gates and then
we explain in more detail how to choose such gates in order to avoid the drawbacks described
at the end of the previous section.

Lemma 9.1. Let A = (π, ·, ω) be a circular arc that spans at most the half of its corresponding
circle C, then A is a gate.

Proof. Obviously, the tangential continuations of A do not either intersect each other or A.
Then by Lemma 7.1 it follows directly that A is a gate.

9.3. OPTIMIZING THE LENGTH OF A POLYARC USING GENERALIZED GATES 85

In order to obtain feasible gates for a corridor C of a polygonal chain P with connecting
circles C1, . . . , Cn we translate each circle Ci into a gate g. For that we transform the half-circle
of Ci which is turned to Ci−1 into an incoming gate ↓ g = (↓ π, ↓ ω) such that the outer side
of that half-circle is the back of ↓ g (see Figure 9.2a). Analogously, we translate the half-circle
of Ci which is turned to Ci+1 into an outgoing gate ↑ g = (↑ π, ↑ ω) such that the inner side
of that half-circle is the front of ↑ g. Further, for both sub-gates we introduce obstacles at
their endpoints such that the obstacles of ↓ g belong to the corridor segment (Ci−1, Ci) and
the obstacles of ↑ g belong to the corridor segment (Ci, Ci+1).

If we have to restrict g to a certain sub-interval, we now do this regarding ↓ g or ↑ g (see
Figure 9.2b). In both cases we conceptually move the corresponding obstacles of ↓ g and ↑ g
to the borders of the restricted intervals. Note that we can restrict ↓ g and ↑ g independently
from each other.

We still have to reason about the validity of arcs. To that end we extend the definition
of a valid arc (see Definition 7.7) as follows. We require that a valid arc starting at a gate g1
and ending at a gate g2 must particularly start at the outgoing gate ↑ g1 of g1 and end at the
incoming gate ↑ g2 of g2. On the implementation level the drawing of arcs changes a bit. Until
now we had to draw arcs touching line segments, from now on we must draw arcs touching
line segments and circular arcs.

9.3 Optimizing the Length of a Polyarc Using Generalized
Gates

In this part we consider generalized gates as introduced in the previous section and assume
that we are given a sequence (g0, g1, L1, R1), (g1, g2, L2, R2), . . . , (gn−1, gn, Ln, Rn) of feasible
constellations. Using connectGatesByRightMostArc we greedily connect g0 with gn by a
sequence A1, . . . , Am of valid arcs, that is, starting at A1 we choose each circular arc Ai as
long as possible. Then we use the destination gate of Ai as the new starting gate of Ai+1. On
that account the approach works very similar to computePipe.

Since arcs do not overlap and for two gates gi and gj with i < j holds that from gj we
come at least so far as from gi, the approach is optimal regarding the length of the sequence.
Consequently, there is no other sequence of valid arcs connecting g0 with gn having fewer arcs.

However, as already mentioned the so obtained sequence is not a polyarc. Let Ai and Ai+1

be two consecutive arcs with common gate g, then we can bridge the gap between Ai and Ai+1

by introducing a line segment l connecting the end point of Ai with the start point of Ai+1.
Due to the convexity of circles we know that l is contained in g.

Now we reason about the optimality of this approach: Consider a polygonal chain P and
its corresponding corridor C as defined at the beginning of this chapter. Let S be the sequence
of feasible constellations we obtain using generalized gates and let L be the solution which we
obtain when we apply the described approach on S. On the other hand let S′ be the sequence
of feasible constellations using line segments as gates such that the gates are contained in the
connecting circles of C and such that they are optimally chosen. Let L′ be a optimal polyarc
regarding S′, then L is 2-approximative with respect to L′.

If we require that the polyarc is smooth we fill the gap between two consecutive arcs Ai
and Ai+1 using at most two arcs which are contained in the corresponding connecting circle.
For example we can do this using bi-arcs. For a detailed explanation about bi-arcs see [Bol75].

Since we need O(n2) time and O(n) space for computing all arcs we can summarize the
result by the following theorem:

86 CHAPTER 9. ADVANCED ALGORITHMS FOR THE GENERALIZED CORRIDOR

Theorem 9.2.
Given n feasible constellations (g0, g1, L1, R1), (g1, g2, L2, R2), . . ., (gn−1, gn, Ln, Rn). We can
obtain a polyarc C of valid arcs covering the generalized gates g0, . . . , gn in O(n2) time us-
ing O(n) space, such that either

1. C is 2-approximative regarding its length when we do not require it to be smooth, or

2. C is 3-approximative regarding its length when we do require it to be smooth.

9.3.1 Covering Circles Using One Line

For the algorithm as presented in Chapter 6 we needed among other things an algorithm for
computing a line segment l covering a maximum long prefix of a sequence C1, . . . , Cn of circles.
We assumed that we use the algorithm as presented in [GHMS91] using O(n) time. In this
section we want to introduce an alternative to that algorithm having the main difference that
one can specify more precisely which parts of the circles the line should stab. To that end we
again use generalized gates and formalize the problem as follows:

Given a sequence C = (C1, . . . , Cn) of circles, we introduce an algorithm for covering a
prefix C1, . . . , Cm of C using one line l such that m is maximized. To that end we consider the
polygonal chain P = (p1, . . . , pn) that is induced by the centers of those circles. Based on P
we create a corridor using generalized gates as described in Section 9.2. In order to give the
user of this procedure the possibility to define the part of a circle where a line can enter, we
also expect a corresponding sequence of gates g1, . . . , gn which lie within or on the border of
the circles. If they are not specified, we just use the gates as described in Section 9.2.

On that account we obtain (g1, g2, L2, R2), (g2, g3, L3, R3), . . ., (gn−1, gn, Ln, Rn) feasible
constellations. The idea is that we use the procedures connectGatesByRightMostArc and
connectGatesByLeftMostArc in order to obtain l, but first we show the following lemma:

Lemma 9.2.
Given n feasible constellations (g0, g1, L1, R1), (g1, g2, L2, R2), . . ., (gn−1, gn, Ln, Rn), such
that gn is reachable from g0.

We denote the rightmost arc connecting connecting g0 with gn by A and the corresponding
leftmost arc by B. Further, we assume that neither A or B is a line.

Then g0 and gn can be connected by a line l with respect to the obstacles if and only if A
and B do not have the same orientation.

Proof. The lemma is well-defined, because if there is a rightmost arc connecting two gates,
there is also a leftmost arc. Now we prove both directions:

“ ⇒ ”: We do a proof by contradiction. To that end assume that g0 and gn can be
connected by a line l with respect to the obstacles, but A and B have the same orientation
(see Figure 9.3a). Without loss of generality we assume that both are clockwise oriented. From
Lemma 8.7 we then know that l..r..l ∈ σ(B). Since l must circumvent the very same obstacles
and B is not a line, l must also be a bow, which is a contradiction to the assumption that l is
a line segment. We can argue analogously when both arcs are counterclockwise oriented.

“ ⇐ ”: If A and B do not have the same orientation, we know that A is clockwise oriented
and B is counterclockwise oriented. Let l′ be the line connecting the centers of A and B.
We denote the intersection point of l′ and A by s and analogously the intersection point of l′

and B by t. We now show how to construct l such that it cannot be clashed by obstacles. To
that end we distinguish three cases:

9.3. OPTIMIZING THE LENGTH OF A POLYARC USING GENERALIZED GATES 87

A

B

gng0

(a) l..r..l ∈ B

A

B

g0 gn

l

l′

s

t

(b) 1. Case: A and B do
not intersect.

g0 gn
A

B
l

l′

s
t

(c) 2. Case: A and B inter-
sect once.

A

B

g0 gn

l

(d) 3. Case: A and B inter-
sect twice

Figure 9.3: Illustration of the proof for Lemma 9.2.

• A and B do not intersect (see Figure 9.3b): We draw the line l through the center of st
such that l is orthogonal to l′. Since A and B have the same orientation at s respective t
as l and l lies between A and B they cannot intersect. According to this l lies to the
right of B and to the left of A. Thus, l cannot be clashed by any obstacles.

• A and B intersect once (see Figure 9.3c): We draw the line l through the intersection
point of A and B such that l is orthogonal to l′. Since the intersection point of A and B
must coincide with s and t, this can be seen a special case of the first case.

• A and B intersect twice (see Figure 9.3d): Let p and p′ be the intersection points of
both arcs, then we draw l through p and p′. For the whole time going from g1 to gn the
line l has a sub-arc of A and B to its left and to its right.

Obviously in all three cases l is unique and connects g0 with gn.

On account of that lemma we introduce the procedure coverCirclesWithLine, which
computes for a given sequence C = (C1, . . . , Cn) of circles a line l covering a maximum long
prefix of C. For that purpose it first calls the procedures connectGatesByRightMostArc and
connectGatesByLeftMostArc on the given feasible constellations obtaining the two sequences

1. A = (A1, . . . , Am) of rightmost arcs connecting g1 with its successors and

2. B = (B1, . . . , Bm) of leftmost arcs connecting g1 with its successors.

In order to do not too much work, we let them run synchronously, that is, first we compute the
pairs (A1, B1), then (A2, B2) and so forth. If we have reached a pair (Ai, Bi) such that both
arcs have the same orientation, we abort both procedures. Aborting at this point is correct
because we know that a rightmost arc cannot be counterclockwise oriented if the corresponding
leftmost arc is clockwise oriented and vise versa. Further, if there is a change in orientation
from the (i− 1)-th pair to the i− th pair, there cannot occur changes anymore.

88 CHAPTER 9. ADVANCED ALGORITHMS FOR THE GENERALIZED CORRIDOR

From Lemma 9.2 we then know that Ai−1 and Bi−1 gives us a guarantee that we can
connect g1 with gi by a line l (Note that due to the choice of indices Ai−1 and Bi−1 connect g1
with gi). We return the line l as defined in the second part of the proof for Lemma 9.2.

Due to synchronizing connectGatesByRightMostArc and connectGatesByLeftMostArc
we need O(m2) time and O(n) storage which we can summarize in the following theorem:

Theorem 9.3. Given a sequence C = (C1, . . . , Cn) of circles. Then we can cover a maximum
long prefix C1, . . . , Cm of C by a single line l in O(m2) time and O(n) space.

In particular that means that the algorithm needs O(n2) time.

10. Handling Special Cases

So far we have assumed that the connecting circles of the corridor C of the given polygonal
chain P are consecutively disjoint and all of them are of the same radius. In this chapter we
also explain how one can apply the approaches discussed so far on corridors for which we allow
that the circles overlap. Among other things, there are two typical use cases for which it is
necessary to consider overlapping circles:

1. Assuming that the radius of the connecting circles corresponds to the view size of a given
map, then a typical use case is that we have zoomed out from the map and see a large
part of the map. Then we only want to get some overview of the street modeled by P
without following every move of the street. We therefore want to have the possibility to
sum up parts of the street.

2. If the radius of the connecting circles does not correspond to the view size, but models
the allowed deviation with which we can follow the street represented by P , it still can
be reasonable to follow the single moves of P .

For the algorithms based on line stabbing (see Section 6.2) we still can use the old approach,
because as presented in [GHMS91] one can still find a line l covering a maximum long prefix of a
sequence of arbitrarily placed circles if one only requires that the circles are of the same radius.
But in order to find a solution for the first use case, we also suggest another algorithm based
on line stabbing. As a second algorithm we present an approach based on gates. Basically, we
can summarize both algorithms as follows:

1. Approach: We translate P into a polygonal chain P ′ satisfying Property 6.1 so that we
can apply the approach of Section 6.1 on P ′ in order to obtain a polyarc K covering P .
Mainly we work on the intersections of those overlapping circles so that this approach is
especially applicable for the first use case. Section 10.1 explains in more detail how one
can do this.

2. Approach: In Section 10.2 we translate P directly into a polyarc K covering P using
gates. Since we do not consider the intersections of the circles as in the first approach
this approach is especially applicable for the second use case.

In Section 10.3 we then give a short outlook how to handle circles with different radii.

10.1 Intersection Based Stabbing

In this section we present another algorithm that computes for a given polygonal chain P
a simplified polygonal chain P ′ such that P ′ satisfies Property 6.1. Then we can use the
approach described in Section 6.1 in order to obtain a polyarc.

89

90 CHAPTER 10. HANDLING SPECIAL CASES

The idea is to use the intersections of overlapping circles instead of the circles themselves for
the line stabbing algorithm as presented in Section 6.2. We compute those intersections such
that they are consecutively disjoint. We denote the intersection of a sequence Ci, Ci+1, . . . , Cj
by Hi,j , and describe it by means of circular sub-arcs of those circles, that is, we only con-
sider the rim of the intersection. We call those sub-arcs edges of Hi,j and the corresponding
connection points vertices of Hi,j . Then we can define the problem more formal as:

Problem 10.1. Given a polygonal chain P = (p1, . . . , pn) with corridor C and connecting
circles C1, . . . , Cn.

Then we want to find a minimum/maximum long sequence H = (Hi1,j1 , . . . ,Him,jm) of
consecutively disjoint intersections of C1, . . . , Cm with 1 = i1 ≤ j1 < i2 ≤ j2 < . . . < im ≤ jm,
such that all intersections are not empty.

Both cases searching for a minimum and a maximum long sequence can be reasonable
for the first use case as described at beginning of the chapter: If we search for a minimum
long sequence we condense P as much as possible, while using a maximum long sequence we
condense P only if it is necessary. On that account we obtain in the first case a new polygonal
chain that abstracts P more than the one we gain in the second case.

Note that by definition of Hi,j we require implicitly that all circles between Ci and Cj are
also involved in the intersection. In particular that means the sequence of intersections we
are looking for cover the circles with respect to their order. From now on we always consider
sequences H of intersections as described in Problem 10.1 without stating their properties
explicitly.

Motivated by the use cases we further assume that the number of overlapping circles is
bounded by a number k. More precisely:

Definition 10.1 (Overlapping Bound). Given a sequence of circles C1, . . . , Cn. Let H be
the intersection of maximum size under all intersections Hi,j with 1 ≤ i ≤ j ≤ n , then the
overlapping bound of those circles is defined as the size of H.

Since we assume that P describes a trajectory on a map, it is reasonable to assume that
the overlapping bound of P is sub-linear relative to the size of P . For real-world instances
it is very likely that this bound is even constant, because it does not seem likely that the
overlapping bound of a trajectory should increase with its length: Normally, long trajectories
cover a long distance on a map, so that the connecting circles disperse on the map.

In order to compute the intersections as described in Problem 10.1 we first show that it is
sufficient to work on the vertices of P and that we do not need to consider the line segments
of P . This simplifies the reasoning about those intersections significantly:

Lemma 10.1. A polygonal chain P = (p1, . . . , pn) can be fully covered by a circle C if and
only if C fully covers the convex hull CH(P) of P .

Proof.
"⇐:" CH(P) is fully contained in C. Assume that there exists a point p on a line segment l =
(pi, pi+1) ∈ P that is not contained in C. Then at least one of the endpoints of l is not
contained within C and consequently not in CH(P). That contradicts that CH(P) is the
convex hull of P .
"⇒: P is fully contained in C. That means that in particular the points p1 . . . , pn are contained
in C. Consequently, as C is convex all possible connection lines between those points must
also be contained in C. In particular the line segments spanning the convex hull CH(P).

10.1. INTERSECTION BASED STABBING 91

On that account we also can assume that we only have given the circles C1, . . . , Cn for
solving Problem 10.1. In the next part we first describe how one can compute Hi,j for cir-
cles Ci, . . . , Cj . Then in the following two parts we explain which of the possible intersections
we want to choose. Finally the last part of this section describes how those intersections can
be used in order to obtain a simplified polygonal chain P ′ as described at the beginning of
this section.

10.1.1 Computing Intersections of Circles

In [SH76] an divide-and-conquer algorithm is presented that can compute the intersections
of the circles C1, . . . , Cn in O(n log n) time. However, as we are interested in the non-empty
intersections H1,1, . . . ,H1,n it is crucial for a good running time to use an iterative approach.
The divide-and-conquer approach leads to O(n2 · log n) time. We therefore introduce a simple
iterative algorithm with which we can compute those intersections in O(n2) time.

More precisely, we describe in this section how one can gain H1,j in such a way that j is
maximized while H1,j is still not empty. We apply an iterative approach. For that purpose
let H be the current intersection: Starting with H := C1 we iteratively add circles Ci to H:
Each time we check whether Ci intersects H which we can obviously do in O(|H|) time,
when |H| denotes the size of H. If Ci intersects H we add Ci to H by updating its structure
(we can assume that it is modeled as a simple cyclic list of circular arcs). If Ci does not
intersect H then we return H. Obviously, H consists of a maximum long prefix of C1, . . . , Cn
such that it is not empty. The next theorem summarizes the results:

Lemma 10.2. Given an intersection H of n circles, then we can compute the intersection
of H and a circle C in O(n) time.

It is very likely that one also can compute the intersection H of i circles with a further
circle C faster than in O(i) time since one can see both H and C as convex polygons based
on circular arcs that are to be merged. In [OvL81] an approach is presented how two convex
polygons can be intersected efficiently such that the result is again a convex polygon. We let
the question remain open whether that approach can be adapted to the problem of computing
the intersection of H and C.

10.1.2 A Minimum Long Sequence of Intersections

In this part we explain how one can obtain a minimum long sequence Hi1,j1 , . . . ,Him,jm of
consecutively disjoint intersections based on circles C1, . . . , Cn. To that end we compute the
sequence iteratively using a greedy algorithm:

We denote the currently considered intersection by Hi starting with i = 1. First we
initialize Hi with C1 in order to start with a non empty intersection. Then we consider the
remaining circles C2, . . . , Cn successively. Let Cj be the currently considered circle, then we
check whether it intersects Hi. If this is the case, we add Cj to Hi, otherwise we create a new
intersection Hi+1 with initial element Cj and increase i by one, so that in the next iteration
step we consider the new created intersection. Algorithm 11 shows this approach in more
detail. We call this procedure minIntersectionSequence, then the following lemma is true:

Lemma 10.3. Given a sequence C1, . . . , Cn of circles with overlapping bound k, then the
procedure minIntersectionSequence returns a minimum long sequence Hi1,j1 , . . . ,Him,jm of
consecutively disjoint intersections with 1 = i1 ≤ j1 < i2 ≤ j2 < . . . < im ≤ jm such that all
intersections are not empty. Further, the procedure needs O(n · k) time and O(n) space.

92 CHAPTER 10. HANDLING SPECIAL CASES

Algorithm 11: minIntersectionSequence
input : A sequence C1, . . . , Cn circles.
output: A minimum long sequence H1, . . . ,Hm of consecutively disjoint intersections

of C1, . . . , Cn respecting the order of these circles.
i← 1;1

Hi ← create Hi with first element C1;2

for j ← 2 to n do3

if Hi ∩ Cj = ∅ then4

Hi+1 ← create Hi+1 with first element Cj ;5

i← i+ 1;6

else7

Hi ← add Cj to the head of Hi;8

return H1, . . . ,Hi;9

C1

C2

C3

C4

C5

C6

C7

C8H ′
i

H ′
i+1

C

Figure 10.1: Illustration of the proof for Lemma 10.3. The dotted ellipses illustrate the
sequence H and the dashed ellipses illustrate the sequence H′

Proof. It follows directly from the definition of the algorithm that the intersections are consec-
utively disjoint, because we start to compute the next intersection based on a circle that does
not overlap the currently considered intersection. Further, on that account the intersections
can not be empty. Due to Lemma 10.2 we need in each iteration step O(|Hi|) time in order to
check whether Cj intersects Hi. Since we know that at most k consecutive circles are involved
in the same intersection, we need O(k) time per iteration step. Thus, we need at most O(n ·k)
time in order to compute all intersections. The space requirements follow from the observation
that an intersection of i circles can be stored using O(i) space.

It remains to show that the resulting sequence is minimum regarding its length. To that end
assume the contrary, that is, there is a sequence of circles C1, . . . , Cn such that the procedure
minIntersectionSequence yields a sequence H = (H1, . . . ,Hm) that has not minimum size.
Then there is another sequence H′ = (H ′1, . . . ,H

′
l) of consecutively disjoint intersections with

less elements. Consequently, there must be an i with 1 ≤ i ≤ l from which on H and H′
begin to differ. Let H ′i be the first intersection in H′ that is not also contained in H and
let H ′i+1 be the direct successor of H ′i, then there must be a circle C involved in H ′i+1 such
that C overlaps H ′i and H

′
i+1, because otherwise H ′i would not be the first intersection that

differs (see Figure 10.1). Since H ′i and H
′
i+1 are disjoint but C overlaps both intersections, the

intersection H ′i+1−C cannot be empty or overlap with H ′i. On that account we can replace H ′i
and H ′i+1 with H ′i + C and H ′i+1 − C in H′ without gaining an extra intersection. We can
apply this approach until H = H′ which is a contradiction to the assumption that H and H′

10.1. INTERSECTION BASED STABBING 93

C1

C2

C3

C4

C5

C6

C7

(a) Intersection of circles.

1 2 3 4 5 6 7

fe(1) fe(3)

(b) The correspond-
ing relation lrc.

Figure 10.2: Illustration for the last reachable circle.

are of different size.

10.1.3 A Maximum Long Sequence of Intersections:

In this section we discuss the counterpart of the previous section, that is, given a sequence
C1, . . . , Cn we want to find a maximum long sequence Hi1,j1 , . . . ,Him,jm of consecutively dis-
joint intersections with 1 = i1 ≤ j1 < i2 ≤ j2 < . . . < im ≤ jm such that all intersections
are not empty. We again apply a kind of greedy algorithm, but this time we change from one
intersection to the next one as early as possible.

For the rest of this section we assume that we store the circles C1, . . . , Cn in one array in
that particular order. Further, we store for an intersection Hi,j only the two indices i and j.
Hence, the index i is called the tail of Hi,j which we denote by tail(Hi,j). Analogously we
call j the head of Hi,j which we denote by head(Hi,j):

C1 CnCi Cj

Htail(H) head(H)

For the sake of readability we directly identify the circles with their indices, that is, for example
we write 1, . . . , n instead of C1, . . . , Cn and say ’the circles 1, . . . , n’.

Let i, . . . , j be the longest sequence of circles starting at a circle i whose intersection is not
empty, then we denote the circle j by lrc(i) (last reachable circle of i). Due to Lemma 10.2
and the overlapping bound k we can compute for each circle i the index lrc(i) in O(k2) time:
We start with an intersection H that only contains the circle i, then we add iteratively the
circles i + 1, i + 2, . . . to H until it is empty. The last circle j with H ∩ Cj 6= ∅ yields the
index lrc(i).

Since we have n circles we can pre-compute lrc for all circles in O(n · k2) time. Fur-
ther, we let every circle i directly point to its index lrc(i) so that the request lrc(i) only
needs O(1) time. Figure 10.2 illustrates the definition of lrc. Obviously, for a circle j in a
given sequence i, . . . , j, . . . , lrc(i) it is true that lrc(j) ≥ lrc(i).

We call the first circle j in i, . . . , lrc(i) with lrc(j) > lrc(i) the first escapee of i. If such a
circle does not exist for i, we call lrc(i)+1 the first escapee of i. On that account if lrc(i) = n,
it also can be that the first escapee is not a circle but only an number. We define that more
formal as:

fe(i) =

{
lrc(i) + 1 for all circles j within i, . . . , lrc(i) it is true that lrc(j) = lrc(i)

j j is the first circle in i, . . . , lrc(i) with lrc(j) > lrc(i)

94 CHAPTER 10. HANDLING SPECIAL CASES

Obviously we can pre-compute fe for every circle i in O(k) time if we assume that we already
have computed lrc for i.

The main idea for computing a maximum long sequence is that beginning with H1 we
choose each intersection as small as possible in order to cover the whole sequence with as
many intersections as possible. For the intersection H1 we can distinguish the following two
cases:
1. Case: fe(1) ≤ lrc(1) 2. Case: fe(1) > lrc(1)

1 lrc(1)fe(1).fe(1)− 1 1 lrc(1) fe(1). . .

In both cases H1 must cover at least the circles 1, . . . , fe(1)−1 in order to avoid that the next
intersection H2 overlaps H1: If we chose H1 such that it ends before fe(1)− 1 at a circle i, H2

would have to start with circle i + 1 for that we know that i + 1 ≤ fe(1) − 1. Thus, H2 can
only cover circles up to lrc(1), which yields that H1 and H2 are not disjoint.

On that account we set H1 = (1, . . . , fe(1)− 1). In the case that fe(1)− 1 = n we further
know that we have summed up the sequence C1, . . . , Cn of circles using a maximum long
sequence of consecutively disjoint intersection.

After discussing the base case we explain how to specify the i-th intersection Hi assuming
that there is an intersection Hi−1 = (s, . . . , t). Obviously, Hi starts with t+1 as its first circle.
We distinguish the cases lrc(s) < fe(t+ 1)− 1 and lrc(s) ≥ fe(t+ 1)− 1:

1. Case: lrc(s) < fe(t+ 1)− 1

lrc(s). . .s t t+ 1 fe(t+ 1)− 1 fe(t+ 1) lrc(t+ 1). . .
Hi−1 Hi

We can argue analogously as in the base case that Hi must cover at least the circles t +
1, . . . , fe(t + 1) − 1 in order to avoid that the next intersection Hi+1 overlaps Hi: If Hi+1

ended at a circle u with t + 1 < u < fe(t + 1) − 1, the next intersection Hi+1 would have to
start at a circle ≤ fe(t + 1) − 1. Due to the definition of fe, then Hi+1 must end somewhere
between u+ 1, . . . , lrc(t+ 1). Thus, Hi and Hi+1 would intersect.

On that account we set in that case Hi = (t+ 1, fe(t+ 1)− 1). From the reasoning above
it directly follows that Hi is of minimum size with respect to its successors. Since lrc(s) <
fe(t+ 1)− 1 the intersection Hi and Hi−1 must be disjoint.

2. Case: lrc(s) ≥ fe(t+ 1)− 1

lrc(s). . .s t t+ 1 . . . fe(t+ 1) lrc(t+ 1)
Hi−1 Hi

. . . lrc(s) + 1 . . .

This timeHi must cover at least the circles t+1, . . . , lrc(s)+1 in order to be disjoint withHi−1.
The argumentation for that can be done analogously to the previous cases. We therefore setHi

to be the sequence (t + 1, . . . , lrc(s) + 1). It directly follows that Hi is minimum size with
respect to Hi−1 and that Hi does not intersect Hi−1.

In both cases we do not need to consider further intersections Hi+1, Hi+2, . . . if the head

10.1. INTERSECTION BASED STABBING 95

A B C

D E F

G H I

Hi

H′
j

Hi

H′
j

Hi

H′
j

H′
j

Hi

Hi

H′
j

H′
j

Hi

Hi

H′
j

H′
j

Hi

Hi

H′
j

Figure 10.3: Possible types of overlapping intersections.

of Hi is the circle Cn. Finally we can summarize the cases as follows:

H1 := (1, . . . , fe(1)− 1)

and for all i with i > 1 and head(Hi−1) < n:

Hi :=

{
head(Hi−1) + 1, . . . , fe(tail(Hi))− 1) lrc(tail(Hi−1)) < fe(head(Hi−1) + 1)−1

head(Hi−1) + 1, . . . , lrc(tail(Hi−1)) + 1) lrc(tail(Hi−1)) ≥ fe(head(Hi−1) + 1)−1

We denote the procedure that computes these intersections by maxIntersectionSequence.
That those intersections are consecutively disjoint and cover the circles C1, . . . , Cn directly
follows from the description above. It remains to show that the resulting sequence H =
(H1, . . . ,Hm) is maximized. To that end we compare it to another arbitrary sequence H′ =
(H ′1, . . . ,H

′
l) that covers C1, . . . , Cn being consecutively disjoint.

