
Automated Drawings of

Metro Maps1

Martin Nöllenburg2

Technical Report 2005-25

September 2005

Fakultät für Informatik, Universität Karlsruhe

1This technical report is nearly identical to my Master’s thesis [Nöl05].
2Fakultät für Informatik, Universität Karlsruhe, P.O. Box 6980, D-76128 Karlsruhe,

Germany. Supported by grant WO 758/4-2 of the German Science Foundation (DFG).
WWW: i11www.ira.uka.de/algo/group

Abstract

This work investigates the problem of drawing metro maps which is defined as
follows. Given a planar graph G of maximum degree 8 with its embedding and
vertex locations (e.g. the physical location of the tracks and stations of a metro
system) and a set L of paths or cycles in G (e.g. metro lines) such that each edge of
G belongs to at least one element of L, draw G and L nicely. We first specify the
niceness of a drawing by listing a number of hard and soft constraints. Then we
show that it is NP-complete to decide whether a drawing of G satisfying all hard
constraints exists. In spite of the hardness of the problem we present a mixed-integer
linear program (MIP) which always finds a drawing that fulfills all hard constraints
(if such a drawing exists) and optimizes a weighted sum of costs corresponding to
the soft constraints. We also describe some heuristics that speed up the MIP and
we show how to include vertex labels in the drawing. We have implemented the
MIP, the heuristics and the vertex labeling. For six real-world examples we compare
our results to official metro maps drawn by graphic designers and to the results of
previous algorithms for drawing metro maps.

Contents

1 Introduction 1

2 Preliminaries 7

2.1 Graphs and Their Drawings . 7

2.1.1 Graphs . 8

2.1.2 Graph Drawing . 8

2.2 Combinatorial Optimization . 11

2.2.1 Linear Programming . 11

2.2.2 Mixed-Integer Programming 12

3 Related work 13

3.1 Schematic Maps . 13

3.2 Metro Maps . 15

3.3 Graph Labeling . 16

4 Drawing Metro Maps 19

4.1 What is a Metro Map? . 19

4.2 Metro-Map Esthetics . 20

4.2.1 Graphical Criteria . 20

4.2.2 Layout Criteria . 21

4.3 Modeling Metro Maps . 22

4.3.1 Hard Constraints . 22

4.3.2 Soft Constraints . 23

4.4 The Metro-Map Layout Problem . 23

5 Complexity of Drawing Metro Maps 29

5.1 Relationship to Orthogonal Layouts 29

5.1.1 Rectilinear Graph Drawing 29

5.1.2 Extension to Octilinear Layouts 30

5.2 NP-Completeness of MetroMap . 31

5.2.1 Planar 3-Sat . 31

5.2.2 MetroMap is NP-Complete 32

ii

6 A Mixed-Integer Program for Metro-Map Layouts 39

6.1 Linear Constraints . 39

6.1.1 Coordinate system . 40

6.1.2 Octilinear Edges . 40

6.1.3 Preservation of the Embedding 43

6.1.4 Planarity . 44

6.2 Objective Function . 44

6.2.1 Minimizing Edge Lengths . 45

6.2.2 Avoiding Line Bends . 45

6.2.3 Preserving Relative Positions 47

6.2.4 Summary of the Model . 47

6.3 Speed-Up Heuristics . 48

6.3.1 Reducing the Graph Size . 48

6.3.2 Planarity Heuristics . 49

6.4 Label Placement . 50

6.5 Implementation . 52

6.5.1 Generating the MIP . 52

6.5.2 Optimizing the MIP . 53

6.5.3 Graphical Output . 54

7 Experimental Results 55

7.1 Montreal . 55

7.2 Vienna . 59

7.3 Karlsruhe . 61

7.4 Sydney . 64

7.5 London . 69

7.6 S-Bahn RheinNeckar . 72

8 Final Remarks 77

8.1 Conclusion . 77

8.2 Outlook . 78

References 79

iii

Chapter 1

Introduction

Metro maps are ubiquitous in almost all developed urban areas with a (rail-based)
public transport system and they “have become the most memorized cartographic
items in the world” according to Ovenden [Ove03]. Ever since Harry Beck devised
the first and overwhelmingly embraced1 schematic diagram2 for the London Under-
ground in 1933 [Gar94] designers and cartographers all over the world adapted his
ingenious idea, more or less successfully, to their needs. The longevity of Beck’s
diagram (it has only changed marginally over the last 70 years) proves its success.
Even artists were inspired by the tube map, see for example the poster for an art
exhibition in Figure 1.1. However, designing a schematic map today is still a very
tedious task. Although schematic maps are usually no longer drawn by hand as
Beck did, computers only assist designers by providing draughting software. The
decisions where to put stations and lines in the diagram is entirely left to the expe-
rience of the cartographer or graphic designer. And this is not at all a simple task,
especially in larger and densely connected networks. In this work we investigate an
algorithmic method for automatically drawing metro maps. Certainly, the goal is
not to generate print-ready diagrams in practice but to automate one step of map
production and leave the artistic finishing to professional designers.

Before we can concentrate on actually drawing metro maps we have to under-
stand how a good metro map in the Beck style works and what its main features
are. In an interview with Ken Garland, director of the London Transport Museum,
Beck stated that “if you’re going underground, why do you need to bother about ge-
ography? It’s not so important. Connections are the thing.” [Had03] This keynote
is still the guiding principle in drawing metro maps. The purpose of a metro map is
to ease navigation on the network for passengers. And passengers want to quickly
answer questions like: How do I get from A to B? Where do I have to change
trains? How many stops are left to my destination? Exact geography is not only
unnecessary for answering these kinds of questions, it is even hindering. Hence, the
form of a metro map has to follow its function. The map should be as readable and
clear as possible concentrating on the network topology and without displaying un-
necessary details. That’s why Beck, an engineering draughtsman and Underground
commuter himself, designed his diagram conforming to a set of rules: Transport
lines are straightened and restricted to horizontals, verticals and diagonals at 45◦

(we will call such a layout octilinear). The scale in crowded downtown areas is larger
than in the less dense suburbs in order to create more uniform distances between

1850.000 pocket folders were spread in only two months.
2Beck denoted his work as a diagram to distinguish it from previous railway maps. However,

we will use these terms synonymously.

1

Figure 1.1: The Tube Map as an artwork by David Booth.

adjacent stations. In spite of all distortion, the network topology and a general
sense of the geometry, e.g. a certain relative position between metro stations, must
be retained. These principles apply to the majority of real-world metro maps as
can be verified in Ovenden’s book [Ove03] or Morrison’s article [Mor96].

In graph-drawing terms the algorithmic task in drawing metro maps is as follows.
The transport network can naturally be represented as a graph, where vertices cor-
respond to stations and edges correspond to direct connections between the incident
stations. The true location of these geographic entities determines the input layout
of the network. This layout is usually planar (otherwise we planarize it) and hence
defines an input embedding which has to be preserved by the metro-map layout.
The challenge for the algorithm is basically to find vertex positions in the plane
such that all edges are drawn as straight octilinear line segments and the input
topology is preserved. Esthetic criteria such as a small number of bends along the
individual metro lines, or a rough preservation of the input geometry need to be op-
timized over the set of all octilinear, topology-preserving layouts. Algorithmically,
we do not bother about design aspects that determine the graphical representation
of vertices and edges in the drawing. This notion of a metro-map layout is an inter-
esting compromise between drawing schematic road maps [CBD+01] where vertex
positions are (mostly) fixed and “conventional” graph drawing where vertices can
go anywhere. The first approach maximizes maintenance of the user’s mental map,
the second approach maximizes esthetics regardless of the input geometry, which is
not given in conventional graph drawing.

2

Figure 1.2: A spider map for the metro station Monument in London [Trab]. Bus
lines are drawn schematically with a geographic inset to display the neigboring bus
stops.

Modeling the problem is interesting enough from a theoretic perspective, but
one could ask about the practical relevance of automatically drawing metro maps.
Do not all metro systems today have already a good map of their network? While
this might be the case for some cities, there is an equal number of cities with overly
complex schematic or even topographical metro maps. These maps should be im-
proved in the commuters’ interest. Current geographic information systems (GIS)
might offer drawing geographic metro maps (e.g. the system DIVA3 can overlay
metro lines on the city map) but to the best of our knowledge there is no com-
mercial tool available to automatically draw schematic metro maps. Also, due to
the permanent expansion of most metro systems there is a regular need for drawing
up-to-date maps. Often, during periods of construction some lines are detoured and
temporal maps must be displayed. These temporal maps should of course remain
very similar to the regular metro map. In London a relatively new type of maps,
so-called spider maps, schematically display the bus services of one small district
(see Figure 1.2). In the center of the “spider web” the surroundings of one bus stop
are shown geographically as an inset to which the schematic lines connect. This
inset helps to find the local bus stops. However, once on the bus the geography
becomes less important and only topological information is given. Spider maps try
to organize the huge bus network of London at least locally. A global bus map,
even a schematic one, would be far too complex. These maps must be produced
individually for each district, a fact that immediately demands for automatization
of the layout process. All these examples show that there is a continuing need for
“nice” metro maps.

However the layout principles of metro maps have not only been used in a geo-
graphic setting. Sandvad et al. [?] and Nesbitt [Nes04] use the metro-map metaphor
as a way to visualize abstract information related to the Internet and “trains of

3DIVA is a software suite for transport carriers by Mentz Datenverarbeitung GmbH.

3

thoughts”, respectively. Stott et al. [SRB+05] present a prototype tool to draw
project plans in a metro-map style. Applications of the metro-map metaphor in
practice can be found in Figure 1.3. The upper part of the figure shows the dif-
ferent open source books by the publisher O’Reilly organized as metro lines [O’R].
For example one can interchange between the “Perl” and the “Web” product line at
the book “Programming Web Services with Perl”. Figure 1.3(b) in the lower part
uses the metro-map metaphor to visualize how the proteins of molecular pathways
(modeled as metro lines) interact in a cancer cell [HW02].

Being a schematic layout style, metro maps or octilinear layouts in general could
find more applications in all areas that make use of schematic drawings of graphs.
Orthogonal layouts are the predominant layout style for schematic graph drawings
in technical and engineering applications today. Examples include circuit diagrams,
cable plans, or entity-relationship diagrams. Orthogonal layouts are a very tidy
way to visualize these data. Moreover, orthogonal graph drawing has been studied
extensively, for an overview see [EFK01] or [dBETT99]. There are several efficient
algorithms for orthogonal layouts that optimize various esthetics criteria such as
e.g. the number of bends or the area of the drawing. Using octilinear layouts
instead could help to avoid bends or save space by making use of the diagonals
without losing the tidiness of the diagrams. Depending on the application we might
not need to preserve topology, or new esthetics could be formulated. Brandes et
al. [BEKW02] introduced the concept of a sketch of a graph. A sketch can be
handmade or the physical embedding of a geometric network like the real position
of telephone cables. Brandes et al. use a path-based min-cost flow formulation
to efficiently compute topology-preserving orthogonal drawings of such sketches.
Algorithms for octilinear instead of orthogonal layouts in this context would also
be of great interest.

There are two previous methods for drawing metro maps by Hong et al. [HMN05]
and by Stott and Rodgers [SR04] that are based on similar esthetics. Hong et al. use
a modified spring embedder and Stott and Rodgers apply a local optimization tech-
nique (see Section 3.2 for more details). However, neither of the methods guarantees
an octilinear drawing. This is an important drawback since the tidiness of metro
maps depends crucially on the restriction to only four orientations. Our method
will formulate the layout problem as a mixed-integer program (MIP) that guar-
antees a topology-preserving octilinear layout and optimizes a number of esthetics
criteria. It is the first method that ensures octilinearity of the drawing. Being a
global optimization method, the MIP approach does not suffer from the problem of
local optima. However, the worst-case time to solve a MIP is not polynomial. So,
depending on the problem size we need to apply data-reduction heuristics. We will
justify using such an NP-hard optimization technique by proving that the metro-
map layout problem itself is NP-hard.

The work is organized as follows. Chapter 2 introduces some basic concepts
about graphs and in specific about graph drawing. Also, we present mixed-integer
programming from a user’s perspective. In Chapter 3 we discuss related works
about drawing schematic (metro) maps and graph labeling. Chapter 4 formalizes
the intuition of a metro map given in this introduction. We address metro-map
esthetics and model hard constraints that need to be fulfilled and soft constraint
that should hold as tightly as possible. The chapter closes with a definition of the
metro-map layout problem. Subsequently, in Chapter 5, we examine the complex-
ity of drawing metro maps in comparison to drawing orthogonal layouts. We show
that it is NP-complete, in contrast to the orthogonal case, to determine whether a
metro-map drawing (fulfilling the hard constraints) actually exists for a given input
graph. Chapter 6, as the main part of our work, describes how we model the previ-
ously introduced problem of drawing metro maps as a mixed-integer program. We

4

2003 OPEN SOURCE ROUTE MAP

Perl/Tk
Pocket Reference

Perl für
System-

Administration

Perl in a Nutshell

Web

Netzwerk-
& System-
Administration

Nutshell &
Taschen-
bibliothek
(kurz & gut)

Nutshell &
Taschenbibliothek

(kurz & gut)

Unix

MacOSX

Netzwerk- & System-
Administration

Unix

Perl Linux

WebPerl Linux

Programming Web
Services with Perl

LPI Linux
Certification
in a Nutshell

Linux in a
Nutshell

Perl
kurz & gut XML in a

Nutshell

Web, Graphics & Perl/Tk:
Best of The Perl Journal

Python in
a Nutshell

Python & XML

Java™ & XML

Programmieren von
Grafiken mit Perl

Perl & LWP

Programmieren mit Perl DBI

Free as in
Freedom

Peer-to-Peer

The Cathedral
& The Bazaar

Open Sources Database
Nation

Beyond Contact

Linux – Wegweiser für Netzwerker

Tcl/Tk
in a Nutshell

AppleScript
in a Nutshell

Mac OS X
kurz & gut

Advanced Perl
Programming

Algorithmen
mit Perl

Reguläre Ausdrücke

Mastering Perl/Tk

Perl Kochbuch

Programmieren mit PHP

PHP Kochbuch

Web Services Essentials

PHP kurz & gut

Running Weblogs
with Slash

DocBook: The Definitive Guide

SVG Essentials

Einführung in XML

XML Schema

HTML &XHTML –
Das umfassende
Referenzwerk

Creating Applications
with Mozilla

Einführung in Perl

Computer Science & Perl Programming:
Best of The Perl Journal

Games, Diversions & Perl Culture:
Best of The Perl Journal

Einführung in Perl
für Bioinformatik

Programmieren
mit PerlLearning the Korn Shell

Programming Python

Apache
kurz & gut

Understanding
the Linux Kernel

Linux Gerätetreiber

Linux – Wegweiser zur
Installation & Konfiguration

Linux Security Cookbook

Managing RAID on Linux

Samba kurz & gut

Unix System-
Administration

Programming
with Qt

MySQL –
Einsatz &
Programmierung

Jython
Essentials

Webdatenbank-
applikationen mit

PHP & MySQL

Programming
with GNU
Software

Learning GNU Emacs

Writing GNU Emacs
Extensions

sed & awk

Effective awk
Programming

Textverarbeitung mit
den vi-Editor

Unix – Ein praktischer
Einstieg

MySQL Reference Manual

MySQL Cookbook

Learning
the bash
Shell

Practical
PostgreSQL

Unix
Power
Tools

GNU Emacs
kurz & gut

vi kurz & gut

sed & awk
kurz & gut

Exploring
Expect

Samba

Writing Apache Modules
with Perl and C

Exim: The Mail
Transfer Agent sendmail

Sichere Server mit Linux

Python Cookbook

Python Standard-Bibliothek

Einführung in Python

Python kurz & gut

Learning Perl on
Win 32 Systems

Python
Programming
on Win32

Perl für Website-
Management

Practical mod_perl

Perl & XML

Mason

Technologie &
Gesellschaft Technologie & Gesellschaft

Apache –
Das umfassende

Referenzwerk

SSH – Das
umfassende
Handbuch

Network
Security
with
OpenSSL

Java™

Ant: The
Definitive
Guide

NetBeans:
The Definitive
Guide

SAX2

Einführung in
Unix für MacOSX

Mac OS X:
The Missing

Manual

Mac OS X
for Unix

Developers
Using csh
& tcsh

Developing Bioinformatics Computer Skills

Java™

O’REILLY ®

Web

Perl

Unix

XML

Linux

Nutshell & Taschen-
bibliothek (kurz & gut)

Netzwerk- & System-
Administration

Technologie & Gesellschaft

Java™

Bioinformatik

Python

Mac OS X

L E G E N D E

Die Grübelei hat ein Ende!
Bücher von O’Reilly

&
LINUX

KONSORTEN

Learning Red Hat Linux

Building Embedded
Linux Systems

Linux
Server Hacks

www.oreilly.de

Python
XML

(a) The open source product lines of the publisher O’Reilly.

(b) The molecular circuitry of cancer.

Figure 1.3: Two examples of applying the metro-map metaphor to visualize struc-
tured information.

5

delineate how to enforce octilinearity, preservation of the embedding and planarity
with linear constraints. The esthetics criteria are modeled as objective functions to
minimize. Also, we suggest several heuristic methods to reduce the problem size
and speed up the MIP optimization. Obviously, metro maps should show stations
labeled with their names. We illustrate how to modify the input graph such that it
comprises vertex labels and how the MIP needs to be changed in order to accom-
modate these labels. The final section of Chapter 6 briefly describes our prototype
implementation of the model. In Chapter 7 we show by means of six different
real-world examples how our method successfully draws high-quality metro maps.
The examples are of increasing complexity. One of our layouts also includes vertex
labels. We conclude in Chapter 8 and point out directions for further work.

6

Chapter 2

Preliminaries

In this chapter we want to review the main concepts in graph drawing and mixed-
integer linear programming that will be used in the remainder of this work. Sec-
tion 2.1 recalls some common terminology in graph theory and graph drawing. In
Section 2.2 we address the basics of combinatorial optimization with mixed-integer
linear programs.

2.1 Graphs and Their Drawings

Graphs are one of the most ubiquitous data structures in computer science and are
in general used to model relationships between entities. The applications range from
UML diagrams in software engineering, which model for example the inheritance
relationships between classes in an object-oriented program, over social networks
displaying relationships within a group of people to geometric networks such as road
graphs or metro graphs modelling connections between certain geographic locations.
A common theme among all these fields is that the graph provides some important
information about the objects of interest and that it is important to visualize this
information for its users. Clearly, representing an abstract graph as an adjacency
list or matrix contains exactly the same information as its visualization. However,
displaying for example a metro map in the form of an adjacency list in a metro
station would be anything but a help for the passengers. Therefore, it is crucial
for a human user that a graph is visualized the right way. In a nice and clear
drawing the user can immediately find the information he is looking for, but a poor
visualization of a graph confuses the user and it will take a long time to extract
the relevant data from it. This is illustrated in Figure 2.1, where the same graph is
drawn nicely and symmetrically on the one hand and quite confusingly with many
edge crossings on the other hand. Yet, there is no unique measure of quality as each
application emphasizes different aspects of the graph structure. Consequently the
quality of a drawing can be judged quite differently depending on its purpose.

Next, we introduce some basic terminology for graphs and graph drawing in
general. For the wide range of algorithms for drawing graphs we refer to the graph
drawing literature. The book by di Battista et al. [dBETT99] and the tutorial
edited by Kaufmann and Wagner [KW01] give more details. Further, the survey on
graph drawing by Eades and Mutzel [EM99] is a good introduction to the topic.

7

1 2

3

4 5

6

(a)

1

2

3

4

5

6

(b)

Figure 2.1: Two drawings of the same graph that illustrate how readability can vary
between different layouts. In (a) the graph is drawn planarly and symmetrically with
straight-line edges whereas in (b) edges are arbitrary curves and there are many edge
crossings.

2.1.1 Graphs

An undirected graph G = (V,E) consists of a finite set of vertices V , |V | = n, and
a finite set of edges E, |E| = m, where an edge is an unordered pair e = {u, v} of
distinct vertices u, v ∈ V . To ease notation we will not use this set notation for
edges but simply the short form uv such that {u, v} = uv = vu all denote the same
undirected edge between vertices u and v. Two vertices that are connected by an
edge are called adjacent. An edge uv is incident to its end vertices u and v as well as
to all other edges that are incident to u and v. By N(v) we denote the neighborhood
of v, i.e. the set of all vertices adjacent to v. Vertices in N(v) are sometimes called
neighbors of v. The degree of a vertex v is the number of edges incident to v and is
abbreviated by deg(v).

A path in G is a sequence of distinct vertices (v1, v2, . . . , vk) of G such that
vivi+1 ∈ E for 1 ≤ i < k. The sequence (v1, v2, . . . , vk) is called a cycle if addition-
ally vkv1 ∈ E. We call a set L of paths and cycles a line cover of G if each edge in
E belongs to at least one element of L. An element L ∈ L is called a line. Let m′

be the total number of edges on all lines in L. Then m′ > m.

We define collapsing a degree-2 vertex as follows. Let u ∈ V be a vertex with
deg(u) = 2 and N(u) = {v1, v2}. Further assume that v1v2 /∈ E. Then collapsing u
results in a graph G′ = (V ′, E′), where V ′ = V \ {u} and E′ = (E \ {uv1, uv2}) ∪
{v1v2}. This operation simply removes u and reconnects its two neighbors with
an edge. Since the two neighbors had not been adjacent before, we avoid possible
conflicts with multi-edges.

Graphs can convey more information than just the adjacency relation between
vertices. For example weighted graphs assign a real weight w(e) to each edge e.
Labeled graphs have vertex and/or edge labels, e.g. a string λ(v) with the name of
v. More data can be attached to vertices and edges as desired.

2.1.2 Graph Drawing

In general, a (2-dimensional) drawing or layout Γ of a graph G is a function that
maps each vertex v ∈ V to a distinct point Γ(v) ∈ R2 and each edge uv ∈ E to a
simple open curve Γ(uv) with endpoints Γ(u) and Γ(v). Formally, a graph G and its
drawing Γ are different objects. Nevertheless, we often do not distinguish explicitly

8

between graph and drawing, e.g. we say “e is a straight line segment” instead of
“Γ(e) is a straight line segment”.

A drawing Γ is planar if no two edges intersect, except at common end vertices.
A graph that admits a planar drawing is called a planar graph and a planar graph
with maximum vertex degree k is a k-planar graph. Planar drawings partition the
plane into topologically connected regions, the faces of the drawing. There is one
unbounded region, which is called the external face, all other faces are internal
faces. Two faces are adjacent if their boundaries share an edge and vertices or
edges on the boundary of a face are incident to this face. The degree of a face f , in
short deg(f), denotes the number of edges on its boundary.

