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Abstract—We give a comprehensive overview of the state of the
art in automated metro map layout. A large number of algorithms
for computing metro maps have been developed over the last 10–
15 years by researchers in computer science and related fields.
In this survey, we distinguish three subtasks of generating metro
map layouts (schematic network layout, label placement, crossing
minimization) and give a list of ten design rules that form
the basis of the layout algorithms. Our discussion starts with
fundamental work on path and road network schematization,
covers algorithms for generating traditional schematic metro
maps, and also describes recent methods for special-purpose and
non-standard maps.

I. INTRODUCTION

Metro maps are schematic diagrams of public transit net-
works that focus on conveying the network topology rather than
its exact geography to passengers. The goal of a good metro map
is thus to reduce the visual complexity and to enable its user to
quickly and accurately perform route planning and orientation
tasks based on the graphical network representation [1], [2].
This insight is often attributed initially to Henry Beck and his
famous octilinear London Tube Map of 1933 [3] (although
the Berlin system introduced a highly schematic map already
in 1931 [4]). Beck’s principles have quickly been adapted by
many contemporary metro maps [5] and Roberts explores which
features exactly make a good and usable metro map [4].

Today, producing a good metro map is still a very time
consuming, often computer-assisted but largely manual process
requiring a skilled graphic designer or cartographer who
carefully decides about routing metro lines, placing station
and interchange symbols, and adding station names to the
map. Automating this process has been a challenging research
problem in computer science and related fields over the
last 10–15 years, involving subdisciplines such as graph
drawing, information visualization, computer graphics, and
computational cartography. In this survey, we describe the past
development and the state of the art of algorithms for various
network layout problems in the context of schematic metro
maps. We aim to identify common principles underlying many
of the proposed automated methods, as well as highlighting
the differences in layout models and algorithmic techniques.
We also refer the reader to a previous survey by Wolff [6] that
focuses on three different layout algorithms and does not cover
the more recent developments, as well as to a compact section
on metro map layout in a book chapter on graph drawing
and cartography [7, Chapter 23.5.2] and in a chapter on map
generalization and schematization [8, Chapter 10.6].

A. Subtasks in Metro Map Layout

Generating an effective metro map is a rather complex
process that involves several individual subtasks, some of

which have interdependencies. Rendering tasks, for example,
the choice of a color code for the different metro lines, the
choice of interchange and station symbols, the choice of a
font set etc. are in fact quite prominent and important for the
perception of a metro map. However, these choices are usually
not at the core of automating metro map layout, but rather
made in advance following established local traditions and
the taste and experience of the responsible persons. None of
these decisions really influences how subsequent computational
layout tasks are approached and thus we do not cover them
here.

Arguably the most important and most studied task is to
generate the geometry of the underlying network layout. It
translates readily into the following abstract graph drawing or
network visualization problem.

Problem 1 (Metro Map Layout): Let G = (V,E) be a
graph geometrically embedded in the plane R2, in which each
vertex v ∈ V is a point representing a metro station and each
edge e = (u, v) ∈ E is a curve linking its incident vertices
and representing a physical rail link between them. Let further
L be a path cover, that is, a set of paths in G representing
the different metro lines, so that each edge e ∈ E belongs
to at least one path L ∈ L. (We call G together with L a
metro graph.) Find a schematic layout of (G,L) that preserves
the topology of the input embedding, satisfies a set of layout
constraints, and optimizes a set of quality criteria.

The input embedding of G is usually a geographically
accurate drawing of the metro network. Formally, it does not
need to be plane, that is, two edges may cross without defining
an interchange station. But we may still assume that there are
no edge crossings by considering a planarization instead with
dummy vertices at crossing points. Accordingly, this explicitly
preserves all true edge crossings. A path in L may be a simple
path or a cycle; if a metro line splits into multiple branches it can
be easily decomposed into a set of simple paths. Obviously, the
final layout and its schematic appearance is largely determined
by the actual definition of the layout constraints and the quality
criteria. Section I-B lists the most common design principles,
which are used to define constraints and quality criteria. Each
layout algorithm then uses its own instantiation of Problem 1
based on the selected design principles.