We say that an intersection H of circles overlaps an intersection H ′ of circles, if there is at
least one circle in H that is also contained in H ′. Figure 10.3 shows all possible overlapping
types for two intersections Hi of H and H ′j of H′. We call those compositions bricks. We can
decompose H and H′ into bricks, which not necessarily work out even:

A B B H E B

H
H′

Hence, we assume that the upper layer depicts H and the lower layer depicts H′. Later on we
use bricks in order to show that H is maximized, but first the next lemma and its corollary
state some general properties of disjoint intersections:

Lemma 10.4. Given a sequence of circles C1, . . . , Cn and the sequence H = (H1, . . . ,Hm) that
is the result of maxIntersectionSequence applied on the given circles. Let H′ = (H ′1, . . . ,H

′
l)

be another arbitrary sequence of consecutively disjoint intersections covering C1, . . . , Cn, then
the following statement is true:

For each intersection Hi in H it is true that it can overlap at most three intersections
of H′.

Proof. Assume the contrary. Hence, there is an intersection Hi which overlaps more than
three intersections of H′. We always can choose four intersections H ′j−1,Hj , H ′j+1, H

′
j+2 of

those overlapped intersections such that they occur in a row. Since all four of them have at
least one circle in common with Hi, the two intersections H ′j , H

′
j+1 contain only intersections

that are also contained by Hi:

Hi

H ′jH ′j−1 H ′j+2H ′j+1

96 CHAPTER 10. HANDLING SPECIAL CASES

A G

GI

D

EC

E

Figure 10.4: Not possible combinations of bricks.

But then Hi testifies to the fact that H ′j and H
′
j+1 cannot be disjoint.

Corollary 10.1. If Hi overlaps two or three intersections, then only one of those intersections
can be completely overlapped by Hi. In the case that Hi overlaps three intersections, the
intersection in the middle is completely overlapped.

Since the corollary is obvious, we will not state it explicitly each time when we make use
of it. We now show that some bricks require other certain bricks as predecessors:

Lemma 10.5. Given a sequence of circles C1, . . . , Cn and the sequence H = (H1, . . . ,Hm) that
is the result of maxIntersectionSequence applied on the given circles. Let H′ = (H ′1, . . . ,H

′
l)

be an arbitrary sequence of consecutively disjoint intersections covering C1, . . . , Cn, then the
following statement is true:

For two consecutive bricks (Hi−1, H
′
j−1) and (Hi, H

′
j) it cannot be that

head(H ′j) < head(Hi) and tail(Hi) ≤ tail(H ′j) and tail(Hi−1) ≤ tail(H ′j−1)

Figure 10.4 illustrates typical cases that are not possible due to that lemma. We show this
lemma using a proof by contradiction. To that end remember that for all intersections H the
head and tail of H always satisfy tail(H) ≤ head(H).

Proof. Assume the contrary. Hence, there are two sequences H and H′ as described in the
lemma, but we can find intersections Hi−1, Hi, H ′j−1 and H ′j such that head(H ′j) < head(H ′i),
tail(Hi) ≤ tail(H ′j) and tail(Hi−1) ≤ tail(H ′j−1). We illustrate the setting as follows:

HiHi−1 Hi+1

H ′jH ′j−1 H ′j+1

lrc(tail(Hi−1)) lrc(tail(Hi)) fe(tail(Hi))

lrc(tail(H ′
i+1

))

lrc(head(Hi))

In order to satisfy the assumptionHi must be of size of at least two while the other intersections
must have a size of at least one. Further, it must be true that

lrc(tail(Hi−1)) < head(H ′j), (10.1)

because otherwise the intersection tail(Hi−1) ∩ . . . ∩ lrc(tail(Hi−1)) would be a witness that
the intersections H ′j−1 and H ′j are not disjoint (The figure above illustrates the extreme case
that lrc(tail(Hi−1)) = head(H ′j)−1). Thus, and because by assumption head(H ′j) < head(Hi)

10.1. INTERSECTION BASED STABBING 97

it is true that

head(Hi)− head(H ′j) ≥ 1
(10.1)↔ (10.2)

head(Hi)− lrc(tail(Hi−1)) ≥ 2 ↔ (10.3)
head(Hi) ≥ lrc(tail(Hi−1)) + 2 ↔ (10.4)
head(Hi) > lrc(tail(Hi−1)) + 1 (10.5)

Since Hi has a predecessor the head of Hi is defined distinguishing two cases:

lrc(tail(Hi−1)) < fe(tail(Hi))−1 ⇒ head(Hi) = fe(tail(Hi))−1 (10.6)
lrc(tail(Hi−1)) ≥ fe(tail(Hi))−1 ⇒ head(Hi) = lrc(tail(Hi−1))+1 (10.7)

Due to Inequation (10.5) and the right part of Implication (10.7) we know that lrc(tail(Hi−1)) <
fe(tail(Hi))− 1 must be true and consequently by Implication (10.6) that

head(Hi) = fe(tail(Hi))− 1 (10.8)

As by assumption head(H ′j) < head(Hi) there must be an intersection H ′j+1 with tail(H ′j+1) ≤
head(Hi). Consequently, lrc(tail(H ′j+1)) ≤ lrc(head(Hi)). Then from Equation (10.8) it
follows that

head(H ′j+1) ≤ lrc(tail(H ′j+1)) ≤ lrc(head(Hi))
(10.8)

= lrc(fe(tail(Hi))− 1)
Def. fe

= lrc(tail(Hi))
(10.9)

Further, as by assumption tail(H ′j) ≥ tail(Hi) the next inequation follows:

tail(Hi) ≤ tail(H ′j) ≤ head(H ′j) < tail(H ′j+1) ≤ head(H ′j+1) ≤ lrc(tail(Hi)) (10.10)

Consequently, the intersection tail(Hi)∩. . .∩lrc(tail(Hi)) proves that the two intersections H ′j
and H ′j+1 are not disjoint, which is a contradiction to the definition of H′.

From that lemma we can directly conclude the next one, that states more concretely which
combinations of bricks are not possible.

Lemma 10.6. The following sentences are true:

1. The predecessor of a brick of type G can only be of type F.

2. The predecessor of a brick of type E can only be of type H.

Proof. We only show the first sentence, because the other can be proven analogously. If a
brick b of type G has a predecessor b′, then b′ must be of type A, F or I due to the shapes of b
and b′ (see Figure 10.3). But from Lemma 10.5 it directly follows that b′ cannot be of type A
or I (see Figure 10.4).

We now show that every brick of type G must have a predecessor:

Lemma 10.7. Given a sequence of circles C1, . . . , Cn and the sequence H = (H1, . . . ,Hm) that
is the result of maxIntersectionSequence applied on the given circles. Let H′ = (H ′1, . . . ,H

′
l)

be an arbitrary sequence of consecutively disjoint intersections covering C1, . . . , Cn, then the
following statement is true:

For all bricks (Hi, H
′
j) of type G it is true that there are previous intersections Hi−1

and H ′j−1.

98 CHAPTER 10. HANDLING SPECIAL CASES

α

β γ

δ ε

A

G

G I

I

D

D

F

F

Figure 10.5: Possible types of blocks.

Proof. Assume the contrary. Thus, there are no previous intersections, which means that i = 1
and j = 1:

H1 H2

H ′
2

H ′
1

1

1

lrc(1) fe(1)

lrc(tail(H′
2
))

From the definition of H1 we know that head(H1) = fe(1) − 1. Since head(H ′1) < head(H1)
it must be then true that there is an intersection H ′2 with tail(H ′2) ≤ fe(1) − 1. Due to the
definition of fe it is true that lrc(tail(H ′2)) ≤ lrc(1). But then it also must be true that

1 ≤ tail(H ′1) ≤ head(H ′1) < tail(H ′2) ≤ head(H ′2) ≤ lrc(1)

Consequently, the intersections H ′1 and H ′2 must overlap, a contradiction to the definition
of H′.

Now we assemble bricks to blocks whose beginning is induced by bricks of type A, D and
G and whose end is induced by bricks of type A, F and I. Figure 10.5 shows all possible types
of blocks. We always choose blocks as small as possible, that is, bricks of type A, D, F, G or
I are only allowed to form the bounds of a block but may not occur within a block. In that
sense those blocks are atomic.

Obviously, we always can decomposeH andH′ into a unique sequence B1, . . . , Bs of blocks:

αβγ ε
H
H′

B1 B2 B3 B4

The next lemma summarizes some statements about blocks that helps us to prove that H is
maximum long.

Lemma 10.8. Given a sequence of circles C1, . . . , Cn and the sequence H = (H1, . . . ,Hm) that
is the result of maxIntersectionSequence applied on the given circles. Let H′ = (H ′1, . . . ,H

′
l)

be an arbitrary sequence of consecutively disjoint intersections covering C1, . . . , Cn and let B1, . . . , Bs
the sequence of blocks induced by H and H′ then the following statements are true:

10.1. INTERSECTION BASED STABBING 99

1. The block B1 cannot be of type β or δ.

2. Blocks of type γ always contain one intersection of H more than of H′.

3. Blocks of type β can contain at most one intersection of H′ more than of H.

4. The only type that can contain more intersections of H′ than of H is type β.

5. There are at least as many blocks of type γ as of type β.

Proof. We prove the statements in the given order:

The block B1 cannot be of type β or δ. Follows directly from Lemma 10.7.

Blocks of type γ always contain one intersection of H more than of H′. Let B
be an arbitrary block of type γ, then we decompose B into bricks b0, . . . , bi starting from its
beginning:

b1 b2 b1 b2

possible not possiblenot possible

b0 b1 b2 bi−1 bi

H

By definition of type γ the first brick b0 must be of type D. According to the shape of that
brick, the next brick b1 must be of type C, E or I. But due to Lemma 10.6 type E can only
occur if its predecessor is of type H. So b1 cannot be of type E. It also cannot be of type
I because then the brick would form the end of the block, which is a contradiction to the
definition of type γ, namely B must end with a brick of type F. Consequently, b1 must be
of type C. We can analogously argue for the remaining bricks b2, . . . , bi that they must be of
type C. However, as B ends with a brick of type F, there must be an intersection H of H at
the end of B that does not belong to any brick b0, . . . , bi. Thus, the block B contains one
intersection of H more than of H′.

Blocks of type β can contain at most one intersection of H′ more than of H. Let B
be an arbitrary block of type β, then we again decompose B into bricks b0, . . . , bi starting from
its beginning:

b0 b1 bi−2 bi−1 bi b0 b1 bi−1bi−2 bi
H′

u H′
v

Hs Ht

H′
u

Hs

H′
v

Ht

Obviously, at least b0 and b1 must exist. As B starts with a brick of type G, due to the shape
of G the remaining bricks can only be of type C, B, E, H or I.

In order to prove the claim, we give an algorithm that describes the decomposition of B into
bricks in more detail: To that end let Hs, . . . ,Ht be the intersections in H that are contained
in B in increasing order. Analogously, let H ′u, . . . ,H ′v be the intersections in H′ that are
contained in B in increasing order. We iteratively go through the intersections H ′u, . . . ,H ′v,
defining for each intersection H ′u+i with 0 ≤ i ≤ v − u a brick bi. Each time after we have
defined a brick bi we conceptually delete it from B, so that the intersection involved in bi are
not available for the next bricks.

We define the first brick as b0 := (Hs, H
′
u) and delete it from B. Assume that we have

defined the first bricks b0, . . . , bi−1 for the intersections H ′u, . . . ,H ′u+i−1 (and have delete them
from B) and that there is a further intersection H ′u+i. Let Hw be the first intersection that

100 CHAPTER 10. HANDLING SPECIAL CASES

overlaps H ′u+i such that it has not been deleted yet. If this intersection does not exist, we
stop the whole procedure, otherwise we set bi := (Hw, H

′
u+i):

Hw Hw+1Hx

Hu+iHu+i−1 Hu+i+1

bibi−1

Hx

Hu+iHu+i−1 Hu+i+1

bi−1

Hx−1

Hw exists. Hw does not exist.

In particular if we cannot find H ′w, the intersection Hu+i remains undeleted. Consequently,
we obtain a maximum long prefix of B that can be decomposed into bricks b0, . . . , bi−1. We
show that we always reach H ′v decomposing B, that is, in particular we do not necessarily
delete H ′v but all previous intersections H ′u, . . . ,H ′v−1 have been deleted, which means that
there is at most one intersection of H′ more contained in B than of H.

Assume the contrary, that is, we stop in the i-th step considering the intersection H ′u+i
with u + i < v. Let the previous brick be defined as bi−1 = (Hx, H

′
u+i−1). The only reason

for stopping is that the intersection Hx completely overlaps H ′u+i (right figure). Thus, Hx

and H ′u+i must form a brick of type E: It cannot be of type C because then we have the case
as depicted in the left figure, that is, there is an intersection Hw that has not been deleted yet
and overlaps H ′u+i. It also cannot be of type I because then H ′u+i would be the last intersection
of B, which means that u+ i = v.

Further, the brick bi−1 = (Hx, H
′
u+i−1) must be of type B:

Hx

Hu+iHu+i−1 Hu+i+1

bi−1

Hx+1

possible

It cannot be of type G or E because then Hx would be a witness that H ′u+i−1 and H ′u+i are
not disjoint:

Hx

Hu+iHu+i−1 Hu+i+1

bi−1

Hx+1

not possible

Hx

Hu+iHu+i−1 Hu+i+1

bi−1

Hx+1

not possible

Moreover, the intersections Hx−1 and H ′u+i−1 form a brick of type C:

Hx

Hu+iHu+i−1 Hu+i+1

bi−1

Hx−1

possible

It cannot be of type D or H because then bi−1 would be defined as (Hx−1, H
′
u+i−1):

Hx

Hu+iHu+i−1 Hu+i+1

bi−1

Hx−1

not possible

Hx

Hu+iHu+i−1 Hu+i+1

bi−1

Hx−1

not possible

Obviously, the brick (Hx−1, H
′
u+i−1) is the predecessor of the brick (Hx, H

′
u+i). But

as (Hx, H
′
u+i) is of type E as argued above and due to Lemma 10.6, it is a contradiction

that (Hx−1, H
′
u+i−1) is of type C.

10.1. INTERSECTION BASED STABBING 101

On that account only the last intersection H ′v can remain, without that it is involved in
one of the bricks b1, . . . , bi−1. Thus, B has at most one intersection of H′ more than of H.

The only type that can contain more intersections of H′ than of H is type β.
Obviously, blocks of type α contain exactly two intersections, one of each sequence H and H′.
Due to the second sentence blocks of type γ contain more intersections of H than of H′.

For blocks of type δ we can analogously argue as in the previous sentence: We can decom-
pose those blocks into bricks b0, . . . , bi such that we always reach the intersection H ′v:

b0 b1 bi−2 bi−1 bi
H′

u H′
v

Hs Ht

Since by definition of type δ the intersections H ′v and Ht form a brick of type F, we can always
guarantee that Hv does not remain, but that we can use Ht for forming a the brick bi.

For blocks of type ε we again decompose those blocks into bricks b0, . . . , bi. Analogously
argued as in the second sentence, the successors b1, . . . , bi−1 of b0 can only be of type C:

b0 b1 b2 bi−1 bi

Hs Ht

H′
vH′

u

Due to the definition of type ε the last two intersections Ht and H ′v of B must form a brick
of type I. Since all previous intersections H ′u+1, . . . ,H

′
v−1 form with some intersection of H a

brick of type C and H ′u and Hs form a brick of type D, the last intersection Ht is not involved
in those bricks. On that account H ′v and Ht form the brick bi = (Ht, H

′
v) of type I.

Since there are no other types of blocks, the claim follows. We now show that we can find
for each block of β a unique block of type γ, because then we know that H contains at least
as many intersections as H′.

There are at least as many blocks of type γ as of type β. Let B be a block of type β,
then from Sentence 1 it directly follows that there is a previous block B′. As B begins with
a brick of type G the block B′ can only end with a brick of type F (Lemma 10.6). Thus, B′

can only be of type γ or δ:
If B′ is of type γ we have found a corresponding block for B. So let B′ be of type δ. Again,

due to Sentence 1 there must be a previous block B′′ of B′. Since B′ also begins with a brick
of type G, the last brick of B′′ can only be of type F (Lemma 10.6). Consequently, B′′ can
only be of type γ or δ as B′. On that account we can go backwards from B only traversing
blocks of type δ until we reach a block that is of type γ:

γ δ

GD FF

β

G I

δ

G F

. . .
BB′B′′

Corollary 10.2. The sequence H contains at least as many intersections as the sequence H′.

We summarize the results we have made so far in the following theorem, which directly
follows from the previous lemmas and considerations.

Theorem 10.1. Given a sequence of circles C1, . . . , Cn with overlapping bound k, then the
sequence H = (H1, . . . ,Hm) covers C1, . . . , Cn being consecutively disjoint and maximum long,
if we define the intersections as follows:

102 CHAPTER 10. HANDLING SPECIAL CASES

H1 := (1, . . . , fe(1)− 1)

for all i with i > 1 and head(Hi−1) < n:

Hi :=

{
(head(Hi−1)) + 1, . . . , fe(tail(Hi))− 1) , lrc(tail(Hi−1)) < fe(tail(Hi))− 1

(head(Hi−1)) + 1, . . . , lrc(tail(Hi−1)) + 1) , lrc(tail(Hi−1)) ≥ fe(tail(Hi))− 1

Further, we can compute H in O(n · k2) time and O(n) space.

10.1.4 Using the Intersections

In this section we describe how one can apply the results of the previous sections on a given
polygonal chain P in order to obtain a circular arc covering the corridor C of P . We distinguish
two different variants where the second one can be seen as an enhancements of the first one.

1. Variant: Let C1, . . . , Cn be the connecting circles of the given corridor C, then we compute
based on those circles the sequence H1, . . . ,Hm of consecutively disjoint intersections using the
procedure minIntersectionSequence or maxIntersectionSequence. To that end we choose
for each intersection Hi with 1 ≤ i ≤ m an arbitrary point p′i in Hi (e.g. the centroid of the
convex polygon spanned by the vertices of Hi) and set P ′ = (p′1, . . . , p

′
m). Due to the following

lemma P ′ covers all circles C1, . . . , Cn with respect to their order:

Lemma 10.9. Given a polygonal chain P = (p1, . . . , pn) with corridor and corresponding
connecting circles C1, . . . , Cn, such that the intersection H of those circles is not empty. Let r
be the radius of those circles.

Then every circle C with radius r and center c fully covers P if and only if c ∈ H.

Proof. From Lemma 10.1 we know that we only need to consider the vertices of P .
"⇐:" Assume C fully covers P , but c is not located in H. Then there is a vertex p of P
with ‖c− p‖2 > r, that is, p cannot be covered by C.
"⇒:" c is located in all circles C of r in radius and center p for all p ∈ P . Consequently C
covers the centers of these circles.

Further, each line segment of P ′ covers at least two disjoint circles, so that P ′ satisfies
Property 6.1. Thus, we can apply the approach of Section 6.1 on P ′.

Theorem 10.2. Given a polygonal chain P with not necessarily disjoint connecting cir-
cles C1, . . . , Cn with overlapping bound k then we can find in O(k · n) (O(k2 · n)) time
using the procedure minIntersectionSequence (maxIntersectionSequence) a polyarc K.

Proof. It remains to argue for the running time, which directly follows from the fact that we
can compute H in O(n · k) or O(n · k2) time using the procedure minIntersectionSequence
or maxIntersectionSequence (Lemma 10.3, Theorem 10.1). For the approach of Section 6.1
we only need O(n) time (Theorem 6.1).

2. Variant:
We again compute the sequence H = (H1, . . . ,Hm) of consecutively disjoint intersections
on C1, . . . , Cn using minIntersectionSequence or maxIntersectionSequence: But this time
we compute P ′ such that it has minimum size and minimum number of inflection points
regarding all polygonal chains covering H. For that purpose we can use the approach of
Section 6.2 only changing the procedure coverCirclesWithLine.

10.1. INTERSECTION BASED STABBING 103

l
v

e′i

e′i+1
ei

ei+1

Figure 10.6: Illustration of the proof for Lemma 10.10.

As already mentioned in Section 4.2 the procedure coverCirclesWithLine can be easily
adapted to more complex objects than circles. In our case those objects are the intersectionsH.
Mainly, one has to explain how inner and outer tangents can be computed. The idea is that
we first consider the tangents of the convex polygons that are induced by the vertices of the
intersections and then we use those tangents in order to obtain the tangents of the considered
intersections:

Let H and H ′ be two arbitrary intersections of circles such that they have size n1 and n2,
respectively. We denote the convex polygons induced by the vertices of H and H ′ by Q
and Q′, respectively. According to [OvL81, Pre79, KS95] one can compute outer (inner)
tangents between Q and Q′ in O(log(n1 + n2)) (O(log(n1) · log(n2))) time. The following
lemma shows that we can use those tangents in order to gain corresponding tangents for H
and H ′ using O(1) time:

Lemma 10.10. Given an intersection H of circles and the convex polygon Q that is induced
by the vertices of H, then each tangent l of Q can intersect at most two arcs of H.

Proof. The proof is illustrated in Figure 10.6. We denote the edges of H by e1, . . . , en and the
edges of Q by e′1, . . . , e′n in such a way that ei and e′i connect the same vertices of H (Note
that H and Q have the very same vertices). Since three consecutive vertices of H cannot be
collinear, it is sufficient to consider the two cases whether l coincides with an edges e′i of Q or
not.

First let l not coincide with an edge of Q: Since l is a tangent for Q it still touches Q in a
vertex v (see Figure 10.6). Let e′i and e

′
i+1 be the two edges that are incident with v. Then e′i

and e′i+1 form a wedge which can be extended such that due to the convexity of Q it contains
all edges of Q. We also conclude based on the convexity of H that all edges of H apart from ei
and ei+1 are contained in the same wedge. Thus, the tangent l can only intersect ei and ei+1.

If l coincides with an edge e′i of Q it can only intersect ei and all other edges lie to one
side of l because of the convexity of H and Q.

Given a tangent t between Q and Q′ ending at vertices v ∈ Q and v′ ∈ Q′, according to
the previous lemma we only have to consider the edges incident to v and v′ in order to obtain
a tangent t′ for H and H ′ of the same type: We just compute the tangents of those arcs as
depicted in Figure 10.7).

On that account we can compute the inner tangents for H and H ′ in O(log(n1) · log(n2))
time and the outer tangents in O(log(n1 + n2)) time:

104 CHAPTER 10. HANDLING SPECIAL CASES

t′

t

Figure 10.7: Illustration of an inner tangents between two intersections. The tangent t′ is
obtained by means of the tangent t.

Lemma 10.11. Given two intersections H and H ′ based on circles C1, . . . , Cn having a over-
lapping bound of k, then the inner and outer tangents between H and H ′ can be computed
in O(log2 k) time.

Assuming that we already have given the sequence H = (H1, . . . ,Hm) we then can apply
the approach of Section 6.2 in order to obtain a polygonal chain P ′.

Lemma 10.12. Given a sequence H = (H1, . . . ,Hm) of consecutively disjoint intersections of
the circles C1, . . . , Cn having an overlapping bound of k, then we can find in O(n · log2 k) time
a polygonal chain P ′ such that

1. P ′ satisfies Property 6.1.

2. P ′ covers H with respect to its order.

3. P ′ has a minimum number of segments and inflection points regarding all polygonal
chains satisfying the first two properties.

Proof. The three properties can be directly concluded from the definitions and lemmas of
the approach of Section 6.2. It remains to argue for the running time. To that end assume
that we pre-calculate the tangents between the intersections in H: For each pair (Hi, Hi+1) of
intersections we need O(log2 k) time (Lemma 10.11). As we have to compute those tangents
for all consecutive pairs we need O(m · log2 k) time in total for all tangents. Since n ≥ m we
derive O(n · log2 k).

According to Theorem 6.4 we only need O(m) = O(n) time for the rest of the procedure,
that is, for computing P ′ based on the pre-computed tangents.

So far we have assumed that we already have given the intersections H, but normally we
have to compute them based on a given polygonal chain P with connecting circles C1, . . . , Cn:

Theorem 10.3. Given a polygonal chain P with not necessarily disjoint connecting cir-
cles C1, . . . , Cn with overlapping bound k then we can find in O(k · n) (O(k2 · n)) time
using the procedure minIntersectionSequence (maxIntersectionSequence) a sequence H =
(H1, . . . ,Hm) of consecutively disjoint intersections and a polygonal chain P ′ such that

1. P ′ satisfies Property 6.1.

2. P ′ covers C1, . . . , Cn with respect to their order.

3. P ′ has a minimum number of segments and inflection points regarding all polygonal
chains satisfying Property 6.1 and covering H.

10.2. A SOLUTION BASED ON GATES 105

Proof. The three properties directly follow from Lemma 10.12, so that we mainly have to argue
for the running time. Using minIntersectionSequence we can compute H in O(n · k) time
according to Lemma 10.3. Using maxIntersectionSequence we can compute H in O(n · k2)
time according to Theorem 10.1. And based on Lemma 10.12 we then can compute P ′ based
on H in O(n · k) time.

We then can translate P ′ into a polyarc K using the approach of Section 6.1 in O(n) time
(Theorem 6.1).

Due to this theorem we still can compute P ′ inO(n) time if we assume that k is constant for
the considered polygonal chains P , which is a reasonable assumption regarding the considered
use cases, as we already have argued for.

10.2 A Solution Based on Gates

In this section we describe how one can cover a polygonal chain P of size n by a polyarcK using
the approach as described in Section 9.3 for the case that the connecting circles C1, . . . , Cn
of the corresponding corridor C may overlap.

To that end we first change the definition of feasible constellations: We do not require
anymore that the gates must not intersect. On that account we also obtain feasible constel-
lations (g1, g2, L2, R2), . . . , (gn−1, gn, Ln, Rn) based on C1, . . . , Cn if those circles overlap (see
Figure 10.8a). Figure 10.8a also illustrates the problem that arises: For two consecutive cir-
cles that overlap we can only find arcs that start or end wrongly at both gates. One possible
solution would be to restrict the gates further in order to open a gap between both gates
where the arcs can go through (see Figure 10.8b). But it is not obvious how to choose those
restrictions in order to obtain optimal solutions.