For each vertex v in a planar drawing a circular ordering of its incident edges
is imposed by their counterclockwise sequence around v. This ordering can also
be regarded as an ordering of the set N(v) of neighbors. We say that two planar
drawings of the same graph are equivalent if they have the same circular orderings
of the sets N(v) for all vertices v. An equivalence class for this relation is denoted
an embedding of G. An alternative but equivalent description of an embedding is
the set of all cycles bounding the faces, where one face is specified as the external
face. A planar graph together with an embedding is referred to as embedded graph
or simply plane graph.

A general layout of a graph maps edges to simple open curves as stated above.
There are classes of drawings where additional conditions must be satisfied by these
curves. These classes are often referred to as drawing conventions. In a straight-line
drawing each edge is drawn as the straight line between its end vertices. Orthogonal
or rectilinear layouts force edges to be drawn as polygonal chains of horizontal and
vertical line segments. Orthogonal layouts are well studied and are used for example
for drawing circuit plans or software engineering diagrams. Their schematic appear-
ance makes rectilinear drawings in a way interesting to apply for drawing schematic
maps such as metro maps. Yet, restricting edges to orthogonal polylines is often
too limiting for schematic maps. Therefore we introduce the concept of octilinear
layouts. In an octilinear layout all edges are drawn as chains of horizontal, vertical
or 45-degree diagonal line segments. Obviously, octilinear layouts can approximate
arbitrary straight-line segments better than rectilinear layouts. Moreover, the max-
imum possible vertex degree increases from 4 to 8 in octilinear layouts. We discuss
the relationship between orthogonal and octilinear layouts in more detail in Sec-
tion 5.1. All three, straight-line drawings, orthogonal and octilinear layouts, belong
to the more general class of polyline drawings, which represent edges as arbitrary
polygonal chains. See Figure 2.2 for examples of each class of drawings. A drawing
convention that can be combined with the above classes is the class of grid layouts.
In a grid layout all vertices must have integer coordinates.

If an edge is drawn as a polygonal chain with two or more line segments it has
edge bends where two segments meet. For a polyline drawing of a graph G with
associated line cover L we define line bends as follows. A line bend on a line L ∈ L
is either a bend on one of the edges of L or a bend between two consecutive edges
of L at their common vertex. Considering the angles in a polyline drawing Γ, the
angular resolution of Γ is defined as the minimum angle between any two adjacent
line segments in Γ. The angular resolution of the graph G is defined as the maximum
angular resolution of all its drawings. The angular resolution of orthogonal layouts
is 90 degrees while the angular resolution of octilinear layouts is 45 degrees.

Readability of a layout is an application-specific criterion by which humans usu-
ally measure the quality of a layout. This is naturally a vague measure and hard
to grasp mathematically. Still, various attempts have been made to specify proper-

9

1

2

34

5

(a)

4

5

1

3

2

(b)

1

3

2

4

5

(c)

2

3

1

4

5

(d)

2

3

1

4

5

(e)

Figure 2.2: Five drawings of the same planar graph G. In (a) the drawing is non-
planar and uses simple open curves. Subfigure (b) shows a non-planar layout with
straight-line edges. Drawing (c) is a planar polyline layout and (d) is a planar
orthogonal drawing. Layout (e) is octilinear. Note that the embeddings in (c) and
(d) are different while (d) and (e) have the same embedding.

ties that readable drawings typically show. Commonly accepted esthetics criteria
(see [dBETT99]) comprise:

• small number of crossings, none at all if possible,

• small drawing area, which is only meaningful if arbitrary down-scaling is
prohibited, e.g. by guaranteeing minimum distances between any two vertices,

• small total edge length (under the same conditions as before),

• uniform edge length,

• small number of edge bends, either for the layout as a whole or per edge,

• large angular resolution, and

• as symmetric as possible.

10

These criteria are associated with mostly computationally hard optimization prob-
lems and often conflict with each other when applied simultaneously. For example
the number of crossings in a drawing could be reduced by allowing edges with more
bends. Hence, one must be aware of these trade-offs and carefully select the right
esthetics.

Apart from these more structural properties of graph layouts, there are plenty
of possibilities how to visualize a single layout. Vertices can be shown in various
shapes (squares, circles, . . .), sizes and colors. Edges are usually drawn as curves,
but they too can have different colors and thicknesses. These graphical properties
are undoubtedly important for the readability of a diagram but an algorithmic
solution for graph drawing usually just computes vertex positions and the curves
representing edges and leaves the decision about graphical features to the user.

For labeled graphs there is the additional requirement to place labels of given size
close to their respective vertices or edges. Labels should neither overlap each other
nor obscure other edges and vertices. There are two classes of labeling problems.
The first problem is to label a given drawing of a graph and the second problem is
to draw and label a graph simultaneously so that the required space of the labels
is directly considered in the layout. For previous results on graph labeling see
Section 3.3 and for an extensive bibliography on map labeling literature see [WS96].

2.2 Combinatorial Optimization

Combinatorial optimization in general means optimization of some target function
over a set of discrete choices. In this work we will use an optimization technique
called mixed-integer linear programming (MIP) to find a metro map layout that
optimizes some esthetic criteria over the set of all feasible layouts. To this end, we
first introduce linear programming (LP) in Section 2.2.1 and then, in Section 2.2.2,
the closely related notion of mixed-integer linear programming. This introduction
will focus on the user’s point of view and not on the extensive theory of linear pro-
gramming or the algorithms to solve linear programs. For a more general overview
of LP and MIP see for example the surveys on linear programming by Chandru and
Rao [CR99b, CR99a]. Schrijver’s book [Sch86] and Bertsimas and Tsitsiklis [BT97]
cover theory and algorithms for (integer) linear programs.

2.2.1 Linear Programming

Linear Programming, abbreviated LP, deals with the minimization or maximiza-
tion of a linear objective function such that the solution respects a set of linear
constraints as follows.

Definition 2.1 Let A ∈ Rm×n be an m × n matrix, b ∈ Rm an m-dimensional
vector and c ∈ Rn an n-dimensional vector. Then the corresponding linear program
is given as

minimize cT x
subject to Ax ≤ b,

where x ∈ Rn is an n-dimensional vector of real variables.

This is just one form of a linear program. Equivalently, we could maximize the
objective function or use Ax = b or Ax ≥ b as the linear constraints. These types
of linear programs can be transformed into one another. This also means that in

11

practice we can mix the three different types of constraints in an LP since they are
transformable into the desired type.

The linear constraints in an LP define a set of the form {x ∈ Rn | Ax ≤ b}, called
the feasible region, which forms a polyhedron. Each vector x in the feasible region
is denoted as a feasible solution. If the feasible region is empty, the LP is called
infeasible. The polyhedral shape of the feasible region is exploited in algorithms
that find an optimal solution but this is beyond the scope of this work.

There is a number of algorithms for the solution of linear programs. The sim-
plex algorithm [Dan51] is often used in practice although it does not have a polyno-
mial worst-case running time. Hačijan [Hač79] developed a polynomial algorithm,
the ellipsoid method, which only is of theoretical interest. Some years later Kar-
markar [Kar84] published his interior point method, a new polynomial algorithm be-
ing competitive in practice as well. Commercial optimization tools such as CPLEX
or Xpress-MP implement different LP algorithms and are widely used for industrial
optimization tasks.

2.2.2 Mixed-Integer Programming

In many situations an optimization problem involves discrete resources but a linear
program is not capable of expressing that some variables can only take discrete
values. Hence it seems to be a natural extension of linear programs to restrict the
ranges of certain variables. Similar to LP we define mixed-integer programming
(MIP).

Definition 2.2 Let A ∈ Rm×n be an m × n matrix, b ∈ Rm be an m-dimensional
vector and c ∈ Rn be an n-dimensional vector. Let J ⊆ {1, 2, . . . , n}. Then the
corresponding mixed-integer program is given as

minimize cT x
subject to Ax ≤ b and

xj ∈ Z ∀j ∈ J,

where x = (x1, x2, . . . , xn) ∈ Rn is an n-dimensional vector of variables.

Again, as in the general LP case, constraints can be stated as either linear
equalities or inequalities at the same time. If J is empty, the problem is a regular
LP, and if all variables are integers, it is an integer program. The relaxation of a
MIP is the LP that results from dropping the integrality constraints. The matrix
and vector notation for an LP or MIP is convenient at this coarse level of detail but
when it comes to actually modelling a problem with linear constraints then we will
just give a list of the constraints instead of the full rows of the matrix A. Obviously,
each constraint can be expanded to a matrix row by using 0 as coefficient for unused
variables.

Unlike linear programming, mixed-integer programming is an NP-complete prob-
lem and many other classical NP-complete problems can be easily formulated as
MIP. Nevertheless, modern MIP solvers such as CPLEX or Xpress-MP often suc-
cessfully solve hard optimization problems relatively fast in practice. Algorithms
for mixed-integer programs usually first solve the LP relaxation of the input prob-
lem and then try to reduce the number of remaining fractional variables using a
heuristic branch-and-cut search tree algorithm. Problem-specific fine-tuning of the
parameters for the MIP solver can largely influence its running time.

12

Chapter 3

Related work

This chapter is meant to give an overview of the previous work on automated draw-
ing of metro maps. Metro map drawing is a problem that has been studied only
recently but is closely related to the general schematization of geographic maps, a
subdiscipline of automated cartography. Some additional requirements and rules
apply for metro maps. Due to the increased popularity of geographic information
systems (GIS), not only in the administration but also for applications on the in-
ternet such as route planners, city maps, geographical search etc., there is a high
demand for user-adapted map-drawing systems. Currently, certain tasks in map
generation can be automated to assist cartographers. When it comes to schematiz-
ing maps, research started in the 1970s with works on line simplification, see the
survey by Weibel [Wei97]. Current research deals with techniques to schematize
maps using only a restricted number of orientations for lines in the drawing. This
requirement is similar to what we demand for metro maps.

We stick to the historic development by first characterizing some previous results
in map schematization in Section 3.1 and then, in Section 3.2, describing recent
approaches for drawing metro maps in particular. Finally, since we combine labeling
and graph drawing in this work, Section 3.3 gives related results on drawing labeled
graphs.

3.1 Schematic Maps

Neyer [Ney99] studies a line simplification problem where each simplified line seg-
ment must be parallel to one of a set of given orientations. More precisely, the
input is a polygonal chain P , a set C of orientations, and a parameter ε. The goal
is to find another polygonal chain Q which is a C-oriented approximation of P , i.e.
the distance between P and Q in the Fréchet metric is at most ε, Q uses a mini-
mum number of line segments and each line segment is parallel to an orientation
in C. Neyer gives a dynamic programming algorithm to compute C-oriented line
simplifications in time O(kn2 log n), where n is the number of vertices on P , k is
the number of segments of Q and the number of orientations |C| is constant. The
value of ε only indirectly influences the time complexity: the smaller ε the larger
k. She states that, as an example, C-oriented line simplification can be used for
schematizing metro lines in a metro map. In that case C would contain the four
orientations horizontal, vertical and both diagonals. Using a reasonable value for ε
maintains the relative geographical position of stations on the line. However, this

13

algorithm only considers one path in the metro network at a time. Hence, the in-
teraction between different paths or metro lines in the network is not taken into
account. By simplifying one line at a time new intersections might appear or exist-
ing intersections might disappear. This not only results in changing the topology
of the network, it also can disrupt the graph structure by disconnecting vertices.
Decreasing the value of ε might anticipate this disadvantage in some cases but it
also reduces the ability of the method to simplify paths as they are thus forced to
stay closer to their respective input paths.

A further algorithm to schematize maps was presented by Barkowsky et al.
[BLR00]. Although designed for drawing schematic maps in general, they also
address drawing metro maps with their method. This is to the best of our knowledge
the first attempt to automate the problem. They use discrete curve evolution, i.e.
an algorithm for polygonal line simplification, to treat the lines of the Hamburg
subway system. The algorithm preserves the topology of the input map. However,
it neither restricts possible edge directions nor does it increase station distances in
the crowded downtown area to enhance readability. Hence, the algorithm seems to
be more suitable for simplifying road maps than for schematizing public transport
maps. Stations are labeled but no effort is made to avoid label overlap.

Avelar and Müller [AM00] implemented an algorithm to modify a given input
map by moving the endpoints of line segments such that the resulting map improves
in terms of their esthetic criteria. They claim to preserve the map’s topology us-
ing only simple geometric operations, which is different from previous methods for
preserving topology. The goal of their esthetics is to draw edges as straight octilin-
ear line segments. They set a maximum length for each segment and a minimum
distance between different segments. Basically, they iteratively calculate for each
vertex in the map a new position depending on the positions of its neighbourhood
such that edges approach the desired directions. The algorithm was successfully ap-
plied to the street network of Zurich. However, not all line segments could be drawn
octilinearly because vertex positions are influenced by several potentially conflicting
terms. Labels were not included.

An efficient algorithm for schematizing road networks is described by Cabello
et al. [CBD+01]. They draw edges of the input network as octilinear paths with
two or three links while preserving the input embedding. The user can restrict
the links to certain orientations, e.g. horizontal-diagonal-horizontal and vertical-
diagonal-vertical paths with angles of 135◦. Vertex positions keep their original
position. The algorithm runs in O(n log n) time as long as input edges are drawn
monotonously and it detects if no such schematized map exists. In this aspect the
algorithm by Cabello et al. is similar to ours because both methods guarantee an
octilinear drawing if one exists and they fail otherwise. The basic idea of their al-
gorithm is to compute an order among all input paths and incrementally construct
the new drawing according to this order. For drawing metro maps the major dis-
advantage of this algorithm is that vertices, i.e. metro stations, keep their original
positions. In real-world metro maps, however, moving stations is crucial for gener-
ating clear and structured layouts. Not doing so leads to many unnecessary bends
in the layout and crowded downtown areas remain confusing.

A more recent work by Cabello and van Kreveld [CvK03] covers a combinatorial
approach to the problem of aligning points. Given a set of points, the task is to align
as many points as possible horizontally, vertically or diagonally, where each point
can be placed somewhere in its own, given region. In their paper they consider
circles, rectangles or Voronoi cells as the regions around each point. The points
represent the vertices of an underlying graph and alignments are only considered
for adjacent vertices. Therefore, the alignment problem seems to be an important

14

task in schematic network design, where one goal is to place vertices such that as
many edges as possible are drawn as straight, octilinear line segments while roughly
preserving their positions. After modifying the vertex positions, the remaining non-
octilinear edges could for example be simplified with the previous method of Cabello
et al. [CBD+01]. Cabello and van Kreveld [CvK03] show that maximizing the num-
ber of alignments is NP-hard for general planar graphs. They give approximation
algorithms for several graph classes, among them a factor k/(3k+3)-approximation
for planar graphs and convex regions. This approximation requires nO(2k) time.
One inherent disadvantage of their method is that it can move vertices within their
regions such that the topology of the input graph changes. It also remains open
how well the algorithm works on metro graphs in practice.

The only of the presented methods that guarantees an octilinear and topology-
preserving result is the algorithm by Cabello et al. [CBD+01]. However, since
it leaves vertex positions untouched, it should not be the method of choice for
drawing metro maps. The other methods either preserve the embedding but do not
guarantee octilinearity or they generate octilinear drawings but potentially change
the topology. Our method overcomes these drawbacks.

3.2 Metro Maps

Two recent publications give algorithms that are explicitly designed to draw metro
maps. Hong et al. [HMN05] give five similar methods that are constructed on top
of each other. The most refined of these methods modifies a topology-maintaining
spring embedder such that edge weights are taken into account and such that ad-
ditional magnetic forces drag edges towards the closest octilinear direction. Edges
are drawn straight-line, without bends. Relative position between vertices is only
taken into account implicitly by using the original embedding as initial layout.

In a preprocessing step the metro graph is simplified by removing all degree-2
vertices and reconnecting both their neighbors. Hence, the simplified graph consists
only of intersection and degree-1 vertices. Chains of degree-2 vertices are collapsed
and represented by a single edge. The weight of each remaining edge is set to the
number of original edges it represents. After the final layout has been computed, all
degree-2 vertices are re-inserted into the corresponding edges in an equidistant man-
ner. This data-reduction step reduces the running time considerably. Station labels
are placed in one out of eight directions. While label–label overlaps are avoided,
labels sometimes intersect network edges. The results of Hong et al. are clearly
superior to those of Barkowsky et al. [BLR00] in the previous section. However,
they are still not very similar to commercial maps drawn by graphic designers. The
main deficiency is that most edges in the final layouts are close to, but not quite
octilinear. This seems to be due to the fact that the magnetic forces that determine
the layout are the sum of many conflicting terms. Moreover, edge lengths are far
from being uniform. In some of their examples one single edge can be as long as
about twenty of the shortest edges. This gives the layout a rather unbalanced look.

Stott and Rodgers [SR04] draw metro maps using multi-criteria optimization
based on hill climbing. For a given layout they define metrics for evaluating the
number of edge intersections, the octilinearity and the length of edges, the angular
resolution at vertices and the straightness of metro lines. The score of a layout is
the sum over these five metrics, the lower the score the higher the quality. Their
optimization process is iterative. They start with a layout on the integer grid that
is obtained from the original embedding. In each iteration they loop through all
vertices. For each vertex they consider alternative grid positions within a certain

15

radius that shrinks with each iteration. For each of these grid positions they com-
pute the quality of the modified layout. If any of the positions improves the quality
of the layout, they move the current vertex to the position with the largest im-
provement among those positions where the topology of the layout does not change.
They observe a typical problem of local optimization: overlong edges are often not
shortened since this would need moving several vertices at the same time, a situ-
ation that corresponds to a local minimum of their target function. For a bridge,
i.e., an edge whose removal disconnects the graph, this problem can easily be fixed
by moving all nodes of the smaller component towards the larger component. After
each iteration they detect all bridges and run the above fix for each of them. Of
course the same problem can occur in doubly connected graphs, where the fix does
not work. Stott and Rodgers have experimented with enforcing relative position,
but report that the results were disappointing as there were many situations where
a better layout could only be found by violating the relative position of some ver-
tices. They label stations, but do not check for overlaps other than with the edges
incident to the current station. They optionally use the same method for collapsing
chains of degree-2 vertices as Hong et al. [HMN05] to preprocess the input graph.

Just recently, Stott and Rodgers presented a refined version of their method
[SR05]. Improvements comprise mainly vertex labeling. They model labels as hor-
izontal rectangles and consider eight different positions for each label. Labeling is
performed after each iteration of vertex movements. The number of intersections
between labels and either edges, vertices or other labels is included as a summand
into the target function. Including labeling into the iterative layout process causes
the layout to take into account the presence of labels. That is not the case when
labels are placed as a second step once the layout is computed. However, in each
iteration the two tasks are still separated. Obviously, their refined method cannot
remove degree-2 vertices any more since they, too, need to be labeled.

The running time1 of Stott and Rodger’s method is considerably higher in com-
parison to Hong et al. [HMN05]. However, in the resulting maps nearly all edges are
octilinear and edge lengths are quite uniform, which makes the maps more legible.
The improved labeling method works nicely in some examples. Still, octilinearity
of the result and overlap-free labeling is not guaranteed. Difficulties arise mostly
because of the existence of local minima of the target function as the authors state
themselves. The effects of local minima are manifold and some are described in
[SR05]. Leaving a local minimum means in terms of the drawing that multiple
vertices and labels would need to be moved simultaneously to further improve the
quality measure.

The main advantage of our method over its predecessors is that we guarantee to
draw octilinear metro maps, that we avoid the problem of local optima, and that
we combine the placement of non-overlapping labels with graph drawing.

3.3 Graph Labeling

Two other approaches that use MIP formulations to combine graph drawing and
label placement were described by Klau and Mutzel [KM99, KM03] and by Binucci
et al. [BDLN05]. Unlike our MIP formulation, their approaches follow the topology-
shape-metrics approach (see Section 5.1.1 or [dBETT99]) and are restricted to or-
thogonal drawings. Klau and Mutzel [KM99] gave the first algorithm that simulta-
neously draws a graph and labels its vertices. Given an orthogonal representation

1We give a more detailed comparison of results and running times in Section 7.4.

16

of a graph and vertex labels, their MIP formulation draws the graph orthogonally
and attaches labels to its vertices while minimizing the total edge length. Binucci
et al. [BDLN05] gave a MIP and several heuristics for drawing graphs orthogonally.
In contrast to Klau and Mutzel, Binucci et al. allow edge labels, model vertices as
rectangles that can contain textual information, and minimize the total drawing
area.

17

Chapter 4

Drawing Metro Maps

Public transport maps are present in the daily life of many people today. Not
only large cities use diagrams to visualize their public transport system but also
smaller towns with just a couple of bus routes often display some sort of schematic
diagram of these services. The common purpose is to provide the passengers with an
easy-to-read map helping them to navigate through the transport network. In this
chapter we define our notion of a metro map and summarize widely accepted design
principles for“good”metro maps. Then we translate these information-visualization
concepts into formal mathematical terms and define the computational problem of
drawing a metro map.

4.1 What is a Metro Map?

Nowadays, people living or working in a large and developed metropolis often use
its metro1 system regularly. These commuters do of course have a strong picture
of their own network map in mind when discussing the term metro map. This
makes it difficult to come up with a proper definition. A recent book by Ovenden
[Ove03] displays over one hundred different metro maps of the world. Although
some common themes in the design of these maps reappear over and over again,
there are many differences as well. It even seems as if countries developed their
own metro map style over the years and there are subtle typical features for each
of them.

What is common to all metro maps is that they depict the graph consisting
of the metro stations as vertices and their interconnections as edges. We call this
graph the metro graph. Thus, designing a metro map can be seen from both a
cartographic and a graph-drawing perspective. Usually the metro graph is given as
a geographic map of the city which includes the true location of all stations and
connecting tracks. Only few cities stick to the geography in their metro map by
simply emphasizing the metro lines overlayed in contrasting colors on the city map.
Studying Ovenden’s collection of metro maps we observed that the larger the metro
graph the more cities use schematic maps.2

1The word ‘metro’ originates from the french métro, which is short for chemin de fer métropoli-
tain. ‘Metropolis’ itself comes from Greek meter mother + polis city. Synonymous terms for metro
are subway, underground, U-Bahn or just tube.

2An exemption is the map of the New York metro, with 469 stations one of the largest metros
in the world, which returned from a schematic map in the 1970s to a geographical map today.
However, some parts, where lines follow the grid layout of the roads, still have a rather schematic
appearance.