The network layout itself defines the skeleton for the metro
map, but it needs to be enriched with further information. The
next task is metro map labeling, that is, the placement of legible
station names in an additional graphical layer on top of the
network layout.

Problem 2 (Metro Map Labeling): Given a schematic lay-
out of the underlying graph G = (V,E) and a station name



for each vertex v ∈ V , place each station name close to its
vertex position such that no label intersects any other label or
feature of G.

Different methods apply additional design-specific con-
straints on the possible label positions, for example, one may
require horizontally aligned labels or allow the use of diagonal
labels, or one may allow introducing line breaks in long station
names. Obviously, the labeling quality that can be achieved
by a solution of Problem 2 depends directly on the geometry
of the layout computed when solving Problem 1. Thus many
automated layout methods combine the two problems and solve
them in an integrated manner, where the graph layout must
provide sufficient space for conflict-free label placement.

A third task that has been considered from an algorithmic
perspective is to compute an optimal routing of the (colored)
metro lines along the edges of the underlying graph. Here the
optimization goal is to minimize the number of line crossings
of partially parallel metro lines, which appear whenever two
parallel lines meet and split at opposite sides.

Problem 3 (Metro Line Crossings): Given an embedded
metro graph (G,L), draw each metro line L ∈ L as a
continuous curve along its edge sequence in G such that the
total number of metro line crossings is minimum.

This line layout problem can in fact be considered inde-
pendently of Problems 1 and 2 since it is neither affected by
the geometry of the layout (only the network topology matters,
which is the same in all metro maps) nor by the label placement.
At its combinatorial core, we need to determine for each edge
and each incident vertex a corresponding order of all metro
lines sharing the edge. All line crossings are fully determined
by these orders.

B. Design Principles

Next, we list a collection of design principles and rules on
which the existing metro map layout methods are based. We
refer to this list when discussing individual layout algorithms.
Not every method implements all of these rules. Most of the
rules are used to define the constraints and quality measures for
Problem 1, but one rule also specifies constraints for Problem 2.

(R1) Do not change the network topology. This important
rule prohibits structural distortions such as modifying
the circular edge orders around vertices or introducing
additional edge crossings. In graph theoretical terms the
combinatorial embedding of the layout is preserved. This
rule is respected by almost all methods and thus already
included in the definition of Problem 1.

(R2) Restrict edge orientations. The vast majority of metro map
layout methods uses the octilinear set of orientations, that
is, horizontal, vertical, and ±45°-diagonal orientations.
Other orientations such as hexalinear (based on 60°
angles) are possible, too. Some methods do not use
straight-line edges at all and resort to curvilinear edges,
for example, based on Bézier splines.

(R3) Draw each individual metro line as straight/monotone as
possible and avoid sharp turns. For traditional polyline
drawings, this implies to use as few bends as possible
with preferably obtuse angles. For curvilinear drawings,
preferably uniform curvature and few inflection points
should be used.

(R4) Metro lines pass straight through interchanges. Inter-
change stations are higher degree vertices, where it is
particularly important that metro lines are visually easy
to follow without ambiguities. This is supported if no
metro line changes its orientation in an interchange.

(R5) Use large angular resolution. This rule aims to distribute
incident edges evenly around vertices.

(R6) Minimize geometric distortion and displacement. Many
approaches try to stay as close to the input geometry as
possible in order to maintain the user’s mental map of the
city and the resemblance to geography. Some methods
apply this rule only locally, that is, the relative positions
of pairs of adjacent vertices should be maintained.

(R7) Use uniform edge lengths. Since distances in a metro
map are not linked to geographic distances, any edge in
the layout ideally has the same length. This often implies
that dense parts of the network in the city center are
enlarged and peripheral stations move closer together.

(R8) Keep unrelated features apart. This rule ensures that there
is some minimal clearance between non-incident vertices,
edges, and around station labels.

(R9) Avoid large empty spaces in the map. This rule asks for
a balanced local feature density in the whole map.