The second possible solution, which we prefer, is to abdicate the requirement that an arc
must start at the front of a gate and end at the back of the gate such that there are no
intersections with that gate. On that account we change Definition 7.7 striking out the second
requirement:

Definition 10.2. Given two gates g1 and g2 with extensions e1 and e2, left obstacles L =
(l1, ..., lm) and right obstacles R = (r1, ..., rm). Then an arc A = (p1, p2, p3) is called valid
with respect to (g1, g2, L,R) if

(1) p1 lies on g1 and p3 lies on g2 and

(2) A does not start at g1 wrongly and A does not end at g2 wrongly and

(3) all obstacles of L lie to the left of A and

(4) all obstacles of R lie to the right of A and

(5) if two obstacles oi, oj ∈ L∪R with i < j touch A, then the touching point of oi lies before
the touching point of oj on A and

(6) if two obstacles ri ∈ R and li ∈ L (of the same index) touch A, then either ri touches A
before li does or li touches A before ri does.

If we use this definition we call the gates permeable. Note that this requirement has
not been introduced for technical but only for aesthetic reasons in order to obtain a chain
that does not intersect itself at the gates. Figure 10.8c illustrates this issue based on an

106 CHAPTER 10. HANDLING SPECIAL CASES

g1

g2

A
A′

(a)

g1

g2

A

(b)

gi

gj

gk

A1

A2

l

l′

(c)

Figure 10.8: Illustration of permeable gates.

example consisting of three gates that are not necessarily consecutive. Applying the approach
of Section 9.3 we normally obtain the chain that consists of A1, l (black dashed line) and A2

in that particular order. Since we introduce l in order to bridge the gap between A1 and A2,
we also can choose another line that does not result in a crossing. For example, the line l′

that is induced by the first intersection points of A1 and A2 with gj lends itself for bridging
the gap between A1 and A2.

10.3 Circles of Different Radii

Up to now we have omitted the question whether the connecting circles C1, . . . , Cn of a give
polygonal chain P of size n must have the same radius. From the practical point of view it
can also be reasonable to allow different radii:

For example, imagine that one also want to model the behavior of zooming while following
the trajectory (represented by P). In that case different radii can be used to adapt the
polyarc K covering P to different zoom levels.

Further, if the circles model the permitted deviation of K regarding P it also can makes
sense to allow different radii even if we not consider different zoom levels: If P leads through
both a countryside and dense populated areas one probably wants to allow a greater deviation
on the country side than in the dense populated area, because for the latter ones one want to
have a focused view on P .

From the technical point of view, we can easily allow circles of different radii, if we also
require that they do not overlap consecutively. Then we can apply both the line stabbing
approach (Section 6.2) and the approach based on gates (Section 8.2) making only few ad-
justments:

1. For the line stabbing approach we have to choose an appropriate variant of the proce-

10.3. CIRCLES OF DIFFERENT RADII 107

r1
r2

r3

l1 l2
l3

l4

r4

g1 g2

Figure 10.9: Corridor segment of two connecting circles of different radii. The obstacles of
that segment are depicted boldly.

dure coverCirclesWithLine. As presented in 4.2 in [GHMS91] different variants are
presented that can be used.

2. For the approach based on gates we only need to change some details of the corridor:
For a corridor segment we have to introduce additional obstacles in order to model the
borders correctly (see Figure 10.9). The gates can still be the connecting circles, because
we do not require that the gates are equal.

We let the question remain open for future work how to handle connecting circles of
different radii that are not consecutively disjoint. As circles can then contain other circles
especially the approach of gates cannot adapted easily.

11. Conclusion

In this part we extensively discussed how to approximate a polygonal chain by a polyarc.
To that end we started with a simple approach just replacing kinks of a polygonal chain by
circular arcs and then in search of more sophisticated approaches we headed for two different
directions:

The first direction is characterized by an immediate step transforming the given polygonal
chain P ′ into another polygonal chain P ′ such that P ′ simplifies P . Then, we used one of the
simple approaches to translate P ′ into a polyarc.

For the second direction we omitted an intermediate step and directly translated the given
polygonal chain into a polyarc. In the following paragraph we summarize the results we have
achieved for both main approaches.

Approach with Intermediate Step: In order to translate the given polygonal chain P into
a simplified polygonal chain P ′ we used methods based on line stabbing in order to compute
maximum long line segments covering P such that P ′ is assembled by those line segments.
More in detail the idea is that the line segments stab circles that enclose the vertices of P .

As we want to resolve wiggly lines of P ′, we optimized P ′ for inflection points and number
of segments. In [GHMS91] the simplification of P into P ′ is already solved, but they only
proved that P ′ is of minimum length, but they did not prove that P ′ also consists of a minimum
number of inflection points. In order to fill that gap, we introduced an alternative algorithm
that persuades by its simplicity and by its extensibility. While the approach described in
[GHMS91] is based on one line stabbing method, we can plug-in different stabbing methods as
black-boxes such that the algorithm can be adapted to specific problems. Further, we proved
that the algorithm yields a polygonal chain P ′ of minimum length and with minimum number
of inflection points.

Later, in Chapter 10 we extended the approach to the case that we first want to summarize
the given polygonal chain before we apply the line stabbing method. The idea is that when
circles enclosing the vertices overlap then they are collapsed to their common intersection,
such that after that step only consecutively disjoint intersections exist. For computing those
intersections we presented two approaches:

The first approach considers the case that one wants to find as few intersections as possible
in order to abstract the given polygonal chain P significantly. We gave a greedy algorithm
that computes those intersections in O(k · n) time, where n refers to the size of P and k
denotes the overlapping bound of P .

The second approach focuses on the opposite case: We presented a greedy algorithm that
computes a maximum number of consecutively disjoint intersection of those connecting circles
in O(k · n2) time. Although the formulation of that algorithm is simple, the prove for its
correctness is elaborate.

For computing the intersection n circles iteratively, it is likely that one can find a faster
algorithm than we used so far. At the moment we make use of the naive variant requir-
ing O(n2) time. Even though there already is an algorithm computing the intersection of n
circle within O(n · log n) time based on divide and conquer, for our approach it is crucial for a
good performance to have an iterative variant at disposal. On page 91 we shortly sketch how

109

110 CHAPTER 11. CONCLUSION

such a algorithm could look like.
Further research can also be done for the transformation from P ′ into K. So far we use

only a simple approach for translating a kink into a circular arc. For aesthetic reasons it could
be interesting to have further ways to translate P ′ into K at disposal.

Approach without Intermediate Step: We introduced an approach for gaining a pol-
yarc K directly from a given polygonal chain P . To that end we generalized circle shooting:
Up to now for circle shooting it has been assumed that one wants to compute for one given
point the reachable points on a given line segment by means of circular arcs. The approach
that we presented also provides the possibility to gain for a given line segment l all reachable
points on another given line segment l′ by means of circular arcs.

Based on the idea that each arc reaching l′ from l must touch a certain order of obstacles
we could show that there are five main cases to be considered. Those cases can then be used
for gaining an algorithm that runs in O(n2) time. Further, we also proved that l does not
necessarily need to be a line segment but it also can be a circular arc.

Based on that approach different variants could be obtained for covering a polygonal
chain P by a polyarc K. All of the variants have in common that they can solve generalization
of the problem as presented in [DRS08]. The variants are:

1. Covering P with a not necessarily smooth polyarc K such that K consists of a minimum
number of circular arcs (O(n4) time).

2. Covering P with a not necessarily smooth polyarc K such that K consists of at most
twice as many circular arcs as the optimal solution has (O(n2) time).

3. Covering P wit a smooth polyarc K such that K consists of at most three times as many
circular arcs as the optimal solution has (O(n2) time).

We also considered special cases for which the connecting circles have different radii or overlap.
In both case we motivated how to solve these problems.

Further research could be done for circle shooting by answering the question whether one
can find a faster algorithm for processing circle shooting regarding line segments. To that end
one could try to make use of Lemma 8.6 more efficiently.

For covering P by a polyarc one could also try to adapt the approach using biarcs as
described in [DRS08] to the approach we are following: Is it possible for biarcs to formulate a
similar lemma as Lemma 8.6?

Part II

Consistent Labeling Based on
Trajectories

111

12. Introduction

We change our focus from polyarcs to maps, labels and trajectories: As already presented in
Chapter 1 we consider the use case of a navigation system which offers to the observer a bird’s
eye view on the map: It presents a section of a requested route and moves along a trajectory
that is based on that route as if we have a look through the lens of a camera moving over
the map along that trajectory and adjusting its orientation to the direction of the trajectory.
Hence, we call the currently visible area of the map the current viewport of the map.

Apart from containing the route, the map is also enriched with a set of points of interest
that are described by means of rectangular labels that are closely placed to the corresponding
points. In order to sustain the readability of the visible labels, all of these are horizontally
aligned regarding the current viewport so that they begin to rotate when the viewport rotates
(see Figure 12.1).

As the labels can overlap while rotating the viewport, we would like to have an optimal ap-
proach that describes how those labels can be switched off and on in order to avoid overlapping
labels and in order to maximize the overall visibility of the presented labels. Consequently,
we want to solve a special type of the dynamic map labeling problem ([BDY06]).

In this part of the thesis we analyze that particular labeling problem, which we call the
trajectory based labeling problem (TBLP), in more detail assuming that the trajectory is
given in form of a polyarc. We do not care about how that polyarc has been created, but we
just use it. (For more information about creating polyarcs see the previous part of this thesis.)

We have chosen polyarcs to be representatives of trajectories, because they are assembled
by a finite sequence of circular arcs, which can be easily described by simple geometric tools.
We will extensively make use of that property in order to discretizes the labeling problem.

We have chosen the following structure for analyzing the labeling problem that we have
only described roughly so far:

Chapter 13 – Related Work: We briefly describe the work that has already been done
in the field of labeling maps. Similar to the equivalent of the first part we describe some work
in more detail that is closely related to the problem we consider.

Chapter 14 – Model and Problem Definition: While so far we have explained the
problem only informally, we present in that chapter a formal model that basically consists of
maps, labels, trajectories and viewports. To that end we adapt the models as presented in

Label 5 Label 6Label 7

Label 0

Label 1

Label 2

Label 3

Label 4

Label 5

Label 6

Label 7

Label 0

Label 1

Label 2

Label 3

Label 4

Label 5

Label 6

Label 7

Label 0
Label 1

Label 2
Label 3

Label 4

Figure 12.1: Viewport moving along a trajectory.

113

114 CHAPTER 12. INTRODUCTION

[BDY06] and [GNR11] and describe the terminology that arises when introducing viewports
and trajectories. Finally, based on the introduced model we formally define the labeling
problem that we want to consider.

Chapter 15 – Visibility and Conflicts: In that chapter we focus on the question how
one can compute the visible labels within the currently chosen viewport. Further, we describe
how conflicts between labels can be described and computed, such that those conflicts can be
used for further analysis.

Chapter 16 – Complexity: In that chapter we answer theoretical questions about the com-
plexity of the trajectory based labeling problem and show that the problem is NP-complete.
Further we introduce a conflict graph that can be obtained from an instance of trajectory
based labeling problem and discuss its complexity.

Chapter 17 – Algorithmic Approaches: After proving the NP-completeness of TBLP
in the previous chapter, we model different variants of TPLB using integer linear programming
in order obtain optimal solutions. Further, we introduce some simple heuristics that can be
used as fast alternative for the presented ILPs.

Chapter 18 – Experimental Evaluation: As we have implemented parts of the work, we
present in that chapter the results of an experimental evaluation that we have applied on that
implementation.

Chapter 19 – Conclusion: In the last chapter we summarize the results we have achieved
and give a short outlook what next steps can be done for solving the labeling problem.

Apart from the theoretical results, we also have implemented basic parts that we present in
this part of the work. In order to give the reader some information about that implementation,
we present information boxes from time to time as it can be found on page 115:

These boxes contain details about the implementation such that the remaining thesis can
be read without considering those information boxes. However, they contain useful information
for readers who want to implement the presented work on their own. We use those boxes to
discuss the design decisions we have made and show alternatives.

115

Implementation Details 12.1. The following figure shows a screenshot of the program we have implemented
for this thesis:

��
��

��

��

��

• (1): An exemplary set of labels and a trajectory are presented within that frame of the application:
The black rectangle illustrates the viewport at a certain position of the trajectory, while the colored
labels are visible within the viewport. The gray label that overlaps with Label 4 is switched of in
order to resolve the corresponding conflict.

• (2): By means of this bar the viewport can be moved along the trajectory such that the viewport and
labels are adjusted to the direction of the trajectory.

• (3): This section of the application illustrates the currently selected viewport of the map such that it
corresponds to the black rectangle as presented in frame (1).

• (4): Shows some general information about the current setting, as the number of segments of the
trajectory and the actual dimension of the presented area.

• (5): This panel offers possibilities to interact with the application: For example the user can extend
the trajectory or add labels. Further, it is possible to apply different strategies in order to compute
an optimal solution for the labeling problem.

The main features of the tool are:

• Interactive creation of trajectories and label settings: The tool can be used as editor for trajectories
and labels.

• Implementation of several ILPs and heuristics for handling the labeling problem.
• Support for real world data: It provides interfaces for converting OpenStreetMapa data into label data

that can be loaded.
• Randomized creation of trajectories based on street maps: Shortest paths on street maps are used to

gain randomized trajectories that can be used for tests.
• Evaluation: The tool offers an automatic mode with which evaluations can be applied.

awww.openstreetmap.org

13. Related Work

In this thesis we consider the label number maximization problem for rectangular labels: Given
a set L = {l1, . . . , ln} of rectangular labels, the question is how to find a maximum cardinality
subset S of L such that all labels of S can be drawn axis-aligned on a plane without overlap.

In many variants of that problem it is further assumed that a set of anchor points P =
{p1, . . . pn} on a map is given for which a placement of the labels L = {l1, . . . , ln} should be
found such that each label li ∈ L lies close to its anchor point pi. In [vKSW99, FW91] six
different models are suggested how a label li ∈ L can be placed with respect to its anchor
point pi (see Figure 13.1):

One Position: One fixed corner of li must coincide with pi.

Two Positions: One of two fixed corners of li must coincide with pi.

Four Positions: One of the four corners of li must coincide with pi.

One Slider: A point of one fixed edge of li must coincide with pi.

Two Sliders: A point of one of two fixed edges of li must coincide with pi.

Four Sliders: A point of one of the four edges of li must coincide with pi.

Since the first three cases assume that there is only a finite set of points on li where the anchor
of li can lie, they are often called fixed-position models. The three remaining cases are often
called slider models.

For all six cases it has been shown that the label number maximization problem is NP-
hard [FW91, MS91]. For a discussion about the complexity of those cases see [KM03]. For
example the one-position model is a reformulation of the following problem that has been
proven to be NP-hard in [CC09]:

pi

li

(a) One Position
pi

li

(b) Two Positions

pi

li

(c) Four Positions

pi

li

(d) One Slider

pi

li

(e) Two Sliders

pi

li

(f) Four Sliders

Figure 13.1: Placement of a label. Inspired by Figure 1 in [KM03].

117

118 CHAPTER 13. RELATED WORK

Problem 13.1 (Maximum Independent Set of Rectangles (MISR)). Given a set R of n
axis-aligned rectangles in the plane, find a maximum cardinality subset S of R such that the
rectangles in S do not overlap.

Apart from the different cases of the placement of a label regarding its anchor, the labeling
problem is divided in to static labeling and dynamic labeling :

The static labeling of a map is characterized by the property that one assumes that the
labels, their position and their alignment do not change after the placement of the labels has
been computed once. For that problem a typical use case are maps that are printed on paper.

Dynamic labeling considers a dynamic map for which the labeling can be changed over
time. Been et al. [BDY06] suggest that a dynamic map is characterized “by support for
continuous zoom (change of scale) and continuous pan (change of region of interest)”. Further
research also comprises that the map may rotate [GNR11]. Thus, one can only see a section
of the map and this section may change regarding scale, pan and rotation, which corresponds
to the problem we want to consider.

In order to obtain an overview of dynamic labeling, the work presented in [BDY06] is a
recommendable starting point. The authors introduce a general framework that subsumes
many variants of dynamic labeling. Further, they describe important properties such that the
labeling can be called consistent. To that end they call the location, size and orientation of a
label its placement and the decision whether a label is shown or not the selection of a label.
Then they require for a dynamic labeling that all of the following four statements are true:

Desiderata 13.1.

1. “Except for sliding in or out of the view area, labels should not vanish when zooming in
or appear when zooming out.”

2. “As long as a label is visible, its position and size should change continuously under the
pan and zoom operations.”

3. “Except for sliding in or out of the view area, labels should not vanish or appear during
panning.”

4. “The placement and selection of any label is a function of the current map state (scale
and view area).”

While the first and third statement ensure that the labels do not pop up and flicker
arbitrarily, the second requirement guarantees that the labels do jump. The last requirement
enforces that the placement and the selection of a label is history independent.

Special cases of the dynamic map labeling problem are considered in [BNPW10, GNR11]:
Been et al. consider in [BNPW10] continuous zoom of dynamic maps, whereat the size of
a labels remains the same. The main idea is that each label possesses exactly one range of
the possible zooming scale for which it is selected. For the time of that range they call the
label active. Then the question is how those ranges can be chosen for all labels such that
active labels do not overlap each other and the overall activity of the labels is maximized.
They proved that this problem is NP-complete for 1d- and 2d-maps. For the former one
they describe a optimal solution using dynamic programming. Further, for both variants they
introduce constant-factor approximations.

Gemsa et al. took a similar view on rotating maps in [GNR11]: They consider labels that
rotate around fixed anchors such that each label may be selected for exactly one angle range.

119

Analogously to [BNPW10] they call a label active for that particular range. Consequently,
the same question arises how choose those ranges for all labels such that active labels do not
overlap each other and the overall activity of the labels is maximized. In order to answer the
question they first introduce geometric tools for computing the angle intervals for which two
labels overlap. Afterwards, they show that the corresponding decision problem is NP-hard
and consider therefore approximations of that problem: They introduce an 1/4-approximation
for that problem and generalize their approach to an efficient polynomial-time approximation
scheme. As we do not consider zoom within this thesis, but only kinds of rotation we basically
use [GNR11] as foundation for our work.

So far we have mainly presented theoretical work, but great effort has also been done on
the practical side: For example in [PPH99, PGP03] Petzold et al. discuss a heuristic approach
that works for dynamic maps supporting zooming and scrolling. In order to compute the
labeling of huge data sets in realtime, they divide the approach in two phases. First they pre-
compute a conflict graph for all labels containing information about possible conflicts between
labels. This step may take some time, because it is applied only once. The second phase
is determined for interactive requests and is therefore much faster than the first phase. For
certain pan and zoom of the map they can guarantee that the labels do not overlap, but for
continuous changes as described before they do not enforce the requirements as defined in
Desiderata 13.1.

Another approach for computing the labeling of huge dynamic maps in realtime is presented
in [LSC08]: Similar to the previous approach, the presented method is divided into a phase
for pre-processing and a phase for requests. For computing overlaps between labels efficiently,
labels are modeled by grouped particles. Then the remaining computations are done based on
those particles such that requests can be processed in realtime. For each requested alignment
and scale of a map it is guaranteed that there are no overlaps of labels. However, similar to the
previous one, this approach does not enforce the requirements as defined in Desiderata 13.1.

14. Model and Problem Definition

In this chapter we describe in more detail how we model the labeling problem considered in
this part of the thesis. In the following we introduce terminology which we will use later on.
We first want to motivate that terminology roughly in order to give the reader an idea where
we are heading for and then in separate paragraphs we describe this terminology in more
detail.

Since we consider the labeling of a map, we obviously need concepts like maps and la-
bels. We imagine a map to be a plane on which we can place labels at different locations
describing points of interest. To that end we assume that labels are rectangles that are placed
closely to the corresponding points they belong to using the one-position model as described
in Chapter 13.

As we want to consider dynamic maps we have a dynamic view on the map, that is, we
can only see a partial section of the map that can changes over time. We call that particular
view, which we normally describe by a rectangle, the current viewport of the map. Further,
we do not want the viewport to change arbitrarily, but determined by a pre-defined trajectory
on the map, which is in our case a smooth polyarc.

So far we have introduced all concepts that we get as input for the labeling problem: A
map M , a set P = {p1, . . . , pn} of points of interests, a set L = {l1, . . . , ln} that is related
to P and a rectangle R describing the viewport with trajectory T = (A1, . . . , Am).

We require that the viewport is placed on the trajectory such that the center of the viewport
is located at a point p on the trajectory. Apart from the location of the center we also want
the viewport to have the same direction as the trajectory has at p. Consequently, if we move
the viewport along the trajectory the viewport begins to rotate (see Figure 12.1).

Moving the viewport over the trajectory effects that labels appear and disappear in the
viewport or more precisely they intersect the viewport. For a certain position on the trajectory
we call all labels visible which intersect the viewport and the others invisible.

In order to preserve the readability of the labels we require that they remain horizontally
aligned regarding the viewport. On that account it can happen that labels begin to overlap
(see right most drawing of Figure 12.1) while the map is rotating. We call those phases of
overlapping conflicts and the beginning and the end of those conflicts conflict events. We will
resolve those conflicts by setting one of the involved labels inactive while the other remains
active. We do not specify in detail how activity and inactivity of labels are represented, but
normally we assume that the inactive label is faded out in a certain kind in order to guarantee
the readability of the active label.

Then on an informal level the question to be answered is how labels can be set active
and inactive such that all conflicts are resolved and still an optimal number of labels can be
seen, which corresponds to the selection problem of [BDY06]. Obviously, we will also have to
specify what optimal means.

It is helpful to imagine the viewport to be a rectangle that is moved over the given map
along a pre-defined trajectory such that one has a general bird’s eye view of the whole con-
stellation (see Figure 14.1). Consequently, moving the viewport along the trajectory induces
a sequence of rotations of the viewport. Since the labels are aligned with the axes of the
viewport this sequence also implies a sequence of rotations of the labels.

121

122 CHAPTER 14. MODEL AND PROBLEM DEFINITION

Label 5

Label 6

Label 7

Label 8

Label 9

Label 10

Label 11

Label 0

Label 1

Label 2
Label 3

Label 4

Figure 14.1: Bird’s eye view on the map and the viewport, which is moved over the map.

After describing the problem informally we now want to define the terminology precisely.

Map: We define the mapM to be the plane R2. On the geometrical level we assume that we
can draw shapes like line segments, arcs and rectangles onM . Thus,M is a kind of canvas. In
order to describe the locations of those shapes, we assume that a Cartesian coordinate system
underlies M which we denote by CSM . In accordance with computer graphics we call CSM
also the world coordinate system. Hence, when we refer to a point p on M we mean that its
coordinates are related to CSM .

Points of Interest: We assume that apart from M we are also given a finite set P =
{p1, . . . , pn} of points of interest. Those points are placed on M regarding CSM such that all
of them are pairwise disjoint.

In order to be independent of the world coordinate system, we introduce for each point p ∈
M an own Cartesian coordinate system CSp. Hence, for a point p on M and a point q ∈ R2

we also write qCSp if we want to express that the coordinates of q are given in terms of CSp
and analogously qCSM if we talk about q regarding CSM . Normally, we assume that the affine
transformation is done implicitly, so that we do not mention it if not necessary.

As we can define points in different coordinate systems we have to explain how those
systems are related to each other: When we draw shapes specified in coordinates of CSp onM
we firstly apply an affine transformation such that the origin of CSp coincides with p. In other
words one can imagine that one draws the axes of the coordinate system CSp on M , such that
the intersection of both axes of CSp coincides with p (see Figure 14.2a). Consequently, one
degree of freedom remains, namely the rotation α of CSp which is defined by the angle between
the horizontal line through p (regarding CSM) and the x-axis of CSp (see Figure 14.2b).
According to custom we assume that α is measured using a counterclockwise orientation.
From now on we also expect every angle to be normalized, that is, it lies between 0 and 2π.
Since later on we want all labels to have the same rotation, we assume that α is the same for
all points p ∈ P . Anticipating, we can say that α is dictated by the rotation of the viewport.

Anchored Rectangles: Before we define labels and the viewport more formally we intro-
duce the concept of anchored rectangles for which we will show that they generalize both labels

123

L
ab

el
3

Label 1

Label 2

Label 3

p1

p2

p3

L
ab

el
1

L
ab

el
2

(a) Several labels rotating around their anchor.

w

h
c

bo
tto

m

top

left

ri
gh
t

p
αG

αG
π
2

v

(b) An anchored counterclockwise ori-
ented rectangle R = (c, w, h) rotated
by αG.

Figure 14.2: The concept of anchors.

and viewports. To that end we distinguish the left, right, top and bottom edge of a rectangle,
where the left (top) and right (bottom) edges lie opposite of each other (see Figure 14.2b).
The length of the left and right edge is called height, while the length of the top and bottom
edge is called width.

Then we call a rectangle R = (c, w, h) with center c, width w and height h anchored at
a point p if R is aligned with the axis of CSp, such that the bottom and top edge of R are
parallel to the x-axis of CSp. Further, we require that the top edge of R lies above the bottom
edge, that is, its y-coordinate is greater than the y-coordinate of the bottom edge. We call p
the anchor of R. We also write R = (l, r, b, t) when we define R by its left edge l, its right
edge r, its bottom edge b and its top edge t.

If we draw R on M , we always do this regarding CSp. Consequently, we first have to
apply an affine transformation on R in order to obtain the coordinates for CSM . Since CSp is
rotated by the angle αG, the rectangle R also has the rotation αG regarding M .

It is easy to see considering M that if we increase αG, the rectangle R begins to rotate
on M around its anchor p in counterclockwise orientation.

Labels: According to common we assume that a label consists of some text or image de-
scribing a feature of the map. In order to abstract from the concrete shape of a label, we only
consider the corresponding box. Thus, based on anchored rectangles we can easily introduce
the concept of labels. For each point p ∈ P we define its label as a rectangle l = (c, w, h) which
is anchored at p, that is, we draw l relatively to CSp on M . We also write l = (p, c, w, h) and
do not require for c, w and h to be equal for all labels, but they can be different from each
other. Further, in contrast to [GNR11] we do not require the anchor of l to lie within l or on
its border, but it may be placed anywhere. However, for the application it is often usually the
case that l is placed closely to p on M . We denote the set of all labels by L.

Note: As we require the center c of a label l to be fixed regarding the coordinate system CSp
of the anchor of l, we consider the one-position model as described in Chapter 13.

124 CHAPTER 14. MODEL AND PROBLEM DEFINITION

Implementation Details 14.1. In order to increase the performance, not for each label a individual object is
created, but they are encoded in one array which is divided into blocks each representing one label:

x(p1) y(p1) x(c1) y(c1) w1

l1 = (p1, c1, w1, h1)

h1 x(p2) y(p2) x(c2) y(c2) w2 h2

l2 = (p2, c2, w2, h2)

...

This approach includes two benefits: First, instead of having overhead for each object, only the raw data is
stored. Second, traversing the labels in a row the locality of the cache is utilized.
However, using Java for the implementation we prefer to have an object oriented view on labels. To that end
we do not access the data directly but introduce a class Label wrapping individual blocks:

c l a s s Label {
double [] dataOfAl lLabe l s ;
i n t index ;

pub l i c Label (double [] dataOfAl lLabels , i n t labelNumber){
t h i s . index = labelNumber∗ s i z e () ;
t h i s . data = data ;

}

pub l i c void next () { index += s i z e () ; }
pub l i c void prev ious () { index −= s i z e () ; }
pub l i c i n t s i z e () { re turn 6 ;}

pub l i c double getAnchorX () { re turn data [index] ; }
pub l i c double getAnchorY () { re turn data [index +1] ;}
pub l i c double getCenterX () { re turn data [index +2] ;}
pub l i c double getCenterY () { re turn data [index +3] ;}
pub l i c double getWidth () { re turn data [index +4] ;}
pub l i c double getHeight () { re turn data [index +5] ;}

}

If we now iterate over the labels, we create exactly one instance of Label initializing it with the overall label
data and the number of the label we want to consider. Using the methods next and previous we then can
navigate through the data. On that account the class Label implements a kind of iterator.
Even though this data structure is static, it is sufficient for our purposes: We do not need to add or remove
labels, but can assume that there is a pre-defined number of labels. The same applies for the following
concepts as trajectories and conflicts. Thus, we also use the same approach for storing those ones.