19

The big advantage of schematic maps is that the cartographer is allowed to
distort the scale and to straighten all the meandering lines of the geographic map.
In a schematic map the topology is emphasized, not the location, as Morrison states
in his survey on public transport maps [Mor96]. This freedom at hand, schematic
metro maps can substantially reorganize a previously confusing network map. The
mother of all modern schematic metro maps and a true design classic is the 1933
London Underground Diagram by Harry Beck, an engineering draughtsman. His
map has an interesting history in its own [Gar94] and shows how well he managed to
reorganize the London Underground or as Ovenden [Ove03] put it: “Beck’s diagram
resembled precision wiring rather than a plate of spaghetti!”. Figure 4.1 shows
a historic, geographic pocket map of 1920. In contrast, see Beck’s first official
schematic diagram of 1933 in Figure 4.2. Certainly, this revolutionary schematic
map was the turning point in metro-map design and soon other cities came up with
their own schematic maps, some well-done, others rather poor copies of Beck’s map.

Schematic maps are most appropriate for underground railway systems or rail-
ways that are independent of the road traffic and only to a lesser extent for tram
systems, where trams follow roads, or even for maps of bus routes. Morrison [Mor96]
argues that usually passengers of transport systems on the surface, especially when
following roads, have some clue about their true location. Then, it might be disturb-
ing when looking at a schematic map where things are shown differently. However,
on underground trains the journey is perceived as going straight and there is no
disturbance since nothing in front of the windows needs to be matched with the
metro map. Nonetheless, for many passengers schematic maps are helpful for route
planning even in a surface-based transport network. Indeed, that is what a good
metro map is all about: route planning. And the information needed to navigate
in the network is exactly what is given in the metro map, namely the stations and
their interconnections. When travelling with the metro one wants to know where
one is, which station follows which on one’s line, where one has to change to a
different line, what are the names of the termini, and where to get off the train. A
good schematic metro map aids in answering these questions (see [Mon96]) and is
specifically designed such that the form follows this function.

With all this in mind, we now define our notion of a metro map as a schematic
drawing of a public transport network. The minimum requirement for a schematic
map is that only a limited number of line orientations may be used. The next
section deals with different esthetics criteria which make up “nice” metro maps and
which should be adopted by a method that sets out to automate the drawing of
metro maps.

4.2 Metro-Map Esthetics

Esthetics criteria of metro maps can be divided into two groups: graphics criteria
and layout criteria. The former deal, for example, with how stations and lines
are graphically represented or which font to use for labeling. This is beyond a
graph drawing algorithm and must be decided by the user. The latter concern the
structure of the drawing, i.e. where to put stations and interconnections on the map.
This is also what needs to be done in an algorithm for drawing metro maps.

4.2.1 Graphical Criteria

Graphics criteria, such as the colors of the lines, strongly influence the readability of
a metro map. However, they are all based on empirical studies and the experience

20

of professional graphic designers. See for example Tufte’s book on information
visualization [Tuf90]. The most important principles for metro maps include:

• Code the different transport lines in the system by contrasting colors.3 This
is important for not getting confused when two lines meet at an interchange
station. It must be clear where each line continues.

• Emphasize the names of the termini of all lines such that passengers can
quickly determine the right direction of each line.

• Use different station symbols for interchange stations and regular stations.
Stations are usually marked with circles, boxes or just ticks but this varies
between different maps. Emphasize interchange stations.

• Label the stations using as few text orientations as possible. Labels should of
course not overlap with other elements of the map. Use a clear font.

This list is certainly not complete but it contains the principles that we included
in our graphical output (see Chapter 7). We use the same color coding as in the
corresponding official maps. Station symbols are similar to the London style, i.e.
interchange stations use black circles with white centers and regular stations are
just tick marks.

4.2.2 Layout Criteria

Identifying the right layout criteria is important for modeling the metro map prob-
lem in the next sections. Beck’s revolutionary diagram from 1933 (see Figure 4.2)
already satisfies most of the criteria by which contemporary metro maps are de-
signed. The following list gives the principles which we found in most of the maps
in Ovenden’s book [Ove03].

• Restrict all line segments to the octilinear orientations. This is the most
common layout style used today, although in some instances diagonals at 60◦

are utilized. Compare for example the Madrid metro map in Figure 4.3, where
diagonals at 60◦ help to decrease the height of the map, with the classic Beck
diagram in Figure 4.2 and its diagonals at 45◦.

• Roughly support the geographical mental map of passengers. This means
that the embedding of the graph must not be changed and that the relative
position between stations is roughly kept. A station which is located north
of some other station should not be placed south of that very station in the
metro map. Also, if some important geographical feature such as a coastline
or river is present, this feature might be included on the map (as the river
Thames on the tube map, see Figure 4.2) to help the user maintain his mental
map.

• It is important that lines are easy to follow with the eye. Hence, there should
be as few bends as possible along the lines. If they are unavoidable, then they
should be as soft as possible, i.e. preferably using an angle of 135◦. Special
care needs to be taken of stations where two or more lines meet. Lines should
always continue straight on both sides of that station, otherwise the eye might
be misled and continue on the wrong line.

3Maps using color codes for different lines are in “French style” according to Morrison [Mor96].

21

• For a balanced look, the distances between adjacent stations should be as uni-
form as possible. On monotonous parts between two interchanges all stations
should be equally spaced.

• Leave enough space for the station labels in the drawing. Ideally, the space
requirements for station labels are considered during the layout process.

Similar layout criteria for metro maps have been identified by both Hong et al.
[HMN05] and Stott and Rodgers [SR04]. Clearly, each metro map is a compromise
between the above principles. For example a small number of bends often means
that the geography needs to be quite heavily distorted. Therefore, the difficulty lies
in finding the right balance between all of these criteria.

4.3 Modeling Metro Maps

Given the above design principles we define a set of hard and soft constraints for
“nice” (unlabeled) metro maps. The hard constraints are compulsory and must be
fulfilled by each metro map layout. They implicitly define the space of all admissible
metro maps. The soft constraints, however, should hold as tightly as possible and
are used to measure the quality of a metro map. The better a map conforms to the
soft criteria the better its quality.

So, let G = (V,E) be the plane input metro graph and let the line cover L contain
all metro lines as paths and cycles. If the input is not a plane graph because for
example two metro lines intersect without having a station at the intersection, we
can simply planarize the graph by introducing a dummy vertex4 at this intersection.
Further, if there are metro lines that contain branches, and hence do not form a
path or cycle, we can treat each branch as a metro line on its own. So we can safely
assume that G is a plane graph and L consists of paths and cycles.

4.3.1 Hard Constraints

With the hard constraints we model the crucial parts of a metro map. Which char-
acteristics must be present in any case? In our opinion this is above all octilinearity
and preservation of the embedding among some minor, but nonetheless important,
properties. The exact constraints are as follows.

(H1) The drawing must respect the input topology, i.e. the embedding of the plane
input graph G must be preserved,

(H2) all edges in the drawing must be straight, octilinear line segments,

(H3) each edge e has a minimum length `e, and

(H4) each edge has minimum distance dmin from each non-incident edge.

Constraints (H1) and (H2) enforce topology-preserving, octilinear straight-line
drawings. (H3) and (H4) prevent that two vertices can get arbitrarily close in the
drawing. For two adjacent vertices their minimum distance is given by (H3). Usually
the minimum distance is the same for all edges. Constraint (H4) not only sets a

4In our implementation these vertices are treated slightly different. For example lines are not
allowed to bend at dummy vertices.

22

minimum distance for non-adjacent vertices but also prevents edge crossings and
thus enforces planarity of the drawing. While generating planar topology-preserving
metro-map drawings has been done before [HMN05, SR04], using octilinearity as a
compulsory criterion is new. Octilinearity is highly important in real-world metro
maps. Once a cartographer has decided to design an octilinear map, he will not
tolerate a single non-octilinear line because it would disrupt the overall appearance
of the map.

4.3.2 Soft Constraints

Having set the mandatory requirements for a metro map we can now give the soft
constraints that allow to distinguish between good and poor metro maps. The soft
constraints model the remaining layout criteria as follows.

(S1) Each metro line in L should have few line bends, especially at interchange
stations,

(S2) the total length of all edges in the drawing should be small, and

(S3) for each pair of adjacent vertices their relative position should be respected as
well as possible.

Constraint (S1) directly models the bend criterion. This is a very important
criterion for clear octilinear layouts. Constraint (S2) must be seen in conjunction
with (H3). These two constraints model the ideal edge length in the drawing.
Since (H3) sets a minimum edge length and (S2) minimizes the total edge length,
the optimal edge length for each edge exactly equals its minimum length. Con-
straint (S3), finally, means that the layout should not diverge more than necessary
from the input layout. If possible, each edge should have the octilinear direction
which is closest to the original direction. By measuring the angle between the
geographic and schematic direction of each edge this criterion can be quantified.

4.4 The Metro-Map Layout Problem

Now that we have given hard constraints that need to be satisfied by a metro map
and soft constraints that should be optimized, we can formally state the metro-map
layout problem. For now we only consider the pure graph-drawing task without
labeling.

Problem 4.1 (Metro-Map Layout Problem) Given a plane graph G = (V,E)
with maximum degree 8 and vertex coordinates in R2, a line cover L of G, minimum
edge lengths `e > 0 for each e ∈ E and a minimum distance dmin > 0,
find a nice drawing Γ of G, i.e. a drawing Γ that satisfies the hard constraints (H1)–
(H4) and optimally fulfills the soft constraints (S1)–(S3).

First, note that the restriction to graphs with maximum vertex degree 8 is jus-
tified since octilinear drawings can by definition only be realized for graphs with
maximum degree 8. Second, the user must define the actual objective function
by setting the weights of the three constraints (S1)–(S3) according to his prefer-
ences. Clearly, different weights result in different drawings. Further note that the
objective function can be easily extended by including other soft constraints.

23

If we combine graph drawing and labeling, the only difference to Problem 4.1 is
that we have additional hard constraints that model non-overlapping labels which
are placed according to one out of a set of predefined label positions. We show in
Section 6.4 how to extend our model to solve the graph-labeling problem.

Before we show how the metro-map layout problem can be formulated as a
mixed-integer program and how it can be solved in practice, the next chapter will
analyse the computational complexity of the problem.

24

Figure 4.1: A geographic tube map of 1920 [ltm] by MacDonald Gill.

25

Figure 4.2: Harry Beck’s first official tube map of 1933 [ltm].

26

C
am

b
io

 t
ar

ifa
ri

o
P

P

P

P

7

3

2

9
10 1

R

11

11

4

5

R

1

P

6

6

6

8

7
2

4

P

P P P

9
P

zo
na B
1

zo
na B
2

zo
na B
3

P

S
er

ra
no

Ve
lá

zq
ue

z
C

o
ló

n

N
ú

ñ
ez

d
e

B
al

b
o

a

R
ub

én
D

ar
ío

A
lo

n
so

M
ar

tí
n

ez

N
o

vi
ci

ad
o

Ve
nt

ur
a

R
o

d
rí

g
ue

z

Tr
ib

u
n

al

G
ra

n
 V

ía
C

hu
ec

a

B
ilb

ao

Ig
le

si
a

S
an

 B
er

n
ar

d
o

D
ie

g
o

 d
e

L
eó

n

M
an

u
el

B
ec

er
raE

l C
ar

m
en

S
an

to
D

o
m

in
g

o

C
al

la
o

P
ue

rt
a

d
el

 Á
ng

el
La

g
o

Li
st

a
Q

ui
nt

an
a

O
’D

o
nn

el
l

G
o

ya

Ib
iz

a

S
ai

n
z

d
e

B
ar

an
d

a

E
st

re
lla

V
in

at
er

o
s

A
rt

ill
er

o
s

P
av

o
ne

s

P
rí

n
ci

p
e

d
e

Ve
rg

ar
a

R
et

ir
o

S
ev

ill
a

B
an

co
d

e
E

sp
añ

a
T

ir
so

d
e

M
o

lin
a

A
nt

ó
n

M
ar

tí
n

A
to

ch
a

A
to

ch
a

R
en

fe M
en

én
d

ez
P

el
ay

o

V
ic

ál
va

ro

Va
ld

eb
er

na
rd

o
C

o
nd

e
d

e
C

as
al

P
ac

íf
ic

o

La
va

p
ié

s

S
o

l
La

 L
at

in
a

E
m

b
aj

ad
o

re
s

A
ca

ci
as

P
ue

rt
a

d
e

To
le

d
o M

ar
q

ué
s

d
e

Va
d

ill
o

U
rg

el

O
p

o
rt

o

O
p

añ
el

U
se

ra

P
u

eb
lo

 N
u

ev
o

A
sc

ao

G
ar

cí
a

N
o

b
le

ja
s

S
im

an
ca

sS
an

 B
la

s

C
iu

d
ad

 L
in

ea
l

S
ua

nz
esTo

rr
e

A
ri

as

B
ar

ri
o

 d
e

la
C

o
nc

ep
ci

ó
n

P
ar

q
ue

 d
e

la
s

A
ve

ni
d

as
C

ar
ta

g
en

a

A
vd

a.
 d

e
A

m
ér

ic
a

P
ro

sp
er

id
ad

A
lfo

ns
o

 X
III

A
vd

a.
 d

e
la

 P
az

A
rt

ur
o

 S
o

ri
a

E
sp

er
an

zaC
an

ill
as

S
an

 L
o

re
nz

o

C
am

p
o

 d
e

la
s

N
ac

io
ne

s

G
re

g
o

ri
o

M
ar

añ
ó

n
A

lo
ns

o
C

an
o

R
ío

s
R

o
sa

s

R
ep

úb
lic

a
A

rg
en

ti
na

C
ru

z
d

el
R

ay
o

C
o

nc
ha

 E
sp

in
a

C
o

lo
m

b
ia

P
ío

 X
II

D
uq

ue
 d

e
P

as
tr

an
a

B
eg

o
ña

B
ar

ri
o

 d
el

 P
ila

r
Ve

nt
ill

a

Va
ld

ea
ce

d
er

as

Te
tu

án

E
st

re
ch

o

A
lv

ar
ad

o

C
an

al

Q
ue

ve
d

o

Is
la

s
F

ili
p

in
as

Fr
an

co
s

R
od

ríg
ue

z

Va
ld

ez
ar

za

A
nt

o
ni

o
 M

ac
ha

d
o

M
et

ro
p

o
lit

an
o

G
uz

m
án

 e
l

B
ue

no

B
at

án

C
am

p
am

en
to

E
m

p
al

m
e

La
g

un
a

C
ar

p
et

an
a

Lu
ce

ro

A
lt

o
 d

e
E

xt
re

m
ad

ur
a

E
ug

en
ia

d
e

M
on

tij
o

C
ar

ab
an

ch
el

V
is

ta
A

le
g

re

A
b

ra
nt

es

P
al

o
s

d
e

la
F

ro
nt

er
a

D
el

ic
ia

s

M
én

d
ez

Á
lv

ar
o

P
ue

nt
e

d
e

Va
lle

ca
s

N
ue

va
 N

um
an

ci
a

P
o

rt
az

g
o

B
ue

no
s

A
ir

es

A
lt

o
 d

el
 A

re
na

l

M
ig

ue
l H

er
ná

nd
ez

V
ill

a
d

e
Va

lle
ca

s

P
eñ

ag
ra

nd
e

A
vd

a.
 Il

us
tr

ac
ió

n

La
co

m
a

S
an

 C
ip

ri
an

o

C
uz

co

S
an

ti
ag

o
B

er
na

b
éu

P
ue

rt
a

d
e

A
rg

an
d

a

C
u

at
ro

 C
am

in
o

s

M
o

n
cl

o
a

P
an

 B
en

d
it

o

P
ar

q
u

e
d

e
S

an
ta

 M
ar

ía

F
u

en
ca

rr
al

H
er

re
ra

 O
ri

a
P

it
is

P
la

za
 d

e
C

as
ti

lla

O
p

e
ra

P
rí

n
ci

p
e

P
ío

C
an

ill
ej

as

C
o

n
g

o
st

o

A
er

o
p

ue
rt

o

S
ie

rr
a

d
e

G
ua

d
al

up
e

Ve
n

ta
s

B
ar

aj
as

La
s

M
us

as

A
rg

ü
el

le
s

P
la

za
 E

líp
ti

ca

3
L

eg
az

p
i

6

8
N

ue
vo

s
M

in
is

te
ri

o
s

M
ar

 d
e

C
ri

st
al

P
la

za
 d

e
E

sp
añ

a

A
lu

ch
e

5
C

as
a

d
e

C
am

p
o

C
o

lo
ni

a
Ja

rd
ín

C
ua

tr
o

V
ie

nt
o

s

si
m

b
o

lo
g

ía
Tr

an
sb

o
rd

o
 e

nt
re

 lí
ne

as
 d

e
M

et
ro

Tr
an

sb
or

d
o

la
rg

o
en

tr
e

lín
ea

s
d

e
M

et
ro

E
st

ac
ió

n
co

n
ho

ra
ri

o
 r

es
tr

in
g

id
o

E
st

ac
ió

n
co

n
ac

ce
so

 p
ar

a
p

er
so

na
s

co
n

m
o

vi
lid

ad
 r

ed
uc

id
a.

 A
sc

en
so

r

A
cc

es
o

 c
o

n
ra

m
p

a

E
st

ac
ió

n
d

e
C

er
ca

ní
as

 R
en

fe

E
st

ac
ió

n
R

en
fe

Te
rm

in
al

 d
e

au
to

b
ús

 in
te

ru
rb

an
o

A
er

o
p

ue
rt

o
 d

e
M

ad
ri

d
 •

 B
ar

aj
as

PP

zo
n

a

B
1

zo
n

a

B
2

M
et

ro
S

ur

L
a

P
o

ve
d

a

R
iv

as
 U

rb
an

iz
ac

io
n

es

R
iv

as
 V

ac
ia

m
ad

ri
d

zo
n

a

B
2

zo
n

a

B
3

A
rg

an
d

a
d

el
 R

ey

zo
n

a

B
1

T
FM

C
iu

d
ad

U
ni

ve
rs

it
ar

ia

C
ha

m
ar

tí
n

10

L
eg

an
és

 C
en

tr
al

H
o

sp
it

al
 S

ev
er

o
 O

ch
o

a

L
o

s
E

sp
ar

ta
le

s

Ju
an

 d
e

la
C

ie
rv

a

A
lo

n
so

 d
e

M
en

d
o

za

M
an

u
el

a
M

al
as

añ
a

P
ar

q
u

e
O

es
te

A
lc

o
rc

ó
n

C
en

tr
al

P
ar

q
ue

 L
is

b
oa

12
12

12

E
l C

as
ar

C
on

se
rv

at
or

io

A
rr

o
yo

 C
u

le
b

ro
F

u
en

la
b

ra
d

a
C

en
tr

al

P
ar

q
u

e
E

u
ro

p
a

H
o

sp
it

al
 d

e
F

u
en

la
b

ra
d

a

M
ó

st
o

le
s

C
en

tr
al

12
10

P
u

er
ta

 d
el

 S
u

r

Jo
aq

uí
n

V
ilu

m
b

ra
le

s

C
as

a
d

el
 R

el
o

j

A
p

ar
ca

m
ie

nt
o

 L
ib

re
 e

n
es

ta
ci

ó
n

A
p

ar
ca

m
ie

nt
o

 d
e

P
ag

o
 e

n
es

ta
ci

ó
n

O
fic

in
a

d
e

In
fo

rm
ac

ió
n

al
 C

lie
nt

e

S
in

 s
er

vi
ci

o
 p

o
r

o
b

ra
s

E
st

ac
ió

n
ce

rr
ad

a
p

o
r

o
b

ra
s

P
as

ill
o

 c
er

ra
d

o
 p

o
r

o
b

ra
s

le
ye

nd
a

1
9

7

10
3 5

11

62
8

4

R12

P
la

za
 d

e
C

as
til

la
 /

 C
o

ng
o

st
o

Ve
nt

as
 /

 C
ua

tr
o

s
C

am
in

o
s

Le
g

az
p

i /
 M

o
nc

lo
a

A
rg

üe
lle

s
/

P
ar

q
ue

 d
e

S
an

ta
 M

ar
ía

C
an

ill
ej

as
 /

 C
as

a
d

e
C

am
p

o

C
irc

ul
ar

La
s

M
us

as
 /

 P
iti

s

N
ue

vo
s

M
in

is
te

ri
o

s
/

B
ar

aj
as

H
er

re
ra

 O
ri

a
/

A
rg

an
d

a
d

el
 R

ey

F
ue

nc
ar

ra
l /

 P
ue

rt
a

d
el

 S
ur

P
la

za
 E

líp
tic

a
/

P
an

 B
en

d
ito

M
et

ro
S

ur

Ó
p

er
a

/
P

rí
nc

ip
e

P
ío

Ju
liá

n
B

es
te

ir
o

E
l B

er
ci

al

U
n

iv
er

si
d

ad
 R

ey
 J

u
an

 C
ar

lo
s

P
ra

d
ill

o

H
os

p
ita

l d
e

M
ós

to
le

s

L
o

ra
n

ca

P
ar

q
u

e
d

e
lo

s
E

st
ad

o
s

G
et

af
e

C
en

tr
al

E
l C

ar
ra

sc
al

S
an

 N
ic

as
io

P
ir

ám
id

es

Ju
ni

o
 2

00
5/

3

Figure 4.3: The Madrid metro map [Met] is an example of a modern metro map
using diagonals at 60◦.

27

Chapter 5

Complexity of Drawing
Metro Maps

In this chapter we give theoretical results about the complexity of drawing metro
maps. Section 5.1 introduces the seemingly similar and well-studied problem of
drawing orthogonal layouts and shows that previous complexity results for orthogo-
nal layouts cannot be carried over to octilinear layouts like metro maps. Therefore,
in Section 5.2, we show the NP-completeness of the metro-map decision problem,
which is in contrast to the existence of efficient decision algorithms for the orthog-
onal case.

5.1 Relationship to Orthogonal Layouts

Orthogonal or rectilinear graph drawing methods (see [EFK01] or [dBETT99] for an
overview) were first developed in the context of VLSI chip design but soon these lay-
outs have also been studied for many other applications such as entity-relationship
or data-flow diagrams for databases or in software engineering. Orthogonal layouts
have a very schematic appearance since all edges are drawn as axis-parallel paths.
The difference to octilinear layouts is that the latter allow two more orientations in
the drawing, namely the two diagonals. In spite of this rather small change in the
definition, the existence of straight-line drawings in the rectilinear setting can be ef-
ficiently answered, whereas it turns out to be NP-hard for octilinear layouts. Next,
we show how to answer the existence of orthogonal layouts with metro-map-like
properties using Tamassia’s topology-shape-metrics algorithm [Tam87]. Then, we
outline the difficulties of the topology-shape-metrics method for octilinear layouts.

5.1.1 Rectilinear Graph Drawing

If we were to draw orthogonal layouts with properties similar to metro maps then
the corresponding decision problem is solved efficiently as stated by the following
theorem.