(R10) Use unobtrusive and clearly legible placement of station
labels. The precise interpretation of this rule differs be-
tween different layout algorithms. Overlapping labels and
occlusions are usually prohibited. Horizontally aligned
text is mostly preferred, but horizontal metro lines can
also be labeled with diagonal labels. Often all labels of
stations between two neighboring interchanges are placed
coherently on the same side of the path between them.

II. NETWORK LAYOUT ALGORITHMS

In this section we cover algorithms for Problem 1, the most
studied subtask in automated metro map design. As mentioned
above, some methods take an integrated approach for the layout
and labeling of a metro map. In this case we also describe
the labeling procedures. We start with a short discussion of
the computational problem complexity before summarizing the
various layout algorithms that have been proposed over the last
15 years, grouped by the underlying algorithmic principles.

A. Problem Complexity

It is known that minimizing the number of bends in an
octilinear graph (or metro map) layout is an NP-hard optimiza-
tion problem [9]. This result already applies to a very limited
set of design rules, that is, apart from rule (R1), enforcing
rule (R2) with the octilinear set of orientations suffices to show
the NP-hardness of optimizing rule (R3). This is in contrast
to bend minimization in the case of orthogonal graph layout,
that is, rule (R2) restricting edges to horizontal and vertical
orientations only, which can be solved efficiently using network
flow algorithms [10]. As a consequence, no exact polynomial-
time algorithms for optimizing metro map layouts involving
diagonal edge orientations can be expected and all suggested
methods are limited in some way or another, for example, by
relaxing constraints, applying heuristics, approximations, and
local optimization techniques, using asymptotically slow exact
computations or restricting the input graphs.



B. Path-Based Schematization

Work on the schematization of paths can be seen as a
precursor to schematizing larger, more complex metro graphs.
In fact, one may argue that a metro map can be decomposed into
a set of schematized paths, although a set of schematized paths
cannot be simply combined into a topologically correct network
layout. Neyer [11] studied the C-oriented path simplification
problem, where a given polygonal input path P is approximated
by a C-oriented path Q, where C is the set of feasible edge
orientations according to rule (R2). Here, the goal was to find
a schematized path Q with minimum number of links such
that Q stays within ε distance to P in the Fréchet metric. The
problem was solved by dynamic programming in O(kn2 log n)
time, where n is the number of vertices of P and k is the
number of vertices of Q.

Merrick and Gudmundsson [12] studied a similar C-oriented
path schematization problem, however, using a less strict
distance measure, namely the Hausdorff distance between
the C-oriented path Q and the vertices of the input path P .
The schematized path needs to pass the input vertices in the
correct order and at a distance of at most ε. According to the
authors, this results in fewer zig-zags in comparison to Neyer’s
model [11]. The proposed algorithm requires O(|C|3n2) time
and minimizes the number of edges of Q.

Dwyer et al. [13] later suggested a heuristic running
time improvement of the previous algorithm by Merrick and
Gudmundsson [12]. They use least-squares regression to fit
C-oriented edge segments to blocks of vertices of the input
path P in O(|C|n) time. A variation of the algorithm runs in
O(|C|n log n) time and performs more aggressive simplification,
which may result in visually more pleasing schematizations.
The authors implemented the algorithms and reported that
the results are visually similar to the results of Merrick and
Gudmundsson [12], but the new algorithm is much easier
to implement and does not require manually setting error
parameters.

The three path-based methods satisfy rule (R2) and aim to
minimize the number of bends (rule (R3)) and the displacement
(rule (R6)). But they all suffer from the problem that, if applied
to a path decomposition of a more complex metro graph, the
resulting layout is not guaranteed to have the correct topology
(rule (R1)).

Delling et al. [14] took a slightly different approach when
studying the C-oriented schematization of paths for creating
route sketches. To implement rule (R6) they did not consider
vertex displacement but rather aimed to preserve the orthogonal
order of the input, that is, the above/below/left/right relations
of all vertex pairs. For monotone paths, they gave a polynomial
time algorithm minimizing the distortion of edge slopes; for
non-monotone paths they proved NP-hardness and presented
a heuristic algorithm as well as an approach based on integer
linear programming. Both approaches were implemented and
experimentally evaluated, but their method is not suitable for
graphs other than paths.