Trajectory: Since a trajectory is a smooth polyarc, we first consider its building blocks,
i.e., circular arcs. For a circular arc A we define the corresponding curve by a homonymous
function A: [0, 1]→M . For A we call [0, 1] its positions and A([0, 1]) its locations and denote
the length of A by |A|.

The rotation αA(pos) of an arc A at a position pos ∈ [0, 1] is defined by the angle that lies in
between the horizontal line through the center c of A (regarding CSM) and the line through c
and A(pos) (see Figure 14.3). We define αA(pos) regarding CSM and not regarding CSc
because then we can connect arcs smoothly without having different rotations at the connection
point of two arcs.

We call αA(0) the start angle of A, αA(1) the end angle of A and the angle range that is
spanned by A the extent of A (Figure 14.3). Note that αextent is independent of the orientation
of A and therefore always positive. We can compute αA(pos) depending on the orientation
of A:

αA(pos) =

{
αA(0)− αextent · pos if A is clockwise oriented.
αA(0) + αextent · pos if A is counterclockwise oriented.

125

αA(0)

αextent
αA(pos)

0
1

c

(a) A clockwise arc.

αA(0)
αextent

αA(pos)

0
1

c

(b) A counterclockwise arc

Figure 14.3: The concept of circular arcs.

r

2r

T (0)

T (1)T (14) T (34)

A1

A2

A3

αT (
3
8) = αA2

(14) =
5
4π

T (38) T (38) = A2((
3
8 − πr

4πr) · 4πr2πr) = A2(
1
4)

|A1| = |A3| = πr

|A2| = 2πr

|T | = 4πr

αT (
3
8)

r

Figure 14.4: The concept of trajectories.

We still have to explain how positions and locations of arcs are related to each other. To
that end we define for all positions pos ∈ [0, 1] of an arc A with center c = (xc, yc) and radius r:

A(pos) = (xc + cos(αA(pos)) · r, yc + sin(αA(pos)) · r)
Based on those arcs we define a trajectory T : [0, 1]→M to be a smooth curve on M that

is assembled by m circular arcs A1, . . . , Am (see Figure 14.4). Analogously to arcs we call [0, 1]
the positions of T and T ([0, 1]) the locations of T .

In order to distinguish positions of single arcs and of the given trajectory we also call those
for arcs local positions and those for the trajectory global positions. The length of T is defined
as |T | = ∑m

i=1 |Ai|.
Now we define the function lgT : {A1, . . . , Am} × [0, 1]→ [0, 1] mapping local on global

positions for an arc Ai of T as

lgT (Ai, pos) =

∑i−1
j=1 |Aj |
|T | + pos · |Ai||T |

For lgT (Ai, 0) we also write beginT (Ai) and for lgT (Ai, 1) we also write endT (Ai). In order
to explain the opposite direction we introduce a function arcT : [0, 1]→ {1, . . . ,m} that maps
each global position on an unique arc by its index:

arcT (pos) =

1, 0 ≤ pos ≤ |A1|
|T |

i, 2 ≤ i ≤ m and
∑i−1
j=1 |Aj |
|T | < pos ≤

∑i
j=1 |Aj |
|T |

126 CHAPTER 14. MODEL AND PROBLEM DEFINITION

Then we can introduce the function glT : [0, 1]→ {A1, . . . , Am} × [0, 1] mapping global posi-
tions on local positions:

glT (pos) = (Ai, (pos −
∑i−1

j=1 |Aj |
|T |) · |T ||Ai|

) with i = arcT (pos)

Due to the definition of arcT the definition glT is well-formed: The weld point of two consec-
utive arcs is mapped on the first of both arcs. Obviously, then it is true that for all pos ∈
[0, 1]: lgT (glT (pos)) = pos. Finally, we can formally define T for a position pos ∈ [0, 1] as:

T (pos) = Ai(pos
′) with (Ai, pos

′) = glT (pos)

The definition of T (pos) implies that the global positions [0, 1] of T are spread over T in a
linear way, that is, going from T (0) to a location T (pos) along the trajectory we cover the
fraction pos · |T | of the length of T .

At last we define the rotation αT (pos) of T at the global position pos as

αT (pos) = αAi(pos
′) with (Ai, pos

′) = glT (pos).

Implementation Details 14.2. Assuming that the trajectory T is pre-defined, we can compute the global
positions of the beginning and ending of the single arcs in advance gaining an array of intervals:

[beginT (A1), endT (A1)], (beginT (A2), endT (A2)], . . . , (beginT (Am), endT (Am)]

Then, when we need to compute arci(pos) for a global position pos ∈ [0, 1] we can do this in O(logm) time
using a simple binary search on those intervals.

Viewport: After defining the trajectory we now can explain the viewport VP in more detail,
which, as already mentioned, represents the visible section of the map. Recall that for analysis
we take a very general bird’s eye view where we can see the map and the viewport moving
along the trajectory such that its rotations corresponds to the rotation of T (see Figure 14.1).
On that account we represent the viewport by means of a rectangle of corresponding size such
that the center c of that rectangle coincides with a point of T . In particular we say that this
rectangle has the position pos ∈ [0, 1] on T if c = T (pos). We identify that rectangle with VP
and denote it therefore also by VP.

The rotation αVP(pos) of VP at the global position pos ∈ [0, 1] is defined as the rotation
of the trajectory T at pos: αVP(pos) = αT (pos). Note that the rotation of VP does not
distinguish the two cases whether the underlying arc Ai (with i = arcT (pos)) is clockwise or
counterclockwise oriented (see Figure 14.5). Consequently, drawing the viewport on the map
the orientation of Ai must be comprised separately.

Since the given trajectory T is composed of arcs A1, . . . , Am, going along T we can split
the motion of VP into m phases of rotation where each phase corresponds to exactly one arc:

[beginT (A1), endT (A1)], (beginT (A2), endT (A2)], . . . , (beginT (Am), endT (Am)]

Thus, we can imagine that for each phase or rotation the rectangle VP is anchored to the
center pi of Ai and rotates around pi when it moves along Ai (see Figure 14.5). On that
account it is reasonable to consider the phases of rotation separately from each other and
then to assemble the results canonically. For the arc Ai we denote the anchored rectangle
representing VP by R(VP, Ai).

It is then easy to see that restricting VP to an arc A it has the same behavior as a label
of same size and same anchor. We therefore often can analyze anchored rectangles instead of
the viewport and the labels and we then can transfer the results on both the viewports and
the labels.

127

Ai

c

pi

View
port

VP

αVP(pos)

CSM
(a) A clockwise arc Ai.

Ai

c

pi

ViewportVP

αVP(pos)

CSM
(b) A counterclockwise arc Ai.

Figure 14.5: Orientation of the viewport VP. The rotation αVP(pos) does not comprise the
orientation of the viewport, but it must be considered separately: For both cases αVP(pos) is
equal.

Visibility: Considering the movement of VP along T , there are certain events, where the
given labels begin or end to intersect VP, or in other words those labels begin or end to be
(partly) visible in VP. For a certain position pos ∈ [0, 1] we call all labels that intersect VP
visible at pos and all other labels invisible at pos. More formally we describe the visibility of
a label regarding VP and T by means of the function ΦVPT : [0, 1]× L→ {0, 1}:

ΦVPT (pos, l) =

{
1, l intersects VP at position pos on T
0, otherwise

Thus, for each label l we define the visibility as:

Definition 14.1. Given a label l and a viewport VP with trajectory T , then the sequence

ΦVPT (l) = ([s1, e1], . . . , [sk, ek])

is called the visibility of l if

1. k is minimized and

2. 0 ≤ s1 < e1 < s2 < e2 < . . . < sk < ek ≤ 1 and

3. for all pos ∈ [0, 1] it is true that

ΦVPT (pos, l) = 1 if and only if there exists an i with 1 ≤ i ≤ k such that pos ∈ [si, ei]

Note that this means in particular that the intervals contained in ΦVPT (l) are disjoint. If
for an arc A of T and a visibility range v=[s, e] ∈ ΦVPT (l) of l it is true that

[beginT (A), endT (A)] ∩ [s, e] 6= ∅ if A is the first arc of T and
(beginT (A), endT (A)] ∩ [s, e] 6= ∅ otherwise

we say that v and A overlap and otherwise they are disjoint.
If we want to have an isolated view on A, we conceptually assume that T only consists

of A. In that case we also write ΦVPA (l) for the sequence of visibilities of l. Obviously, then

128 CHAPTER 14. MODEL AND PROBLEM DEFINITION

local and global positions coincide. Later on in Chapter 15 we explain in more detail how we
gain those intervals and how results for a single arc can be turned into corresponding results
for a trajectory consisting of several arcs.

Implementation Details 14.3. Based on the following class diagram there are among other things two ways
to store the visibilities of a label l:

Label Visibility Of Label Arc
1 ∗ ∗ ∗

1. Either each label l owns a container which stores those visibilities,

2. or one stores all visibilities in one huge array (as described in Implementation Details 14.1) and relates
each arc A of T to the visibilities of l that overlap with A. Consequently, one visibility v of a label l
may point to severals consecutive arcs.

On the first sight the first one seems to be reasonable, since conceptually moving along the trajectory each
label owns visibilities, which also means that there is a one-to-many relation. But from the side of efficiency
the second one is preferable:

1. If we draw the viewport and its content, we only want to draw labels which are at least visible. For
the first variant we have to go through all labels in order to select those visible labels. Even, if we use
concepts as quad-trees [dBvKOS97] in order to reduce the number of visited labels, we still consider
labels which are not drawn. Applying the second variant we can restrict ourselves to the labels for
which a visibility points to the arc the current position belongs to. From those ones we know that they
are the only ones that can be visible at the current position. On that account we often can restrict
the set of labels to be drawn significantly.

2. Further, assume a server-client scenario: The clients request from visible labels the server for different
trajectories. For the first variant this means that we have to annotate the labels with information of
different clients, which means additional overhead in order to keep those data structures consistent,
so that different requests do not interfere each other. But if we use the second variant, the labels
and their data structures are not effected, because we only read on those labels, so that the server
can handle the data structures used for the trajectories, independently. Consequently, especially if we
want to work on the map and its labels concurrently, the second variant is the better choice.

Conflicts: Since the rotation of labels corresponds to the rotation of the viewport VP it
can happen that while moving VP along the given trajectory T two labels begin to intersect
(see Figure 14.1). Since we want to avoid those intersections, we call them conflicts. There
are two possibilities to describe conflicts:

1. We just consider the case that the labels are rotated simultaneously without taking
the trajectory and the viewport into account: As mentioned in [GNR11] we can then
describe those conflicts by means of intervals referring to angles that correspond to the
conflict. We call this the general description of conflicts. Obviously, it is sufficient to
consider the angle interval [0, 2π] in order to describe those conflicts completely.

For two labels l and l′ we can describe all conflicts between them by a sequence of
maximal disjoint angle intervals c1 = [α1, β1], . . . , ck = [αk, βk]. We then define the

129

following three sets

C(l, l′) ={[α1, β1], . . . , [αk, βk] | all maximal long disjoint conflict intervals
between l and l′}

C(l) =
⋃
l′∈L
{([α, β], l′) | [α, β] ∈ C(l, l′)}

C(L) =
⋃
l∈L
{{[α, β], l, l′} | ([α, β], l′) ∈ C(l)}

We also often write c = (l, l′) for a conflict c = {[α, β], l, l′}, if we are not interested in
the interval itself, but only in the labels involved in c.

2. The other kind of description comprises the trajectory T and is therefore called trajectory
dependent description: For two labels l, l′ ∈ L we only consider conflicts c ∈ C(l, l′) that
are also visible within the viewport for a certain position pos on T . In particular this
means that for pos the viewport intersects the intersection of l and l′:

ΦVPT (pos, c) =

{
1, the intersection of l and l′ intersects VP at the position pos
0, otherwise

Analogously to labels we can describe the visibility of a conflict c regarding a trajec-
tory T and a viewport VP by a sequence of position intervals (Figure 14.6 shows that a
conflict c ∈ C(l, l′) can have several visibilities):

Definition 14.2. Given a conflict c = (l, l′) and a viewport VP with trajectory T , then
the sequence

ΦVPT (c) = ([s1, e1], . . . , [sk, ek])

is called the visibility of c if

a) k is minimized and
b) 0 ≤ s1 < e1 < s2 < e2 < . . . < sk < ek ≤ 1 and
c) for all pos ∈ [0, 1] it is true that

ΦVPT (pos, c) = 1 if and only if there exists an i with 1 ≤ i ≤ k
such that pos∈[si, ei]

Again we have defined the sequence in such way that it contains only disjoint intervals
describing all visibilities of c completely.

In Chapter 15 we explain in more detail in which way both descriptions are related to each
other.

We resolve a conflict between two labels l1 and l2 applying the common approach that we
set one of both labels inactive for a certain period of time while the other remains active. In
particular we require that only visible labels can be active.

There are several ways to represent inactivity of a label l, for example one could stop
drawing it for that period of time or, the approach we prefer, one draws the inactive label
softly in the background.

Now, we explain which strategies we apply in order to handle conflicts based on the
trajectory-dependent conflict description. To that end we introduce the notion of being a
witness of setting a label active or inactive:

130 CHAPTER 14. MODEL AND PROBLEM DEFINITION

Label 1
Label 0

(a)

La
be
l 1

La
be
l 0

(b)

Label 1
Label 0

(c)

Figure 14.6: Visibility of conflicts. The same conflict can be visible several times. (The centers
of the labels correspond with the anchors of the labels.)

L
a
b
e
l
0
L
a
b
e
l
1

(a) 1. Position

L
a
b
e
l
1

L
a
b
e
l
0

(b) 2. Position

L
a
b
e
l
0
L
a
b
e
l
1

(c) 3. Position

Figure 14.7: Visibility of conflicts. A conflict may arise before it becomes visible (black
label=active label, gray label=inactive label).

Definition 14.3. Given a set L of labels and a viewport VP with trajectory T .

1. If we set a label l ∈ L inactive at a position pos of T and at this position a con-
flict c=(l, l′) ∈ C(L) begins, we say that l′ is a witness for setting l inactive.

2. If we set a label l ∈ L active at a position pos of T and at this position a conflict c=(l, l′) ∈
C(L) ends, we say that l′ is a witness for setting l active.

Note that both definitions imply that l′ is only a witness, when the beginning/ending of
the visibility of c is also the beginning/ending of c itself. Figure 14.7 shows a case where c
begins before it becomes visible. In that case we want to avoid the behavior as depicted: First
Label 0 becomes visible and active, then when Label 1 becomes visible, the activity switches
from Label 0 to Label 1, which seems to be distracting. We also want to omit the analogous
behavior for disappearing labels. For that purpose we demand the following activity model
for labels:

Definition 14.4. Given a set L of labels and a viewport VP with trajectory T , then we
distinguish three types of Activity Models regarding VP:

131

AM1: A label may only become active when it becomes visible in VP and it may only
become inactive when it stops to be visible in VP.

AM2: Same as AM1, but the label may also become inactive at any position pos, if
at pos there is an active witness l′ for setting l inactive.

AM3: Same as AM2, but the label may also become active at any position pos, if
at pos there is an active witness l′ for setting l active.

Since AM1 and AM2 are special cases of AM3, we only illustrate the third case in Fig-
ure 14.9, page 134. For all three types we can introduce a function ΨVPT : [0, 1]× L→ {0, 1}
which states whether a label l is active at a position pos ∈ [0, 1]:

ΨVPT (pos, l) =

{
1 l is active at position pos of T
0 otherwise

In general, in order to avoid distracting effects as demanded in [BDY06], we require that a
label l has only one phase of activity for each of its visibilities. Finally, we can express
the optimization problem that we want to solve as follows:

Problem 14.1. Given a map M with points of interest P = {p1, . . . , pn} and corresponding
labels L = {l1, . . . , ln} and a viewport VP with trajectory T = (A1, . . . , Am).

Then we want to find a concrete instance of ΨVPT such that

1. all conflicts of active labels are resolved regarding one of the three activity models AM1,
AM2 or AM3 and

2. for each l ∈ L and each visibility range [s, e] ∈ ΦVPT (l) there is at most one phase
[pos1, pos2] ⊆ [s, e] of activity and

3. for each label l ∈ L and all positions pos ∈ [0, 1] it is required that ΨVPT (pos, li) = 1
implies ΦVPT (pos, l) = 1 and

4. the sum
n∑
i=1

1∫
0

ΨVPT (pos, li)dpos

is maximum.

Since due to the integral over ΨVPT this problem definition is not very practical for actually
computing it, we divide the visibility of a label l into single disjoint segments represented
by position intervals. The idea is that single conflict events of the conflicts of l induce the
transition between two intervals:

Definition 14.5. Given a set L of labels, a viewport VP with trajectory T and a label l ∈ L
with its conflicts C(l), then

SVPT (l):=(pos1, . . . , posk)

is called the events of T regarding the label l if

SVPT (l) = {0, 1} ∪ {s, e | [s, e] ∈ ΦVPT (l)} ∪ {s, e | [s, e] ∈ ΦVPT (c) and c ∈ C(l)}

In particular we call each interval si = [posi, posi+1] (with 1 ≤ i < k) a segment of T
regarding l and abbreviate this by si ∈ SVPT (l) or by [posi, posi+1] ∈ SVPT (l). We therefore
call SVPT (l) also the segments of T regarding the label l.

132 CHAPTER 14. MODEL AND PROBLEM DEFINITION

v1 v2

s1 s2 s3 s4 s5 s6 s1 s9s7 s10s8 s11 s12 s13 s14 s15

c1
c2

c3

c4

c5
c6

c7

s16

0 1

Figure 14.8: Illustration of segments of a trajectory regarding a label.

Figure 14.8 illustrates the definition: Every time a conflict or visibility of l begins or ends,
a new segment begins.

Before we reformulate the problem, we extend the activity ΨVPT of a label to intervals:

Ψ([pos1 , pos2], l) =

{
1 ∀pos ∈ [pos1, pos2]: ΨVPT (pos, l) = 1

0 otherwise

Then we can reformulate Problem 14.1 to:

Problem 14.2 (Trajectory Based Labeling Problem (TBLP)).
Given a map M with points of interest P = {p1, . . . , pn} and corresponding labels L =
{l1, . . . , ln} and a viewport VP with trajectory T = (A1, . . . , Am). Further, let w : L× [0, 1]×
[0, 1]→ R be a weight function.

Then we want to find a concrete instance of ΨVPT such that

1. all conflicts of active labels are resolved regarding one of the three activity models AM1,
AM2 or AM3 and

2. for each l ∈ L and each visibility [s, e] ∈ ΦVPT (l) there is at most one phase [pos1, pos2] ⊆
[s, e] of activity and

3. for each label l ∈ L and all positions pos ∈ [0, 1] it is required that ΨVPT (pos, li) = 1
implies ΦVPT (pos, l) = 1 and

4. the sum ∑
l∈L

∑
[s,e]∈SVPT (l)

ΨVPT ([s, e], l) · w(l, s, e)

is maximal.

If we set the weight function to w(l, s, e) = e − s for all labels l ∈ L and all seg-
ments [s, e] ∈ SVPT (l), it is easy to see that both problem definitions are identical. Further, for
all three activity models for labels the segments in SVPT (l) are the smallest units that can be
independently active.

133

Implementation Details 14.4. The following diagram shows a sketch of a class diagram how the different
concepts can be related to each other:

Label

Activity of Label

Visibility of Label

Trajectory

Map

Visibility of ConflictConflict

Viewport

1

∗
1

∗

∗ ∗

∗ ∗l 6=l′

1 1

1 ∗
vl 6= vl ′

11

∗ ∗

1

∗
Line Segment

Arc
Segment

∗

1

1

1

1

∗

Visibility of an Entity

Explanation of the class diagram: A map consists of several labels which can be in conflict independently
from the viewport and its trajectory. If there is a conflict for a label l then there is a second label l′ which is
the antagonist of l. A conflict always consists between two labels only.
Normally, there are some labels which are visible within the viewport VP while it moves along the trajec-
tory T . This visibility of a label is a special type of the visibility of an entity. One also can imagine other
entities as conflicts that can be visible. In all cases the visibility is closely connected to one viewport. Fur-
thermore a label can be active for several intervals, then it owns severals activities which is a special case of
being visible.
If two labels l and l′ have one conflict c in common, this conflict can be visible at different positions. This
visibility of a conflict is both related to the conflict c and to the visibility vl of l and the visibility vl′ of l′.
Since it is a kind of visibility, it is a special type of a visibility of an entity.
The viewport is related to exactly one trajectory and vise versa. Each trajectory consists of a sequence of
segments which either are arcs or line segments. Even though a line segment is the extreme case of an arc
with infinite radius, it is reasonable to distinguish both types of segments, because we only have finite data
types at our disposal. Thus, we also introduce some threshold for the planeness of an arc such that falling
short of this threshold for an specific arc we interpret it as a line segment.

134 CHAPTER 14. MODEL AND PROBLEM DEFINITION

Label 2
Label 1

Label 3
Label 4

(a) 1. Position: Only Label 2 is active, be-
cause Label 3 and Label 4 are not visible
within the viewport yet and Label 1 awaits
the end of the impending conflict with Label
2 before it becomes active.

L
ab

el
4

L
ab

el
3

L
ab

el
1

L
ab

el
2

(b) 2. Position: Label 1 and Label 2 are in
conflict, so that Label 1 is still inactive. In
the meanwhile both Label 3 and Label 4
have entered the viewport and became ac-
tive.

L
ab

el
3

L
ab

el
4

L
ab

el
2
L
ab

el
1

(c) 3. Position: Label 1 and Label 2 are still
in conflict and Label 3 and Label 4 are also
in conflict. Label 3 has lost the conflict and
is therefore inactive since the conflict has
begun.

L
ab

el
3

L
ab

el
1

L
ab

el
2

L
ab

el
4

(d) 4. Position: Label 1 is active because
the conflict with Label 2 ended a bit earlier.
Label 3 and Label 4 are still in conflict, but
even after the conflict is over, Label 3 will
remain inactive, because it has already been
active.

Figure 14.9: Resolving conflicts. Illustrates the resolving of conflicts by means of type AM3
(black label=active label, gray label=inactive label). The anchors of the labels correspond to
the centers of the labels.

15. Visibility and Conflicts

In this chapter we want to explain in more detail how a closed description of conflicts between
anchored rectangles (label-label-conflict, label-viewport-visibility) can be obtained, that is, we
explain how the intersection of two rotating anchored rectangles can be described precisely.
In [GNR11] it is already shown that between two anchored rectangles there can exist at most
eight conflicts, but the description is restricted to rectangles where the anchor lies within the
rectangle. In the first section we describe how anchored rectangles can also be handled for
those whose anchor lies outside of their borders. In the second section we then explain how
this approach can be used in order to obtain a general description of conflicts between labels.
Afterwards the third section also comprises the viewport and its trajectory describing how
visibilities of labels and conflicts can be obtained. Finally, in the last section we discuss, how
the approach can be extended by considering the area of labels that are visible.

15.1 Anchored Rectangles and Their Conflicts

In this section we consider two anchored rectangles R = (l, r, b, t) and R′ = (l
′
, r′, b

′
, t
′
) as

defined in Chapter 14, with anchors p and p′, and describe how the conflict events between
both rectangles can be obtained.

To that end we assume that both rectangles have the same rotation α regarding the world
coordinate system and that when we rotate them, we do this in a counterclockwise orientation,
which allows us to distinguish the beginning and the end of a conflict. Note that the restriction
to counterclockwise rotations is without loss of generality: For clockwise oriented rotations,
we just have to switch the notions of beginning and end. As already stated in Chapter 14 a
conflict event is an angle α for which a conflict between R and R′ either begins or ends (see
Figure 15.1). On that account we head for a sequence of angles within [0, 2π] describing all
conflicts of R and R′ within this interval.

More in detail: Since a conflict between two anchored rectangles R and R′ is defined based
on the non-empty intersection of both rectangles, a rotation angle α can only be a conflict

R’
R

p

p′

t

b′
l

α

Ct

Cb′

dp(t)

dp′(b′)

(a) Begin of a conflict.

R

R’
p

p′

l
b t′

dp′(t′)

dp(b)

Ct′

Cb

(b) End of a conflict.

Figure 15.1: Conflict events. Assuming that R and R′ rotate in counterclockwise orientation
first t and b′ mark the beginning of the conflict and then b and t′ mark the end of the conflict.

135

136 CHAPTER 15. VISIBILITY AND CONFLICTS

Ce Ce′

left outer tangent

right outer tangent

left inner tangent

rig
ht

inn
er

tan
gen

t

Figure 15.2: Tangents of Ce and Ce′

p

R

v1

v2 v3

v4

r

b

t

l

ll lr

lt

lb

Figure 15.3: Anchor position of an anchored rectangle.

event if there is an edge e of R and an edge e′ of R′ such that both edges lie on a common
line l (see Figure 15.1). In particular e and e′ must be opposite sided of R and R′, that means,
that if for example e is the top of R, then e′ must be the bottom of R′.

We call that line l the tangent of the conflict event α: The term is motivated by the fact
that l is a tangent between the circles Ce and Ce′ around p and p′ of radius dp(e) and dp′(e′),
respectively, where dp(e) describes the distance between the line through the line segment e
and the point p (in Figure 15.1 Ct and Cb are depicted). We can imagine the existence of l
as a necessary requirement for a conflict event. Analyzing l we therefore do not necessarily
require that R and R′ intersect. Later on we explain a further requirement by which we check
whether R and R′ indeed intersect at that particular event.

For the further reasoning it is crucial to distinguish four types of tangents. Due to simple
geometry l can be either an inner tangent or an outer tangent (see Figure 15.2). Moreover,
going from Ce to Ce′ the line l is a left tangent if Ce lies to the right of l and a right tangent
if Ce lies to the left of l. Consequently, we have to distinguish the four cases that l is a
left/right inner/outer tangent.

We now explain how we have to interpret those four cases regarding anchored rectangles.
To that end we first consider a single anchored rectangle (R, p) with its four edges (l, r, b, t)
and its four corners v1, v2, v3 and v4 as depicted in Figure 15.3. If we extend the edges of R
to oriented lines lt = (v1, v4), ll = (v1, v2), lb = (v2, v3) and lr = (v3, v4), we can distinguish
whether p lies to the left or to the right of an edge of R. For instance in Figure 15.3 the
anchor p lies to the right of l, r and t. For the special case that p lies on lt, ll, lb or lr, we
define that p lies to the side of that line that corresponds to the interior of R. On that account
in Figure 15.3 the anchor p lies to the left of b. As R is defined relatively to CSp this so defined
relation between p and the edges of R does not change when we transform R to CSM .