Theorem 5.1 (Tamassia 1987) Let G = (V,E) be a plane graph with maximum
degree 4. Then there is an efficient algorithm to decide whether G can be drawn as
an orthogonal metro map, in the sense that

29

1. all edges are drawn as rectilinear line segments,

2. the embedding of G is preserved, and

3. the layout is planar.

Proof. Tamassia [Tam87] presented an algorithm that computes a bend-minimal
orthogonal layout for a given plane graph G with maximum degree 4. As required
above the resulting orthogonal layout is planar and preserves the embedding. The
algorithm transforms the layout problem into a network flow problem, more pre-
cisely it involves finding a minimum-cost flow in a network with O(n) vertices and
arcs, where n = |V |. Currently, the best algorithm [GT96] for this network-flow
problem requires O(n7/4

√
log n) time. The cost of a flow in this network corresponds

to the number of bends in a drawing of G. Hence, a drawing that satisfies the above
properties exists if and only if the minimum-cost flow in Tamassia’s algorithm has
cost equal to 0.

Tamassia’s seminal work [Tam87] established the class of topology-shape-metrics
algorithms. In the topology-shape-metrics approach a graph layout is computed in
three steps. The first step finds a planar topology for the input graph G. Since in
our case we are already given an embedded graph, this step can be omitted. The
second step determines the shape of the layout. This is done by finding an orthogonal
representation of G. Basically, this is a list of face descriptions, where each face
description consists of a list of the circularly ordered edges on its boundary. For
each of these edges its bends are described and the angle between its last segment
and the first segment of the next edge in the face description is given. There is
a set of four conditions for which Tamassia shows that they are necessary and
sufficient for an orthogonal representation to correspond to a planar orthogonal
layout. The conditions model that the sum of all angles at a vertex equals 360◦,
that the sum of all angles inside an internal face f equals (180 deg(f) − 360)◦

and (180 deg(f) + 360)◦ on the external face, that the bends on an edge e are
compatible in both face descriptions in which e appears, and, finally, that there is a
planar graph that belongs to this orthogonal representation. We call an orthogonal
representation satisfying these conditions feasible. Note that the bend minimization
used in the proof above belongs to this second step and finds a feasible orthogonal
representation with a minimum number of bends. Finally, the third step, known
as compaction, sets the actual coordinates of all vertices and bends, thus fixing the
metrics of the layout. Usually some criterion like total edge length or area of the
drawing is optimized.

5.1.2 Extension to Octilinear Layouts

The flow network in the bend-minimization step of Tamassia’s algorithm can be
extended to so-called k-gonal graphs [Tam87]. A k-gonal graph is a plane graph
where the angles between edge segments are integer multiples of 180/k degrees. For
k = 2 this is just the orthogonal situation from the previous section but for k = 4 we
get octilinear layouts. Unfortunately, in contrast to orthogonal representations, a
feasible k-gonal representation is not sufficient for the existence of a suitable layout.
This observation is depicted in Figure 5.1. It shows a planar graph which is drawn
octilinearly, but with two edge intersections. These intersections are unavoidable
when drawing the graph with the given angles. However, the underlying 4-gonal
representation is feasible. The shape of the thin lines in the figure is fixed (except
scale) if the given angles must be realized. Only the thicker path can be modified as

30

1 2 3

4

5

6

7
8

9

10

11

Figure 5.1: A 4-gonal graph which cannot be drawn planarly although its 4-gonal
representation is feasible. The two edge intersections marked by gray circles are
inevitable regardless of changing edge lengths or vertex coordinates.

a whole by shifting its upper part up or down. But because the lower right vertex
of the path is anchored at a fixed position there will always be at least two edge
intersections as shown in the figure, regardless of how the upper part of the path is
shifted.

A similar but more general observation has been made by Bodlaender and Tel
[BT04]. They use the notion of d-linearity for graphs that allow a planar drawing
with all angles integer multiples of 360/d degrees. Note that a k-gonal graph as
defined in the previous paragraph is identical to a 2k-linear graph in Bodlaender and
Tel’s terminology. For d > 4 they show that an angular resolution of 360/d degrees
does not imply d-linearity. This leads to the conclusion that for d > 4 a feasible d-
linear representation for a plane graph G, as determined by Tamassia’s flow network,
does not suffice to allow a d-linear drawing of the graph. The final compaction step
in the topology-shape-metrics approach fails for certain inputs. Hence, the existence
of a feasible octilinear or 4-gonal representation is not equivalent to the existence
of a corresponding octilinear layout. In the next section we show that the latter
existence problem is NP-hard.

5.2 NP-Completeness of MetroMap

In this section we formulate a decision version of the metro map layout problem
and subsequently show that this problem is NP-complete. The proof is by reduction
from the NP-complete problem Planar 3-Sat, which is described next.

5.2.1 Planar 3-Sat

Recall the 3-Sat problem. Given a Boolean formula ϕ in conjunctive normal form,
i.e. ϕ = c1 ∧ c2 ∧ . . . ∧ cm, where each clause ci contains exactly three literals (a
literal is a variable or its negation), the problem is to decide whether there is an
assignment of values to the variables that satisfies all clauses. The 3-Sat problem
is known to be NP-complete.

The Planar 3-Sat problem [Lic82] is a satisfiability problem just as regular
3-Sat with the difference that the Boolean formula whose satisfiability is tested has
to be planar, which is defined in the following.

31

x1 x2 x3 x4 xn. . .x5

c1

c2

c3

c4

c5

c6

c7

Figure 5.2: Example of a planar variable-clause graph. The variables are placed
on a horizontal line and the clauses are represented as non-intersecting three-legged
combs connected to their variables either from above or from below. The inter-
variable edges shaded in gray are often left out in such a drawing.

Definition 5.1 Let ϕ be a Boolean formula in conjunctive normal form. Let Xϕ =
{x1, x2, . . . , xn} denote the set of variables of ϕ and Cϕ = {c1, c2, . . . , cm} the set
of clauses of ϕ. Then Hϕ = (V,E) is called the variable-clause graph of ϕ, where

V = Xϕ ∪ Cϕ

and
E = {xicj | xi ∈ cj or xi ∈ cj} ∪ {xixi+1 | 1 ≤ i < n} ∪ {xnx1}.

Now, we can introduce the notion of a planar formula using the planarity of its
variable-clause graph.

Definition 5.2 A Boolean formula ϕ in conjunctive normal form with at most
three literals per clause (3-CNF) is called planar when its variable-clause graph Hϕ

is planar.

In other words this means that the variable-clause graph of a planar formula
can be drawn such that all variables are placed next to each other on a horizontal
line and the clauses are drawn as three-legged combs connected to those variables
that occur in that clause [KR92]. These clause-combs lie either completely above
the variables or completely below. See Figure 5.2.

In 1982 Lichtenstein [Lic82] proved the following theorem about Planar 3-Sat.

Theorem 5.2 (Lichtenstein 1982) Deciding the satisfiability of a planar 3-CNF
formula is NP-complete.

This result has been used before in several NP-completeness proofs for geometric
problems such as point labelling [SW01] or graph drawing [CDR03].

5.2.2 MetroMap is NP-Complete

Having introduced Planar 3-Sat we can now show that MetroMap is an NP-
complete problem as well. We formulate the following theorem about the existence
of an octilinear layout with metro-map properties analogous to Theorem 5.1.

32

Theorem 5.3 Let G = (V,E) be a plane graph with maximum degree 8. Then it
is NP-hard to decide whether G can be drawn as a metro map, in the sense that

1. all edges are drawn as straight, octilinear line segments,

2. the embedding of G is preserved, and

3. the layout is planar.

Proof. As stated before, we prove this result by reducing Planar 3-Sat to
MetroMap. Hence, we have to find a polynomial transformation which maps
a planar 3-CNF formula ϕ to a plane graph G(ϕ) such that

ϕ satisfiable ⇔ G(ϕ) metro-map drawable.

Instead of considering ϕ itself, we think of the planar embedded variable-clause
graph Hϕ as the object that will be transformed. Indeed, we construct the graph
G(ϕ) in a way that its overall structure resembles Hϕ. One type of graph substruc-
tures or gadgets will model the variables, i.e. these gadgets can be drawn in exactly
two conformations representing the truth assignments of the respective variable.
The second type of gadgets will represent the clauses of ϕ, so it has the shape of
the combs in Hϕ (recall Figure 5.2) and is able to transmit the truth values of the
literals involved. At the point where the three legs meet there is a structure that
admits a planar drawing if and only if at least one of the literals has the value true.
Thus, we can draw G(ϕ) as a metro map if and only if ϕ is satisfiable.

The construction of G(ϕ) uses three basic building blocks that are depicted
in Figures 5.3 to 5.5. The main observation is that in the octilinear setting non-
degenerate triangles can only have three different shapes as shown in Figure 5.3(a).
Since in a triangle the sum of all three internal angles must equal 180◦ and since we
do not allow degenerate angles of 0◦, each angle must be of at least 45◦. Hence, it
follows immediately that exactly one of the three angles is 90◦ and both remaining
angles are 45◦. So the degree of freedom when drawing an octilinear triangle with
one fixed side consists in the choice of the vertex to be adjacent to the 90◦ angle.

Now we can combine several triangles to form more complex structures such as
the square block in Figure 5.3(b). We now argue that this block can only be realized
as depicted in the figure. The underlying embedded graph with five vertices has four
triangular faces ABE, BCE, CDE and DAE that share vertex E. Further, E does
not belong to any other face. Hence, the only way of assigning the right angles in
the four triangular faces is to put them at vertex E, otherwise the angles at E would
not sum up to 360◦. This already fixes all angles in this block structure. Obviously,
larger rigid structures can be built by attaching these square blocks side-by-side.

The third building block will model a translational joint between two rigid com-
ponents. In a first step we connect two square blocks by a construction consisting
of two triangles as in Figure 5.4. Because each of the two triangle has three possible
conformations we get in total nine different octilinear realizations of this compo-
nent. In order to serve as a joint with only two positions we need to find a way
to restrict the number of realizations to just two. The first two columns in Fig-
ure 5.4 show drawings of the component where the two square blocks involved are
not parallel or of different size. Only the last column shows three configurations
that move one square block with regard to the other one such that they remain
parallel and equally sized. We first modify the joint by placing another copy next
to it as depicted in Figure 5.5(a). Note that by combining the two copies like this
the unwanted configurations mentioned above are ruled out. It remains to get rid of

33

A B

C

AA

CC B

B

(a)

A B

CD

E

(b)

Figure 5.3: Two basic building blocks for the gadgets. A triangle with fixed side
AC can be realized octilinearly in exactly three different ways as shown in (a). The
square block in (b) has a fixed octilinear shape.

Figure 5.4: The nine possibilities of drawing two square blocks connected by two
octilinear triangles that share one side.

the realization on the right-hand side of Figure 5.5(a) that not only moves the two
bars vertically but also decreases their distance. To that end we attach a block with
a triangle and two opposed blocks to the bars as depicted in Figure 5.5(b). The
triangle serves as a spacer to keep both bars at the desired distance. In the first two
configurations of Figure 5.5(b) the spacer does not interfere with the opposed bar
but the last configuration cannot be correctly drawn without violating planarity.
So finally, this construction indeed models a translational joint that can shift a bar
by exactly one step in terms of the square block size. Further, the distance between
both bars equals the square block size, too.

Now we can construct more complex structures that serve as gadgets for the
variables and the clauses. It is important that all parts of these gadgets are con-
nected such that the side lengths of the square blocks are equal. This is ensured
when connecting square blocks side-by-side or when using the translational joint.
In that case we can assume that all vertices are placed on a uniform grid with unit
length and we do not have to deal with differently scaled substructures.

First, we describe the variable gadget. It must have the property to be drawable
in exactly two configurations that represent the truth values of the corresponding
variable. Further, it must be able to transmit that truth value to the clauses contain-
ing the variable, depending on whether it appears as negated literal in the respective
clause or not. A sample variable gadget is shown in Figure 5.6 and explained in the
following.

34

(a)

(b)

Figure 5.5: Modified octilinear structure that models a translational joint. In sub-
figure (a) the structure has three possible planar conformations. Including three
more blocks and an additional triangle as a spacer in subfigure (b), only two planar
conformations remain.

The main part of this gadget is a large horizontal bar (variable bar) in the middle
of the construction made up of of square blocks and containing some dents. It is
framed by a box of square blocks with upward and downward ports that will later
be connected to the clause gadgets. The bar can take a position on the left-hand
side (Figure 5.6(a)) and a position on the right-hand side (Figure 5.6(b)) since it is
fixed to its frame by several translational joints. Let the left position represent the
variable’s value true and the right position false. The connections to the clauses
are shown as the openings of tunnels with vertical literal bars inside. These literal
bars are fixed to the sides of the tunnel by translational joints and hence can move
upwards and downwards. They are placed relative to the variable bar such that they
can only be moved towards it if there is a dent aligned with the tunnel opening. If
the dent is shifted away from its aligned position then the vertical bar in turn must
be shifted away from the variable bar and into its tunnel, otherwise planarity would
be violated by the touching bars. Thus, the literal bar transmits pressure into the
clause gadget. The placement of the dents on the variable bar is as follows. Assume
that the bar takes the position on the left-hand side. Then, for all connections
representing positive literals we place an aligned dent on the bar. For negated
literals the dents are placed one position to the left such that they align with the
tunnel openings when the variable bar takes its right-hand position. Consequently,
only those literal bars corresponding to literals evaluating to true, depending on
the current value of the variable, can be fitted into their dents. This fact will be
used for constructing the clause gadget. Note that all parts of the structure are
connected such that they all use the same unit square block size.

Second, we describe the clause gadget. It must be constructed to be planarly
realizable if and only if at least one literal of that clause is true, i.e. one of the literal
bars in the tunnels connected to the variables fits into its dent. In other words the
gadget may not be drawn correctly if there is pressure from all three literals bars.
Now, we describe the clause gadget, as shown in Figure 5.7, in detail.

The gadget has the shape of a three-legged comb just as in the variable-clause
graph of the Planar 3-Sat problem, see Figure 5.2. The tunnel corresponding to
the second literal can be connected directly to its variable gadget. The two outer
tunnels are making a turn to run horizontally towards the center. At this turn the

35

. . .

. . .

. . .

...
...

...

...

...

...
...

...
...

(a)

. . .

. . .

. . .

...
...

...
...

...
...

...

...
...

(b)

Figure 5.6: The variable gadget. Subfigure (a) shows the state corresponding to
true, and subfigure (b) corresponds to false.

vertical pressure from the variable is transformed into horizontal pressure. This can
be seen in Figure 5.7(a). The left literal bar is in the upper position and thus causes
the adjacent horizontal bar to be in its right position. The literal bar on the right-
hand side is in the lower position and therefore allows the corresponding horizontal
bar to be shifted away from the center of the clause gadget. However, the crucial
part of the clause gadget is a flexible switch in the center of the structure where
the three literal tunnels meet. As a whole, this switch can shift vertically by one
unit due to four joints fixing it to the vertical walls of the gadget. In Figure 5.7(a)
it is in the lower position and in Figures 5.7(b) and 5.7(c) it is shifted upwards.
The middle part of the switch consists of a bar made up of four square blocks and
two triangles. This bar can be independently moved to the left and to the right
using two standard translational joints with spacers. Note the three black triangles
at the left, bottom and right side of the switch. These triangles may overlap with
the triangles at the end of those literal bars that exert pressure into the clause
gadget as seen in Figure 5.7(c) where the left literal bar and the switch bar touch
each other and thus violate planarity at the flash symbol. All in all, the whole

36

gadget can be drawn as a metro map as long as at least one literal is true and
the switch is shifted towards this very literal. However, if all literals are false and
hence the respective bars are shifted inside the gadget, then all possible positions
for the switch result in a violation of planarity. Again, all side lengths of the square
blocks in the clause gadget are equal because all the different parts are connected
via translational joints.

With these two gadgets for variables and clauses we can construct the whole
graph G(ϕ) by connecting the literal tunnels of the clause gadgets to their ports
in the respective variable gadgets. The resulting graph is planar since ϕ is planar.
We choose its input embedding according to a planar drawing of the variable-clause
graph of ϕ and the above gadget structures.

To conclude, let us repeat the correspondence between a planar Boolean 3-CNF
formula ϕ and the graph G(ϕ) constructed above. If ϕ is satisfiable then G(ϕ) can be
drawn as a metro map, where each variable gadget is realized corresponding to the
truth value in a satisfying variable assignment of ϕ. Consequently, by construction,
each clause gadget is correctly drawable as well. If, however, ϕ is not satisfiable
then for each variable assignment there is at least one clause that evaluates to false.
This means that G(ϕ) is not drawable as a metro map because in the corresponding
clause gadget all literal bars are pushed towards the clause center so that none of
the conformations of the switch can be drawn planarly.

Finally, the reduction itself can be done in polynomial time because G(ϕ) is
embedded on a grid of size polynomial in the length of ϕ. Therefore G(ϕ) has a
polynomial number of vertices and edges.

Corollary 5.1 MetroMap is NP-complete.

Proof. Obviously, for a given drawing of a plane input graph G, one can check in
polynomial time whether all edges are octilinear, the embedding is preserved, and
the drawing is planar. Hence MetroMap belongs to the class NP. By Theorem 5.3
MetroMap is NP-hard. This implies the NP-completeness of the problem.

37

(a)

(b) (c)

Figure 5.7: Three realizations of the clause gadgets. In subfigure (a) the literal bar
on the left transmits the value false, the other two literal bars are in their lower
position and transmit true. Alternative positions for these literal bars are indicated
with dotted lines. The switch in the center of the gadget selects the second literal
in subfigure (a). Subfigures (b) and (c) only show the central part of the gadget
(indicated by dashed lines) containing the switch. This switch selects the third
literal in (b), and the first literal in (c). Since the first literal is false, planarity is
violated at the flash symbol in (c).

38

Chapter 6

A Mixed-Integer Program
for Metro-Map Layouts

We decided to formulate the metro-map layout problem as mixed-integer program.
As we have shown in Section 5.2, the metro-map layout problem is NP-complete
which is a valid reason to apply a likewise NP-complete optimization method such
as MIP. Using MIP gives us the necessary flexibility to achieve the following. If
a layout that conforms to all hard constraints exists (and this was the case in all
examples we tried), then our MIP finds such a layout. Moreover our MIP optimizes
the weighted sum of cost functions each of which corresponds to a soft constraint.

As described in Section 2.2 a MIP consists of two parts: a set of linear constraints
and a linear objective function. In Section 6.1 we give the linear constraints that
model the hard constraints (H1)–(H4) of a metro-map layout. We simultaneously
optimize the three soft constraints (S1)–(S3) in Section 6.2 using a weighted sum of
three individual objective functions. The total number of constraints and variables
in our model is O(n + m′ + m2), where n is the number of stations in the metro
graph, m is the number of edges, and m′ is the size of the line cover L. Note that,
since G is planar, we have m ≤ 3n − 6 due to Euler’s formula. Section 6.3 gives
heuristic methods to reduce the metro graph and the MIP size. In Section 6.4 we
describe how vertex labels are included in the MIP model. Finally, Section 6.5 gives
an overview of our prototype implementation.

6.1 Linear Constraints

The linear constraints of our MIP are grouped into four parts. The first part in
Section 6.1.1 establishes an auxiliary coordinate system that eases handling octilin-
earity. The second part in Section 6.1.2 models octilinearity, minimum edge length,
and even parts of the soft constraint relative position. Section 6.1.3 is the third
part and describes the constraints that are necessary for the preservation of the
embedding. The fourth part, the constraints in Section 6.1.4, ensures that edges do
not intersect and keep their given minimum distance. Additional constraints that
are necessary for the objective function will be described later in Section 6.2.

39

6.1.1 Coordinate system

To be able to treat all four edge directions similarly, we introduce an (x, y, z1, z2)-
coordinate system, where each axis corresponds to one of the four admissible edge
orientations in the layout (see Figure 6.1). Thus, each vertex v has not only an
x-coordinate x(v) and a y-coordinate y(v) but also a z1- and a z2-coordinate. The
latter are defined and modeled as constraints as follows:

z1(v) = x(v) + y(v)
z2(v) = x(v)− y(v) ∀v ∈ V, (6.1)

where the variables x(v), y(v), z1(v), z2(v) can be chosen as either integers or con-
tinuous and 0 ≤ x(v), y(v) ≤ N . The constant N is meant to restrict the drawing
area in a reasonable way. In our experiments (see Chapter 7) we chose N = n. This
part of the model uses 2n constraints and 4n variables.

Furthermore, we need to specify an underlying metric for measuring distances.
We decided to use the L∞-metric, which defines the distance of two vertices u and
v to be max(|x(u)− x(v)|, |y(u)− y(v)|). This metric has the nice property that all
points on the boundary of the unit square centered at any point p have the same
distance from p. In Figure 6.1 eight points on the octilinear coordinate axes are
shown that all have the same L∞-distance from the origin. One side-effect of this is
that all vertices will be placed on a rectilinear grid as long as all edge lengths in the
L∞-metric are integers. Attention needs to be paid because a z1- or z2-coordinate
difference of 2 corresponds to a L∞-distance of 1.

6.1.2 Octilinear Edges

First of all, this part of the constraints models that all edges are drawn as straight,
octilinear line segments that conform to their respective minimum lengths, as stated
in hard constraints (H2) and (H3). Secondly, we also restrict the possible octilinear
directions for each edge. In octilinear drawings without further restrictions, each
edge uv can be drawn in eight different directions when fixing one of its endpoints.
Although geographic exactness is less important in metro maps, it should not be
ignored completely. This is formulated in soft constraint (S3), which means for
example that if a metro line is running in a northern direction in reality then we do
not want to draw it running southwards. Although it would be possible to model the
relative position solely as part of the objective function, we suggest to restrict the
edge directions to a set of acceptable directions and only consider those directions
in the objective function.

Before formulating the constraints we need some notation to address relative
positions between vertices and to denote directions of edges. As depicted in Fig-
ure 6.2, we define for each vertex v a partition of the plane into eight sectors. Each
sector is a 45-degree wedge with apex v. The wedges are centered around rays
that emanate from v and follow one of the four orientations either in positive or in
negative direction. The sectors are numbered from 0 to 7 counterclockwise starting
with the positive x-direction.

To denote the rough relative position between two vertices u and v in the original
layout we use the terms secu(v) and secv(u) representing the sector relative to u
in which v lies and vice versa. Similarly, for each edge uv, we define a variable
dir(u, v) to denote the octilinear direction of uv relative to u in the new layout. We
identify each octilinear direction with its corresponding sector. For example if edge
uv leaves u in negative z1-direction, we say dir(u, v) = 5. Note that the following
equalities hold: secu(v) = secv(u)+4 (mod 8) and dir(u, v) = dir(v, u)+4 (mod 8).