C. Discrete Curve Evolution

Barkowsky et al. [15] presented a network schematization
algorithm using discrete curve evolution, a shape simplification

method for step-wise elimination of the least relevant kinks,
where relevance is measured by a function taking into account
segment lengths and turn angles. Some input vertices are fixed,
others are movable or even removable. Their algorithm aims to
straighten subsequent pairs of edges (rule (R3)) and preserves
the input topology (rule (R1)), but no edge slope restrictions are
applied and displacement of interchange stations is forbidden
(rule (R6)). Thus the resulting map layouts do not increase the
space for dense downtown regions and they generally appear
simplified but not really schematized.

D. Force-Based Layout

Hong et al. [16] adapted the popular force-based paradigm
for general graph layout algorithms to the special constraints
of metro map layouts. Their most refined algorithm is a
topology-preserving (rule (R1)) spring embedder that defines,
in addition to the standard spring forces that pull edges to a
desired length and the repelling forces between non-adjacent
vertices, a set of magnetic forces that pulls edges towards the
closest octilinear orientation. In an iterative process, vertices
are displaced based on the resulting force vectors until the
layout stabilizes. This combination of (potentially conflicting)
forces models rules (R2), (R7), and (R8) in a multi-criteria
fashion. In addition, the authors performed a preprocessing
step that contracts maximal sequences of adjacent degree-2
vertices into a single edge of appropriately scaled target length.
This results in straight paths between any two interchange
stations (rule (R3)). In an independent second step, Hong et al.
applied the LabelHints [17] algorithm to place station labels
avoiding label–label overlaps, but not label–edge overlaps. Their
algorithm is very fast in practice (in the order of a few seconds),
but the resulting layouts are not yet comparable in quality to
manually designed metro maps. The main reasons are that
the restriction of edge slopes is not strictly enforced, edge
lengths are not very uniform, and no attempt is made at limiting
distortion or displacement (rule (R6)).

A force-based approach has also been applied by Fink et
al. [18] for drawing curvilinear metro maps, thus interpreting
rule (R2) differently. Starting with a straight-line or octilinear
input drawing each line segment of a metro line is replaced
by a nearly-straight cubic Bézier curve that shares tangents
with both its predecessor and successor curves. Then attracting
and repelling forces are applied to vertices and curve tangents
without changing the topology (rule (R1)). The aim of their
algorithm is to merge as many consecutive Bézier curves on
each metro line as possible in order to increase the monotonicity
and straightness of each metro line (rules (R3) and (R4)).
Further forces implement rules (R5), (R6), (R7), and (R8).
Reported running times are in the order of a few minutes
for typical instances. For small and medium-sized instances
appealing layouts were computed, but longer metro lines in
complex networks (such as London) remained rather wiggly
and the intended curve merging could not be applied in all
situations.

E. Local Optimization

Local optimization algorithms represent a large class of
layout schematization algorithms, being based on the quite
natural approach of locally improving the positioning and
orientation of vertices and edges step-by-step starting from



the initial geographic layout. Such algorithms usually define
a set of weighted quality measures in order to implement
the selected set of design rules. Then any two layouts can
be compared in terms of their layout quality and it remains
to implement an algorithm to intelligently search for high-
quality maps since exhaustive search in the solution space is
prohibitively expensive.

The first local schematization method was proposed by
Avelar and Müller [19] (see also [20]) and demonstrated for the
road network of Zurich. They considered topology preservation
(rule (R1)), octilinear edge orientations (rule (R2)), and to some
extent distances and edge lengths (rules (R7) and (R8)). After
a line simplification step on the input graph, all vertices in
the layout are iteratively moved to nearby positions that are
computed as arithmetic means of the best positions for each of
the considered design rules and that do not violate the topology
constraint. This process is repeated until a stopping criterion
is met. By locally modifying a geographically accurate input
layout, displacement is implicitly kept small (rule (R6)). While
the topology is indeed preserved and most edges are drawn
octilinearly, the algorithm aims to balance potentially conflicting
constraints and thus some non-octilinear edge orientations can
be observed. Being designed for road maps, certain metro map
characteristics related to the shapes of metro lines are also not
yet considered. No running times are reported.