After we have introduced this terminology, we return the two anchored rectangles R and R′

and describe when we have to consider each of the four cases. Due to symmetry we only
consider the case that the top edge t of R and the bottom edge b′ of R′ lie on a common line l.
For the other cases (bottom/top, left/right, right/left) we can argue analogously.

Let Ct be the tangential circle for the edge t and let C
b
′ be the tangential circle for the

15.1. ANCHORED RECTANGLES AND THEIR CONFLICTS 137

Ct

C
b
′

t
b′R

R′
l

p
p′

(a) Left outer tangent.

Ct C
b
′

t
b′R

R′
l

p p′

(b) Right outer tangent.

Ct

C
b
′

t
b′R

R′
l

p

p′

(c) Left inner tangent.

Ct

C
b
′

t
b′R

R′
l

p

p′

(d) Right inner tangent.

Figure 15.4: Tangents for different anchor positions.

Position of p Position of p′ Type of l
p lies to the right of e. p′ lies to the right of e′. left outer tangent of Ce and C ′e′
p lies to the right of e. p′ lies to the left of e′. left inner tangent of Ce and C ′e′
p lies to the left of e. p′ lies to the right of e′. right inner tangent of Ce and C ′e′
p lies to the left of e. p′ lies to the left of e′. right outer tangent of Ce and C ′e′

Table 15.1: Given two anchored rectangles (R, p) and (R′, p′) the table lists all possible tan-
gents of two equally aligned edges e and e′ of R and R′.

edge b′ (see Figure 15.4). If the anchor p lies to the right of t and the anchor p′ lies to the
right of b′, l must be the left outer tangent of Ct and C

b
′ , because both anchors lie on the

same side of l, namely the right side (going from Ct to Cb′). Analogously we can argue, that
if p lies to the left of t and p′ lies to the left of b′, then l must be the right outer tangent of Ct
and C

b
′ .

If p lies to the right of t and p′ lies to the left of b, the same must apply for the line l.
Thus, l is the left inner tangent of Ct and Cb′ . Analogously, l is the right inner tangent of Ct
and C

b
′ if p lies to the left of t and p′ lies to the right of b.

For two edges e and e′ of R and R′ that are opposite sides of R and R′ Table 15.1
summarizes the results in general.

In the next step we use l to gain the rotation angle α of possible conflict events between R
and R′. To that end we describe conflict events relative to the edges of R: In the general
case we can find for each edge of R two conflict events. One that describes the beginning of
a conflict and one that describes the end of a conflict. For instance in Figure 15.5a the top
edge t of R induces the beginning of a conflict if we assume that we rotate both rectangles in
counterclockwise orientation around their anchors, while in Figure 15.5b the edge t induces
the end of a conflict assuming the same orientation. Obviously, considering two edges e ∈ R
and e′ ∈ R′ describing opposite sides of R and R′, if e induces the beginning of a conflict for
an angle α, then e′ also does.

In the following we consider the conflicts induced by the edges of R in more detail. To that

138 CHAPTER 15. VISIBILITY AND CONFLICTS

R

R′
t

b

(a) t induces the beginning of a conflict.

R
t

b
R
′

(b) t induces the end of a conflict.

Figure 15.5: Inducing conflict events. The top edge t of R induces the beginning and the end
of a conflict.

R

R′

p p′

l

Figure 15.6: Lying on a common line is only a necessary condition for conflict events.

end we distinguish conflict events induced by horizontal and vertical edges. For the next part
be aware of the fact that we only analyze a necessary condition for conflict events, namely
that two edges inducing a conflict event must lie on the same line l at this conflict event.
Figure 15.6 shows that this does not necessarily mean that a conflict begins or ends actually.
Later on we explain in more detail how to use this condition in order to check for conflict
events.

Top Edge: Assume that we simultaneously rotate R and R′ in such a way that t and b′ lie
on a common line l. Due to Table 15.1 there are four main cases distinguishing the types of l.
Since there are two angles for which t and b′ lie on a common line (inducing a beginning and
an end of a possible conflict), we divide each case into two sub-cases.

Since all four main-cases are very similar, we only discuss one case in more detail with its
two sub-cases. For the remaining three cases we only present corresponding drawings.

First we consider the main-case that p lies to the right of t and p′ lies to the right of b′.
According to Table 15.1 the tangent l must be the left outer tangent of Ct and C

b
′ (see

Figure 15.7a and Figure 15.7b).
We first consider the sub-case that the conflict event describes the possible beginning of a

conflict, that is, if we continue rotating the labels in counterclockwise orientation the rectangles
could begin to intersect (see Figure 15.7a: if the labels lay close enough, they would begin to
intersect). Then l and the x-axis of the world coordinate system enclose the angle α which
describes the rotation of both anchored rectangles. We cannot directly gain α, but we can
consider two other angles which assemble α:

1. The slope of the line pp′ that we can describe by the angle γ = arctan2(y(p′)−y(p), x(p′)−
x(p))1 forms a relation between the world coordinate system and both rectangles.

1We define arctan2 as
x > 0 y ≥ 0, x < 0 y < 0, x < 0 y>0, x=0 y<0, x=0 y=0, x=0

arctan(y, x)2 = arctan(y
x
) arctan(y

x
) + π arctan(y

x
)− π π

2
−π

2
–

15.1. ANCHORED RECTANGLES AND THEIR CONFLICTS 139

R

R
′

t

b
′

dp(t)

d
p′ (b
′
)

dp(t)−d
p′ (b
′
)

l

Ct

C
b
′

p

p′

γ α

β l′

p′
γ

β

(a) Begin of a possible conflict: p lies to the right
of t, p′ lies to the right of b

′
.

R
′

dp(t)

d
p′ (b
′
)dp(t)−d

p′ (b
′
)

l

Ct

C
b
′

p

p′

R
t

b
′

γα
β

l′

(b) End of a possible conflict: p lies to the
right of t, p′ lies to the right of b

′
.

R

R
′

t

b′

dp(t)
d
p′ (b
′
)

dp(t)−d
p′ (b
′
)

lCt

Cb′

p p′
β α

γ

(c) Begin of a possible conflict: p lies to the left
of t, p′ lies to the left of b

′
.

dp(t)

d
p′ (b
′
)

dp(t)−pd
p′ (b
′
)

l

Ct

Cb′

p
p′

R
t

R′
b′

γ β

α

(d) End of a possible conflict: p lies to the
left of t, p′ lies to the left of b

′
.

Figure 15.7: Considering outer tangents the figure shows the conflict events for the top edge
of R and the bottom edge of R′.

2. The angle β = arcsin(
dp(t)−dp′ (b

′
)

‖p−p′‖2) is the angle between the line segment pp′ and the
line l′ that is parallel to l going through p.

Then we can easily derive α = γ − β. Note that this also holds if C
b
′ is larger than Ct. In

that case the term arcsin(
dp(t)−dp′ (b

′
)

‖p−p′‖2) becomes negative (due to arcsin(−x) = − arcsin(x)),

that is, α = γ + arcsin(
dp′ (b

′
)−dp(t)

‖p−p′‖2) which corresponds to the gray drawings in Figure 15.7a.
On that account we do not have to distinguish which of both circles is larger. For the following
cases we can argue analogously so that we will not mention it again.

In the case that the conflict event describes the ending of a conflict we can proceed in the
same way (see Figure 15.7b), but this time it is true that α = γ + β + π.

We do not discuss the remaining cases: For the case that both anchors lie to the left of
both edges see Figure 15.7c and Figure 15.7d. For the cases that l is an inner tangent see

Figure 15.8: The main difference is that β = arcsin(
dp(t)+dp′ (b

′
)

‖p−p′‖2).

in order to circumvent special cases.

140 CHAPTER 15. VISIBILITY AND CONFLICTS

R

R
′

t

b
′

dp(t)

d
p′ (b
′
)

dp(t) + d
p′ (b
′
)

l

Ct

C
b
′

p

p′

β αγ

(a) Begin of a possible conflict: p lies to the
right of t, p′ lies to the left of b

′
.

dp(t)

d
p′ (b
′
)

dp(t) + d
p′ (b
′
)

l
Ct

C
b
′

p

R
′
b ′

p′

R
t

γ
α β

(b) End of a possible conflict: p lies to the
right of t, p′ lies to the left of b

′
.

R

R
′

t

b
′

dp(t) d
p′ (b
′)

dp(t) + d
p′ (b
′
)

l

Ct
C

b
′

p

p′

α
β

γ

(c) Begin of a possible conflict: p lies to the left
of t, p′ lies to the right of b

′
.

dp(t)

d
p′ (b
′
)

dp(t) + d
p′ (b
′
)

l

Ct
C

b
′

p

p′

α

β
γ

R′
b′

R
t

(d) End of a possible conflict: p lies to the
left of t, p′ lies to the right of b

′
.

Figure 15.8: Considering inner tangents it shows the conflict events for the top edge of R and
the bottom edge of R′.

Table 15.2 summarizes the results. Note that two resulting angles of a particular case do
not belong to the same conflict, that is, the start angle belongs to the beginning of another
conflict than the end angle belongs to. Later on when we have described the conflict events
for all other edges, we also explain how those angles can be composed to a consistent sequence
of conflict events.

Bottom Edge: Since possible conflict events induced by the top edge t of R corresponds to
the conflict events of the bottom edge b′ of R′, we do not need to consider the conflict events
induced by the bottom edge b of R explicitly. We can compute them switching the roles of R
and R′, that is, we compute the conflict events induced by the top edge t′ of R′ as described
in the previous case. Those conflict events then are the very same as those induced by b.

15.1. ANCHORED RECTANGLES AND THEIR CONFLICTS 141

R R′ Begin End
p lies to the right of t. p′ lies to the right of b′. α = γ − β1 α = γ + β1 + π

p lies to the right of t. p′ lies to the left of b′. α = γ − β2 α = γ + β2 + π

p lies to the left of t. p′ lies to the right of b′. α = γ + β2 α = γ − β2 + π

p lies to the left of t. p′ lies to the left of b′. α = γ + β1 α = γ − β1 + π

α =conflict event, γ = arctan2(y(p
′) − y(p), x(p′) − x(p)), β1 = arcsin(

dp(t)−d
p′ (b
′)

‖p−p′‖2
),β2 =

arcsin(
dp(t)+d

p′ (b
′)

‖p−p′‖2
)

Table 15.2: Conflict Events of the Top Edge - For two anchored rectangles (R, p) and (R′, p)

the table shows the possible conflict events for the top edge t of R and the bottom edge b′

of R′. It is assumed that R and R′ are rotated in counterclockwise orientation.

R R′ Beginning End
p lies to the right of l. p′ lies to the right of r′. α = γ − β1 + π

2 α = γ + β1 − π
2

p lies to the right of l. p′ lies to the left of r′. α = γ − β2 + π
2 α = γ + β2 − π

2

p lies to the left of l. p′ lies to the right of r′. α = γ + β2 + π
2 α = γ − β2 − π

2

p lies to the left of l. p′ lies to the left of r′. α = γ + β1 + π
2 α = γ − β1 − π

2

α =conflict event, γ = arctan2(y(p
′) − y(p), x(p′) − x(p)), β1 = arcsin(

dp(r)−d
p′ (l
′)

‖p−p′‖2
),β2 =

arcsin(
dp(r)+d

p′ (l
′)

‖p−p′‖2
)

Table 15.3: Conflict events of the right edge. For two anchored rectangles (R, p) and (R′, p)

the table shows the possible conflict events for the right edge r of R and the left edge l′ of R′.
It is assumed that R and R′ are rotated in counterclockwise orientation.

Right Edge: For the right edge r of R we again can reuse the results of the top edge: The
only difference is that the rotation angle α of R and R′ does not correspond with the rotation
angle of l but has an offset of π2 (the right and left edge of an anchored rectangle are vertical
edges and have therefore a rotation of π2 when the rectangle has a rotation of 0). In order to
give the reader the possibility to verify those results we present in Figure 15.9 and Figure 15.10
the corresponding drawings, but do not explain them explicitly because they are very similar
to those ones in Figure 15.7 and Figure 15.8. Table 15.3 shows the description of the possible
conflict events assuming that the right edge of R and the left edge of R′ induce the conflict.

Left Edge: Assume that the left edge l of R and the right edge r′ of R′ lie on a common
line. Analogously, to the bottom edge we can argue that we do not need to consider the
conflict events explicitly, but that we can reuse the results of the case for the right edge: We
just switch roles between R and R′, because we know that the conflict events induced by r′

are the very same as the ones induced by l.

Checking for Real Conflicts: So far we only have discussed a necessary condition for
conflict events, namely that the two edges inducing the conflict event must lie on a common
line at this particular angle, but as depicted in Figure 15.6 it is not necessarily the beginning or
end of a conflict. Thus, we still have to describe a criterion which helps us to testify conflicts.
To that end we rotate both rectangles to the possible conflict event α we want to check and
project the vertices of both rectangles lying on the common line l either on the x-axis or on

142 CHAPTER 15. VISIBILITY AND CONFLICTS

dp(r)

d
p′ (l
′
)

dp(r)−d
p′ (l
′
)

l

Cr

C
l
′

p

p′

γ

β l′

p′
γ

β

R
′

l′

R
r′

α

(a) Begin of a possible conflict: p lies to the right
of r, p′ lies to the right of l

′
.

dp(r)

d
p′ (b
′
)dp(r)−d

p′ (l
′
)

l

Cr

C
l
′

p

p′

γα
β

l′

R
r

l ′
R ′

(b) End of a possible conflict: p lies to the
right of r, p′ lies to the right of l

′
.

dp(r)
d
p′ (l
′
)

dp(r)−d
p′ (l
′
)

lCr

Cl′

p p′
β

α

γ l′

R
r

R
′

(c) Begin of a possible conflict: p lies to the left
of r, p′ lies to the left of l

′
.

dp(r)

d
p′ (l
′
)

dp(r)−d
p′ (l
′
)

l

Cr

Cl′
p

p′
γ β

α

R
r

R
′

l
′

(d) End of a possible conflict: p lies to the
left of r, p′ lies to the left of l

′
.

Figure 15.9: Considering outer tangents it shows the conflict events for the right edge of R
and the left edge of R′.

the y-axis of the common coordinate system (see Figure 15.11a). More in detail we take the
y-axis if the slope γ of pp′ lies between π

2 − ε and π
2 + ε or between 3π

2 − ε and 3π
2 + ε for

a pre-defined ε with π
2 > ε > 0. Otherwise we project the vertices on the x-axis. Both the

projected vertices of R and the projected vertices of R′ each form an interval I and I ′ on the
chosen axis. It is easy to see that both intervals intersect if and only if α is a real conflict
event, namely if we continue rotating R and R′, then either the intersection of both rectangles
begins or ends.

Creating a Sequence of Conflict Events: Now we explain how one can gain a consistent
sequence of conflict events for two anchored rectangles R and R′ with anchors p and p′, that is,
a sequence of conflict events describing all conflicts between R and R′ consecutively, such that
conflict events describing the beginning of a conflict (start event) and events describing the
end of a conflict (end event) occur alternately. In particular we require that such a sequence
begins with a start event and ends with an end event of a conflict:

15.1. ANCHORED RECTANGLES AND THEIR CONFLICTS 143

dp(r)

d
p′ (l
′
)

dp(r) + d
p′ (l
′
)

l

Cr

C
l
′

p

p′

β

α

γ

R
′

R
r

(a) Begin of a possible conflict: p lies to the
right of r, p′ lies to the left of l

′
.

dp(r)

d
p′ (l
′
)

dp(r) + d
p′ (l
′
)

l
Cr

C
l
′

p

p′

γ

α

β
R r

R′
l
′

(b) End of a possible conflict: p lies to the
right of r, p′ lies to the left of l

′
.

dp(r) d
p′ (l
′
)

dp(r) + d
p′ (l
′
)

l

Cr
C

l
′

p

p′

α

β

γ

R
r

R
′

l′

(c) Begin of a possible conflict: p lies to the left
of r, p′ lies to the right of l

′
.

dp(r)

d
p′ (l
′
)

dp(r) + d
p′ (l
′
)

l

Cr
C

l
′

p

p′

α

β
γ

R

r

R
′

l
′

(d) End of a possible conflict: p lies to the
left of r, p′ lies to the right of l

′
.

Figure 15.10: Considering inner tangents it shows the conflict events for the right edge of R
and the left edge of R′.

l

α

R

R
′

I
I ′

p

p′

(a) Projecting vertices on the x-axis.

R

R
′

(b) R and R′ are for the
whole rotation 2π in conflict.

Figure 15.11: Checking for real conflicts.

144 CHAPTER 15. VISIBILITY AND CONFLICTS

Definition 15.1 (Consistent Sequence of Conflict Events). A sequence c1, . . . , ck of conflict
events is called consistent if

1. c1 is a start event and ck is an end event and

2. for all 1 < i ≤ k, if ci−1 is a start event then ci is an end event and vice versa and

3. there are no two conflict events of the same angle.

We apply the following approach on R and R′: First we determine which main-case we
have to consider (see Table 15.1) and then we compute the possible conflict events induced by
the edges of R and R′. Afterwards we check for the real conflict events (as described above)
and merge those into one non-decreasing sequence sorted by the angle of the conflict events.
If a start event c1 and an end event c2 have the same angle, we require that c1 occurs before c2
in the sequence. Obviously, the resulting sequence contains at most eight events, because for
each edge of R we can find at most two conflict events.

In the next step we apply the following rules on the sequence such that we apply each rule
until it is not applicable anymore and not till then we apply the next rule:

1. If two start events correspond to the same angle α, then remove one of both start events
from the sequence.

2. If a start event and an end event correspond to the same angle α, then remove both
from the sequence.

3. If the sequence begins with an end event, then add the start event α = 0 to the sequence.

4. If the sequence ends with a start event, then add the end event α = 2π to the sequence.

We do not explain explicitly how to implement those rules, but one can do this efficiently in
one iteration using a stack. Obviously, the remaining sequence is consistent and still describes
all conflicts correctly.

We still have to describe the case that the sequence is empty. In that case we cannot
always return that there is no conflict, but we first have to check whether the rectangles are
in conflict for the whole time (see Figure 15.11b). To that end we assume a rotation of 0
for both rectangles and check whether they intersect. In the positive case we have found the
conflict [0, 2π], otherwise we know that they do not have any conflict.

We summarize the results in following theorem:

Theorem 15.1. For two anchored rectangles R and R′ we can compute a consistent se-
quence (c1, . . . , ck) of conflict events with k ≤ 10 describing all conflicts between R and R′

correctly in O(1) time.
In particular the angle intervals [c1, c2], [c3, c4], . . . , [ck−1, ck] are pairwise disjoint and de-

scribe all conflicts between R and R′.

Proof. The two rectangles R and R′ must satisfy exactly one case as described in Table 15.1.
For all cases it is true, that each edge of R induces at most two conflict events (one start event
and one end event). As R consists of four edges, we can find at most eight conflict events
for R and R′. Since we also add the events 0 and 2π in order to make the sequence consistent
when it begins with an end event or ends with a start event, we obtain ten events.

15.2. LABELS IN CONFLICT 145

15.2 Labels in Conflict

Based on the previous section computing the conflicts between all given labels L is quite
easy. For each pair {l, l′} ∈

(
L
2

)
we compute the consistent sequence S=(c1, . . . , ck) of conflict

events in O(1) time as described in Theorem 15.1. Then each pair (ci, ci+1) with imod 2 = 0
describes one conflict of l and l′, so that

C(l, l′) = {[c1, c2], [c3, c4] . . . , [ck−1, ck]}

Lemma 15.1. Let l and l′ be two labels, then the set C(l, l′) contains at most five intervals.

Proof. Follows directly from Theorem 15.1.

Obviously, we need O(n2) time to compute all conflicts between all labels and in fact in
the worst case we cannot speed this running time up, because it can happen that all labels
are mutually in conflict:

Theorem 15.2. Given a set L of labels, then we can compute the set C(L) of conflicts between
those labels in O(n2) time. Further C(L) contains O(n2) conflicts.

Although the worst case time is quadratic, for typical use cases one can improve the running
time as the following information box shows.

Implementation Details 15.1. In order to increase the performance for checking for conflicts, there are several
well-known solutions as grids and quad-trees applicable that utilize the locality of conflicts and the fact that
labels are normally spread over the whole map.
Even though quad-trees often are the better solution than grids, we have decided to implement a grid in order
to minimize the time of implementation. The main idea is that the map is underlaid with a homogeneous
grid of pre-defined mesh size. Then each label l ∈ L is related to that cell of the grid that contains the anchor
of l. (If the anchor lies on the horizontal border of two cells it is contained in the upper cell and if the anchor
lies on the vertical border of two cells it is contained in the left cell.)
Let Cl be the smallest enclosing circle of a label l ∈ L with center at the anchor of l and let Cmax denote
for all circles Cl with l ∈ L the largest circle of those. If we then choose the mesh size of the grid at least
twice as large as the radius of Cmax, we know that for a label l we only have to check the labels which are
contained in the same cell as l or in one of the neighbor cells:

Further, if we check for two labels l and l′ whether they have conflicts, we can first check whether Cl
and Cl′ intersect. If this is not the case, we know that there cannot be any conflicts between both labels.
Consequently, we do not need to do a detailed check.

146 CHAPTER 15. VISIBILITY AND CONFLICTS

αA

βA

0

1

A

α

β α
exten

t

(a) A is counterclockwise ori-
ented.

αA

βA

0

1

A

α

β α
exten

t

(b) A is clockwise oriented.

Figure 15.12: Illustration of angles and positions. Both figures show the same arc A and the
same interval [α, β], but as the orientation of A is different the start and end points of A are
also different. The bold sub-arc of A illustrates the positions of A the interval [α, β] is mapped
on.

15.3 Visible Labels and Visible Conflicts

In this section we explain in more detail how we determine the visibility of labels and conflicts
regarding a given viewport VP and its trajectory T : That means for each label or conflict o
we look for a sequence ΦVPT (o) = ([x1, y1], . . . , [xk, yk]) that describes the visibilities of that
entity o regarding VP. For example for a label l the interval [x1, y1] means that l is visible
within VP from position x1 to position y2.

At first we explain how an angle interval [α, β] ⊆ [0, 2π] can be translated into an inter-
val [pos1, pos2] of local positions for a single arc. Then we use that approach for computing
the visibilities of labels and conflicts between labels.

15.3.1 Relation Between Angles and Positions

Assume for this part that we are given an arbitrary arc A and an arbitrary interval [α, β] ⊆
[0, 2π], then we want to find for [α, β] a corresponding interval [pos1, pos2] ⊆ [0, 1] of local
positions regarding A that spans the same sub-arc of A as [α, β] (see Figure 15.12). To that
end let αA be the start angle of A and let βA be the end angle of A, so that A sweeps the
angle αextent . Recall that αA corresponds to the position 0 of A and βA corresponds to the
position 1 of A.

We distinguish the two cases, whether A is counterclockwise oriented or clockwise oriented,
because in the former case going from αA to βA along the spanned sub-arc of A the angle
increases and it decreases in the latter case.

If A is counterclockwise oriented, we first normalize the angles regarding the start
angle αA of A by subtracting αA from all angles. In particular we gain the new angles α′ =
α−αA and β′ = β−αA and A then starts at the angle of 0 and ends at an angle of β′A = βA−αA.
Further, we assume that the new angles are normalized, that is, they lie in [0, 2π].

In the case that α′ ≤ β′ (see Figure 15.13a) we can easily derive an interval describing the

15.3. VISIBLE LABELS AND VISIBLE CONFLICTS 147

α′
A

=0

β′
A

0

1

A

α′

β′

α
exten

t

I1

(a) α′ ≤ β′

α′
A

=0

β′
A

0

1

A

α′

β′

α
exten

t

I1

I2

(b) α′ > β′

Figure 15.13: Illustration of angles and positions. Both figures show the same counterclockwise
oriented arc A, but they differ in the given interval [α, β]. In particular in the second case the
interval [α, β] must be split into two intervals.

local positions and the sub-arc of A spanned by [α′, β′]:

I1 =

{
[max(0, α′

αextent
),min(1, β′

αextent
)] α′ ∈ [0, β′A] or β′ ∈ [0, β′A]

∅ otherwise

Note that if neither α′ nor β′ lies within [0, β′A], then [α, β] does not span any sub-arc of A. In
the case that α′ > β′ (see Figure 15.13b) we check whether at least one angle of α′ and β′ lies
within [0, β′A]. If that is the case we return for each angle that lies within [0, β′A] one interval:

I1 =

{
[α′
αextent

, 1] 0 ≤ α′ ≤ β′A
∅ otherwise

I2 =

{
[0, β′

αextent
] 0 ≤ β′ ≤ β′A

∅ otherwise

In the case that neither α′ nor β′ lie within [0, β′A], we return the interval I1 = [0, 1].
If A is clockwise oriented, we first assume A to be counterclockwise oriented, that is,

the start angle becomes the end angle and vise versa (see Figure 15.12). We then apply the
approach as described above in order to gain the Intervals I1 = [pos1, pos2], I2 = [pos3, pos4].
Without loss of generality we assume that they are defined. We then redefine both intervals
in order to comprise that A is in fact clockwise oriented: I1:=[1− pos2, 1− pos1] and I2:=[1−
pos4, 1− pos3].

We denote the procedure that converts angles [α, β] ⊆ [0, 2π] into local positions for an
arc A by convertAnglesToPositions and assume that it returns a sequence of only non-
empty position intervals as described above. If the given angle interval does not span any part
of the given arc, then it returns an empty sequence.

Up to now those intervals contain local positions for a certain arc, but normally we consider
a trajectory T that consists of several arcs, so that we often need global positions. We therefore
extend the function lgT of Chapter 14 canonically to sequences of local position intervals:

lgT (A, [pos, pos ′]):=[lgT (A, pos), lgT (A, pos ′)]

lgT (A, ([pos1, pos
′
1], . . . , [posk, pos

′
k])):=(lgT (A, [pos1, pos

′
1]), . . . , lgT (A, [posk, pos

′
k]))

148 CHAPTER 15. VISIBILITY AND CONFLICTS

V
iewport

αA

βA

A
R

0
1

Figure 15.14: Restricted to one arc the viewport can be seen as an anchored rectangle.

15.3.2 Visibility of Labels:

Now we explain how we can gain the visibilities for a label l regarding a viewport VP and its
trajectory T with arcs A1, . . . , Am. We again first consider a single arc Ai and describe how
we can gain the visibilities of l regarding that arc and VP. To that end let R be the anchored
rectangle R(VP, Ai) as defined in Chapter 14. Consequently, if we rotate R around its anchor
there is an angle interval [αAi , βAi] which corresponds to Ai, namely αAi is the start angle
of Ai and βAi is the end angle of Ai (see Figure 15.14).

First we compute the sequence of conflicts [α1, β1], . . . , [αk, βk] between l and R by means
of the approach described in Section 15.1. Then we translate each interval into the local
positions of Ai using the procedure convertAnglesToPositions and merge the results into
one sequence ΦVPAi (l) after converting the local into global positions regarding T and sorting
the intervals in non-decreasing order regarding the first coordinate of the intervals:

ΦVPAi (l) = sort(↑,
k⋃
j=1

lgT (Ai, convertAnglesToPositions([αj , βj], Ai)))

As the angles [α1, β1], . . . , [αk, βk] are disjoint (Theorem 15.1), the intervals of ΦVPAi (l) must
also be disjoint because we only convert the intervals but we do not change their structure.