40

x

y

z1

z2

Figure 6.1: The octilinear coordinate
system with an indicated octilinear
grid in the background. The marked
points all have the same L∞-distance
from the origin.

u

1
2

3

4

5
6

0

7v

Figure 6.2: Numbering of the sectors
and the octilinear directions relative to
vertex u, e.g. secu(v) = 5.

As mentioned in the beginning of this section, we partially model the soft con-
straint (S3) as a hard constraint. As a compromise between strong conservation
of relative positions and flexibility to obtain a “nice” drawing, we allow that an
edge is drawn in three different ways. It can be drawn in the direction corre-
sponding to its original sector relative to either endpoint or it can be drawn in
the two neighboring directions (and thus the maximum deviation from the origi-
nal direction is 67.5◦). Let secpred

u (v) = secu(v) − 1 (mod 8), secorig
u (v) = secu(v)

and secsucc
u (v) = secu(v) + 1 (mod 8). Recall that the values seci

u(v) are fixed
and only depend on the original geographic position of the vertices, so there is no
need to perform modulo operations inside the MIP. Now, we restrict the variables
of type dir(u, v), which will be used in Sections 6.1.3, 6.2.2 and 6.2.3, to the set
{secpred

u (v), secorig
u (v), secsucc

u (v)}. This is expressed by the disjunction∨
i∈{pred,orig,succ}

(dir(u, v) = seci
u(v) ∧ dir(v, u) = seci

v(u)) (6.2)

To model the choice of direction we introduce three binary variables αpred, αorig, αsucc

and the constraint

αpred(u, v) + αorig(u, v) + αsucc(u, v) = 1 ∀uv ∈ E. (6.3)

There is exactly one variable in this constraint that takes the value 1 and this
variable will determine the direction in which edge uv is drawn, i.e. the term of
disjunction (6.2) that will evaluate to true.

Now, for each edge uv, we model the correct assignment of dir(u, v) and dir(v, u).
For each i ∈ {pred, orig, succ} we have the following set of constraints

dir(u, v)− seci
u(v) ≤ M(1− αi(u, v))

−dir(u, v) + seci
u(v) ≤ M(1− αi(u, v)) ∀uv ∈ E (6.4)

for dir(u, v) and analogously the constraints

dir(v, u)− seci
v(u) ≤ M(1− αi(u, v))

−dir(v, u) + seci
v(u) ≤ M(1− αi(u, v)) ∀uv ∈ E (6.5)

for dir(v, u), where these variables of type dir(u, v) are integers in the range {0, . . . , 7}
and M is a large constant. Note that only one binary variable of type αi(u, v) is
used for both constraints (6.4) and (6.5).

41

dir(u, v) condition 1 condition 2

0 y(u) = y(v) x(v)− x(u) ≥ `uv

1 z2(u) = z2(v) z1(v)− z1(u) ≥ 2`uv

2 x(u) = x(v) y(v)− y(u) ≥ `uv

3 z1(u) = z1(v) z2(u)− z2(v) ≥ 2`uv

4 y(u) = y(v) x(u)− x(v) ≥ `uv

5 z2(u) = z2(v) z1(u)− z1(v) ≥ 2`uv

6 x(u) = x(v) y(u)− y(v) ≥ `uv

7 z1(u) = z1(v) z2(v)− z2(u) ≥ 2`uv

Table 6.1: The octilinearity conditions for edge uv depending on the specified di-
rection dir(u, v). In the MIP these are formulated similarly to constraints (6.6).

The use of the large constant M in connection with a set of binary variables as
in constraint (6.3) is a standard trick in MIP modeling for formulating a disjunction
of constraints. The constant M must be an upper bound on the left-hand sides of
the inequalities. For example in the set of constraints (6.4) and (6.5) it is sufficient
to set M equal to 8. Choosing M as small as possible can reduce the runtime of
the MIP solver. However, for ease of presentation we will simply use M to denote
some sufficiently large constant. Here, if αi(u, v) = 0, the four constraints in (6.4)
and (6.5) are trivially fulfilled and have no influence on the values of the variables
that appear on the left-hand sides. On the other hand if αi(u, v) = 1, the four
inequalities are equivalent to dir(u, v) = seci

u(v) and dir(v, u) = seci
v(u) as desired

(equality constraints have to be transformed into two inequalities when using the
trick with the large constant). Due to constraint (6.3), it holds that αi(u, v) = 1 for
exactly one i ∈ {pred, orig, succ}. Thus, exactly one term of the disjunction (6.2) is
fulfilled.

Further, depending on the actual values of seci
u(v), we formulate three more

constraints for each i ∈ {pred, orig, succ}. For example let secorig
u (v) = 2 (meaning

v is vertically above u in the original layout). Then the constraints for edge uv and
i = orig are as follows

x(u)− x(v) ≤ M(1− αorig(u, v))
−x(u) + x(v) ≤ M(1− αorig(u, v))
−y(u) + y(v) ≥ −M(1− αorig(u, v)) + `uv,

(6.6)

where `uv > 0 is the minimum length of edge uv. If αorig(u, v) = 1, these constraints
force u and v to have the same x-coordinate and to keep a vertical distance of at
least `uv. This is exactly what is needed for an edge running vertically upwards. The
other seven possibilities are formulated similarly by forcing one of the coordinates of
both vertices to be equal and the distance along the respective octilinear direction
to be at least `uv as given in Table 6.1. Recall from Section 6.1.1 that for our
metric the lengths in diagonal directions need to be multiplied by 2. For i = pred
or i = succ the constraints are constructed analogously.

This part of our MIP formulation consists of 22m constraints and 5m variables
in total.

42

6.1.3 Preservation of the Embedding

To guarantee preservation of the original embedding as demanded in hard con-
straint (H1) it suffices in a planar drawing to maintain for each vertex v ∈ V the
circular ordering of all incident edges.

Let N(v) = {u1, u2, . . . , udeg(v)} denote the set of all neighbors of v. The coun-
terclockwise ordering of the edges vu ∈ E incident to v implies an ordering on N(v)
by identifying each edge vu with the vertex u opposite of v. Assume that the order-
ing is u1 < u2 < . . . < udeg(v). We have to ensure that this ordering is maintained.
In the metro-map layout one of these vertices, say uj (more precisely the variable
dir(v, uj)), is assigned the smallest direction number from the set of possible direc-
tions {0, . . . , 7} using the coding scheme introduced in the previous section. This
means that uj is encountered first when rotating a ray counterclockwise around v
starting in positive x-direction. All other vertices in N(v) must follow in the order
specified by the input embedding and they must have strictly increasing direction
numbers:

dir(v, uj) < dir(v, uj+1) < . . . < dir(v, uj+deg(v)−1),

where all indices greater than deg(v) are considered modulo deg(v) for the rest of
this section. In other words, all but one of the inequalities

dir(v, u1) < dir(v, u2),
dir(v, u2) < dir(v, u3),

...
dir(v, udeg(v)−1) < dir(v, udeg(v)),

dir(v, udeg(v)) < dir(v, u1)

must hold.

In order to model the selection of the vertex with smallest direction number, we
again use binary variables as in Section 6.1.2. But instead of applying the standard
trick to model a disjunction of deg(v) many terms with deg(v) − 1 constraints
each, we make use of the fact that in each case exactly one of the inequalities
may be violated while the rest must hold. This requires about a factor deg(v) less
constraints. They are as follows:

β1(v) + β2(v) + . . . + βdeg(v)(v) = 1 ∀v ∈ V, deg(v) ≥ 2, (6.7)

with binary variables βi(v), and

dir(v, u2)− dir(v, u1) ≥ −Mβ1(v) + 1
dir(v, u3)− dir(v, u2) ≥ −Mβ2(v) + 1

...
dir(v, u1)− dir(v, udeg(v)) ≥ −Mβdeg(v)(v) + 1

∀v ∈ V, deg(v) ≥ 2.

(6.8)

For each βi(v) with i = 1, . . . ,deg(v) there is a corresponding constraint in the
list (6.8) where βi(v) appears on the right-hand side. All but one βi(v) are set to 0
by constraint (6.7). The inequalities corresponding to those βi(v) that are equal to
0 hence read as

dir(v, ui+1)− dir(v, ui) ≥ 1.

This simply means that the direction values must satisfy dir(v, ui) < dir(v, ui+1) as
required by the given circular ordering. For one index j the value of βj(v) equals 1.
Now the corresponding inequality reads as follows

dir(v, uj+1)− dir(v, uj) ≥ −M + 1

43

and is trivially satisfied for any left-hand side. Hence, vertex uj+1 is determined as
the vertex with smallest direction number among N(v) because its direction number
does not have to be larger than the one of its predecessor. Altogether, the above
constraints assure that the input embedding is preserved.

The constraints in this part not only enforce that the combinatorial embedding
is preserved but also that no two edges incident to the same vertex can have the
same direction. An upper bound on the number of constraints and variables for this
part of the MIP is given by

∑
v∈V (deg(v) + 1) which is in O(m).

6.1.4 Planarity

To guarantee planarity we have to ensure that pairs of edges do not intersect.
This can be done for a pair (e1, e2), e1 6= e2 of straight-line octilinear edges by
distinguishing eight possible relative positions for them. We express these relative
positions using compass orientations. Fixing one edge e1 = u1v1 the second edge
e2 = u2v2 must be placed north, south, east, west or northeast, northwest, southeast,
southwest of e1. For example northeast means in terms of our coordinate system
that both vertices incident to e1 have strictly smaller z1-values than both vertices
incident to e2. The other terms are defined in a similar way. By setting the minimum
distance in the respective direction to dmin we also model hard constraint (H4).

Clearly, an octilinear straight-line drawing is planar if and only if all pairs of
non-incident edges satisfy at least one of the above conditions. Naively, we model
this disjunctive constraint indeed for all pairs of non-incident edges as follows:

∑
i∈{N,S,E,W,NE,NW,SE,SW}

γi(e1, e2) ≥ 1
∀(e1, e2) ∈ E × E,
e1, e2 not incident, (6.9)

where the variables γN, . . . , γSW are binary. With the help of these binary variables
and the constant M the selection of the corresponding relative position is modeled.
As an example we give the constraints for the condition “e2 is east of e1”

x(u1)− x(u2) ≤ M(1− γE(e1, e2))− dmin

x(u1)− x(v2) ≤ M(1− γE(e1, e2))− dmin

x(v1)− x(u2) ≤ M(1− γE(e1, e2))− dmin

x(v1)− x(v2) ≤ M(1− γE(e1, e2))− dmin

∀(e1, e2) ∈ E × E,
e1, e2 not incident.

(6.10)

Recall that dmin is the minimum distance between non-incident edges as given
in hard constraint (H4). Analogously, each of the other seven relative positions is
modeled using four constraints each. This amounts to a total of 33 constraints and
8 binary variables for each edge pair. The problem is that the number of possible
non-incident edge pairs is O(m2) and hence these constraints and variables are
responsible for more than 90 percent of the MIP size in practice (see Chapter 7 for
the actual numbers). Therefore, in Section 6.3 we give several heuristics to reduce
the number of constraints that enforce planarity.

6.2 Objective Function

The goal of the objective function is to model the soft constraints (S1)–(S3) such
that minimizing the objective function corresponds to optimally satisfying the soft

44

constraints. Since we are considering three different soft constraints we need to
create individual linear objective functions for each of them. These will then be
optimized simultaneously using a weighted sum of the three objective functions:

Minimize λlength costlength + λbends costbends + λrelpos costrelpos, (6.11)

where the variables of type λi are positive user-defined weights, each of which indi-
vidually emphasizes a certain esthetics criterion. Like all multicriteria optimization
techniques the individual criteria might be conflicting terms and thus the result
will usually be a compromise of the individual goals. Consequently, adjusting the
weights is an important task that needs to be done carefully. Next, we describe the
three cost functions and additional constraints needed by the respective cost func-
tions. Finally, in Section 6.2.4, we summarize our MIP model for drawing metro
maps.

6.2.1 Minimizing Edge Lengths

The edge lengths are given in the L∞-metric as stated before. So, for modeling the
soft constraint (S2) we define new real-valued, non-negative variables D(u, v) for all
edges uv ∈ E which serve as upper bounds on the lengths of their respective edges.
By setting

costlength =
∑

uv∈E

D(u, v) (6.12)

and by minimizing costlength, these variables will become tight upper bounds and
indeed equal the corresponding edge lengths.

The constraints that bound D(u, v) depend on the actual direction of edge uv.
Note that this direction is determined according to the constraints in Section 6.1.2.
Thus we can reuse the binary variables defined in constraint (6.3) in that section
to distinguish the three cases for the edge direction. The binary variables tell us
which direction is selected and we can use the appropriate coordinate differences
to determine the edge length. As an example assume that secu(v) = 1. Then the
constraints for edge uv are

x(v)− x(u) ≤ M(1− αpred(u, v)) + D(u, v)
x(v)− x(u) ≤ M(1− αorig(u, v)) + D(u, v)
y(v)− y(u) ≤ M(1− αsucc(u, v)) + D(u, v)

(6.13)

Note that for a diagonal edge uv it holds that |x(u)− x(v)| = |y(u)− y(v)|. Hence,
in this case we can use either the x- or the y-coordinates to determine the length
D(u, v). This also avoids the multiplication by a factor 2 which would be otherwise
necessary for diagonal lengths. The edge lengths for other values of secu(v) are
modeled similarly by using the right coordinate differences on the left-hand sides of
Equation (6.13). In total we need m variables and 3m constraints.

6.2.2 Avoiding Line Bends

Clarity in an octilinear drawing depends crucially on the ability to visually follow
the metro lines. This can be partially enhanced by using distinguishable colors, but
also by avoiding bends along the lines as formulated in soft constraint (S1).

We define the bend cost subject to the actual angle between two adjacent edges
on a path L ∈ L. Due to the octilinearity constraints and to the fact that two
adjacent edges cannot have the same direction relative to their joint vertex the

45

vu

1
2

3

0

1
2

3 w

w

w
w

w

w

w

Figure 6.3: Bend cost bend(u, v, w) for each value of dirv(w). The cost increases
with the acuteness of the angle between edges uv and vw.

angles can only equal 180, 135, 90, and 45 degrees. In that order we define the
corresponding bend cost to be 0, 1, 2, and 3, such that the cost increases with the
acuteness of the angle, see Figure 6.3.

In our model we can determine the angle between two adjacent edges uv and
vw by using the values of dir(u, v) and dir(v, w) that have been assigned by the
constraints in Section 6.1.2. For ease of notation let ∆dir(u, v, w) = dir(u, v) −
dir(v, w). Note that the value of ∆dir(u, v, w) ranges from −7 to 7. Then, the bend
cost can be expressed as

bend(u, v, w) =

{
|∆dir(u, v, w)| if |∆dir(u, v, w)| ≤ 4
8− |∆dir(u, v, w)| if |∆dir(u, v, w)| ≥ 5.

(6.14)

Now we can define the total bend cost of the drawing as

costbends =
∑

uv,vw∈L, L∈L
bend(u, v, w). (6.15)

Minimizing this value hence minimizes the number and acuteness of all bends along
all lines in L. An intensified version could assign higher, e.g. double, costs to bends
that appear in intersection vertices to stress that lines should go straight through
those vertices.

The formulation of bend cost in (6.14) cannot be transformed directly into a set
of linear constraints because it involves absolute values and a case distinction. Here,
we solve this problem using instead the following constraints for all lines L ∈ L and
pairs of incident edges uv, vw on L. Again, we need some binary variables, namely
δ1(u, v, w), δ2(u, v, w), and δ3(u, v, w). The constraint

δ1(u, v, w) + δ2(u, v, w) + δ3(u, v, w) = 2 (6.16)

makes sure that exactly one of the three binary variables takes the value 0. Then,
the set of constraints

∆dir(u, v, w) ≤ −5 + δ1(u, v, w)M
∆dir(u, v, w) ≥ 5− δ2(u, v, w)M
∆dir(u, v, w) ≤ 4 + δ3(u, v, w)M
∆dir(u, v, w) ≥ −4− δ3(u, v, w)M

(6.17)

establishes the following relationship between the value of ∆dir(u, v, w) and the
variables of type δi(u, v, w):

∆dir(u, v, w) ≤ −5 ⇔ δ1(u, v, w) = 0,
∆dir(u, v, w) ≥ 5 ⇔ δ2(u, v, w) = 0,

−4 ≤ ∆dir(u, v, w) ≤ 4 ⇔ δ3(u, v, w) = 0.
(6.18)

46

The bend cost bend(u, v, w) is meant to take values in the range from 0 to 4 for
all possible values of ∆dir(u, v, w) as defined in (6.14). For δ3(u, v, w) = 0 the
bend cost equals |∆dir(u, v, w)|. However, for δ1(u, v, w) = 0 or δ2(u, v, w) = 0
this equality does not hold. Note that the values 5, 6, and 7 for |∆dir(u, v, w)| in
these cases correspond to bend costs of 3, 2, and 1 in that order. So subtracting
or adding 8 to ∆dir(u, v, w), depending on the sign, before determining its absolute
value establishes the desired bend cost. This is modeled by the two constraints

∆dir(u, v, w)− 8δ1(u, v, w) + 8δ2(u, v, w) ≥ −bend(u, v, w)
∆dir(u, v, w)− 8δ1(u, v, w) + 8δ2(u, v, w) ≤ bend(u, v, w) (6.19)

that assign the bend cost bend(u, v, w) for the bend between edges uv and vw. The
variable bend(u, v, w) is integer valued and non-negative. These two constraints
make bend(u, v, w) an upper bound on the absolute value of the left-hand sides
in (6.19). By minimizing bend(u, v, w) inside costbends, the bound gets tight and
thus equal to that absolute value. For δ3(u, v, w) = 0 (and thus δ1(u, v, w) = 1 and
δ2(u, v, w) = 1) we add and subtract 8 at the same time on the left-hand sides.
However, if one of δ1(u, v, w) or δ2(u, v, w) equals 0 then the addition or subtraction
of 8 really takes place and hence establishes the correct value of the left-hand side
as described before. All in all, this models the bend cost as defined in (6.14).

Minimizing the number of bends thus uses four variables and seven constraints
for each pair of incident edges along a path L ∈ L. Since there are in total at most
m′ such pairs we are using at most 4m′ variables and 7m′ constraints.

6.2.3 Preserving Relative Positions

To preserve as much of the overall appearance of the metro system as possible we
have restricted the edge directions to the set of the three directions closest to the
original one in Section 6.1.2. This already avoids that the new layout drastically
alters relative positions between adjacent vertices. Ideally, we want to draw an edge
uv using its nearest octilinear approximation, i.e. the direction where dir(u, v) =
secu(v). We introduce a cost of 1 in case that the layout does not use that direction.
If we had not restricted each edge to a set of three directions at an earlier stage
a more sophisticated cost function would be necessary that charges the amount of
deviation from the optimal direction. In our simple case, a binary cost function
suffices. This models soft constraint (S3) and prefers layouts that preserve the
relative positions.

For each edge uv we define as its relative-position cost a binary variable ε(u, v)
which is 0 if and only if dir(u, v) = secu(v). This is modeled as follows

−Mε(u, v) ≤ dir(u, v)− secu(v) ≤ Mε(u, v) ∀uv ∈ E. (6.20)

Now we can define the cost for deviating from the original relative positions as

costrelpos =
∑

uv∈E

ε(u, v) (6.21)

which, for each edge, charges 1 when not selecting the nearest octilinear direction.
We need m variables and 2m constraints for this part of the objective function.

6.2.4 Summary of the Model

We now summarize the constraints given in Sections 6.1.1–6.1.4 and the objective
functions given in Sections 6.2.1–6.2.3. Taken together, they constitute a MIP that

47

solves the NP-hard metro-map layout problem. If the input graph is metro-map
drawable our MIP finds a layout that satisfies all hard constraints (H1)–(H4) and
at the same time optimizes a weighted sum of cost functions corresponding to the
soft constraints (S1)–(S3). Otherwise the MIP is infeasible. The following theorem
summarizes the number of constraints and variables.

Theorem 6.1 The Metro-Map Layout Problem can be formulated as mixed-integer
program using O(n + m′ + m2) variables and linear constraints.

Note that only the planarity constraints in Section 6.1.4 require O(m2) vari-
ables and constraints. Otherwise the model is of linear size. This motivates the
development of planarity heuristics in the next section.

6.3 Speed-Up Heuristics

Driven by the large size of the mixed-integer programs for our real-world examples
and by the extremely low speed of the optimizer on these large programs, we de-
cided to implement some heuristics to reduce the MIP size and hence speed up the
computation of our layouts. The first idea reduces the size of the metro graph by
removing some dispensable vertices and the second heuristic cuts down the num-
ber of constraints in charge of guaranteeing planarity. Recall that this number is
quadratic in the input size.

6.3.1 Reducing the Graph Size

A common feature of real-world metro maps is that they tend to have a large num-
ber of degree-2 vertices on routes between two interchange stations. It is useful
and common in real metro maps to treat a path between pairs of neighboring in-
terchange or terminal stations as a whole and draw it as straight as possible. It
adds unnecessary complexity to the model when such a path needs to be straight-
ened edge by edge. This leads to the idea of removing chains of degree-2 vertices
and replacing them by a single edge. The algorithm must be aware of the fact
that such an edge represents multiple short edges. The simplest way to do so is to
set the minimum length of the new edge equal to the number of vertices that had
been removed during its creation. In the final drawing the removed vertices can be
reinserted equidistantly on their respective edges.

This data-reduction trick has been applied before in the context of metro maps
[HMN05, SR04] but it lacks some flexibility because it requires that all interchange
stations must be connected by straight, octilinear line segments. This might either
distort the layout in order to be drawable or there might not even exist a solution.

To this end we extend the simple approach and retain up to two vertices on each
chain of degree-2 vertices. These vertices act as joints such that the path between
two interchanges can be drawn as a polyline with three segments or links. Hence, we
call this method 3-link heuristic. This allows that interchanges can get connected
with much less distortion of the remaining graph. Again, the removed degree-2
vertices are reinserted equidistantly on the respective polylines in the final drawing.
Our experiments show that using 3-link polylines is a good compromise between
flexibility of the drawing and size of the MIP model. Since the target function
penalizes bends along lines the possibility to introduce bends is in fact rarely used.
Note that Cabello et al. [CBD+01] also apply 3-link polylines to connect vertices in
schematic maps.

48

There are some technical details in connection with this preprocessing step.
Degree-2 vertices can only be collapsed as long as no multi-edges are created. The
definition of collapsing such a vertex (see Section 2.1.1) considers this case. When
two edges are merged by the removal of their common vertex their lengths are added
and the sum is set as the new length to accommodate all degree-2 vertices. After
contracting chains of degree-2 vertices in this way all the meandering of this part of
the line has disappeared since the direction of an edge is computed by the positions
of its end vertices only.