Ware et al. [21] presented a similar approach for generating
schematic road maps using simulated annealing and imple-
menting more of the design rules. After a line simplification
step on the input graph, their algorithm randomly selects a
vertex in the layout and moves it to a nearby position. If the
modified layout has a better quality measure than the previous
layout, the vertex move is performed. With a small probability,
solutions with worse quality are also accepted. This process is
iterated until a stopping criterion is met. The considered rules
are (R1), (R2), and (R6)–(R8), with the highest importance
given to the correct topology followed by octilinearity. This is
reflected in the weights of the multi-criteria quality function.
Metro-map specific constraints on the shape of metro lines
are still missing. The reported results for a 750-vertex graph
took less than 20s to compute. They also implemented a
deterministic gradient-descent version of their previous method,
which never performs moves with a negative effect and hence
is more susceptible to local optima [22]. Recently, Ware and
Richards [23] implemented an ant colony system algorithm,
which is another local optimization method for the same set
of rules and quality measure as used before [21]. Again the
basic operation is to randomly select a vertex and locally
search for a position that improves the overall quality of the
layout. This process is iterated and run in parallel (each process
is represented by one ant) and vertex positions that yield
improvements are marked by increasing a pheromone value
associated with it. This increases the probability of selecting
this position again in future optimization runs performed by
other ants. In the end the best found solution is returned. In their
experiments, Ware and Richards showed that the new method
was both faster and obtained better solutions in comparison to
the simulated annealing algorithm of Ware et al. [21].

Stott et al. [24] described a more sophisticated and more
tailored local optimization algorithm for metro map layout
and labeling. Their layout is based on placing vertices on grid

points and like previous methods, for each vertex a set of
candidate positions in the vicinity is examined for the position
(if any) that most improves the quality value of the entire layout.
However, they also considered moving certain groups of vertices
and edges as a whole in order to escape some typical local
minima situations. Finally, they also apply a similar local search
strategy to compute and improve the label positioning. All these
local modifications are iterated until some stopping criterion is
met. The implemented criteria are based on rules (R1)–(R7),
as well as a set of criteria for label placement (rule (R10)).
Some criteria are optimized, but without giving guarantees.
Others, like preserving relative positions via orthogonal ordering
constraints for adjacent vertices and the network topology are
strictly enforced. In the resulting layouts one can observe
that in many places the layout adheres to the design rules as
expected, but in some places their method has difficulties in
avoiding local minima and thus there is room for improvements.
For example, not all edges are octilinear and congested areas
may appear. Reported running times lie in the range of two
minutes to two hours, depending on the size of the metro
graphs. An empirical study showed that their layouts improved
route planning performance over non-schematic and certain
official layouts.

An extension of the algorithm by Stott et al. [24] was
presented by Chivers and Rodgers [25]. They explored how the
local optimization algorithm can be combined with a gesture-
based input interface on a tablet computer in order to schematize
hand-drawn graph layouts that are not necessarily geographic
networks. Some of the previously implemented rules were
considered as less important and dropped in their system.
In a subsequent study Chivers and Rodgers [26] investigated
the effects of different settings for the parameters grid size,
displacement limit, and iteration counter in their algorithm.

F. Global Road Map Schematization

Global schematization approaches are different from the
previously discussed local techniques as they consider the layout
of the entire input graph and not just local displacements of
single vertices.

Cabello et al. [27] presented an algorithm for a (road)
network schematization problem, in which junction vertices
cannot be moved from their initial positions, but edges are
schematized as octilinear three-link paths (rule (R2)) without
altering the topology (rule (R1)). Their algorithm computes a
valid schematic graph layout (or reports failure) by incremen-
tally adding octilinear paths in a suitable order to the layout in
O(n log n) time, where n is the number of edges in the graph.
A feasible solution is always found if one exists, otherwise
no layout is generated. Thus this is not really an optimization
algorithm. We note that the polynomial running time does
not contradict the NP-hardness result of Nöllenburg [9] since
Cabello et al. [27] did not consider bend minimization.