We apply that procedure on all arcs A1, . . . , Am in order to gain ΦVPA1
(l), . . . ,ΦVPAm(l) and

then we assemble them to one sequence ΦVPT (l) maintaining their order:

ΦVPT (l) = ΦVPA1
(l) + . . .+ ΦVPAm(l)

Finally, we iterate through ΦVPT (l) once in order to merge overlapping intervals: For two
consecutive intervals I=[pos1, pos2] and I ′=[pos ′1, pos

′
2] we check whether they overlap. If that

is the case, we replace both by the interval [pos1, pos
′
2]. Note that I and I ′ refer to positions on

different arcs A and A′, so that they can only overlap in one point, namely in the transition
of A and A′. Thus, we obtain pos1 < pos2 ≤ pos ′1 < pos ′2. On that account [pos1, pos

′
2]

describes both visibilities I and I ′ completely and we do not loose visibility when replacing I
and I ′ with the new interval. Consequently, ΦVPT (l) is the sequence of visibilities of l as
described in Definition 14.1.

For the running time we consider the following lemma:

Lemma 15.2. Let l be an arbitrary label and let A be an arbitrary arc of a given trajectory T
with viewport VP, such that the rectangles l and VP have the conflicts [α1, β1], . . . , [αk, βk]

15.3. VISIBLE LABELS AND VISIBLE CONFLICTS 149

regarding A (in angles), then the sequence

ΦVPA (l) = sort(↑,
k⋃
j=1

lgT (A, convertAnglesToPositions([αj , βj], A)))

can contain at most five intervals.

Proof. From Theorem 15.1 we know that there are at most ten conflict events between l
and VP. Since two of each form one conflict there can be at most five conflicts.

Corollary 15.1. The sequence ΦVPT (l) contains at most 4 ·m intervals.

Due to Theorem 15.1 we need only O(1) time to compute the conflicts between R and l and
according to the previous lemma we can sort ΦVPAi (l) for an arc Ai in O(1) time. Consequently,
we need O(m) time for constructing ΦVPT (l).

When we apply that procedure on all labels we gain the following theorem:

Theorem 15.3. Given a set L = {l1, . . . , ln} of labels and a viewport VP with trajectory T =
(A1, . . . , Am), then we can compute the sequences ΦVPT (l1), . . . ,Φ

VP
T (ln) of visibilities of the

labels in L in O(m · n) time, such that they satisfy Definition 14.1.

15.3.3 Visibility of Conflicts:

In this part we assume that we are given a set L of labels and a viewport VP with trajec-
tory T = (A1, . . . , Am). We want to compute the visibilities of all conflicts C(L) between the
given labels. To that end we apply a very similar approach as used for the labels in order to
compute the visibilities, but first we show the next lemma.

Lemma 15.3. Given a viewport VP with its trajectory T = (A1, . . . , Am) and a conflict c =
(l, l′) between two labels l and l′, then the following statement is true:

The conflict c = (l, l′) is visible in VP at a position pos of T if and only if both labels l
and l′ are visible in VP at pos.

Proof. Recall for the proof that a conflict of two labels l and l′ at a position pos of T is defined
as a non-empty intersection between both labels. “⇒”: Obviously, when the conflict is visible
then both labels must be visible. “⇐”: As l and l′ are axis-aligned rectangles, this direction
holds also.

Analogously to labels, we again consider only one conflict c={[α, β], l, l′} ∈ C(L) and
describe how we gain the visibilities for that conflict. To that end we proceed for each arc Ai
(with 1 ≤ i ≤ m) as follows:

First we translate [α, β] into a sequence of local position intervals by means of the procedure
convertAnglesToPositions and then we convert those local positions regarding Ai into global
positions regarding T and sort those intervals in non-decreasing order regarding the first
coordinate of the intervals:

S
[α,β]
Ai

= sort(↑, lgT (Ai, convertAnglesToPositions([α, β], Ai)))

After we have done this for all arcs, we concatenate the resulting sequences S[α,β]
A1

, . . . , S
[α,β]
Am

into one long sequence S[α,β] maintaining the order:

S[α,β] = S
[α,β]
A1

+ . . .+ S
[α,β]
Am

150 CHAPTER 15. VISIBILITY AND CONFLICTS

Analogously to computing visibilities, we merge all overlapping intervals in S[α,β], that is, if
two intervals I=[pos1, pos2] and I ′=[pos ′1, pos

′
2] of S[α,β] overlap, then we replace both by the

single interval [pos1, pos
′
2]. We can again argue that after applying this step the sequence S[α,β]

contains only non-overlapping intervals sorted in increasing order (for a detailed description
see the analogous part for computing the visibilities of labels).

Lemma 15.4. Given two labels l and l′ with conflict c and a viewport VP with trajectory T =
(A1, . . . , Am), then the sequence S[α,β] as described above contains at most O(m) intervals.

Proof. We first show for each arc Ai that the set S[α,β]
Ai

can contribute at most two intervals,
because then the statement follows directly: Have a detailed look at the description of the pro-
cedure convertAnglesToPositions. By definition of the procedure the passed interval [α, β]

is split into at most two intervals. Thus, according to the definition of S[α,β]
Ai

it also contains
at most two intervals.

So far we have not made use of the visibility ΦVPT (l) and ΦVPT (l′) of l and l′ which we have
introduced in the previous part. Consequently, the intervals in S[α,β] can be oversized. We
therefore compute the intersection of S[α,β], ΦVPT (l) and ΦVPT (l′):

ΦVPT (c) = S[α,β] ∩ ΦVPT (l) ∩ ΦVPT (l′)

where the intersection S1 ∩ S2 of two sequences of intervals is defined as:

S1 ∩ S2 = {[p1, q1] ∩ [p2, q2] | [p1, q1] ∈ S1 and [p2, q2] ∈ S2}

Summarizing we can say that the sequence ΦVPT (c) describes the visibility of the given con-
flict c = {[α, β], l, l′} regarding VP and T correctly, because

1. S[α,β] is the sequence of intervals describing the angular conflict interval [α, β] by means
of positions.

2. ΦVPT (l) and ΦVPT (l′) are the sequences of intervals describing the visibilities of l and l′

by means of positions.

3. ΦVPT (c) is defined as the intersection S[α,β] ∩ΦVPT (l) ∩ΦVPT (l′), that is, we only consider
positions that are in common with all three sequences.

4. Lemma 15.3 holds.

It remains to show how we can efficiently compute the intersection S = S1 ∩ S2 of two se-
quences S1 = ([p1, q1], . . . , [pu, qu]) and S2 = ([s1, t1], . . . , [sv, tv]) that contain disjoint intervals
sorted in increasing order.

For that purpose we apply one sweep over both sequences simultaneously: Let i be the
index of the currently considered interval in S1 and let j be the index of the currently considered
interval in S2. We start with i = 1 and j = 1 and check whether [pi, qi]∩ [sj , tj] 6= ∅. If that is
the case we add [pi, qi] ∩ [sj , tj] to the resulting sequence S. Afterwards we increase i by one
if qi ≤ tj and otherwise we increase j by one. We repeat the whole step until i > u or j > v.
Figure 15.15 illustrates the procedure.

Consequently, we need O(|u|+ |v|) time to compute S = S1 ∩ S2. Based on that the next
lemma makes a statement about the running time for computing ΦVPT (c).

15.4. AREA BASED VISIBILITY FOR LABELS 151

S1

S2

S

0

0

1

2

3

4 5

6

7

Figure 15.15: Illustrates the intersection of two sequences S1 and S2 containing intervals. S is
the resulting interval and the numbers above the intervals indicate after which iteration step
the index variables i and j are set to that particular interval.

Lemma 15.5. Given two labels l and l′ having the conflict c = {[α, β], l, l′}, a viewport VP
with trajectory T = (A1, . . . , Am) and the visibilities ΦVPT (l) and ΦVPT (l′) of both labels, then
we can compute the visibilities ΦVPT (c) of c in O(m) time.

Proof. From Corollary 15.1 we know that ΦVPT (l) and ΦVPT (l′) contain at most O(m) visibilities
and from Lemma 15.3 follows that S[α,β] has at most O(m) elements. Thus, we need O(m)

time to compute the intersection ΦVPT (c) = S[α,β] ∩ ΦVPT (l) ∩ ΦVPT (l′).

So far we have considered only one conflict c = {[α, β], l, l′} of C(L), but we need to apply
the whole procedure on all conflicts contained in C(L) which leads to the following theorem:

Theorem 15.4. Given a set L = {l1, . . . , ln} of labels with conflicts C(L) = {c1, . . . , ck}
and a viewport VP with its trajectory T = (A1, . . . , Am), then we can compute the se-
quences ΦVPT (c1), . . . , ΦVPT (ck) of visibilities of the conflicts in O(k ·m) time, such that they
satisfy Definition 14.2.

15.4 Area Based Visibility for Labels

So far we have defined the visibility of labels regarding the duration for which they stay within
the given viewport. Since we want to maximize the overall visibility over all labels, it can occur
that only partly shown labels are preferred over labels that are completely shown, when the
former one stays longer within the viewport than the latter one. Figure 15.16 shows such an
example and its drawback: Often it is better to set the label with larger intersection area
inactive than the other. In the worst case this leads to the constellation that the user cannot
read any of both labels, because one label is set inactive and the other label is only fractionally
contained in the viewport. On that account we present in this section how the visibility of
labels could be redefined using the intersection area between labels and viewport. To that end
we first explain how the intersection area of two anchored rectangles can be computed and
then in the second part we explain how this intersection area can be used for redefining the
visibility of labels.

Implementation Details 15.2. So far this part has not been implemented, yet.

15.4.1 Anchored Rectangles and Their Conflict Area

Assume that we are given two anchored rectangles R = (l, r, b, t) and R′ = (l
′
, r′, b

′
, t
′
) with

anchors p and p′ and the angle interval [α, β], then we explain now how the intersection area

152 CHAPTER 15. VISIBILITY AND CONFLICTS

Label 2

Label 1

(a) 1. Position: Both labels are ac-
tive.

Label 2

Label 1

(b) 2. Position: A conflict between
labels arises.

Label 2

Label 1

(c) 3. Position: The label with less
intersection area with the viewport
than the other has won the conflict.

Figure 15.16: Restricted visibility of labels. A partly visible label may cover another label
that is fully visible within the viewport (black label=active label, gray label=inactive label).

of R and R′ can be computed for the rotation that takes place in [α, β]. More formally we
explain how to gain

A(R,R′, α, β) =

β∫
α

A(R,R′, ρ)dρ

where A(R,R′, ρ) denotes the intersection area between R and R′ for the common rotation
angle ρ. To that end we consider the rotation of R and R′ within the angle interval [α, β] and
split that rotation into five different phases. Each phase is characterized by the number of
edges of R involved in the intersection of R and R′. Figure 15.17 shows all possible types of
a phase:

T0: The edges of R do not have any points in common with R′.

T1: One edge of R is involved in the intersection of R and R′.

T2: Two edges of R are involved in the intersection of R and R′, then there are six sub-cases:
The edges {r, b}, {r, t}, {l, b}, {l, t}, {t, b} or {l, r} are involved.

T3: Three edges of R are involved in the intersection of R and R′, then there are four
sub-cases: The edges {r, b, l}, {r, t, l}, {t, r, b} or {t, l, b} are involved.

T4: All four edges of R are involved in the intersection of R and R′.

15.4. AREA BASED VISIBILITY FOR LABELS 153

R′

R

(a) R is of type T0 and R′ is of
type T4.

R′

R

(b) R is of type T2 and
R′ is of type T2.

R′

R

(c) R is of type T3 and
R′ is of type T1.

R′

R
dv

dh

(d) R is of type T2 and R′ is of type
T2.

Figure 15.17: Intersection types. The figure shows all possible intersection types that can
occur for two intersecting rectangles. The difference between 15.17b and 15.17d is that in the
former one edges of the same orientation are involved, while in the latter one edges of different
orientation are involved.

The individual phases for the intersection of two anchored rectangles can be obtained by
adapting the approach of Section 15.1 for computing conflict events between anchored rect-
angles. As this is mostly a technical detail, we only sketch the adaption shortly: So far we
only considered opposite side edges of anchored rectangles when we computed the individual
conflict events. We therefore gain events for the beginning and the end of the intersection
rotating both rectangles simultaneously. If we also consider two edges representing the same
sides (e.g. the top edges of R and R′), we then obtain events describing the different phases
we are looking for.

Ordered by their complexity we now describe how to handle the different types of a phase.
To that purpose we assume that the considered phase spans the angle interval [α, β] and that R
has the width w and the height h.

Type T0: For this type we only have to check, whether R contains R′. If that is the case
the intersection area is obviously

A0(R,R
′, α, β) =

β∫
α

w · h dρ = [w · h · ρ]ρ=βρ=α

Otherwise, we set A0(R,R
′, α, β) = 0.

154 CHAPTER 15. VISIBILITY AND CONFLICTS

Type T4: For this type we know that R is completely contained in R′, so that the intersec-
tion area is:

A4(R,R
′, α, β) =

β∫
α

w · h dρ = [w · h · ρ]ρ=βρ=α

Type T1: If only one edge is involved in the intersection, the edge must intersect two edges
of R′. Consequently, R′ has two edges that are involved in the intersection. We therefore can
switch the roles between R and R′ and can treat it as type T3:

A1(R,R
′, α, β) = A3(R

′, R, α, β)

Type T3: If three edges of R enclose the intersection area, one of the three edges must
be completely contained in R′. We denote that edge by e and distinguish whether it is a
horizontal or vertical edge.

The edge e is a horizontal edge: At first we discuss the case that e is the top edge t
of R and later on, by means of symmetries we adapt the results to the case that e is the
bottom edge b of R. So assume that e is the top edge t of R, then the intersection is enclosed
by the edges t, r, l of R and the edge b′ of R′ (see Figure 15.18a, black labels). (Note that for
the following the orientation of both rectangles is indicated by the orientation of the label R
and R′ in the corresponding figures.)

In order to compute the gray shaded intersection of R and R′ we need the length of the
segment d1, because the intersection is determined by d1 ·w. We cannot directly compute d1,
but we can assemble it by different distances and angles that we know:

1. The angle δ describes the fixed slope of the line through p and p′.

2. The angle ρ coincides with the rotation of R and R′ and is therefore the angle we use in
the integral.

3. The distance dp(t) is pre-defined by the relation between p and R.2

4. The distance dp′(b
′
) is pre-defined by the relation between p′ and R′.

5. The distance d between p and p′.

For the analysis we have to distinguish the following four sub-cases describing the position
of p and p′ relative to t and b′, respectively:

H1 p lies to the right of t p′ lies to the right of b′ Figure 15.18a, black
H2 p lies to the right of t p′ lies to the left of b′ Figure 15.18b, black
H3 p lies to the left of t p′ lies to the right of b′ Figure 15.18c, black
H4 p lies to the left of t p′ lies to the left of b′ Figure 15.18d, black

In all cases we want to express d1 by the known terms, because then we can easily compute
the area by d1 ·w. We only discuss the first sub-case in more detail and present for the others
cases corresponding drawings, so that the reader can verify the results.

2Recall that dp(l) denotes the distance between p and the line that extends the line segment l.

15.4. AREA BASED VISIBILITY FOR LABELS 155

d
d
p ′ (b ′

)

d1
d
p (t)

p

p′

RR
′

t

b
′

δ

ρ

w

h

sin(ρ−δ) · d

R
′

R

d
p (b

)

b

d
p ′ (t ′

)

t
′

ρ sin(ρ−δ−π)·d

H1
H8

d2
l

r

(a) Black: p lies to the right of t and p′ lies to
the right of b′. Gray: p lies to the left of b and p′

lies to the left of t′.

d

d
p ′ (b ′

)

d1 d
p (t)

p

p′

R

R
′

t

b
′

δρ

w

h

sin(ρ−δ) · d

R
′

R

t
′

b

d
p (b

)

d
p ′ (t ′

)

ρ sin(ρ−δ−π)·d

H2
H7

(b) Black: p lies to the right of t and p′ lies to the
left of b

′
. Gray: p lies to the left of b and p′ lies

to the right of t′.

d

d
p ′ (b ′

)

d1

p′

RR
′

t

b
′

ρ

d
p (t)p

w

h

δ

sin(δ−ρ) · d

R
′

R

t
′

b

d
p ′ (t ′

)

d
p (b

)

ρ

sin(δ−ρ−π)·d

H3
H6

(c) Black: p lies to the left of t and p′ lies to the
right of b

′
. Gray: p lies to the right of b and p′

lies to the left of t′.

d

d
p ′ (b ′

)

d1

p′

R

R
′

t

t
′

ρ

d
p (t)p

w

h

δ

sin(δ−ρ) · d

R
′

R

d
p ′ (t ′

)

d
p (b

)

b

ρ

sin(δ−ρ−π)·d

H4
H5

(d) Black: p lies to the left of t and p′ lies to
the left of b

′
. Gray: p lies to the right of b

and p′ lies to the right of t′.

Figure 15.18: The rotation phase T2. Shows the case that the edges t, r, l of R and the edge b′

of R′ enclose the intersection area (black labels) and the case that the edges b, r, l of R and
the edge t′ of R′ enclose the intersection area (gray labels).

156 CHAPTER 15. VISIBILITY AND CONFLICTS

So assume that p lies to the right of t and p′ lies to the right of b′ (see Figure 15.18a). We
first consider the hatched rectangular triangle: We can describe the distance d2 by means of
the angles ρ and δ:

sin(ρ− δ) =
d2
d

⇒ d2 = sin(ρ− δ) · d

Then it is easy to see that d1 is obtained from the distances d2, dp(t) and dp′(b
′
):

d1 = dp(t)− d2 − dp′(b′) = dp(t)− dp′(b′)︸ ︷︷ ︸
h1

− sin(ρ− δ) · d

The following table summarizes the analogous results for all four cases H1-H4:

H1 d1 = h1 − sin(ρ− δ) · d with h1 = dp(t)− dp′(b′)
H2 d1 = h2 − sin(ρ− δ) · d with h2 = dp(t) + dp′(b

′
)

H3 d1 = h3 − sin(ρ− δ) · d with h3 = −dp(t)− dp′(b′)
H4 d1 = h4 − sin(ρ− δ) · d with h4 = −dp(t) + dp′(b

′
)

Note that sin(δ − ρ) = − sin(ρ− δ)

Now assume that the considered horizontal edge e is the bottom edge of R (see gray labels in
Figure 15.18): This time the intersection is enclosed by the edges b, r, l of R and the edge t′

of R′. We again have to distinguish the following cases:

H5 p lies to the right of b p′ lies to the right of t′ Figure 15.18d, gray
H6 p lies to the right of b p′ lies to the left of t′ Figure 15.18c, gray
H7 p lies to the left of b p′ lies to the right of t′ Figure 15.18b, gray
H8 p lies to the left of b p′ lies to the left of t′ Figure 15.18a, gray

Obviously, due to symmetry we can easily reuse the previous results: only the names of the
segments and the orientation of the anchors have changed but not the structure in general.
We therefore gain the following table:

H5 d1 = h5 + sin(ρ− δ) · d with h5 = −dp(b) + dp′(t
′
)

H6 d1 = h6 + sin(ρ− δ) · d with h6 = −dp(b)− dp′(t′)
H7 d1 = h7 + sin(ρ− δ) · d with h7 = dp(b) + dp′(t

′
)

H8 d1 = h8 + sin(ρ− δ) · d with h8 = dp(b)− dp′(t′)
Note that sin(ρ− δ − π) = − sin(ρ− δ)

As h1, . . . , h8 are constants, we can treat them equally and can therefore define the pa-
rameterized area for hi (with 1 ≤ i ≤ 8):

Ahi,δ(R,R
′, α, β) =

β∫
α

w · (hi + sgn(i) · sin(ρ− δ)) dρ = [w · hi · ρ]ρ=βρ=α − sgn(i)[cos(ρ− δ)]ρ=βρ=α

with

sgn(i) =

{
−1 1 ≤ i ≤ 4

1 5 ≤ i ≤ 8.

15.4. AREA BASED VISIBILITY FOR LABELS 157

The edge e is a vertical edge: Since vertical edges can be handled analogously, we only
present the results and the corresponding drawings, so that the reader can verify the results.
We again distinguish the two cases that the intersection area is enclosed by

r, b, t of R and l′ of R′ or l, b, t of R and r′ of R′

Further, we distinguish the cases of the position of the anchors, which are also illustrated in
Figure 15.19:

V 1 p lies to the right of r p′ lies to the right of l′ Figure 15.19a
V 2 p lies to the right of r p′ lies to the left of l′ Figure 15.19b
V 3 p lies to the left of r p′ lies to the right of l′ Figure 15.19c
V 4 p lies to the left of r p′ lies to the left of l′ Figure 15.19d
V 5 p lies to the right of l p′ lies to the right of r′ Figure 15.19d
V 6 p lies to the right of l p′ lies to the left of r′ Figure 15.19c
V 7 p lies to the left of l p′ lies to the right of r′ Figure 15.19b
V 8 p lies to the left of l p′ lies to the left of r′ Figure 15.19a

Then we gain the following results:

V 1 d1 = v1 − sin(ρ− δ − π
2) · d with v1 = dp(r)− dp′(l′)

V 2 d1 = v2 − sin(ρ− δ − π
2) · d with v2 = dp(r) + dp′(l

′
)

V 3 d1 = v3 − sin(ρ− δ − π
2) · d with v3 = −dp(r)− dp′(l′)

V 4 d1 = v4 − sin(ρ− δ − π
2) · d with v4 = −dp(r) + dp′(l

′
)

V 5 d1 = v5 + sin(ρ− δ − π
2) · d with v5 = −dp(r) + dp′(l

′
)

V 6 d1 = v6 + sin(ρ− δ − π
2) · d with v6 = −dp(r)− dp′(l′)

V 7 d1 = v7 + sin(ρ− δ − π
2) · d with v7 = +dp(r) + dp′(l

′
)

V 8 d1 = v8 + sin(ρ− δ − π
2) · d with v8 = +dp(r)− dp′(l′)

The main difference to horizontal edges is that there is an offset of π2 for the rotation angle.
Then we derive the following parameterized integral for vi (with 1 ≤ i ≤ 4):

Avi,δ(R,R
′, α, β) =

β∫
α

h · (vi + sgn(i) sin(ρ− δ − π

2
)) dρ

= [h · vi · ρ]ρ=βρ=α − sgn(i)[cos(ρ− δ)]ρ=βρ=α

where sgn is identically defined as for the case of horizontal edges:

sgn(i) =

{
−1 1 ≤ i ≤ 4

1 5 ≤ i ≤ 8

Finally, we define

A3(R,R
′, α, β):=

{
Ahi,δ(R,R

′, α, β) if the edge e is a horizontal edge.
Avj ,δ(R,R

′, α, β) if the edge e is a vertical edge.

where hi, vi, δ and e are chosen as described above.

158 CHAPTER 15. VISIBILITY AND CONFLICTS

dd
p ′ (l ′

)

d1
d
p (r)

p

p′

R

R′

r

l
′

δ
ρ

w

h

sin(ρ−δ−π
2)·d

R ′

R

d
p (l)

l

d
p ′ (r ′

)

r′

ρ

sin(ρ−δ− 3π
2)·d

V 1
V 8

(a) Black: p lies to the right of r and p′ lies to
the right of l′. Gray: p lies to the left of l and p′

lies to the left of r′.

d

d
p ′ (l ′

)

d1 d
p (r)

p

p′

R

R′

r

l
′

δ

ρ

w

h

sin(ρ−δ−π
2)·d

R ′

R

r′

l

d
p (l)

d
p ′ (r ′

)

ρ

sin(ρ−δ− 3π
2)·d

V 2
V 7

(b) Black: p lies to the right of r and p′ lies to the
left of l

′
. Gray: p lies to the left of l and p′ lies to

the right of r′.

d

d
p ′ (l ′

)

d1

p′

R

R′

r

l
′

d
p (r)p

w

h

δ

sin(δ−ρ+π
2)·d

R ′
R

r′

l

d
p ′ (r ′

)

d
p (l)

ρ

sin(δ−ρ+ 3π
2)·d

ρ

V 3
V 6

(c) Black: p lies to the left of r and p′ lies to the
right of l

′
. Gray: p lies to the right of l and p′

lies to the left of r′.

d

d
p ′ (l ′

)

d1

p′

R

R′

r

r′

ρ

d
p (r)p

w

h

δ

sin(δ−ρ+π
2)·d

R ′

R

d
p ′ (r ′

)

d
p (l)

l

ρ

sin(δ−ρ+ 3π
2)·d

V 4
V 5

(d) Black: p lies to the left of r and p′ lies to the
left of l

′
. Gray: p lies to the right of l and p′ lies

to the right of r′.

Figure 15.19: The rotation phase T2. Shows the case that the edges t, r, b of R and the edge l′

of R′ enclose the intersection area (black labels) and the case that the edges t, l, b of R and
the edge r′ of R′ enclose the intersection area (gray labels).

15.4. AREA BASED VISIBILITY FOR LABELS 159

Type T2: Assume that two edges e1 and e2 of R are involved in the intersection, we then
have to distinguish whether both edges have the same or different orientations. If both edges
have the same orientation (without loss of generality we assume that they are vertically ori-
ented), then we obtain a situation as depicted in Figure 15.17b. In that case we can describe
the intersection as:

A2(R,R
′, α, β) =

β∫
α

h′ · w dρ = [h′ · w · ρ]ρ=βρ=α

If both edges are of different orientation, we obtain a situation as depicted in Figure 15.17d.
This time we can reuse the results of type T3, because they help us to compute the distances dv
and dh as depicted in Figure 15.17d. We therefore can use the individual sub-cases H1−H8
and V 1-V 8 in order to compute the intersection area between R and R′. For that purpose
let H = {h1, . . . , h8} and V = {v1, . . . , v8} be the constants as defined in the case T2, then
for all hi ∈ H and all vj ∈ V the intersection area is:

Ahi,vj ,δ(R,R
′, α, β) =

β∫
α

(hi + sgn(i) · sin(ρ− δ)) · (vj + sgn(j) · sin(ρ− δ − π

2
)) dρ

=

β∫
α

hi · vj − hi · sgn(j) · cos(ρ− δ) + vj · sgn(i) · sin(ρ− δ)

− sgn(i) · sin(ρ− δ) · sgn(j) · cos(ρ− δ) dρ
= [hi · vj · ρ]ρ=βρ=α − [hi · sgn(j) · sin(ρ− δ)]ρ=βρ=α

− [vj · sgn(i) · cos(ρ− δ)]ρ=βρ=α

+ [
1

2
sgn(i) · sgn(j) · (cos(ρ− δ))2]ρ=βρ=α

Finally, we define
A2(R,R

′, α, β):=Ahi,vj ,δ(R,R
′, α, β),

where hi, vj and δ are chosen such that those parameters correspond to the given anchored
rectangles R and R′.