In the implementation of the 3-link reduction method we do not collapse vertices
that are directly adjacent to interchange vertices. This means that on subpaths of
a line L between two interchanges, which consist of three or more degree-2 vertices,
the two outermost degree-2 vertices are retained. Shorter paths are not modified.
For subpaths that lead to termini, i.e. degree-1 vertices, only the degree-2 vertex
next to the interchange is retained. However, there is no reason to place the bends
on such a 3-link (and similarly for a 2-link) path close to the ends, which would
be the case here since only the edge in the middle of the path represents collapsed
vertices. Therefore, we set the minimum length of each individual edge to 1, but
also place a lower bound proportional to the number of collapsed vertices on the
sum of all three edge lengths. So, there is no longer a bias as to where the bends
can be placed along the subpath while it is still guaranteed that all degree-2 vertices
can be reinserted.

6.3.2 Planarity Heuristics

Our MIP formulation consists of several parts among which the only part that needs
a quadratic number of constraints and variables is the part that ensures planarity.
This is why we suggest several ways to reduce the size of this part.

For a planar drawing of an embedded graph it suffices to require that non-
incident edges belonging to the same face do not intersect. This already guarantees
that no two edges intersect except at common endpoints. So instead of using the
constraints in Section 6.1.4 for all pairs of non-incident edges we only include them
in the MIP for pairs of non-incident edges of the same face. This face method should
always be applied as it reduces the MIP size while still guaranteeing that all the
hard constraints are satisfied as before. Yet, the worst-case size of the planarity
constraints and variables is still O(m2).

In many real world examples (see Chapter 7) this reduction is not enough to
solve the MIP in an acceptable amount of time. To further reduce the number of
constraints we have to rely on heuristic methods that relax the planarity require-
ments and may lead to non-planar drawings in some cases.

One extreme concerning the size of the planarity part is to skip the planarity
constraints completely. The hope behind this is that the structure of the metro
graph is such that minimizing the number of bends and optimizing the relative
position suffices to create a planar drawing. This means that intersections only ap-
pear when lines deviate strongly from their geographic location or have more bends
than necessary. Indeed, our experiments in the next chapter show that for many
real-world examples the result is a planar drawing in spite of not being enforced in
the MIP.

Still, sometimes we need to avoid intersections explicitly. We implemented two
ideas to identify critical edge pairs, i.e. edge pairs that are likely to intersect. The
first observation is that on the one hand the external face of the metro graph
has usually far more vertices than any other face. On the other hand it seems

49

unlikely in a drawing minimizing geographic distortion that for example edges on
the left side of the external face in the original layout intersect those edges originally
on the right side. Inspired by this observation we construct the convex hull of
the input layout and add dummy edges between adjacent polygon vertices on the
convex hull. This partitions the set of edges of the external face into several subsets
which we can use instead of the external face itself when checking pairs of edges for
intersection. These dummy edges only serve to partition the large external face and
are removed immediately after generating the planarity constraints. This method
is called convex-hull heuristic.

The second observation from our experiments is that most of the time intersec-
tions involve pendant edges, i.e. edges that lead to degree-1 vertices. One reason
might be that a pendant edge is not tightened at two points but only at one point,
such that the loose end can move across other edges. Hence, a second heuristic step
is to consider only pairs of edges where at least one edge is a pendant edge. This
pendant-edge heuristic can be combined optionally with the convex-hull heuristic.
The combination of both heuristics sufficed in all our experiments to generate planar
layouts and managed to drastically reduce the MIP size.

6.4 Label Placement

Metro maps in practice are of little interest to a passenger of the metro system
unless all stations are labeled by their name. Because labels require space in the
layout they should be considered in a drawing algorithm right from the beginning.
In this section we show how to model and implement station labels in a MIP for
the special case that we collapse all degree-2 vertices as described in Section 6.3.1.

The general idea is to model all labels for collapsed degree-2 or degree-1 vertices
along an edge as a whole. The vertex labels will be placed inside a parallelogram-
shaped region that is attached to the corresponding edge. The side length of the
parallelogram matches the length of the longest vertex label. This trick also makes
sure that all labels of stations on one edge are consistently placed on the same side of
that edge. Both to keep the number of reading directions small and to avoid unnec-
essary complexity in the model we restrict labels to be placed horizontally or, if the
corresponding edge itself is horizontal, diagonally in z1-direction. We modify the
given metro graph by adding new vertices and edges such that each parallelogram
forms a new special face. As our MIP creates a planar drawing of this extended
metro graph, we can also place the labels without overlap. Binucci et al. [BDLN05]
use a similar model to label edges in an orthogonal drawing with rectangles. How-
ever, they consider simple edge labels and do not use these rectangles for labeling
a set of collapsed vertices. Labels of interchanges are modeled individually as an
edge of length equal to the label length. This labeling approach cannot be simply
extended to the 3-link case because, then, we do not know in advance which vertex
will be positioned on which of the three links. This, however, would be necessary
to model groups of labels as parallelograms.

In the following we give the details of our model for edge labels. Let us pick a
non-horizontal edge e = uv as depicted in Figure 6.4. To label all degree-2 vertices
on e we first insert two dummy vertices u1, u2 on e next to the endpoints of e. Then,
we make sure that e is not allowed to bend at u1 and u2. This is done by adding
the constraints

dir(u, u1) = dir(u1, u2)
dir(u2, v) = dir(u1, u2)

(6.22)

50

u

v

u1

u2

u3

u4

station 1

station 2

station 4

station 5

long station 3

Figure 6.4: Modeling vertex labels with a parallelogram-shaped region attached to
edge uv. The area fits all labels of the four vertices indicated with tickmarks.

to the MIP. We add two more vertices u3, u4 and the edges u1u3, u3u4, u2u4. Edges
u1u3 and u2u4 are constrained to be horizontal and of length at least `u1u3 . For
u1u3 this is done with the following constraints

y(u1) = y(u3) (6.23)

and
x(u1)− x(u3) ≤ (1− ζ(uv))M + `u1u3

x(u1)− x(u3) ≥ −(1− ζ(uv))M + `u1u3

x(u3)− x(u1) ≤ ζ(uv)M + `u1u3

x(u3)− x(u1) ≥ −ζ(uv)M + `u1u3 ,

(6.24)

where ζ(uv) is a binary variable that selects whether the labels are on the left or
right side of e. The length `u1u3 equals the length of the longest vertex label on edge
e. For edge u2u4 the constraints are given analogously to (6.23) and (6.24) using
the same binary variable ζ(uv). (Similarly, edges u1u3 and u2u4 are constrained to
be z1-diagonal if e is a horizontal edge.) The third edge u3u4 is constrained to be
parallel to u1u2 by the constraint

dir(u3, u4) = dir(u1, u2) (6.25)

so that the four new edges indeed form a parallelogram attached to e. This paral-
lelogram can still be placed on either side of e, which is modeled with the binary
variable ζ(uv). Clearly, we must skip the constraints to preserve an embedding
around vertices u1 and u2 because they are meant to have a variable order of their
incident edges. Also, the new edges u1u3, u3u4, and u2u4 do not belong to any
metro lines, and neither their bends nor their lengths are considered in the objec-
tive function. Finally, because edges can have three possible directions, we need to
distinguish this for the labels too since labels on horizontal edges are treated differ-
ently from labels on non-horizontal edges. We deal with this case distinction using
another binary variable that selects between the sets of constraints for horizontal
and for diagonal labels accordingly.

It remains to show how to label intersection vertices. Let v be a vertex with
3 ≤ deg(v) ≤ 7. We model the label of v simply as an edge vw, where w is a new
vertex. The length `vw is set equal to the length of the label of v. For consistency
with the other labels the direction of edge vw is restricted to the set {0, 1, 4, 5}, which
corresponds to a horizontal or z1-diagonal edge. The constraints that preserve the
circular order of N(v) are modified such that vertex w can appear anywhere in that
order. However, dir(v, w) cannot be equal to dir(v, u) for any u ∈ N(v). Obviously,
we cannot label vertices of degree 8 yet because there is no space for an additional
edge left. However, no such vertex occured in any of our real-world examples.

51

We have implemented a first version of the MIP including label placement. There
are still some tricky technicalities to deal with in order to get the planarity heuristics
to work correctly for these modified metro graphs. This is mainly caused by the
fact that the additional label edges can belong to different faces, depending on the
actual label direction. Of course, the introduction of new dummy vertices and edges
to model labels increases the size of the metro graph and consequently the size of
the MIP. Section 7.6 shows an example of a labeled metro map.

6.5 Implementation

We implemented our algorithm in the Java programming language. The program
is a command-line tool that requires some user interaction. Creating a metro map
layout involves three steps as indicated in Figure 6.5. In the beginning the metro
graph is read in from a file. Then, after selecting how to preprocess the graph and
which heuristics to apply, the MIP is generated and written to a file in a standard
format for linear programs. This file can then be read and solved by any external
MIP optimizer. The optimizer’s solution file is opened by the Java program again
and the corresponding layout is drawn and written to a final postscript file. The
next subsections describe these three steps in more detail.

6.5.1 Generating the MIP

Before we can actually generate a mixed-integer program as described in the previ-
ous sections of this chapter, we need a way to input the metro graph and represent it
within the Java program. Then, we can loop through vertices and edges and create
the constraints and the objective function according to the model of the previous
sections.

The input to our program is given in the GraphML format [gra, BEH+01], an
extendible and comprehensive XML-based file format to describe the structural
properties of a graph. Vertices of the graph have a unique identifier, x- and y-
coordinates and a station name used for labeling. Edges of the graph contain, apart
from an identifier, a set of Boolean attributes that describe their line affiliations.
For the line affiliations we first declare all metro lines of the input system with an
identifier, a name and a line color. Each edge that belongs to a certain line contains
a true entry for the attribute of that line. Using these Boolean attributes to model
multiple lines along one edge avoids the need for a multigraph with explicit parallel
edges. It is only in the final drawing that we draw multiple parallel lines for such
an edge.

To represent the metro graph in the program we adapted the existing graph data
structure of the free software library Java Universal Network/Graph Framework
(JUNG) [jun]. Classes for metro vertices and metro edges were created as subclasses
of the JUNG vertices and edges. These subclasses contain fields to store additional
information such as coordinates, sectors for the relative position, circular lists for
the embedding etc.

After the input file is read and the data structure for the graph is created, some
preprocessing takes place. The graph is checked for edge intersections (assuming
that edges are drawn as straight lines in the input) and dummy vertices are inserted
if necessary. The input embedding is determined, also assuming straight line edges.
Then, optionally, degree-2 vertices are collapsed as described in Section 6.3.1. De-
pending on the planarity heuristics to apply, an additional data structure for the

52

MIP Solver

MetroMap.java

graphml

lp solution

eps

Figure 6.5: Diagram that shows the process of creating a metro map. First the
metro graph is read in, the linear program is created, and written to a file. Second,
a MIP solver is used to generate a solution file, which is in turn read by our program
to finally produce the metro-map layout as an encapsulated postscript file.

faces of the graph or dummy edges for the convex hull are computed. Then, the
graph is ready to be transformed into the MIP and the parameters for the weighting
of the individual objective functions are requested from the user.

To represent the MIP we designed classes for the entities that appear in a MIP:
variables, summands, constraints, objective function and the full mixed-integer pro-
gram. Step-by-step the MIP is created as detailed in the beginning of this chapter.
Variables have a type (integer, binary or real) and lower and upper bounds. In
combination with a scalar factor a variable builds a summand. Constraints consist
of a list of summands, a constraint type (≤, =, ≥) and a constant right-hand side.
The objective function is simply a list of summands. Once the whole MIP has been
constructed, it can be written to a plain text file in the row-oriented LP format (see
[ILO] or Appendix C of [glp]), an established standard format for linear programs.

6.5.2 Optimizing the MIP

We decided to accept the inconvenient intermediate steps of creating a text file
that contains the MIP, solving it with some optimizer and reading in the solution
again in order to be independent from commercial MIP optimizers. Most of these
optimizers do offer a programming interface but then it would be more difficult to
change to a different optimizer. Moreover, the program would be unusable without
a license for a specific optimizer.

We have applied both ILOG CPLEX 9.0 and Dash XpressMP for solving our
MIPs. Without closer investigating the reasons we found that CPLEX generates
better and faster results for our MIPs so that all the results in the next chapter were
produced with CPLEX. For most of the problems the optimizer did not succeed in
finding an optimal integer solution within the given time. However, (suboptimal)
feasible solutions of high quality could be generated within an acceptable amount of
time, see the results in the next chapter. In a solution of the MIP the only variables
of interest are the vertex coordinates. These are written to a text file and read into
the Java program to update the vertex coordinates.

53

6.5.3 Graphical Output

Having updated the vertex coordinates the resulting metro-map layout can now be
drawn. The graphical output of our Java program is an Encapsulated PostScript
(eps) file. PostScript [Ado99] itself is a stack-oriented programming language for
page descriptions. As such it is tailored to output textual and graphical data
on printers and other devices. Encapsulated PostScript is more restricted than
PostScript to make it easier to embed within other documents. Since a metro map
drawing consists mainly of colored lines, some circles and possibly text labels the
PostScript language is perfectly suited for our purpose. Moreover, PostScript output
is freely scalable and of high quality.

For the output the size of the drawing area is computed and scaled such that
the maximum side length of the layout equals 500 points. The color of the metro
lines is set according to the input color in the metro graph file. If edges belong to
multiple lines these lines are drawn parallel to each other and in their respective
color. Therefore, the total width of edges that belong to five or more lines gets quite
high and they might not look very pleasing and clear in the drawing. Interchange
stations are drawn as black circles with a white center and all degree-2 vertices as
simple black tick marks. For edges representing collapsed vertices these ticks are
placed equidistantly along the edge. Termini of the lines are shown as thicker tick
marks.

54

Chapter 7

Experimental Results

In this chapter we will show how our MIP method performs on six selected real-
world examples. We compare our layout with the respective official metro maps
designed by professional cartographers. One of the examples has been used in both
previous works on metro-map layout [HMN05, SR04] and we compare our result
against theirs. The examples are of increasing complexity from a simple system like
the Montreal Metro to the highly sophisticated London Underground system. The
last example, the S-Bahn RheinNeckar, is a rather simple network but we included
station labels in the MIP to show how our method deals with labeled metro maps.

For generating the results in this chapter we used the MIP optimizer ILOG
CPLEX 9.0 running on a Power3-II processor with 375 MHz and the operating
system AIX 5.1. Today, this is a rather slow machine but it is the only system with
a CPLEX license that was accessible to us. Hence, the given running times are
likely to be much shorter when using the optimizer on up-to-date hardware.

7.1 Montreal

Our first example is the metro system of Montreal. As indicated in Table 7.1 it
consists of four metro lines serving 65 stations (data from 2002). The graph has a
simple structure with only three faces. We applied the 3-link heuristic to reduce
the graph size to 26 vertices and 27 edges. The resulting MIP size is shown in
Table 7.2. Each column gives the MIP size for one of the six planarity options
(see Section 6.3.2) from planarity constraints for all non-incident edge pairs to no
edge pairs at all. The rows show the number of variables and constraints in the
MIP as well as the number of edge pairs forced to be non-intersecting by each of
the planarity heuristics. Recall that each such pair gives rise to 33 constraints and
8 variables. Observe that the planarity setting faces, which guarantees a planar

original 3-link paths collapse all
vertices 65 26 11
edges 66 27 12
faces 3
lines 4

Table 7.1: Size of the Montreal metro graph before and after collapsing vertices.

55

convex pendant convex hull &
all pairs faces

hull edges pendant edges
none

variables 2951 2687 1495 1991 999 471
constraints 11241 10152 5235 7281 3189 1011
edge pairs 310 277 128 190 66 0

Table 7.2: Total number of variables, constraints and enforced non-intersecting edge
pairs of the Montreal MIP for six different planarity settings.

drawing, gives rise to about 90 percent of the MIP constraints and more than 80
percent of the variables. Applying the heuristics significantly decreases the number
of edge pairs forced to be disjoint and thus the MIP size itself.

Figure 7.1 shows the geographic layout of the Montreal metro system and Fig-
ure 7.2 displays the result that our method produced from the geographic input.
The weights in the objective function were (λlength, λbends, λrelpos) = (1, 2, 2). We
could skip the planarity constraints here (last column of Table 7.2) since the result
was planar anyway. The solution shown was computed within 31 seconds. It is
a clear octilinear layout using many diagonals because they best approximate the
relative positions of the input. Only few bends are used and all have the preferred
obtuse 135◦ angle. Stations are spaced very uniformly along the edges. In compar-
ison to the official map (see Figure 7.3 [Soc]) our layout is of similar quality with
respect to the metro map esthetics. The official map has a different appearance
due to the inclusion of the simplified geographic shape of the Saint Lawrence River
which puts some restrictions on the layout. Especially the green line is meandering
towards both its ends which is necessary to not lead into the river. In spite of
these extra bends the official layout is still clear because the network is small and it
involves only four lines. However, our layout needs less bends and could be applied
if a metro map without geographic background is desired.

In Figure 7.4 we show another layout of the Montreal metro. For this result
we used a different weight λrelpos for the relative-position to demonstrate how this
affects the drawing. So we changed the parameter from λrelpos = 2 to λrelpos = 4.
Now, the layout may now contain more bends in favor of better preserving the
relative positions of the geographic input layout. And indeed, the shape of the lines
resembles their geographic shape more than in the previous layout of Figure 7.2.
However, Figure 7.2 contains less line bends, as expected, and looks clearer and
more balanced than our second layout. This observation suggests that the bend
criterion is more important than the relative position unless there are reasons that
require to retain a stronger idea of the input geometry.

56

Figure 7.1: Original geographic layout of the Montreal metro.

Figure 7.2: Final layout of the Montreal metro using our method.

57

Figure 7.3: Official map of the Montreal metro.

Figure 7.4: Layout of the Montreal metro emphasizing the soft constraint for relative
position.

58

7.2 Vienna

The metro system of Vienna consists of five lines with 90 stations and 96 edges, see
Table 7.3. With the 3-link heuristic the size could be reduced to 44 vertices and 50
edges. As can be seen in the original layout in Figure 7.5, the city center is more
connected by metro lines than in the previous example. There are ten interchange
stations between the different lines and the metro graph has eight faces.

original 3-link paths collapse all
vertices 90 44 19
edges 96 50 25
faces 8
lines 5

Table 7.3: Size of the Vienna metro graph before and after collapsing vertices.

The resulting MIP sizes for Vienna are given in Table 7.4. Even when using
the face method, the planarity constraints amount for about 90 percent of the MIP
size. As before we could omit the planarity constraints completely so that the last
column gives the actual MIP size. Figure 7.6 shows the result that our method
produced from the geographic input in Figure 7.5. The weights in the objective
function were (λlength, λbends, λrelpos) = (1, 2, 2). The solution shown was obtained
within only 26 seconds.

convex pendant convex hull &
all pairs faces

hull edges pendant edges
none

variables 9960 6048 2872 4176 1800 872
constraints 39363 23226 10125 15504 5703 1875
edge pairs 1136 647 250 413 116 0

Table 7.4: Total number of variables, constraints and enforced planar edge pairs of
the Vienna MIP for six different planarity settings.

Our layout succeeds in schematizing the input in a clean way. The lines show
few bends and only one of them has a right angle instead of 135◦. This happens
where the green and orange lines meet and is almost unavoidable when looking at
the geographical situation at this station. Lines pass interchange stations as straight
as possible. The left end of the orange line could be drawn with one bend less but
the layout favors the relative position here and approximates the geographic run
of the line. The total edge length is small and stations are spaced equidistantly.
The layout also shows some nice symmetries that give it a distinct look. It is hard
to compare our map directly with the official map1 (see Figure 7.7 [Wie]) because
the official map has quite different dimensions to make it fit into the metro cars.
Obviously, that format requires more bends and less geographic accuracy.

1The official map does not show the extension of the purple line which is under construction.

59

Figure 7.5: Original geographic layout of the Vienna metro.

Figure 7.6: Final layout of the Vienna metro using our method.

60

Figure 7.7: Official Map of the Vienna metro.

7.3 Karlsruhe

Our third example is the tram system of Karlsruhe. Although not being a metro
system in a strict sense because the trains run along regular roads and not in tunnels,
we included the network as an example.2 The complete network is quite large and
expands up to 80 km into the surroundings. Hence, we clipped the network to
represent only the area of Karlsruhe itself. As shown in Table 7.5, the graph still
has 126 vertices, 132 edges, and ten metro lines. Some edges are shared by up to
eight lines. The clipped original geographic layout is displayed in Figure 7.8. Due
to Karlsruhe’s regular fan-shaped road pattern in the downtown area, the central
part has already a quite schematic appearance. Starting from this central part,
the network branches into the surroundings in many directions. The long purple
branch in the lower left part of that layout is caused by a train that uses the regular
long-distance rails and hence stations are much further apart than in the rest of the
network. We applied the 3-link heuristic to reduce the graph size to 70 vertices and
76 edges.

original 3-link paths collapse all
vertices 126 70 35
edges 132 76 41
faces 8
lines 10

Table 7.5: Size of the Karlsruhe metro graph before and after collapsing vertices.

This reduced graph led to the MIP sizes shown in Table 7.6. The values are large
in comparison to the previous examples and since the network has many pendant
edges, the pendant-edge heuristic still forces a large number of edge pairs to be
disjoint. In connection with the convex-hull heuristic the numbers become more
tractable but we were fortunate and could draw a planar layout in spite of skipping
the planarity condition completely. Figure 7.9 shows the result using the weights
(λlength, λbends, λrelpos) = (1, 4, 3). This solution was obtained after 200 seconds.

Our layout for Karlsruhe succeeds in finding a nice and symmetric way to display
the downtown area. There are some right angles but they do not disturb the graph
layout itself. The long purple branch in the southern part of the original layout has
been shortened in our layout which might not be desired in this case because the
two stations involved have a much larger distance in reality. We could avoid this
by setting the minimum length of this edge accordingly. One serious drawback of
our layout, which is however caused by the geometry and structure of the input, is

2After all it is a network that people at Universität Karlsruhe should be familiar with.

61

convex pendant convex hull &
all pairs faces

hull edges pendant edges
none

variables 23330 17210 6978 10858 4186 1434
constraints 93808 68563 26356 42361 14839 3487
edge pairs 2737 1972 693 1178 344 0

Table 7.6: Total number of variables, constraints and enforced planar edge pairs of
the Karlsruhe MIP for six different planarity settings.