A conceptually similar incremental approach is the stroke-
based schematization algorithm proposed by Li and Dong [28].
Their goal is to create topologically correct (rule (R1)) orthogo-
nal or octilinear (rule (R2)) schematic road maps with bounded
distortion (rule (R6)). But unlike the algorithm of Avelar and
Müller [19] that locally displaces vertices to create a schematic
road map, Li and Dong consider entire roads (i.e., paths that



are called strokes) as the basic geometric objects. Schematizing
a path as a single object rather than as a set of individual edges
often helps to create representations with fewer bends. This
approach can be seen as a variation of the metro line design
rules (R3) and (R4). Their algorithm first decomposes the input
graph into a set of paths, either by road names or by geometric
good continuation properties. Each path is schematized using a
variation of the Douglas-Peucker line simplification algorithm
that takes directional distortion into account and projects path
vertices onto an octilinear or orthogonal path approximation.
(This step can be replaced by any of the path schematization
methods discussed in Section II-B.) Paths are ordered according
to type, length, and number of junction vertices and then
inserted into the layout in this order. Topological inconsistencies
are detected and corrected after each insertion step. Ti and
Li [29] extended the stroke-based algorithm by a raster-based
preprocessing of the input layout that detects and explicitly
enlarges congested areas with high feature density (rule (R9)) by
a fish-eye transformation. Since the stroke-based schematization
of Li and Dong [28] keeps vertices rather close to their original
position, such enlargement is necessary in order to balance the
feature density of the resulting layout. They performed a case
study with two metro maps that showed the positive effect of
the suggested preprocessing step over the original algorithm
of Li and Dong. No running times are reported for either of
the methods.

G. Mixed-Integer Linear Programming

Linear programming is a global optimization method based
on a linear objective function to measure solution quality and
a set of linear constraints defining the feasible solution space.
Algorithms for solving linear programs find a point in the
solution space that yields the best objective value. Linear
programs with real-valued variables can be solved in polynomial
time, but as soon as variables can also be binary or integers,
the problem gets NP-hard. Linear programming with some
integer variables is called mixed-integer linear programming
(MIP). Despite its NP-hardness, MIP is a versatile tool that is
frequently used for solving difficult combinatorial optimization
problems in practice and sophisticated MIP solvers exist.

Nöllenburg and Wolff [30] designed a metro map layout
method based on MIP. They modeled rules (R1), (R2) (with
octilinear edge orientations) and (R8) as hard linear constraints
that are rigorously enforced in any solution. Rules (R3), (R4),
(R6), and (R7) are modeled as a weighted sum forming
the linear objective function. Using the commercial MIP
solver CPLEX1 they solved the MIP models and generated
corresponding schematic metro maps. Since running times up
to several days could observed for finding provably optimal
solutions for large networks, a number of improvements were
engineered in order to reduce the size of the input graph
(contraction of long sequences of degree-2 vertices) and the
number of MIP constraints (adding planarity constraints on-
demand where needed). Moreover, they included overlapping-
free and side-coherent station labeling (rule (R10)) by adding
further linear constraints to the initial MIP model. With the
above improvements, solutions (potentially with a remaining
optimality gap) can be computed in less than a minute for
small instances and within minutes up to several hours for

1http://www.ibm.com/software/commerce/optimization/cplex-optimizer/

more complex instances, in particular if labels are included. In
an expert assessment, the maps generated by the MIP method
were evaluated and deemed visually superior to the results of
Hong et al. [16] and Stott and Rodgers [24]. In some of the
design criteria, the MIP-based layout was even preferred over
the manually designed official reference layout. This indicates
that the method of Nöllenburg and Wolff generates high-quality
labeled metro map layouts. owever, solving the MIP is often
computationally expensive and there is no guarantee to obtain
solutions quickly.