15.4.2 Defining the Area Based Visibility of Labels

Based on the previous section we now can introduce an alternative notion of visibility that
depends on the area of a label that is visible within the viewport: Assume that we are given
a set L of labels and a viewport VP with trajectory T = (A1, . . . , An):

For each arc Ai with 1 ≤ i ≤ n we first determine the different phases the label can have
regarding VP. To that end we create a sequence

PAi(l) = (([s1, e1], t1, i), . . . , ([sk, ek], tk, i))

such that

• k is minimized, and

• 0 = s1 ≤ e1 ≤ s2 ≤ . . . ≤ ek−1 ≤ sk ≤ ek = 1, and

160 CHAPTER 15. VISIBILITY AND CONFLICTS

• for all 1 ≤ i ≤ k and for all pos ∈ [si, ei] it is true that ti denotes the number of edges
of VP involved in the intersection of VP and l at the position pos, and

• for all pos ∈ [0, 1] there is an element ([sj , ej], tj , i) ∈ PAi(l) with pos ∈ [sj , ej].

We do not explain explicitly how to gain PAi(l), but basically one has to translate the start
and end angles of the single phases into positions regarding T . This can be done analogous
to the approach described in Section 15.3. Afterwards we concatenate those sequences to one
long sequence

PT (l) = PA1(l) + . . .+ PAm(l)

So far we have defined the weight function w of Problem 14.2 that w(l, s, e) = e − s for all
labels l ∈ L and all segments [s, e] ∈ SVPT (l). Now we also want to use the relative intersection
area of a label and the viewport. We therefore set:

∀l ∈ L ∀[s, e] ∈ SVPT (l): w(l, s, e) =
A(VP, l, s, e)

(e− s) · wl · hl
where wl denotes the width of l and hl denotes the height of l and where for a label l and an
interval [s, e] ∈ SVPT (l) the term A(VP, l, s, e) is defined as follows:

A(VP, l, s, e) =
∑

([pos1,pos2],t,i)∈PT (l)

At(R(VP, Ai), l, αT (max(s, pos1)), αT (min(e, pos2))),

where R(VP, Ai) is defined in Chapter 14.
The idea of A(VP, l, pos1, pos2) is, that we consider each phase of intersection between VP

and label l separately. According to the previous section we can then use one of the func-
tions A0, . . . , A4 to gain the total area for the interval of that particular phase: As it can be
that s < pos1 we have to choose the maximum max(s, pos1) for the beginning of At. Anal-
ogously, we have to choose the minimum min(e, pos2) for the end of the of At. Finally, αT
converts the given position into the rotation of the trajectory at that position.

As the so introduced weight function measures the relative area of a label that is visible
within the viewport, labels that are more contained in the viewport than others are preferred
for becoming active.

16. Complexity

In this chapter we discuss several aspects of the complexity of the trajectory based labeling
problem (TBLP) as formulated in Problem 14.2. While in the first section we prove that
TBLP isNP-complete,in the second section we introduce a conflict graph for TBLP describing
conflicts between labels regarding a given viewport with trajectory. We then analyze the size
of such a graph.

16.1 Complexity

By means of the next theorem we prove that the trajectory based labeling problem is NP-
hard. We use the result that the static label number maximization problem is NP-complete
for the one-position model as presented in Chapter 13. Intuitively, a dynamic variant of that
problem must also be NP-complete, because an instance of the static case can be seen as an
instance of the dynamic case without changes.

In order to give a formal proof, we reduce maximum independent set of rectangles (MISR)
as defined in Problem 13.1 on TBLP.

Theorem 16.1. The labeling problem as described in Problem 14.2 is NP-hard for all three
activity models AM1, AM2, AM3.

Proof. Assume that we are given an instance of MIST, that is, a set L = {l1, . . . , ln} of
rectangles such that each rectangle is placed horizontally aligned in the plane. Then we want
to find a maximum cardinality subset S of L such that the rectangles in S do not overlap. We
can formalize this problem as:

We want to find a function Ψ: L→ {0, 1} for all rectangles l ∈ L such that for all l, l′ ∈ L
with l 6= l′ the sum

∑
l∈L Ψ(l) is maximized and Ψ obeys that if l and l′ overlap then Ψ(l) +

Ψ(l′) ≤ 1.
By means of an algorithm solving TBLP we can easily find Ψ: We identify the rectangles

in L with labels that have arbitrary anchors. Then, we draw a bounding box B around all
those labels and extend it by a margin of size ε > 0 to all sides (see Figure 16.1). We identify
the extended box B with the viewport VP and define the trajectory T as exactly one vertical
line segment of length ε that starts in the middle of B. Moreover, we set the weight function
to w(l, s, e) = e− s.

Applying an optimal algorithm solving Problem 14.2 we maximize the sum:∑
l∈L

∑
[s,e]∈SVPT (l)

ΨVPT ([s, e], l) · w(l, s, e) (16.1)

Since VP encloses all labels and a margin of size ε, it must be true for all labels l ∈ L
that ΦVPT (l) = ([0, 1]), that is, each label is visible in VP for the whole time. Further, if two
labels l, l′ ∈ L are in conflict with each other, that conflict c is also visible for the whole time
because the labels do not rotate. Thus, in general it is true that:

ΦVPT (c) = ([0, 1]) for all conflicts c in C(L)

161

162 CHAPTER 16. COMPLEXITY

Viewport

ε

ε

Figure 16.1: Illustration of the proof for Theorem 16.1.

Label 3

Viewport

Label 1 Label 2

Figure 16.2: Influence of labels. While Label 1 and Label 2 are active, the Label 3 is inactive.

On that account for all three types AM1, AM2 and AM3 a label l can only be active if it wins
all its conflicts with other labels. Further, a label that wins all its conflict must be active for
the whole time in order to preserve optimality:

For all l ∈ L:
∑

[s,e]∈SVPT (l)

ΨVPT ([s, e], l) · w(l, s, e) = ΨVPT ([0, 1], l)

Consequently, we can simplify (16.1) to
∑
l∈L

ΨVPT ([0, 1], l). Thus, if we set ΨVPT ([0, 1], l) = Ψ(l)

for all labels l ∈ L we have found an optimal solution for MISR. Obviously, that reduction
takes polynomial time.

16.2 Trajectory Based Conflict Graph

In the next step, we formalize the observation that labels do not necessarily influence the
activity of all other labels. For example, assume that we are given only two labels l1 and l2
such that they do not collide, then it is obvious that l1 can not influence the activity of l2.
If we now introduce a third label l3, that lies in between l1 and l2 colliding with both labels,
it can be that l2 influences the activity of l1: As depicted in Figure 16.2, if we set l2 active
then l1 also must be active in an optimal solution. Consequently, we obtain a dependency
structure that can be modeled as graph:

16.2. TRAJECTORY BASED CONFLICT GRAPH 163

Definition 16.1 (Conflict Graph). Given an instance I = (L,VP, T) of TBLP as defined in
Problem 14.2, then we call the multigraph G = (V,E) as defined below the conflict graph of I.
The nodes of G are defined as:

V = {{[s, e], l} | l ∈ L and [s, e] ∈ ΦVPT (l)}

The edges of G are defined as:

E = {{{[s1, e1], l}, {[s2, e2], l′}} | {[s1, e1], l} ∈ V , {[s2, e2], l′} ∈ V and there is a conflict
c = (l, l′) ∈ C(L) such that there is an interval

[s, e] ∈ ΦVPT (c) with [s1, e1] ∩ [s, e] ∩ [s2, e2] 6= ∅}.

According to that definition we introduce for each label and each visibility of that label
exactly one node. Or in other words, each node represents exactly one visibility of a label l,
which we also call the label visibility.

The edges of G then model the conflicts between those label visibilities, that is, we connect
two nodes {[s1, e1], l} and {[s2, e2], l′} with each other if there is a conflict c between both
labels l and l′ such that the conflict is visible within [s1, e1] and [s2, e2]. As c can be visible
several times within the same visibility of l and l′ we obtain a multigraph.

We also write (c, [s, e], {[s1, e1], l}, {[s2, e2], l′}) ∈ E in order to indicate that we refer to
the edge {{[s1, e1], l}, {[s2, e2], l′}} ∈ E that is induced by the conflict c that is visible within
the interval [s, e] such that [s1, e1]∩ [s, e]∩ [s2, e2] 6= ∅. On that account, we also say that an
edge f ∈ E is a conflict between two visibilities in V and call f the conflict visibility.

The next lemma makes a statement about the size of V and E:

Lemma 16.1. Given an instance I = (L = {l1, . . . , ln},VP, T = (A1, . . . , Am)) TBLP as
defined in Problem 14.2 and let G = (V,E) be the corresponding conflict graph, then it is true
that |V | ∈ O(n ·m) and |E| ∈ O(n2 ·m2).

Proof. We first show that |V | ∈ O(n ·m): From Lemma 15.2 we know that each arc Ai in T
can induce at most five visibilities for a label l ∈ L. Thus, for T we create at most O(m)
visibilities for l so that the claim follows.

In the worst case a visibility v ∈ V of a label l′ can be in conflict with all visibilities v′ ∈ V
of all other labels l′ ∈ L with l′ 6= l so that we obtain the claim |E| ∈ O(n2 ·m2).

In many practical cases the size of G does not match its worst-case bounds, but G de-
composes into components of a graph separately. For solving TBLP we can apply the same
strategy on all individual components without losing optimality, because label visibilities of
different components cannot influence each other. Hence, we therefore assume in the further
parts without loss of generality that the considered conflict graphs are connected.

17. Algorithmic Approaches

In this chapter we discuss two different kinds of algorithmic approaches for solving TBLP: In
the first section we present for the different activity models of TBLP corresponding formula-
tions using integer linear programming, such that we can solve TBLP optimally. In the second
section we then introduce simple heuristics for the activity model AM1.

17.1 Integer Linear Programming

In this section we discuss for each type of activity model separately how TBLP can be modeled
using integer linear programming. The main idea is to translate the conditions for TBLP as
formulated in Problem 14.2 into linear equations and inequations subject to which one tries
to maximize a objective function measuring the overall activity of all labels.

We first introduce an ILP for AM1, then for AM3 and finally based on the ILP for AM3 an
ILP for AM2. For all three cases we assume that we are given a set L = {l1, . . . , ln} of labels, a
viewport VP with trajectory T = (A1, . . . , Am) and a weight function w : L× [0, 1]× [0, 1]→ R
for the visibility of labels. Further, we assume that G = (V,E) is the corresponding conflict
graph of that instance. As already mentioned in Section 16.1 we assume without loss of
generality that G is connected, because otherwise we can separately apply the upcoming
approach on the connected components of G.

In the following we say for a conflict visibility f=(c, [s, e], v, v′) ∈ E that v wins f if
the corresponding label of v is set active within [s, e]. Analogously, we say v′ wins f if the
corresponding label of v′ is set active within [s, e]. Among other things, for the upcoming
ILPs we need to introduce constraints that enforce that a conflict visibility can only be won
by one of both label visibilities.

17.1.1 ILP for AM1

The idea of the activity model AM1 is that labels may only become active when they become
visible within the given viewport and they can only become inactive when they become invis-
ible. In other words, we can say that a label l becomes active for a visibility [s, e] ∈ ΦVPT (l) if
and only if that visibility wins all conflicts of l that are visible within [s, e]. We therefore have
to find a maximum weighted independent set in G (for more information about maximum
weighted independent sets see for example [KOHH05]):

Variables: For each conflict visibility f =(c, [s, e], v, v′) ∈ E we introduce two variables
zv,v

′
f ∈ {0, 1} and zv′,vf ∈ {0, 1}. The idea is that zv,v

′
f = 1 (zv

′,v
f = 1) if and only if v (v′) wins

the visibility f of c. We say that zv,v
′

f belongs to v and that zv
′,v

f belongs to v′. We denote the
set of all variables that belong to v by:

Zv:={zv,v
′

f | {v, v′} ∈ E}

165

166 CHAPTER 17. ALGORITHMIC APPROACHES

Constraints: In order to guarantee that a conflict visibility f=(c, [s, e], v, v′) ∈ E of a
conflict can be won by one of both label visibilities v and v′, we introduce for all conflict
visibilities f=(c, [s, e], v, v′) ∈ E the condition:

zv,v
′

f + zv
′,v
f ≤ 1 (17.1)

Further, we want each label visibility v ∈ V to win either all or none of its conflicts. Thus, we
introduce for the set Zv = {zv,v1f , . . . , zv,vkf } the following condition:

zv,v1f = . . . = zv,vkf (17.2)

Objective Function: Since we want to maximize the overall activity over all labels we
maximize the following function: ∑

v={[s,e],l}∈V

rep(Zv) · w(l, s, e)

where rep(Zv) denotes one arbitrarily chosen representative variable of Zv.

Interpretation: After solving that ILP we set for each label visibility v={l, [s, e]} ∈ V :

ΨVPT ([s, e], l) = rep(Zv)

Complexity: In order to obtain rough indications about the complexity of the ILP, we
estimate the number of variables and the number of constraints: For each conflict visibility f ∈
E we introduce exactly two variables, so that we obtain O(n2 · m2) variables by means of
Lemma 16.1. Further, for each conflict visibility f ∈ E we introduce the Constraint (17.1)
and for each label visibility v ∈ V we introduce the Constraint (17.1), which consists ofO(n·m)
sub-constraints. Consequently, we obtain O(n2 +m2) constraints.

17.1.2 ILP for AM3

As AM2 is a direct specialization of AM3 we first explain the ILP for AM3. AM3 is charac-
terized by the requirement that a label l may become active, when there is a witness l′ for
setting l active (see Definition 14.3 and Definition 14.4). Analogously, a label l may become
inactive when there is a witness l′ for setting l inactive.

In order to satisfy that requirement we pursue the idea that for a label l we can divide T into
atomic segments SVPT (l) (see Definition 14.5, page 131), such that each optimal activity of l is
composed of those segments. In particular we consider for each label visibility v={l, [s, e]} ∈ V
of l the corresponding segments on T:

SVPT (l, [s, e]) = {([pos1, pos2], i) | [pos1, pos2] is the i-th segment in SVPT (l)

with [pos1, pos2] ∩ [s, e] 6= ∅}
For a label visibility v={l, [s, e]} ∈ V we also write SVPT (v) instead of SVPT (l, [s, e]). Further,
note that the counter variable i starts for each label visibility v ∈ V with 1 (see Figure 17.1a).

By means of those segments SVPT (v) we can divide each label visibility v ∈ V into three
blocks (see Figure 17.1b): an inactive prefix block, an active block and finally an inactive
suffix block. We then use for the ILP the simple property that each segment of SVPT (l, [s, e])
must belong to exactly one of those three blocks.

17.1. INTEGER LINEAR PROGRAMMING 167

v1 v2
c1

c2
c3

c4

c5
c6

c7

i=1 i=7 i=1 i=7

0 1

(a) Each label visibility is divided into segments.

v1 v2
c1

c2
c3

c4

c5
c6

c7

prefix activity suffix prefix activity suffix

0 1

(b) Each label visibility is described by three blocks.

v1 v2
c1

c2
c3

c4

c5
c6

c7

pv1
1 pv1

2 pv1
3 pv1

5 pv2
1pv1

6pv1
4 pv2

2 pv2
3 pv2

4 pv2
5 pv2

6 pv2
7

xv1
1 xv1

2 xv1
3 xv1

5 xv2
1xv1

6xv1
4 xv2

2 xv2
3 xv2

4 xv2
5 xv2

6 xv2
7

sv11 sv12 sv13 sv15 sv21sv16sv14 sv22 sv23 sv24 sv25 sv26 sv27

pv1
7

xv1
7

sv17

0 1

(c) The variables Pv1 , Xv1 and Sv1 for v1 and the variables Pv2 , Xv2 and Sv2 for v2.

Figure 17.1: Segmentation of label visibilities. For a label l with two visibilities v1 and v2
different views on the segmentation of T are illustrated.

Variables: Analogously to AM1 we introduce for each label visibility f ={c, [s, e], v, v′} ∈ E
of a conflict two variables zv,v

′
f ∈ {0, 1} and zv′,vf ∈ {0, 1} modeling the visibility of conflicts.

We again define
Zv:={zv,v

′
f | {[s, e], v, v′} ∈ E}

In order to model the prefix-, activity- and suffix-block for the ILP we introduce for each
segment ([pos1, pos2], i) ∈ SVPT (v) of each label visibility v ∈ V the following variables:

1. pvi ∈ {0, 1}: pvi = 1 if and only if its belongs to the prefix of v.

2. xvi ∈ {0, 1}: xvi = 1 if and only if its belongs to the activity of v.

3. svi ∈ {0, 1}: svi = 1 if and only if its belongs to the suffix of v.

Figure 17.1c illustrates how the variables are distributed over the trajectory T regarding one
label l. Further, we define the sets containing for each label visibility v all variables of a certain
kind of block:

1. Pv = {pvi | ([pos1, pos2], i) ∈ SVPT (v)}

2. Xv = {xvi | ([pos1, pos2], i) ∈ SVPT (v)}

3. Sv = {svi | ([pos1, pos2], i) ∈ SVPT (v)}

168 CHAPTER 17. ALGORITHMIC APPROACHES

v

xv
i xv

i+1

xv′
j

c

c s e

s′ e′ t

v′

l

l′

(a) Segment j is witness for setting l active
after segment i: The conflict c of l and l′

ends at the beginning of j.

v

xv
i xv

i+1

xv′
j

c

c
s e

s′ e′tv′

l

l′

(b) Segment j is witness for setting l in-
active after segment i: The conflict c of l
and l′ begins at the beginning of j.

Figure 17.2: The concept of witnesses for conflicts. For two labels l and l′ with visibilities v′

and v′ and common conflict c the sets Waiv and Wiiv are illustrated. Dotted lines indi-
cate the transition of two segments and the gray segment indicates the witness for setting l
active/inactive after the segment corresponding to xvi .

Constraints: First we introduce a constraint stating that each segment ([pos1, pos2], i) ∈
SVPT (v) of each label visibility v ∈ V belongs to exactly one block:

pvi + xvi + svi = 1 (17.3)

Further, we have to ensure that those variables actually describe blocks. Hence, we introduce
for each label visibility v ∈ V with prefix variables Pv = {pv1, . . . , pvk} and suffix variables Sv =
{sv1, . . . , svk} the following two conditions:

pv1 ≥ . . . ≥ pvk (17.4)
sv1 ≤ . . . ≤ svk (17.5)

In the next step we enforce that a label l can only become active when it becomes visible
or there is a witness l′ for setting l active. Analogously, we have to enforce that a label l can
only become inactive when it becomes invisible or there is a witness l′ for setting l inactive.

In order to solve that problem we define for each label visibility v ∈ V and for each
segment ([s, e], i) ∈ SVPT (v) the set

Waiv = {xv′j ∈ Xv′ |v′ ∈ V and ([e′, t], j) ∈ SVPT (v′) such that there is a conflict visibility

(c, [s′, e′], v, v′) ∈ E with e′ = e and the conflict c ends at e′.}
that contains all witnesses for v testifying that l may become active after the given seg-
ment ([s, e], i). Figure 17.2a illustrates the set for a certain i.

Analogously, we define for each label visibility v ∈ V and for each segment ([s, e], i) ∈
SVPT (v) the set

Wiiv = {xv′j ∈ Xv′ |v′ ∈ V and ([s′, t], j) ∈ SVPT (v′) such that there is a conflict visibility

{c, [s′, e′], v, v′} ∈ E with s′ = e and the conflict c begins at s′.}
that contains all witnesses for v testifying that l may become inactive after the given seg-
ment ([s, e], i). Figure 17.2b illustrates the set for a certain i.

Then we introduce for each label visibility v ∈ V and for all consecutive activity variables
xvi , x

v
i+1 ∈ Xv (1 ≤ i < k) with witnesses Waiv = {x1, . . . , xt} the following condition:

xvi+1 − xvi − x1 − . . .− xt ≤ 0 (17.6)

The following table helps to understand that condition:

17.1. INTEGER LINEAR PROGRAMMING 169

xvi xvi+1 xvi+1 − xvi
0 0 0
0 1 1
1 0 −1
1 1 0

Obviously, apart from the second row for all other rows the Constraint (17.6) is true. The
second row describes the case that the i-th segment of v is inactive while the next segment is
active. For that case the Constraint (17.6) becomes only true if there is at least one witness
in Waiv that is also set to 1. Consequently, the condition enforces that a label l can only
become active between two consecutive segments if l becomes visible or there is a witness l′

for setting l active.
Analogously, we introduce for all consecutive variables xvi , x

v
i+1 ∈ Xv (1 ≤ i < k) with

witnesses Wiiv = {x1, . . . , xt} the following condition:

xvi − xvi+1 − x1 − . . .− xt ≤ 0 (17.7)

Then we can argue for the soundness of that condition by means of the following table:

xvi xvi+1 xvi − xvi+1

0 0 0
0 1 −1
1 0 1
1 1 0

Apart from the third row for all other rows the Constraint (17.7) is true. The third row
describes the change from activity to inactivity from the i-th segment of v to the (i+1)-th
segment of v. For that case the Constraint (17.7) becomes only true if there is at least one
witness in Wiiv that is also set to 1. Consequently, a label l can only become inactive between
two segments if l becomes invisible or there is witness l′ for setting l inactive.

So far we have not considered conflicts between labels yet: In order to guarantee that a
conflict visibility f =(c, [s, e], v, v′) ∈ E can be won only by one of both label visibilities v
and v′, we introduce for all visibilities f =(c, [s, e], v, v′) ∈ E the condition:

zv,v
′

f + zv
′,v

f ≤ 1 (17.8)

Then we also need to enforce that a label can only be active at a certain segment, if it
has won all conflicts that overlap that segment: We therefore introduce for all visibilities
v ∈ V and all segments ([pos1, pos2], i) ∈ SVPT (v) and all conflicts f =(c, [s′, e′], v, v′) ∈ E
with [s′, e′] ∩ [pos1, pos2] 6= ∅:

xvi ≤ zv,v
′

f (17.9)

Consequently, two labels cannot be active at the same position, if they have a conflict at that
particular position.

Objective Function: For each visibility of a label we collect all segments that are set to
be active and maximize the sum∑

v∈V

∑
([p1,p2],i)∈
SVPT (v)

xvi · w(l, p1, p2)

170 CHAPTER 17. ALGORITHMIC APPROACHES

Interpretation: For each label visibility v ∈ V and each segment ([p1, p2], i) ∈ SVPT (v) we
set:

ΨVPT ([p1, p2], l) = xvi

Complexity: Analogously to ILP1, we introduce for each conflict visibility f={v, v′} ∈ E
the two variables zv,v

′
f and zv

′,v
f so that we obtain O(n2 ·m2) variables for all conflicts by means

of Lemma 16.1. In order to estimate the prefix-, activity- and suffix-variables, we consider the
set SVPT (v) for a label visibility v ∈ V : As every label visibility v ∈ V has O(m · n) conflicts
(Lemma 16.1), the set SVPT (v) contains O(m · n) elements. Thus, we introduce O(m2 · n2)
variables describing blocks. On that account, we use O(n2 ·m2) variables.

It is easy to see that we obtain O(n2 ·m2) constraints for (17.3),(17.4),(17.5) and (17.8).
Further, in the worst case we introduce for each label visibility v ∈ V and each segment
of SVPT (v) one instance of Constraint (17.6) and one instance of Constraint (17.7). Thus, we
obtain O(n2 ·m2) constraints for (17.6) and (17.7).

For Constraint (17.9) we consider how many segments of a label visibility v a conflict f ∈ E
can overlap: As SVPT (v) contains O(m · n) elements, each conflict of v can overlap O(m ·
n) segments. Further, as v has O(m · n) conflicts, we introduce O(m2 · n2) instances of
constraint (17.9) for v. Thus, we obtain O(m3 · n3) instances of Constraint (17.9) in total.

On that account we obtain O(m2 · n2) variables and O(m3 · n3) constraints.

17.1.3 ILP for AM2

AM2 is characterized by the requirement that a label l can only become active when it becomes
visible, while it can become inactive when it becomes invisible or there is witness l′ for setting l
inactive. In other words, prefixes are always empty.

Based on the ILP for AM3 we can easily introduce an ILP for AM2. We only have to
introduce for each visibility v ∈ V with prefix variables Pv = (pv1, . . . , p

v
k) the condition:

pv1 = . . . = pvk = 0 (17.10)

Due to that condition we know that the prefix always has a length of 0. Practically, it is more
efficient to not introduce the prefix at all, that is, the visibility v ∈ V is only divided into two
blocks. In particular then the Constraint (17.3) changes to

xvi + svi = 1 (17.11)

Obviously, the complexity of that ILP does not change. Note that we cannot use that approach
in order to obtain an ILP for AM1, because if we also set sv1 = . . . = svk = 0 for all suffix
variables Sv = (sv1, . . . , s

v
k) of all visibilities v, then by Constraint (17.3) we can conclude

that xv1 = . . . = xvk = 1 for all activity variables Xv = (xv1, . . . , x
v
k) of all visibilities v.

17.2 The Heuristics

We shortly explain what kind of heuristics we have implemented. For that purpose assume
that we are given a mapM with labels L = {l1, . . . , ln} and a viewport VP with trajectory T =
{A1, . . . , Am}. Further, let G = (V,E) be the conflict graph as introduced in Definition 16.1.
The presented heuristics work on G and provide only the activity model AM1 for labels (see
Definition 14.4). Further, all of the upcoming heuristics use the same framework:

17.2. THE HEURISTICS 171

1. Rank all label visibilities in V by means of a weight function.

2. Choose the visibility v={l, [s, e]} ∈ V of highest rank.

3. Delete v and all its neighbors v′ ∈ V (there is an edge {c, [s′, e′], v, v′} ∈ E).

4. Set the label l for the interval [s, e] active.

5. (Update the ranking of the resulting visibilities.)

6. If V is not empty, repeat steps 2 - 6.

Step 5 is optional. In the case that we make use of that step we call the heuristic dynamic
and otherwise static. We have considered the following heuristics, which differ by the choice
of the ranking function.

Greatest Visibility (GV): As the name already suggests we rank the visibilities v ∈ V
by their length and choose the label with greatest visibility as the next label to be set active.
Since deleting v from V does not influence the remaining visibilities in V , that heuristic is
static. Obviously, the time consuming part of that heuristic is sorting the visibilities by rank.
Consequently, we need O(|V | log |V |) time. From Lemma 16.1 we know that |V | ∈ O(n ·m),
so that we gain O(n ·m · log(m · n)) time.

Least Influence (LI): This time we do not consider the length of the visibilities V , but
we measure the influence they have: To that end we determine for each visibility v ∈ V the
following sum:

influence(v) =
∑

v′=(l′,[s,e])∈V
v′ is neighbor of v

(e− s)

Then we rank the visibilities in V such that a visibility v with small influence has a high
priority. If we do not update the influence of the remaining visibilities, we obtain a static
heuristic that we abbreviate by LIS. In the case that we update the influence of the remaining
visibilities, we obtain a dynamic heuristic, which we abbreviate by LID.

For the static case we need at most O(n2 · m2): From Lemma 16.1 we know that there
are at most O(n ·m) visibilities and for each visibility there are at most O(n ·m) conflicts.
Even though the result seems to be not very good, the worst case is very unrealistic for an
appropriate setting: Normally, the map is huge in comparison to the size of the viewport, so
that not every label is visible for the whole time. On that account the running time for this
heuristic is normally much better than the worst case indicates (see Section 18.2).