Figure 7.8: Original geographic layout of the Karlsruhe tram system.

that it is difficult to see where the vertical lines in the central part continue when
hitting the main horizontal line. In the worst case there are eight lines sharing
one edge and the individual line colors are hard to distinguish. One needs to look
very closely to see whether a line from the south goes left or right at these points.
In the official layout (see Figure 7.10 from 19973 [Kar]) this problem is solved by
explicitly drawing multi-edges for example on the main horizontal line. To that
end our algorithm would need to model stations not as points but as rectangles.
However, a cartographer could still take our drawing of the simple graph as basis to
insert multiedges and rectangular stations where applicable. In that case our layout
and the official map would be very similar.

3We use this old official map because newer maps always show the complete network and would
be harder to compare with our layout. Note that the light-green metro line in Figure 7.9 is not
yet contained in the 1997 map.

62

Figure 7.9: Final layout of the Karlsruhe tram system using our method.

Figure 7.10: Official Map of the Karlsruhe metro system.

63

7.4 Sydney

The CityRail system in Sydney (restricted to the suburban part) is an example of
a larger network with ten lines, 174 stations and 183 edges, among them several
multiple edges. Collapsing vertices with the 3-link heuristic leads to a reduced
graph of 62 vertices and 71 edges, see Table 7.7. The original layout is displayed
in Figure 7.11. One can see that the downtown area at the right-hand side is very
condensed in the geographical drawing. Moreover, there is one edge intersection in
that area, not visible at this scale, that requires to add a dummy vertex.

original 3-link paths collapse all
vertices 174 62 31
edges 183 71 40
faces 11
lines 10

Table 7.7: Size of the Sydney metro graph before and after collapsing vertices.

The MIP characteristics for the reduced graph are given in Table 7.8. In terms
of vertices and edges the graph of Sydney is of similar size as the one of Karlsruhe.
However, applying the planarity heuristics decreases the MIP size more than in the
previous example. For Sydney we had to use the combined convex-hull & pendant-
edges heuristic (second last column in Table 7.8) because of a persistent edge inter-
section. This heuristic and the parameter setting (λlength, λbends, λrelpos) = (1, 5, 5)
yielded the layout in Figure 7.12 within 22 minutes.

convex pendant convex hull &
all pairs faces

hull edges pendant edges
none

variables 20329 11545 5921 3873 2105 1329
constraints 81416 45182 21983 13535 6242 3041
edge pairs 2375 1277 574 318 97 0

Table 7.8: Total number of variables, constraints and enforced planar edge pairs of
the Sydney MIP for six different planarity settings.

Our drawing is a clear octilinear layout of the Sydney network. As Sydney has
several shared edges there is one thick edge on the right-hand side of our layout
which is made up of six lines. However, it is less difficult to distinguish the different
line continuations than in the previous example. In comparison to the official layout
(see Figure 7.13 [Syd]) there are two aspects that attract attention. The loop in the
east of the drawings is more symmetric and emphasized in the manually designed
metro map. Further, the green line in the south-eastern part of the system stays
quite close to its neighboring parallel line in our drawing. This effect is caused by
minimizing the total edge length since the shortest possibility to draw that part of
the green line is the one that is shown in our drawing. The official map puts these
lines at a larger distance.

Sydney has been used as an example before [HMN05, SR04] (see Section 3.2)
and hence we can compare our result against these earlier results. Figure 7.14 is
taken from Hong et al. [HMN05] and shows their layout using the most refined
of their spring embedder methods. Originally they draw a slightly larger network
including some intercity lines that extend the suburban network. However, these
extensions should not influence the layout of the central part of the network. For

64

Figure 7.11: Original geographic layout of the Sydney CityRail system.

Figure 7.12: Final layout of the Sydney CityRail system using our method.

65

Figure 7.13: Official Map of the Sydney CityRail system.

ease of comparison we clipped the lines appropriately in Figure 7.14. Apart from
the fact that Hong et al. show station labels, one can observe that edges are not
strictly octilinear and that avoiding bends along lines is not a goal of their method.
In addition, there is a large variance of the edge lengths.

Stott and Rodgers [SR04] apply a multicriteria optimization algorithm to pro-
duce their metro-map layouts. Figure 7.15 shows their result when collapsing all
degree-2 vertices before actually drawing the network. There are two non-horizontal
edges that obviously violate octilinearity, which is the most important drawback of
this layout. Figure 7.16 displays the result of the same method without prior ver-
tex collapses. It now shows an almost octilinear layout with the exception of one
edge on the left side. Both non-octilinear edges from Figure 7.15 are successfully
made octilinear by introducing bends. On the other hand, some unnecessary bends
on peripheral lines could not be removed by the local multicriteria optimization
technique. Interestingly enough, it seems that they do not planarize the original
embedding: their layout of the Sydney CityRail is not quite topologically equivalent
to the corresponding original embedding (see the tail within the eastern loop of the
network).

The method of Stott and Rodgers produces layouts that are more similar to
real-world metro maps than the layouts of Hong et al. But both methods have
serious drawbacks. Neither of them guarantees octilinearity. Hong et al. do not
consider line bends in their method which seems to be an important esthetic for
metro maps. Stott and Rodgers do minimize bends within their objective function.
However, the algorithm gets easily trapped in local minima and their layouts show
defects that a professional designer would correct immediately.

Our method overcomes the limitations of the previous results. Most importantly,
there are no exceptions to octilinearity. A further improvement is that the global
optimization of a mixed integer program avoids the problems of local minima in
[SR04]. In contrast to Hong et al. we actively minimize the number of line bends in

66

Figure 7.14: Layout of the Sydney CityRail system by Hong et al. (clipping of
Figure 7(b) in [HMN05])

Figure 7.15: Layout of the Sydney CityRail system by Stott and Rodgers (Figure 14
in [SR04]) using a reduced graph.

67

Figure 7.16: Layout of the Sydney CityRail system by Stott and Rodgers (Figure 15
in [SR04]) using the original graph.

the layout and try to maintain the overall geography using the concept of relative
positions. Comparing the results of all three methods visually, we claim that the
layout of our method is most similar and of comparable quality to a manually
designed metro map.

The main disadvantage of our method is its running time. While we needed
22 minutes to produce our Sydney map, Hong et al. computed the layout in Fig-
ure 7.14 within only 7.6 seconds. Stott and Rodgers needed 4 minutes for a Sydney
map using a contracted input graph (Figure 7.15) and about 28 minutes for the
uncontracted graph (Figure 7.16). However, the experiments were carried out on
very different machines and from a practical point of view it is worth spending
more running time for getting significantly better results as long as maps do not
have to be drawn interactively. Moreover, our method usually generates feasible
but suboptimal solutions within a few seconds.

68

7.5 London

Certainly one of the most complex metro systems is the London Underground. It
is also the oldest metro system of the world with the first line opened in 1863.
Nowadays, for many Londoners the Tube Map has become the mental map of the
city rather than London’s geography. Hence, only careful and small changes to
the layout will be accepted by the public in reality. Nevertheless, automatically
drawing a metro network of that size and complexity is an interesting challenge for
our method. As Table 7.9 shows, the original graph has 309 vertices (among them a
few dummy vertices representing edge intersections) and 361 edges used by 13 metro
lines and forming 54 faces. The central part of the network is highly connected as
can be seen in the geographic layout in Figure 7.17. Therefore applying the 3-link
heuristic only reduces the size to 181 vertices and 233 edges.

original 3-link paths collapse all
vertices 309 181 99
edges 361 233 151
faces 54
lines 13

Table 7.9: Size of the London metro graph before and after collapsing vertices.

We used this reduced graph to create the MIP where the actual numbers of vari-
ables and constraints for the different planarity settings are shown in Table 7.10.
Looking at the first two columns underlines how large the network really is: 26529
edge pairs considering all non-incident edges and still 5777 edge pairs using the
face structure of the input embedding are required to be non-intersecting. Con-
sidering the first column more than 99 percent of the constraints are required for
the planarity of the drawing. These numbers could be reduced drastically with
the planarity heuristics. We had to use the combined convex-hull & pendant-edges
heuristic (second last column in Table 7.10) to create a planar drawing. This heuris-
tic and the parameter setting (λlength, λbends, λrelpos) = (1, 4, 4) yielded the layout
in Figure 7.18 within 4.5 hours.

Obviously not as balanced and sophisticated as the official Tube Map in Fig-
ure 7.19 [Traa], our layout in Figure 7.18 shows an octilinear metro map of mixed
quality. A positive point is for example that the central part of the red line is drawn
horizontally. In most interchanges lines pass straightly or having at most an angle
of 135◦. However, at some points the geography enforces acute 45◦-angles between
two adjacent edges of one line. The shape of the yellow Circle line is quite close to
the striking flask shape in the official map. But especially towards the boundary of
our drawing the lengths between adjacent stations get rather small in comparison
to the inter-station distance in the center of the drawing. And for example the two

convex pendant convex hull &
all pairs faces

hull edges pendant edges
none

variables 216173 50157 19845 18589 7981 3941
constraints 884231 199415 74378 69197 25439 8774
edge pairs 26529 5777 1988 1831 505 0

Table 7.10: Total number of variables, constraints and enforced planar edge pairs
of the London MIP for six different planarity settings.

69

Figure 7.17: Original geographic layout of the London Underground.

Figure 7.18: Final layout of the London Underground using our method.

branches of the black line in the top middle are drawn very close together which is
misleading with regard to their true distance (see Figure 7.17). However, consider-
ing the complexity of the London network we were fortunate enough to be able to
produce a drawing at all—and the result could look much worse. This shows that
our method is indeed capable of drawing large real-world metro maps. Our layout
could certainly be used as a basis for manual improvements by a graphic designer.

70

Figure 7.19: Official map of the London Underground.

71

7.6 S-Bahn RheinNeckar

The S-Bahn RheinNeckar [S-B] is no metro system in the strict sense. The network
comprises the railway tracks that are used by the regional train service S-Bahn
RheinNeckar in the area around Heidelberg, Mannheim and Karlsruhe (see Fig-
ure 7.20 for the geographic layout). It spans 150 km in the east-west direction.
However, it is still a public transport network that might benefit from having a nice
metro-map layout. Due to its simple structure we also experimented with labeled
drawings for this network.

The size of the input graph and the corresponding reduced graphs is given in
Table 7.11. Originally it has 108 vertices and 111 edges. Six lines belong to the
network, two of them operated by a different company. In the unlabeled case we
decided to collapse all degree-2 vertices because links proved to be unnecessary here.
The remaining graph has 42 vertices and 45 edges. For the labeled graph we had to
collapse all degree-2 vertices by construction anyway but modeling the labels with
parallelograms adds new vertices and edges such that the resulting labeled metro
graph has 127 vertices and 144 edges. The number of faces increases from 5 to 19
since the parallelograms represent new faces of the graph.

original 3-link paths collapse all with labels
vertices 108 74 42 127
edges 111 77 45 144
faces 5 19
lines 6

Table 7.11: Size of the RheinNeckar metro graph before and after collapsing vertices.

Concerning the MIP sizes we have to distinguish between the unlabeled and
labeled case again. Table 7.12 shows the numbers for both cases. The unlabeled
graph is quite small and so are the MIP sizes in comparison to previous examples.
For the labeled graph the numbers are much higher and we necessarily need to
include at least some planarity constraints that restrict labels to not overlap with
other labels or edges.

First, we describe the unlabeled drawing displayed in Figure 7.21. We used
the parameter setting (λlength, λbends, λrelpos) = (1, 2, 2) and could solve the MIP

convex pendant convex hull &
all pairs faces

hull edges pendant edges
none

unlabeled
variables 7961 7129 2617 5553 1929 697
constraints 31654 28222 9610 21721 6772 1690
edge pairs 908 804 240 607 154 0
labeled
variables 81477 43781 34605 13813 11501 1309
constraints 334034 178538 140687 54920 45383 3341
edge pairs 10021 5309 4162 1563 1274 0

Table 7.12: Total number of variables, constraints and enforced planar edge pairs
of the RheinNeckar MIP, either unlabeled or labeled, for six different planarity
settings.

72

to optimality in 43 seconds. This was in fact the only example where we found a
provably optimal solution. It is a very simple and clear drawing of the graph when
compared to the input network in Figure 7.20. The meandering of the east-west
line was completely removed by straightening it to a horizontal line. The southern
part of the network is drawn very clearly as well. Note that the gray edges that are
attached to the main network indicate train services that connect to the S-Bahn
RheinNeckar network.

The official map in Figure 7.22 [S-B] has a layout that does not satisfy our
metro-map esthetics well. It stays very close to the geographic layout which results
in many (unnecessary) bends along the lines. Some of the edges even make sharp
90◦ turns that could be avoided by simply drawing a straight-line edge instead. The
official layout also includes two schematized rivers but these are the only geographic
features in the drawing and could still be simplified further. Since the area covered
by the network is very large and comprises several cities there is not really a strong
mental map of the region which needs to be strictly preserved. The system operator
has decided to design a schematic octilinear and not a geographic network map and
therefore it is not comprehensible to us why they stick so closely to the geometry
at the cost of an overly complex diagram. We claim that our simple layout in
Figure 7.21 serves the purpose of a metro map, namely to act as a navigational aid,
much better. We could also include the two rivers, modeled as additional metro
lines.

Our labeled drawing is shown in Figure 7.23. The parameters for the objective
function were identical to the unlabeled case. However, since the MIP was of much
larger size this layout was obtained after 20 hours instead of only 43 seconds for
Figure 7.21. To demonstrate how the parallelograms for the labels work we included
them in the drawing. They are attached to the edges and shown in light gray. Their
dimensions depend on the longest station name. Interchanges are simply labeled
by an edge of the correct length. For reasons of size and running time we had to
rely on the planarity heuristics that were originally designed for unlabeled drawings
with a fixed embedding. But as mentioned in Section 6.4 the labeled metro graph
no longer has a fixed embedding because the label boxes can go on either side of
their respective edge. Consequently, not all labels could be drawn overlap-free in
Figure 7.23. A MIP avoiding this problem by forcing all edge pairs not to intersect
would be far too large to solve in practice. Therefore, this drawing should rather be
seen as our first attempt to create a labeled metro map and not yet as a veritable
competitor for manually-designed labeled metro maps.

In comparison to the unlabeled layout of Figure 7.21 the metro graph in Fig-
ure 7.23 itself, i.e. without the labels, cannot achieve the same simplicity. It has
some unnecessary bends, especially along the eastern branch, that disrupt the clean
horizontal axis formed by that line in Figure 7.21. But our layout in Figure 7.23
seems to be not worse than the layout of the official graph with its meandering lines
(see Figure 7.22) either. Concerning the labels, our layout suffers of course from the
overlaps that are present. More effort is necessary to improve on this. The official
map has no label-label overlaps but some labels do overlap with the rivers or the
gray arrows4 that indicate connections to different networks. Moreover, the official
map uses three directions for the text of labels: horizontal and both diagonals. It
would add more clarity to the map if at most one diagonal text direction was used
in addition to the horizontal text.

4It can be argued that this is tolerable for rivers and arrows.

73

Figure 7.20: Original geographic layout of the S-Bahn RheinNeckar.

Figure 7.21: Final layout of the S-Bahn RheinNeckar using our method.

74

Rhein

Rhein

Rhein

N
ec

ka
r

Nec
ka

r

E
rb

ac
h

(O
d

en
w

.)

La
ut

er
ec

ke
n-

G
ru

m
b

ac
h

H
om

b
ur

g
(S

aa
r)

/
S

aa
rb

rü
ck

en

P
irm

as
en

s

La
nd

au

G
rü

ns
ta

d
t/

B
ad

 D
ür

kh
ei

m

W
ör

th
 (R

he
in

)
B

re
tt

en
/S

tu
tt

ga
rt

Fr
an

ke
nt

ha
l/W

or
m

s

B
ib

lis

W
ör

th
 (R

he
in

)

P
fo

rz
he

im
/M

üh
la

ck
er

B
ad

en
-B

ad
en

/O
ffe

nb
ur

g

S
in

sh
ei

m
/

E
p

p
in

ge
n

H
ei

lb
ro

nn
/

S
tu

tt
ga

rt

M
ilt

en
b

er
g

B
ad

 F
rie

d
ric

hs
ha

ll-
Ja

gs
tf

el
d

W
ür

zb
ur

g

B
in

ge
n

O
d

en
he

im
/

M
en

zi
ng

en

E
p

p
in

ge
n/

H
ei

lb
ro

nn

R
as

ta
tt

/F
re

ud
en

st
ad

t

2

2

W
ei

nh
ei

m
/D

ar
m

st
ad

t

2

2 2
2

2

Lu
d

w
ig

sh
af

en
 (R

he
in

) H
b

f

Kais
er

sla
ut

er
n

Hbf

Hoc
hs

pey
er

Fr

an
ke

ns
te

in
(P

fa
lz)

W

eid
en

th
al Neid

en
fe

ls

La
m

bre
ch

t (
Pfa

lz)

Neu
st

ad
t (

W
ein

st
r.)

Hbf

N
eu

st
ad

t-
B

öb
ig

H
aß

lo
ch

 (P
fa

lz
)

B
öh

l-
Ig

ge
lh

ei
m

Lu
d

w
ig

sh
af

en
-M

itt
e

 M
an

nheim
 H

bf

 M
A-R

an
gie

rb
ah

nh
of

M
A-S

ec
ke

nh
eim

 M
A-F

rie
dric

hs
fe

ld S
üd

 H
D-P

fa
ffe

ng
ru

nd
/W

ieb
lin

ge
n

 H
eid

elb
er

g H
bf

 H
D-W

es
tst

ad
t/S

üd
sta

dt

 H
D-S

ch
lie

rb
ac

h/
Zieg

elh
au

se
n

 H
D-O

rth
op

äd
ie

 N
ec

ka
rg

em
ün

d

 H
D-K

ar
lst

or

Nec
ka

rg
em

ün
d A

lts
ta

dt

 N
ec

ka
rs

te
ina

ch

Nec
ka

rh
au

se
n

bei
Nec

ka
rs

te
ina

ch
 H

irs
ch

ho
rn

 (N
ec

ka
r)

 E
ber

bac
h

Lin
dac

h
Zwing

en
ber

g
(B

ad
en

)

 N
ec

ka
rg

er
ac

h

 B
ina

u

M
osb

ac
h-

Nec
ka

re
lz

M
os

bac
h

W
es

t
 M

os
bac

h
(B

ad
en

)

Nec
ka

rb
ur

ke
n

 D
all

auAue
rb

ac
h

(b
ei

M
os

bac
h)

 O
ber

sc
he

ffle
nzEich

olz
he

imSec
ka

ch
Zim

m
er

n
bei

Sec
ka

ch

Adels
he

im
 N

or
d

O
st

er
b

ur
ke

n

H
D

-K
irc

hh
ei

m
/

R
oh

rb
ac

h

S
t.

 Il
ge

n-
S

an
d

ha
us

en

W
ie

sl
oc

h-
W

al
ld

or
f

R
ot

-M
al

sc
h

B
ad

 S
ch

ön
b

or
n-

K
ro

na
u

B
ad

 S
ch

ön
b

or
n

S
üd

U
b

st
ad

t-
W

ei
he

r

B
ru

ch
sa

l

B
ru

ch
sa

l-
B

ild
un

gs
ze

nt
ru

m

U
nt

er
gr

om
b

ac
h

W
ei

ng
ar

te
n

(B
ad

en
)

Kar
lsr

uh
e-

Dur
lac

h

K
ar

ls
ru

he
 H

b
f

S
ch

iff
er

st
ad

t
S

üd

S
p

ey
er

N
or

d
-W

es
t

S
p

ey
er

 H
b

f

B
er

gh
au

se
n

(P
fa

lz
)

H
ei

lig
en

st
ei

n
(P

fa
lz

)

Li
ng

en
fe

ld

G
er

m
er

sh
ei

m

S
p

ey
er

 S
üd

 (a
b

 2
00

6)

Rhe
ins

he
im

Phil
ippsb

ur
g

(B
ad

en
)

Hut
te

nh
eim

Gra
ben

-N
eu

dor
f N

or
d

Gra
ben

-N
eu

dor
f Kar

lsd
or

f

W
ie

se
nt

al

W
ag

hä
us

el

N
eu

lu
ßh

ei
m

H
oc

ke
nh

ei
m

O
ft

er
sh

ei
m

S
ch

w
et

zi
ng

en

M
A

-R
he

in
au

M
A

-N
ec

ka
ra

u

Fr
ie

d
ric

hs
ta

l (
B

ad
en

)

B
la

nk
en

lo
ch

K
A

-H
ag

sf
el

d

M
A-F

rie
dric

hs
fe

ld

Stand Oktober 2003 - 211003 - dbr/13/02/03

K
ai

se
rs

la
ut

er
n

–
Lu

d
w

ig
sh

af
en

 –
M

an
nh

ei
m

 –
 H

ei
d

el
b

er
g

–
O

st
er

b
ur

ke
n

K
ai

se
rs

la
ut

er
n

–
Lu

d
w

ig
sh

af
en

 –
M

an
nh

ei
m

 –
 H

ei
d

el
b

er
g

–
M

os
b

ac
h

(B
ad

en
)

(G
er

m
er

sh
ei

m
) –

 S
p

ey
er

 –
 L

ud
w

ig
sh

af
en

 –
M

an
nh

ei
m

 –
H

ei
d

el
b

er
g

–
K

ar
ls

ru
he

(G
er

m
er

sh
ei

m
) –

 S
p

ey
er

 –
 L

ud
w

ig
sh

af
en

 –
M

an
nh

ei
m

 –
H

ei
d

el
b

er
g

–
B

ru
ch

sa
l

In
b

et
rie

b
na

hm
e

20
06

In
b

et
rie

b
na

hm
e

20
06

A
ns

ch
lu

ss
st

re
ck

en

S
 1

S
 2

S
 3

S
 4

S
ch

iff
er

st
ad

t
Li

m
b

ur
ge

rh
of

LU
-R

he
in

gö
nh

ei
m

LU
-M

un
d

en
he

im

S
-B

ah
n-

S
ta

tio
n

m
it

U
m

st
ei

ge
m

ög
lic

hk
ei

t
zu

m
 B

us
ve

rk
eh

r

S
-B

ah
n-

S
ta

tio
n

m
it

U
m

st
ei

ge
m

ög
lic

hk
ei

t
zu

r
S

tr
aß

en
b

ah
n

S
1

-
ke

in
 H

al
t,

 H
al

t
nu

r
im

 E
in

ze
lfa

ll

S
3

-
ke

in
 H

al
t,

 H
al

t
nu

r
im

 E
in

ze
lfa

ll

In
b

et
rie

b
na

hm
e

ab
 M

itt
e

20
04

S
e
rv

ic
e
 u

n
d
 I
n
fo

rm
a
ti

o
n
e
n
:

S
-B

ah
n

S
er

vi
ce

te
le

fo
n

06
21

-
8

30
12

00

Fa
hr

p
la

na
us

ku
nf

t
08

00
-1

50
70

90
 (g

eb
üh

re
nf

re
i)

V
R

N
-S

er
vi

ce
nu

m
m

er
0

18
05

-
8

76
46

36
 (0

,1
2

E
U

R
/M

in
)

K
V

V-
S

er
vi

ce
te

le
fo

n
07

21
-

61
07

58
85

W
V

V-
In

fo
ho

tli
ne

0
18

05
-

9
88

46
36

 (0
,1

2
E

U
R

/M
in

)

W
ei

te
re

 In
fo

rm
at

io
ne

n
un

te
r:

w
w

w
.s

-b
ah

n-
rh

ei
nn

ec
ka

r.d
e

w
w

w
.v

rn
.d

e

Figure 7.22: Official map of the S-Bahn RheinNeckar.