This MIP model was adapted by Milea et al. [31], who
included the minimization of the maximum theoretical planning
error as another optimization goal. This criterion uses the ratio
of the travel time along the geometrically shortest path between
any two stations in the metro map layout to the actually shortest
travel time between the same two stations. The goal of their
modification is thus to generate layouts that better support
visual route planning. Only preliminary results were reported.

Wu et al. [32] also modified the MIP [30] in order to
generate user-specific, travel-route centered metro maps. Their
maps aim to place a given travel route horizontally and without
bends in the center of the layout. This has the advantage of
highlighting the route of interest and making space for large
external annotations of the stations along that route. After an
initial schematic travel-route centered layout has been computed
by solving the modified MIP, interactive editing and constraint
modification is possible in order to adapt the layout to personal
taste. Finally, a minimum-cost network flow model is used
to optimize the placement of large leader-connected labels
(also known as boundary labels [33]), for example, thumbnail
photographs, next to the central route such that few metro lines
are intersected by the leader curves. They reported running
times on a desktop PC in the order of a few seconds, which
indeed allows to use the method in an interactive setting.

Wu et al. [34] continued to study generating MIP-based
metro map layouts that integrate map annotations with large
pictographic labels without introducing excessive layout defor-
mations. They implemented a three-step process, which initially
computes an unlabeled schematic graph layout using a variation
of the MIP of Nöllenburg and Wolff [30]. This layout is then
enlarged in order to create enough space to place the labels
without overlaps. Label placement is again achieved by a MIP
formulation of aesthetic constraints for label positioning and
octilinear leader shapes. The labeled layout is finally compacted
so that labels are rather tightly contained within their respective
faces. This is performed by another MIP that fixes all edge
orientation and only shortens edge and leader lengths where
possible. Restricting the global solution space by decomposing
the task into three independent optimization steps means that
globally optimal solutions may be missed, but it also reduces
computation times to practically acceptable values between a
few seconds and a few minutes depending on layout complexity.

H. Least-Squares Optimization

Wang and Chi [35] modeled the metro map layout problem
as a set of weighted, squared energy terms based on variables
for vertex positions and edge rotations. This energy function
is minimized using the numerical iterative conjugate gradient
method. In fact, their approach is described in a focus-and-
context sense, where a selected travel route is highlighted and

http://www.ibm.com/software/commerce/optimization/cplex-optimizer/


the remaining edges are providing context information in the
background. However, it can also be adapted to generate layouts
of the entire metro graph. Their algorithm performs three
sequential steps. First, a deformed layout without constraining
edge orientations is computed. In this layout, uniformity of edge
lengths (rule (R7)), angular resolution (rule (R5)), and vertex
displacement (rule (R6)) is optimized in a weighted fashion
while edge crossings are avoided heuristically. The second step
discretizes all edge directions in the initial layout to become
octilinear (rule (R2)) by defining a corresponding energy
function. Finally, energy terms for optimal label placement
(rule (R10)) in the fixed schematized layout are formulated,
taking into account preferential positions, occlusions, spacing,
and coherence. Although the least-squares optimization does
not provide any formal guarantees (unless a configuration with
zero energy is found), the resulting layouts in the reported
case studies satisfy most of the implemented constraints, are
generally of good visual quality, and can often be computed in
less than a second.

III. STATION LABELING ALGORITHMS

If automated metro map layout methods consider label
placement at all, it is often included as an integrated part of
the algorithm due to the mutual interdependencies between
graph layout and label placement. Such examples have been
discussed in the previous section. Apart from the large body
of work on general map labeling algorithms [36], which may
also be applied to placing station labels to some extent, we
are aware of only a few stand-alone algorithms for metro map
labeling (Problem 2) according to rule (R10). The disadvantage
of such algorithms is that they cannot modify the graph layout
if more space is needed.