Fewest Conflicts (FC): We rank that visibility v ∈ V highest that has the fewest conflicts
with other visibilities, or in other words it has fewest edges in E. In the case that we do not
update the ranking after each deletion step, we abbreviate the heuristic by FCS and in the
other case by FCD. Again, the conflict graph can contain O(n·m) visibilities and each visibility
can have at most O(n ·m), so that we need at most O(n2 ·m2) time. But as already mentioned
in the previous section for real world data the worst case is very unlikely for appropriate zoom
levels: Normally, a visibility has only a low number of conflicts (see Section 18.2).

18. Experimental Evaluation

In this chapter we present some experimental evaluation of the implementation of the previous
chapters. To that end we have also implemented the ILPs and heuristics as presented in
Chapter 17 in order to evaluate those on real-world data. While in the first section we describe
which data and which parameters we have chosen, in the second section we present the actual
results and discuss them.

18.1 Setting

In this section we explain how we have processed the evaluation. In particular we explain
which data we have used and how the parameters have been chosen.

Basically, we need labels and trajectories for the evaluation. We have decided to do the
evaluation on real world data, so that one gets an idea how well the approaches work. To
that end we have extracted the labels from the digital map OpenStreetMap1, which is known
for its high level of detail: As many people contribute to that project based on the wikipedia
principle the map is well elaborated for many regions.

The labels that can be extracted are of different categories as highway, shops and tourism.
In order to get an realistic view with appropriate many labels, we have chosen the category
amenity which comprises a high number of labels:

“Covering a wide variety of civil amenities including car parks, hospitals, schools,
bus stations and libraries.”2

We have chosen Karlsruhe to be the region for the evaluation and distinguish two datasets:
One that embraces the city of Karlsruhe and one that also embraces the countryside of Karl-
sruhe (see Table 18.1). We distinguish these two data sets because the density of labels is
significantly different for cities and countrysides.

For computing the trajectories we have used a road graph that corresponds to the region
of the labels. Basically, we have computed shortest paths between 1000 randomly chosen pairs

Property Value
Size 179 km× 150 km
Number of Labels 26274

Label Density 0.97 Labels
km2

Latitude 48.323− 49.670
Longitude 7.961− 9.570

(a) Countryside of Karlsruhe

Property Value
Size 21 km× 5 km
Number of Labels 2304

Label Density 21.9 Labels
km2

Latitude 48.994− 49.041
Longitude 8.312− 8.503

(b) City Karlsruhe

Table 18.1: Key data for the considered maps.

1http://www.openstreetmap.org/
2http://wiki.openstreetmap.org/wiki/Amenities

173

174 CHAPTER 18. EXPERIMENTAL EVALUATION

Property Value
Max. Number of Arcs 1900
Average Number of Arcs 776.3
Max. Length 216.4 km
Average Length 90.6 km

(a) Countryside of Karlsruhe

Property Value
Max. Number of Arcs 282
Average Number of Arcs 96.1
Max. Length 21.7 km
Average Length 7.5 km

(b) City Karlsruhe

Table 18.2: Key data for the computed trajectories.

of street nodes. Afterwards, we simplified the polygonal path by smooth polyarcs as described
in Section 6.1. Table 18.2 shows some key data for those paths.

After we have discussed which data we use for the evaluation, we now explain how we
define the viewport size and the area that can be seen within the viewport. As navigation
systems are the major use case that we consider, we have decided to set the size of the viewport
to the resolution of a customary navigation system, namely to the resolution of 480 × 272
pixels. Further, we apply the evaluation twice, once for a scale of 1 : 2000 and once for a scale
of 1 : 4000. For the former case this means that a region of 487 m × 397 m is visible within
the viewport and for the latter case a region of 974 m× 782 m is visible.

We process the evaluation as follows: For both given datasets we apply both the ILPs and
the heuristics in order to compute the activity of the labels. As already mentioned, we do this
twice: once for a scale of 1 : 2000 and then for a scale of 1 : 4000. To that end we used the
programming language Java for the implementation and applied the evaluation on a system
with 2GB RAM and Intel R©CoreTM2 Duo CPU 2.00GHz×2 using Ubuntu as operating system.
Only for the ILPs concurrency is applied.

18.2 Results of the Evaluation

For each considered trajectory we have computed two kinds of data: On the one hand we have
analyzed the conflict graph (see Definition 16.1) of that trajectory and on the other hand we
have computed different activities ΨVPT for the corresponding labels.

Visibility Graph: For the conflict graph G = (V,E) of a viewport VP with trajectory T
we have considered the following parameters:

1. Visibilities: Corresponds to the number of nodes within V and states how many visibil-
ities of labels exist in total.

2. Max. Degree: The maximal degree within G, that is, the maximal conflict count of a
visibility v ∈ V .

3. Avg. Degree: The average degree within G, that is, the average conflict count of a
visibility v ∈ V .

4. Components: The number of components the graph G consists of.

5. Max. Visibilities
Component : Maximal number of nodes per components, that is, the maximal number

of visibilities per component.

18.2. RESULTS OF THE EVALUATION 175

6. Avg. Visibilities
Component : Average number of nodes per components, that is, the average number of

visibilities per component.

As we consider 1000 trajectories per data set, we do not present all data that we have collected,
but only the average, minimum and maximum of that data over all 1000 trajectories. The
data for the conflict graphs of the different data sets are presented in Table 18.3-18.6.

It is remarkable that the conflict graphs of all data sets decompose into a high number of
components regarding the number of visibilities. Consequently each component of a conflict
graph consists only of few visibilities so that there is the hope that the problem remains
solvable in practice, even though the considered labeling problem is NP-complete. Further,
the high number of components lends itself to use concurrent approaches that work on the
sub-problems independently from each other.

As is to be expected, the zoom level has a great influence on the parameters. For the scale
factor 1:4000 the number of visibilities and the conflict count increase regarding the scale
factor 1:2000. It can be simply explained by the fact that for a scale factor 1:4000 the labels
are more dense then for a scale factor 1:2000.

As the data set Karlsruhe Countryside subsumes the data set Karlsruhe City, mainly the
average values for that data set are interesting: The average degree of the conflict graphs for
Karlsruhe Countryside is a bit less than the average degree of the conflict graphs for Karlsruhe
City, which can be explained by the fact that the density of labels per km2 is significantly
smaller for the former one than for the latter one (see Table 18.1). The number of components
cannot directly be compared, because the length of the considered trajectories is much longer
for Karlsruhe Countryside than for Karlsruhe City (see Table 18.2).

Activity: For each trajectory we have computed possible activities using the ILPs as pre-
sented in Section 17.1 and the heuristics as presented in Section 17.2: Table 18.7-18.10. We
compare those activities relative to the case that we do not resolve the occurring conflicts,
that is, the case ’Without Resolving’ has an activity of 100 %, while the other strategies have
only a fraction of that activity. By doing so, we can compute the results of the given ILPs
and heuristics pairwise.

For each considered data set it is true that the difference between the single ILPs lies
below 5.9% so that ILP2 and ILP3 can be seen as a kind of fine tuning for ILP1.

Surprisingly, the difference between the heuristics of a single data set is small, namely
below 0.9% in the average case. In comparison to the given ILPs the quality of the heuristics
is mainly based on the used scale factor. As is to be expected for the scale factor 1:2000 we
obtain better results than for the scale factor 1:4000: While for the former scale factor the
heuristic yield similar results as the optimal ILPs, for the latter scale factor the difference
between heuristics and ILPs becomes magnificent.

The results for the data sets Karlsruhe City and Karlsruhe Countryside are in the same
proportion good: We cannot ascertain a significant difference between both types of data sets,
but only a little difference in favor of Karlsruhe Countryside. We assume that one can explain
that difference by means of the lower density of labels that Karlsruhe Countryside possesses
(see Table 18.1).

Time Consumption: In Table 18.11-18.12 we present the times that were necessary for
computing the conflict graph and applying the ILPs and heuristics on the different data sets.
Again, we measured for the given trajectories the individual times and present the average
and maximum of these times. As we also considered short trajectories, we obtained for all

176 CHAPTER 18. EXPERIMENTAL EVALUATION

combinations of data sets and parameters a minimum time less than one millisecond. We
therefore do not explicitly state the minimum time within the tables.

Further, the times for creating the conflict graphs only serve as rough indications for
realistic running times: So far we have not optimized the computation of a conflict graph, that
is, for each arc of the trajectory we still consider each label when computing the visibilities.
Usually, the labels are spread over the map so that in the practical use case we do not need to
consider each label for each arc, but we can apply an approach similar to that one presented in
Implementation Details 15.1. On that account, it is likely that conflict graphs can be created
much faster. We therefore only present the values in the corresponding tables and resign to
discuss them explicitly.

We now discuss the results for the heuristics and the ILPs: As is to be expected applying
the dynamic heuristics takes more time than applying static heuristics. Especially, for a scale
of 1:4000 the dynamic heuristics are much slower than the static ones: In the average case
we obtain a factor of at least 25 for Karlsruhe City and a factor of at least 35 for Karlsruhe
Countryside. For the maximum case we obtain even worse factors. As the activity for all
heuristics are very similar (see previous paragraph), the static heuristics lend themselves to
be the choice.

For ILP1 and ILP2 we obtain running times that mostly lie under 100 milliseconds in
average: Only for Karlsruhe Countryside with scale 1:4000 the approach ILP2 takes 151
milliseconds in average and 1.1 second maximal. But as the maximum time of both ILPs is at
least 118 milliseconds or worse, it is questionable whether the ILPs can be used for practical
purposes. Especially, in the case that one wants to process many requests, as it occurs in a
server-client-scenario, short and stable running times are required.

ILP3 is significantly slower than ILP1 and ILP2: For the scale of 1:4000 it can occur that
ILP3 needs several minutes to compute the optimal solution. Intuitively, this can be explained
by the fact that the activity model AM3 is more complicated than AM1 and AM2. While for
ILP1 and ILP2 it is questionable whether they can be used in practice, the approach ILP3
seems only to be feasible for purposes of analysis.

Summarizing the results, we can state that the heuristics can especially be used for small
scaled maps, when the running time is essential. If the quality is more important than the
running time then ILPs are feasible for gaining optimal solutions.

Visibilities Max. Degree Avg. Degree Components Max. Visibilities
Component

Avg. Visibilities
Component

Average 177.1 5.2 0.6 133.2 8.0 1.3
Minimum 1.0 0.0 0.0 2.0 1.0 0.5
Maximum 658.0 31.0 2.3 483.0 77.0 2.2

Table 18.3: Data for conflict graphs based on the data set Karlsruhe City 1:2000.

Visibilities Max. Degree Avg. Degree Components Max. Visibilities
Component

Avg. Visibilities
Component

Average 373.6 13.5 1.7 187.5 33.7 1.9
Minimum 1.0 0.0 0.0 2.0 1.0 0.5
Maximum 1126.0 68.0 4.9 502.0 261.0 4.6

Table 18.4: Data for conflict graphs based on the data set Karlsruhe City 1:4000.

Visibilities Max. Degree Avg. Degree Components Max. Visibilities
Component

Avg. Visibilities
Component

Average 239.6 6.2 0.5 190.9 8.5 1.2
Minimum 1.0 0.0 0.0 2.0 1.0 0.5
Maximum 1032.0 22.0 2.2 685.0 77.0 2.1

Table 18.5: Data for conflict graphs based on the data set Karlsruhe Countryside 1:2000.

Visibilities Max. Degree Avg. Degree Components Max. Visibilities
Component

Avg. Visibilities
Component

Average 474.8 16.9 1.5 278.0 43.6 1.6
Minimum 1.0 0.0 0.0 2.0 1.0 0.5
Maximum 1539.0 50.0 6.9 809.0 223.0 2.6

Table 18.6: Data for conflict graphs based on the data set Karlsruhe Countryside 1:4000.

Without Resolving ILP1 ILP2 ILP3 GV LIS LID FCS FCD
Average 100.0 83.4 85.1 86.5 79.2 79.9 79.9 79.6 79.6
Minimum 100.0 56.2 60.8 65.0 41.8 42.1 42.4 40.9 41.5
Maximum 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 18.7: Data for the activity of labels in percent based on the data set Karlsruhe City 1:2000.

Without Resolving ILP1 ILP2 ILP3 GV LIS LID FCS FCD
Average 100.0 67.6 70.5 72.8 58.3 59.2 59.2 58.9 58.9
Minimum 100.0 41.4 47.3 53.1 21.1 21.2 21.0 20.3 21.4
Maximum 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 18.8: Data for the activity of labels in percent based on the data set Karlsruhe City 1:4000.

Without Resolving ILP1 ILP2 ILP3 GV LIS LID FCS FCD
Average 100.0 85.8 87.9 89.5 82.4 82.9 82.9 82.7 82.8
Minimum 100.0 56.6 70.9 73.6 34.4 40.6 40.6 40.6 40.6
Maximum 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 18.9: Data for the activity of labels in percent based on the data set Karlsruhe Countryside 1:2000.

Without Resolving ILP1 ILP2 ILP3 GV LIS LID FCS FCD
Average 100.0 73.5 76.6 79.4 65.1 65.9 65.8 65.6 65.7
Minimum 100.0 42.3 44.4 53.0 21.5 21.5 21.5 21.5 21.5
Maximum 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 18.10: Data for the activity of labels in percent based on the data set Karlsruhe Countryside 1:4000.

Conflict Graph ILP1 ILP2 ILP3 GV LIS LID FCS FCD
Average 0.12 0.017 0.025 0.072 <0.001 <0.001 0.004 <0.001 0.004
Maximum 0.68 0.118 0.239 2.354 0.007 0.003 0.089 0.002 0.104

Table 18.11: Times in seconds for the evaluation of the data set Karlsruhe City 1:2000.

Conflict Graph ILP1 ILP2 ILP3 GV LIS LID FCS FCD
Average 0.32 0.045 0.121 17.410 <0.001 <0.001 0.035 <0.001 0.025
Maximum 1.77 0.235 0.778 1645.0 0.025 0.026 0.751 0.021 0.414

Table 18.12: Times in seconds for the evaluation of the data set Karlsruhe City 1:4000.

Conflict Graph ILP1 ILP2 ILP3 GV LIS LID FCS FCD
Average 4.3 0.025 0.038 0.098 <0.001 <0.001 0.007 <0.001 0.006
Maximum 12.9 0.567 0.331 5.217 0.015 0.003 0.175 0.003 0.217

Table 18.13: Times in seconds for the evaluation of the data set Karlsruhe Countryside 1:2000.

Conflict Graph ILP1 ILP2 ILP3 GV LIS LID FCS FCD
Average 9.2 0.056 0.151 9.123 <0.001 <0.001 0.049 <0.001 0.035
Maximum 24.2 0.279 1.105 388.646 0.041 0.024 0.801 0.018 0.287

Table 18.14: Times in seconds for the evaluation of the data set Karlsruhe Countryside 1:4000.

19. Conclusion

In this part of the thesis we have shown that it is possible to find efficient ways to describe
the trajectory based labeling problem (TBLP) as defined in Definition 14.2. To that end
we introduced an appropriate model describing concepts as labels, conflicts between labels,
visibilities of labels, viewports and trajectories of viewports.

Based on that model we defined for TBLP three different types of possible activity models
(see Definition 14.4): We took up the Desiderata 13.1 introduced in [BDY06] and refined them
in such a way that we also allow a label to become active and inactive when we can find a
corresponding witness that makes the behavior of that label explainable for the observer of
the map.

Further, we made the major decision to focus on polyarcs in order to describe trajectories,
as those can be discretized easily by means of simple geometric tools. Based on those polyarcs
we then explained how visibilities and conflicts of labels can be computed efficiently. For that
purpose we extended the approach described in [GNR11]: The authors explain how conflicts
between two rotating labels can be computed. We generalized their approach from labels to
anchored rectangles such that the results also can be used for viewports. As byproduct we
removed the restriction that the anchor of a label must coincide with a point of that label.
Moreover, we successfully solved the problem to relate visibilities of labels to the corresponding
trajectory such that we can compute intervals describing that visibility.

We also took care about the extensibility of the model. Thus, we introduced a weight
function w in TBLP that helps to define new types of visibility without changing the model
itself. For example in Section 15.4 we discussed how the notion of visibility of a label can be
improved by also considering the conflict area between labels. We described in detail how by
means of simple geometric tools the intersection area of two labels can be computed efficiently.
Even the description was extensive, the result is limited to the redefinition of w such all other
result that we have achieved are still applicable.

In Chapter 16 we also discussed theoretical aspects of TBLP: We proved that the problem
is NP-complete by a simple reduction from a static labeling problem and introduced a conflict
graph based on the definition of TBLP that helps to formulate algorithms solving TBLP. In
Chapter 17 we then presented based on that conflict graph ILPs for the different activity
models and heuristics for the activity model AM1.

As we worked on an implementation of this part of the thesis, we also had the possibility
to test the results on real world data. So far we only have considered simple heuristics (see
Section 17.2) in order to cope with the NP-completeness of TBLP. For sparse conflict graphs
as they arise for low-scale maps (scale factor 1:2000) we could show that those heuristics are
sufficient to solve TBLP with high quality (see Section 18.2). Surprisingly, we could ascertain
that the choice of the applied heuristic influences the results only little. Thus, the heuristic
GV lends itself to be the heuristic in favor, as its running time lies in O(n · m log(n · m)),
where n is the number of labels and m is the number of arcs the trajectory consists of.

However, we could also show that for maps zoomed-out by a factor of 2 the solutions of
the presented heuristics significantly differ from the optimal solution. On that account there
is still space for research about more sophisticated heuristics that fill that gap.

Moreover, we have considered only heuristics so far, but we have not talked about ap-

181

182 CHAPTER 19. CONCLUSION

Label1

Viewport

Figure 19.1: The size of the conflict graph depends on the size of the trajectory: Assume that
the viewport moves m times along the circle, then the conflict graph contains m nodes for
Label 1.

proximation algorithms with performance guarantee, yet: For similar labeling problems as
presented in [GNR11] and [BNPW10] approximation algorithms are already known. For ex-
ample in [GNR11] an efficient polynomial-time approximation scheme is presented for the case
that one considers rotating maps. All of those approaches have in common that they exten-
sively make use of the characteristic that the location of the labels induces an embedding for
a corresponding conflict graph. Based on that embedding the problem is then divided into
a pre-defined number of sub-problems that can be solved in constant time. Roughly spoken,
those sub-problems consist only of constant many nodes because one can prove the number of
nodes to be constant within a certain area.

It remains to answer the question whether those approaches can be adapted to find a
similar approximation for TBLP. Up to now we can say that those approaches cannot be
adapted straightforwardly: Although the labels induce an embedding for the conflict graph (see
Definition 16.1) that is created based on labels and the considered viewport with trajectory,
the problem arises that the number of nodes within a certain area also depends on the size
of the trajectory: Each time the trajectory moves alongside a label at least one new visibility
node is created in the corresponding conflict graph. In Figure 19.1 a corresponding example
is illustrated: Assume that the trajectory consists of m cycles of the depicted circle, then the
corresponding conflict graph contains m nodes for Label 1.

In the worst case it also could be that there is no good approximation algorithm for
TBLP. By introducing ILP1 for the activity model AM1 we also shown that TBLP is closely
related to maximum weighted independent set. In [Has96] it has been proven that there is no
polynomial time algorithm that approximates maximum weighted independent set having a
performance ratio of n1−ε for any ε > 0 unlessNP-hard problems have randomized polynomial
algorithms. Consequently, one further question is whether for each general graph we can find a
corresponding instance of TBLP. If that is the case the approximative hardness for maximum
weighted independent set would also apply for TBLP.

Summarizing, we have introduced an appropriate model with different variants for the
trajectory based labeling problem such that we can obtain the visibility of labels and their
conflicts efficiently. Further, we could present both theoretical and practical results that help
to cope with TBLP. However, there is still research to do for describing and analyzing TBLP
completely.

Bibliography

[AGT86] D. Avis, T. Gum, and G. Toussaint. Visibility between two edges of a simple
polygon. The Visual Computer, 2:342–357, 1986. 10.1007/BF01952419.

[AS93] P.K. Agarwal and M. Sharir. Circle shooting in a simple polygon. Journal of
Algorithms, 14(1):69 – 87, 1993.

[BDY06] K. Been, E. Daiches, and C.E. Yap. Dynamic map labeling. IEEE Trans. Vis.
Comput. Graph., 12(5):773–780, 2006.

[BNPW10] K. Been, M. Nöllenburg, S.H. Poon, and A. Wolff. Optimizing active ranges
for consistent dynamic map labeling. Computational Geometry, 43(3):312 – 328,
2010. Special Issue on 24th Annual Symposium on Computational Geometry
(SoCG’08).

[Bol75] K. Bolton. Biarc curves. Computer Aided Design, 7(2):89–92, 1975.

[CC09] P. Chalermsook and J. Chuzhoy. Maximum independent set of rectangles. In
Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA ’09, pages 892–901, Philadelphia, PA, USA, 2009. Society for
Industrial and Applied Mathematics.

[CG89] B. Chazelle and L. J. Guibas. Visibility and intersection problems in plane
geometry. Discrete Comput. Geom., 4(6):551–581, September 1989.

[CW95] S.Y. Chou and T.C. Woo. A linear-time algorithm for constructing a circular
visibility diagram. Algorithmica, 14:203–228, 1995.

[dBvKOS97] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computa-
tional geometry: algorithms and applications. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1997.

[DRS08] R.L.S. Drysdale, G. Rote, and A. Sturm. Approximation of an open polygonal
curve with a minimum number of circular arcs and biarcs. Computational Ge-
ometry, 41(1–2):31 – 47, 2008. Special Issue on the 22nd European Workshop
on Computational Geometry (EuroCG).

[EW91] P. Egyed and R. Wenger. Ordered stabbing of pairwise disjoint convex sets in
linear time. Discrete Applied Mathematics, 31(2):133–140, 1991.

[FL91] Th. Fraichard and C. Laugier. Smooth trajectory planning for a car-like vehicle
in a structured world, 1991.

[FW91] M. Formann and F. Wagner. A packing problem with applications to lettering
of maps. In Proceedings of the seventh annual symposium on Computational
geometry, SCG ’91, pages 281–288, New York, NY, USA, 1991. ACM.

183

184 BIBLIOGRAPHY

[GHMS91] L.J. Guibas, J.E. Hershberger, J.S.B. Mitchell, and J.S. Snoeyink. Approximat-
ing polygons and subdivisions with minimum-link paths. Internat. J. Comput.
Geom. Appl, 3:383–415, 1991.

[GNR11] A. Gemsa, M. Nöllenburg, and I. Rutter. Consistent labeling of rotating maps. In
Frank Dehne, John Iacono, and Jörg-Rüdiger Sack, editors, Algorithms and Data
Structures, volume 6844 of Lecture Notes in Computer Science, pages 451–462.
Springer Berlin / Heidelberg, 2011.

[Has96] J. Hastad. Clique is hard to approximate within ... In Proceedings of the 37th
Annual Symposium on Foundations of Computer Science, FOCS ’96, pages 627–,
Washington, DC, USA, 1996. IEEE Computer Society.

[HE05] M. Held and J. Eibl. Biarc approximation of polygons within asymmetric toler-
ance bands. Computer-Aided Design, 37(4):357–371, 2005.

[KM03] G.W. Klau and P. Mutzel. Optimal labelling of point features in rectangular
labelling models. Mathematical Programming, 94:435–458, 2003.

[KOHH05] A. Kako, T. Ono, T. Hirata, and M.M. Halldórsson. Approximation algorithms
for the weighted independent set problem. In IN GRAPH-THEORETIC CON-
CEPTS IN COMPUTER SCIENCE, 31ST INTERNATIONAL WORKSHOP,
WG, pages 341–350, 2005.

[KS95] D. Kirkpatrick and J. Snoeyink. Computing common tangents without a sepa-
rating line. In Selim Akl, Frank Dehne, Jörg-Rüdiger Sack, and Nicola Santoro,
editors, Algorithms and Data Structures, volume 955 of Lecture Notes in Com-
puter Science, pages 183–193. Springer Berlin / Heidelberg, 1995.

[LSC08] M. Luboschik, H. Schumann, and H. Cords. Particle-based labeling: Fast point-
feature labeling without obscuring other visual features. IEEE Transactions on
Visualization and Computer Graphics (InfoVis’08, pages 1237–1244, 2008.

[MS91] J. Marks and S. Shieber. The computational complexity of cartographic label
placement. Technical report, 1991.

[OvL81] M.H. Overmars and J. van Leeuwen. Maintenance of configurations in the plane.
J. Comput. Syst. Sci., pages 166–204, 1981.

[PBP02] H. Prautzsch, W. Boehm, and M. Paluszny. Bezier and B-Spline Techniques.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2002.

[PGP03] I. Petzold, G. Gröger, and L. Plümer. Fast screen map labeling – data structures
and algorithms. In IN 21ST INT. CARTOGRAPHIC CONF, pages 288–298,
2003.

[PPH99] I. Petzold, L. Plümer, and M. Heber. Label placement for dynamically generated
screen maps. In Proceedings of the Ottawa ICA, pages 893–903, 1999.

[Pre79] F. P. Preparata. An optimal real-time algorithm for planar convex hulls. Com-
mun. ACM, 22(7):402–405, July 1979.

BIBLIOGRAPHY 185

[SH76] M.I. Shamos and D. Hoey. Geometric intersection problems. In Proceedings of
the 17th Annual Symposium on Foundations of Computer Science, SFCS ’76,
pages 208–215, Washington, DC, USA, 1976. IEEE Computer Society.

[vKSW99] M. van Kreveld, T. Strijk, and A. Wolff. Point labeling with sliding labels.
Computational Geometry: Theory and Applications, 13:21–47, 1999.

	Contents
	Introduction
	Preliminaries
	Trajectories Consisting of Circular Arcs
	Introduction
	Related Work
	Computing Polyarcs
	Line Stabbing

	Modeling the Corridor
	Basic Algorithms
	A Simple Algorithm for Gaining a Smooth Polyarc
	A Polyarc with Minimum Number of Inflection Points

	A Generalization of the Corridor
	Basic Algorithms for the Generalized Corridor
	One Starting Gate and Several End Gates
	Computing a Polyarc Through Gates

	Advanced Algorithms for the Generalized Corridor
	Optimizing the Length of a Polyarc Using Predefined Gates
	Generalization of Gates
	Optimizing the Length of a Polyarc Using Generalized Gates

	Handling Special Cases
	Intersection Based Stabbing
	A Solution Based on Gates
	Circles of Different Radii

	Conclusion

	Consistent Labeling Based on Trajectories
	Introduction
	Related Work
	Model and Problem Definition
	Visibility and Conflicts
	Anchored Rectangles and Their Conflicts
	Labels in Conflict
	Visible Labels and Visible Conflicts
	Area Based Visibility for Labels

	Complexity
	Complexity
	Trajectory Based Conflict Graph

	Algorithmic Approaches
	Integer Linear Programming
	The Heuristics

	Experimental Evaluation
	Setting
	Results of the Evaluation

	Conclusion
	Bibliography