75

Lu
dw

igs
ha

fe
n

(R
he

in)
 H

bf

M
A-S

ec
ke

nh
eim

Lim
bu

rg
er

ho
f

LU
-R

he
ing

oe
nh

eim

LU
-M

un
de

nh
eim

K
ar

ls
ru

he
 H

bf

N
ec

ka
rg

em
ue

nd

K
ar

ls
do

rf

W
ie

se
nt

al

W
ag

ha
eu

se
l

N
eu

lu
ss

he
im

H
oc

ke
nh

ei
m

O
fte

rs
he

im

S
ch

w
et

zi
ng

en

M
A

-R
he

in
au

M
A

-N
ec

ka
ra

u

H
D

-K
irc

hh
ei

m
/R

oh
rb

ac
h

S
t.

Ilg
en

-S
an

dh
au

se
n

W
ie

sl
oc

h-
W

al
ld

or
f

R
ot

-M
al

sc
h

B
ad

 S
ch

oe
nb

or
n-

K
ro

na
u

B
ad

 S
ch

oe
nb

or
n

S
ue

d

U
bs

ta
dt

-W
ei

he
r

M
A-F

rie
dr

ich
sfe

ld
Sue

d

M
A-F

rie
dr

ich
sfe

ld

Neu
sta

dt
 (W

ein
str

.)
Hbf

Kar
lsr

uh
e-

Dur
lac

h

M
os

ba
ch

-N
ec

ka
re

lz

Gra
be

n-
Neu

do
rf

H
ei

de
lb

er
g

H
bf

W
ei

ng
ar

te
n

(B
ad

en
)

U
nt

er
gr

om
ba

ch

B
ru

ch
sa

l B
ild

un
gs

ze
nt

ru
m

Lin
da

ch Zwing
en

be
rg

 (B
ad

en
)

Nec
ka

rg
er

ac
h

Bina
u

B
ru

ch
sa

l

La
m

br
ec

ht
 (P

fa
lz)

Neid
en

fe
ls

W
eid

en
th

al

Fra
nk

en
ste

in
(P

fa
lz)

Sch
iffe

rs
ta

dt

Hoc
hs

pe
ye

r

N
ec

ka
rg

em
ue

nd
 A

lts
ta

dt

N
ec

ka
rs

te
in

ac
h

N
ec

ka
rh

au
se

n

H
irs

ch
ho

rn
 (

N
ec

ka
r)

Kais
er

sla
ut

er
n

Hbf

Ade
lsh

eim
 N

or
d

Zim
m

er
n

Neu
sta

dt
-B

oe
big

Li
ng

en
fe

ld

H
ei

lig
en

st
ei

n
(P

fa
lz

)

B
er

gh
au

se
n

(P
fa

lz
)

S
pe

ye
r

S
ue

d

S
pe

ye
r

H
bf

S
pe

ye
r

N
or

d-
W

es
t

S
ch

iff
er

st
ad

t S
ue

d

Has
slo

ch
 (P

fa
lz)

Boe
hl-

Ig
ge

lhe
im

Rhe
ins

he
im

Phil
ipp

sb
ur

g
Hut

te
nh

eim

Gra
be

n-
Neu

do
rf

Nor
d

M
os

ba
ch

 W
es

t

M
os

ba
ch

 (B
ad

en
)

Nec
ka

rb
ur

ke
n Dall
au Aue

rb
ac

h

Obe
rs

ch
ef

fle
nz

Eich
olz

he
im

LU
-M

itte

Ebe
rb

ac
h

O
st

er
bu

rk
en

Sec
ka

ch

Ger
m

er
sh

eim

HD-P
fa

ffe
ng

ru
nd

/W
ieb

lin
ge

n

M
an

nh
eim

 H
bf

F
rie

dr
ic

hs
ta

l (
B

ad
en

)

B
la

nk
en

lo
ch

K
A

-H
ag

sf
el

d

H
D

-W
es

ts
ta

dt
/S

ue
ds

ta
dt

H
D

-K
ar

ls
to

r

H
D

-S
ch

lie
rb

ac
h/

Z
ie

ge
lh

au
se

n

H
D

-O
rt

ho
pa

ed
ie

M
A-R

an
gie

rb
ah

nh
of

Figure 7.23: Labeled layout of the S-Bahn RheinNeckar including the label boxes.

76

Chapter 8

Final Remarks

In this final chapter we conclude our work and point out directions for further work
on metro-map layout and, more general, about octilinear drawings. As metro-map
layouts represent a very new layout style in graph drawing, many extensions and
applications are conceivable.

8.1 Conclusion

In this work we have studied the problem of automatically drawing metro maps. By
analysing the layout features of real-world metro maps such as the famous London
Underground Map we identified octilinearity and preservation of the embedding as
the most important hard constraints for metro maps. Soft constraints to optimize
include the number of bends along the metro lines as well as a rough preservation
of the input geometry. The theoretical result of this work is the NP-completeness
of the MetroMap decision problem, i.e. to decide whether a given graph can be
drawn as a metro map. Nonetheless, for solving the layout problem in practice,
we have translated the hard and soft constraints into a mixed-integer linear pro-
gram. To cope with the running times of the MIP optimizer we have also presented
and implemented two heuristic speed-up methods. Our experiments with real-world
metro networks show that we have succeeded in drawing these networks in a quality
comparable to maps drawn by graphic designers. The nature of the MIP optimiza-
tion process is such that we usually quickly get good intermediate solutions but
proving their optimality can take a long time. In practice it might not even be
worth waiting for an optimal solution (in terms of the objective function) but use
a stable feasible solution instead. Recall that the objective function is just an at-
tempt to mathematically formulate “nice” and hence the optimal solution is not
necessarily “nicer” (for a human viewer) than some close-by solutions. Finally, we
have also investigated how to model labeled metro maps in the MIP framework.
We extended the previous model for unlabeled layouts to comprise labels as special
additional faces in the graph. The results show that the model is working, how-
ever, our speed-up heuristics do not handle the new situation very well. In order to
guarantee overlap-free labels the MIP size is still too large.

77

8.2 Outlook

There are a few starting points for future work based on this work. A first extension
would be to allow for more user interaction during the drawing process. The user
could for example wish to force some edges of the graph into a fixed direction. This
can be easily incorporated into the current MIP. This would be useful especially
when trying to improve a given layout where the nice parts of the drawing should
be retained or when a new metro line needs to be inserted into an existing layout.
Many other scenarios for user interaction are possible.

Labeling is not solved satisfactorily yet. Either the MIP size becomes too big
or labels create overlaps. New speed-up heuristics for labeled metro maps would be
useful. Moreover, in the current model labeling cannot be combined with the 3-link
heuristic. However, this heuristic usually creates drawings that are visually more
appealing than drawings where all degree-2 vertices are collapsed. An alternative
idea is to separate generating the graph layout from labeling it. But unlike map
labeling where a fixed map is labeled, we could admit that a few changes to the
layout, e.g. modifying edge lengths, are made in order to better fit the labels into
the given drawing.

In some of the examples we saw that with increasing multiplicity of edges it
becomes difficult in our current approach to keep the different colors of the lines
apart. Hence, it would be necessary to increase the line thickness and consequently
the size of the stations involved, as in the official metro maps. This means that
the dimension of vertices and edges has to be integrated into our model or parallel
edges must be explicitly modeled. Rectangular vertices could be modeled as in the
MIP formulation of Binucci et al. [BDLN05]. This would also make it possible to
draw vertices of degree greater than 8.

Octilinear layouts should also be examined with regard to other applications
than metro maps. It would also be possible to design a similar model for any
kind of technical drawing with a restricted number of orientations as long as the
increase in the size of the MIP is acceptable. Depending on the requirements of the
application some constraints may be dropped and alternative objective functions
could be devised.

Finally, it is definitely worth trying to run the MIP optimizer on up-to-date
hardware instead of the old machine that we had available. This might improve
especially on the large instances and labeled metro maps. While drawing a public
transportation map is a rather static problem where long running times are accept-
able, faster algorithms are necessary for application in a more dynamic environment.
Thus, in the long run it might be interesting to implement fast heuristics for the
problem instead of using the MIP formulation. Alternatively, a custom MIP solver
could be developed that is aware of the graph structure and uses this knowledge in
solving the MIP.

78

Bibliography

[Ado99] Adobe Systems Inc. PostScript Language Reference 3rd edition.
Addison-Wesley, 1999. 54

[AM00] Silvania Avelar and Matthias Müller. Generating topologically correct
schematic maps. In Proc. 9th Int. Symp. on Spatial Data Handling
(SDH’00), pages 4a.28–4a.35, Beijing, 10–12 August 2000. 14

[Ata99] Mikhail J. Atallah, editor. Algorithms and Theory of Computation
Handbook. CRC Press, 1999. 80

[BDLN05] Carla Binucci, Walter Didimo, Giuseppe Liotta, and Maddalena
Nonato. Orthogonal drawings of graphs with vertex and edge labels.
Computational Geometry: Theory and Applications, 2005. To appear.
16, 17, 50, 78

[BEH+01] Ulrik Brandes, Markus Eiglsperger, Ivan Herman, Michael Himsolt,
and M. Scott Marshall. Graphml progress report: Structural layer
proposal. In Proc. 9th Intl. Symp. Graph Drawing (GD’01), volume
2265 of Lecture Notes in Computer Science, pages 501–512. Springer-
Verlag, 2001. 52

[BEKW02] Ulrik Brandes, Markus Eiglsperger, Michael Kaufmann, and Dorothea
Wagner. Sketch-driven orthogonal graph drawing. In Proc. 10th In-
ternational Symposium on Graph Drawing (GD’02), volume 2528 of
Lecture Notes in Computer Science, pages 1–11. Springer-Verlag, 2002.
4

[BLR00] Thomas Barkowsky, Longin Jan Latecki, and Kai-Florian Richter.
Schematizing maps: Simplification of geographic shape by discrete
curve evolution. In C. Freksa, W. Brauer, C. Habel, and K. F. Wender,
editors, Proc. Spatial Cognition II—Integrating abstract theories, em-
pirical studies, formal models, and practical applications, volume 1849
of Lecture Notes in Artificial Intelligence, pages 41–53, 2000. 14, 15

[BT97] Dimitris Bertsimas and John N. Tsitsiklis. Introduction to Linear Op-
timization. Athena Scientific, 1997. 11

[BT04] Hans L. Bodlaender and Gerard Tel. A note on rectilinearity and angu-
lar resolution. Journal of Graph Algorithms and Applications, 8(1):89–
94, 2004. 31

[CBD+01] Sergio Cabello, Mark de Berg, Steven van Dijk, Marc van Kreveld, and
Tycho Strijk. Schematization of road networks. In Proc. 17th Annual
Symposium on Computational Geometry (SoCG’01), pages 33–39, New
York, NY, 3–5 June 2001. ACM Press. 2, 14, 15, 48

79

[CDR03] Sergio Cabello, Erik D. Demaine, and Günter Rote. Planar embeddings
of graphs with specified edge lengths. In Proc. 11th Int. Symp. on Graph
Drawing (GD’03), 2003. 32

[CR99a] Vijay Chandru and M. R. Rao. Integer Programming, chapter 32, pages
32/1–32/45. In Atallah [Ata99], 1999. 11

[CR99b] Vijay Chandru and M. R. Rao. Linear Programming, chapter 31, pages
31/1–31/37. In Atallah [Ata99], 1999. 11

[CvK03] Sergio Cabello and Marc van Kreveld. Approximation algorithms for
aligning points. In Proc. 19th Annual Symposium on Computational
Geometry (SoCG’03), pages 20–28, New York, NY, USA, 2003. ACM
Press. 14, 15

[Dan51] George B. Dantzig. Maximization of a linear function of variables sub-
ject to linear inequalities. Activity Analysis of Production and Alloca-
tion, pages 339–247, 1951. 12

[dBETT99] Giuseppe di Battista, Peter Eades, Roberto Tamassia, and Ioannis G.
Tollis. Graph Drawing: Algorithms for the Visualization of Graphs.
Prentice Hall, 1999. 4, 7, 10, 16, 29

[EFK01] Markus Eiglsperger, Sándor P. Fekete, and Gunnar W. Klau. Orthogo-
nal graph drawing. In Kaufmann and Wagner [KW01], chapter 6, pages
121–171. 4, 29

[EM99] Peter Eades and Petra Mutzel. Graph Drawing Algorithms, chapter 9,
pages 9/1–9/26. In Atallah [Ata99], 1999. 7

[Gar94] Ken Garland. Mr Beck’s Underground Map. Capital Transport Pub-
lishing, 1994. 1, 20

[glp] GNU Linear Programming Kit: Reference Manual Version 4.5. 53

[gra] The GraphML file format. http://graphml.graphdrawing.org. 52

[GT96] Ashim Garg and Roberto Tamassia. A new minimum cost flow algo-
rithm with applications to graph drawing. In Proc. Int. Symp. Graph
Drawing (GD’96), volume 1190 of Lecture Notes in Computer Science,
pages 201–216. Springer-Verlag, 1996. 30

[Hač79] L. G. Hačijan. A polynomial algorithm in linear programming. Soviet
Math. Dokl., 1979. 12

[Had03] Janin Hadlaw. The london underground map: Imagining modern time
and space. Design Issues, 19(1):25–35, 2003. 1

[HMN05] Seok-Hee Hong, Damian Merrick, and Hugo A. D. do Nascimento. The
metro map layout problem. In János Pach, editor, Proc. 12th Int.
Symp. on Graph Drawing (GD’04), volume 3383 of Lecture Notes in
Computer Science, pages 482–491. Springer-Verlag, 2005. 4, 15, 16, 22,
23, 48, 55, 64, 67

[HW02] William C. Hahn and Robert A. Weinberg. A subway map of can-
cer pathways. http://www.nature.com/nrc/poster/subpathways/
index.html, 2002. Poster in Nature Reviews Cancer. 4

[ILO] ILOG Inc. CPLEX 9.0 File Formats Manual. 53

80

http://graphml.graphdrawing.org
http://www.nature.com/nrc/poster/subpathways/index.html
http://www.nature.com/nrc/poster/subpathways/index.html

[IV04] Proc. 8th International Conference on Information Visualisation
(IV’04), London, UK, 14–16 July 2004. IEEE Computer Society. 81,
82

[jun] Java universal network/graph framework (JUNG). http://jung.
sourceforge.net. 52

[Kar] Karlsruher Verkehrsverbund. http://www.kvv.de. 62

[Kar84] N.K. Karmarkar. A new polynomial-time algorithm for linear program-
ming. Combinatorica, 4:373–395, 1984. 12

[KM99] Gunnar W. Klau and Petra Mutzel. Combining graph labeling and
compaction. In J. Kratochv́ıl, editor, Proc. 8th Int. Symp. Graph Draw-
ing (GD’99), volume 1731 of Lecture Notes in Computer Science, pages
27–37, Štǐŕın Castle, Czech Republic, September 1999. Springer-Verlag.
16

[KM03] Gunnar W. Klau and Petra Mutzel. Automatic layout and labelling
of state diagrams. In Willi Jäger and Hans-Joachim Krebs, editors,
Mathematics – Key Technology for the Future, pages 584–608. Springer-
Verlag, 2003. 16

[KR92] Donald E. Knuth and Arvind Raghunathan. The problem of compatible
representatives. SIAM J. on Discrete Mathematics, 5(3):422–427, 1992.
32

[KW01] Michael Kaufmann and Dorothea Wagner, editors. Drawing Graphs:
Methods and Models, volume 2025 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, 2001. 7, 80

[Lic82] David Lichtenstein. Planar formulae and their uses. SIAM J. Comput.,
11(2):329–343, 1982. 31, 32

[ltm] The london tube map archive. http://www.clarksbury.com/cdl/
maps.html. 25, 26

[Met] Metro de Madrid. http://www.metromadrid.es. 27

[Mon96] Mark Monmonier. Eins zu einer Million. Birkhäuser, 1996. 20

[Mor96] Alastair Morrison. Public transport maps in western European cities.
The Cartographic Journal, 33(2):93–110, 1996. 2, 20, 21

[Nes04] Keith V. Nesbitt. Getting to more abstract places using the metro map
metaphor. In IV [IV04], pages 488–493. 3

[Ney99] Gabriele Neyer. Line simplification with restricted orientations. In
Frank K. Dehne, Arvind Gupta, Jörg-Rüdiger Sack, and Roberto
Tamassia, editors, Proc. 6th Int. Workshop on Algorithms and Data
Structures (WADS’99), volume 1663 of Lecture Notes in Computer Sci-
ence, pages 13–24, Vancouver, BC, 11–14 August 1999. Springer-Verlag.
13

[Nöl05] Martin Nöllenburg. Automated drawings of metro maps. Master’s the-
sis, Institut für Theoretische Informatik, Universität Karlsruhe (TH),
August 2005. i

[O’R] O’Reilly. Open source route map. http://www.oreilly.de/artikel/
routemap.html. 4

81

http://jung.sourceforge.net
http://jung.sourceforge.net
http://www.kvv.de
http://www.clarksbury.com/cdl/maps.html
http://www.clarksbury.com/cdl/maps.html
http://www.metromadrid.es
http://www.oreilly.de/artikel/routemap.html
http://www.oreilly.de/artikel/routemap.html

[Ove03] Mark Ovenden. Metro Maps of the World. Capital Transport Publish-
ing, 2003. 1, 2, 19, 20, 21

[S-B] S-Bahn RheinNeckar. http://www.s-bahn-rhein-neckar.de. 72, 73

[Sch86] Alexander Schrijver. Theory of Linear and Integer Programming. Wi-
ley, 1986. 11

[Soc] Société de Transport de Montréal. http://www.stm.info/English/
metro/a-mapmet.htm. 56

[SR04] Jonathan M. Stott and Peter Rodgers. Metro map layout using mul-
ticriteria optimization. In IV [IV04], pages 355–362. 4, 15, 22, 23, 48,
55, 64, 66, 67, 68

[SR05] Jonathan M. Stott and Peter Rodgers. Automatic metro map design
techniques. In 22nd International Cartographic Conference, 2005. 16

[SRB+05] Jonathan M. Stott, Peter Rodgers, Remo Aslak Burkhard, Michael
Meier, and Matthias Thomas Jelle Smis. Automatic layout of project
plans using a metro map metaphor. In 9th International Conference
on Information Visualisation (IV05). IEEE, 2005. 4

[SW01] Tycho Strijk and Alexander Wolff. Labeling points with circles. Int. J.
Comp. Geom.& Appl., 11(2):181–195, 2001. 32

[Syd] Sydney CityRail. http://www.cityrail.nsw.gov.au/networkmaps/
network_map.pdf. 64

[Tam87] Roberto Tamassia. On embedding a graph in the grid with the min-
imum number of bends. SIAM J. Comput., 16(3):421–444, 1987. 29,
30

[Traa] Transport for London. http://www.tfl.gov.uk/tube/maps/. 69

[Trab] Transport for London. London buses spider maps. http://www.tfl.
gov.uk/buses/spiders/borough.asp. 3

[Tuf90] Edward R. Tufte. Envisioning Information. Graphics Press, 1990. 21

[Wei97] Robert Weibel. Generalization of spatial data: Principles and selected
algorithms. In Marc van Kreveld, Jürg Nievergelt, Thomas Roos, and
Peter Widmayer, editors, Algorithmic foundations of Geographic Infor-
mation Systems, volume 1340 of Lecture Notes in Computer Science,
chapter 5, pages 99–152. Springer-Verlag, 1997. 13

[Wie] Wiener Linien. http://www.wienerlinien.at/WienerStadtWerke/
DOWNLOAD/U-NETZ.pdf. 59

[WS96] Alexander Wolff and Tycho Strijk. A map labeling bibliog-
raphy. http://i11www.ira.uka.de/map-labeling/bibliography/,
1996. 11

82

http://www.s-bahn-rhein-neckar.de
http://www.stm.info/English/metro/a-mapmet.htm
http://www.stm.info/English/metro/a-mapmet.htm
http://www.cityrail.nsw.gov.au/networkmaps/network_map.pdf
http://www.cityrail.nsw.gov.au/networkmaps/network_map.pdf
http://www.tfl.gov.uk/tube/maps/
http://www.tfl.gov.uk/buses/spiders/borough.asp
http://www.tfl.gov.uk/buses/spiders/borough.asp
http://www.wienerlinien.at/WienerStadtWerke/DOWNLOAD/U-NETZ.pdf
http://www.wienerlinien.at/WienerStadtWerke/DOWNLOAD/U-NETZ.pdf

	Introduction
	Preliminaries
	Graphs and Their Drawings
	Graphs
	Graph Drawing

	Combinatorial Optimization
	Linear Programming
	Mixed-Integer Programming

	Related work
	Schematic Maps
	Metro Maps
	Graph Labeling

	Drawing Metro Maps
	What is a Metro Map?
	Metro-Map Esthetics
	Graphical Criteria
	Layout Criteria

	Modeling Metro Maps
	Hard Constraints
	Soft Constraints

	The Metro-Map Layout Problem

	Complexity of Drawing Metro Maps
	Relationship to Orthogonal Layouts
	Rectilinear Graph Drawing
	Extension to Octilinear Layouts

	NP-Completeness of MetroMap
	Planar 3-Sat
	MetroMap is NP-Complete

	A Mixed-Integer Program for Metro-Map Layouts
	Linear Constraints
	Coordinate system
	Octilinear Edges
	Preservation of the Embedding
	Planarity

	Objective Function
	Minimizing Edge Lengths
	Avoiding Line Bends
	Preserving Relative Positions
	Summary of the Model

	Speed-Up Heuristics
	Reducing the Graph Size
	Planarity Heuristics

	Label Placement
	Implementation
	Generating the MIP
	Optimizing the MIP
	Graphical Output

	Experimental Results
	Montreal
	Vienna
	Karlsruhe
	Sydney
	London
	S-Bahn RheinNeckar

	Final Remarks
	Conclusion
	Outlook

	References