Garrido et al. [37] presented algorithms for placing unit-
height rectangular or square labels along horizontal and diagonal
lines, which appears as a natural problem in labeling octilinear
metro maps. The goal is to find the largest possible label scaling
factor (that is, the font size) for which all vertices on the given
line can be labeled with disjoint horizontally aligned labels.
The authors took a primarily theoretical perspective and showed
that the problem is (weakly) NP-hard for points on a horizontal
line if sliding rectangular labels are used; a pseudo-polynomial
time algorithm is given. On the other hand, they presented
polynomial-time algorithms for the case of a diagonal line. The
algorithms were not implemented.

Wu et al. [38] presented a zone-based algorithm for placing
textual and image labels for stations in a metro map. They
defined three different zones in the map: the area immediately
surrounding the edges and vertices of the network drawing is
forbidden for labels, the area obtained by dilating the edges
by a fixed width is reserved for the station names, and the
remaining area defines the zone reserved for placing images.
Using a genetic algorithm, the labeling is optimized in two
phases. Initially, the textual labels are placed greedily at the
best still available position (straight-line leaders can be used
if necessary), where the genetic algorithm determines the best
order for the greedy placement. Once textual labels are placed,
the same greedy approach is used to place images (preferably
at the map boundary) and their leaders. Two case studies are
presented, but no running times are given.

IV. LINE LAYOUT ALGORITHMS

Finally, an independent combinatorial subtask is to minimize
the metro line crossings between parallel metro lines as defined
in Problem 3. Since this is of practical interest only in metro
networks with many parallel metro lines meeting in complex
patterns and since the existing algorithms have not yet been
implemented, we keep our description rather brief at this point.

The problem was formally introduced by Benkert et al. [39]
who presented a quadratic-time algorithm for optimizing the
line orders of a single edge. Argyriou et al. [40] showed that
it is NP-hard to minimize line crossings even on a path under
the constraint that lines that terminate in some station must be
located on the outside of their respective bundle of parallel lines
when reaching that station. Recently Fink and Pupyrev [41]
showed that Problem 3 is also NP-hard without restricting
terminus positions, even on caterpillar graphs. On the positive
side, efficient algorithms exist for general planar metro map
layouts if all lines terminate at vertices of degree 1 or if the
side assignment (left/right) of each terminus is given [40],
[42]–[44]. The side assignment of termini can be computed
using integer linear programming [42]. If the side assignment
is not specified, efficient approximation algorithms for general
planar graphs [41] and exact fixed-parameter algorithms for
paths [45] are known. Fink and Pupyrev [46] defined an
interesting variation of Problem 3, in which the goal is not
to minimize individual crossings, but the number of block
crossings that combine multiple crossings of two bundles of
metro lines into a single entity. They presented approximation
algorithms and worst-case optimal heuristics for block-crossing
minimization.

V. CONCLUSIONS

In this survey, we have given a comprehensive overview of
the state of the art in automating the design of metro maps,
separated into the three different subtasks layout, labeling, and
line routing. Schematic map design is a complex task that is
usually performed by cartographers, graphic designers, and
artists. Hence it cannot be expected that any of the discussed
methods with their specific attempt to capture human aesthetic
taste in a mathematical formula can create map layouts that
are of the same visual quality as those drawn by skilled human
map designers. We see two immediate practical purposes of
algorithms for creating schematic metro maps. On the one hand,
they can be used to produce high-quality base layouts serving
as templates and inspirations for graphic designers. On the
other hand, they can be used to produce on-demand individual
or special-purpose maps, for which it is simply to expensive
and impracticable to engage a human designer. As this survey
shows, many suitable methods have been developed for both
tasks, some of which have also been successfully evaluated
with users and domain experts. But no single algorithm stands
out that is superior in all respects. Rather one has to carefully
decide which of the approaches provides the best fit for a
certain task. For future work in this field one of the main
challenges, apart from further improving algorithm performance
and layout quality especially for large and complex networks
(not necessarily public transit networks), is to better include
global design principles into the optimization process such as
showing symmetries and balancing feature density. Moreover,
the existing methods are based on drawing thin curves and



point vertices. Thus they cannot handle thick bundles of parallel
metro lines and large symbols for interchange stations well.
Further progress on the integration of user-defined constraints
in an interactive semi-automatic metro map layout system is
also important for creating useful tools for map designers.
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