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Abstract. We consider a scenario where stops are to be placed along
an already existing public transportation network in order to improve
its attractiveness for the customers. The core problem is a geometric set
covering problem which is NP-hard in general. However, if the corre-
sponding covering matrix has the consecutive ones property, it is solvable
in polynomial time. In this paper, we present data reduction techniques
for set covering and report on an experimental study considering real
world data from railway systems as well as generated instances. The re-
sults show that data reduction works very well on instances that are in
some sense “close” to having the consecutive ones property. In fact, the
real world instances considered could be reduced significantly, in most
cases even to triviality. The study also confirms and explains findings on
similar techniques for related problems.

1 Introduction

The continuous stop location problem consists of placing new stations or stops
along a given public transportation network in order to reach all potential cus-
tomers and thus to improve attractiveness of using public means of transport. In
particular, this scenario occurs in local public transport where additional stops
in a rapid transit system or bus system, e.g. close to a residential or a settlement
may induce significant increase of customers. Of course, the placement of new
stops has certain additional effects to be considered as well. New stations require
investment and operational costs and the travel time for customers already us-
ing a bus or train on the affected line might increase. On the other hand, the
total number of customers and the according gain is improved and the total
door-to-door travel time might be decreased.

As part of a project with the largest German railway company, we focused
on a scenario where only the reachability of the network for potential customers
was considered. That is, we are given a geometric graph, a (possibly empty)
set of stations placed on the graph, a set of demand points in the plane and a
radius. Weights are assigned to all edges and vertices of the graph representing
the increase of travel time caused by new stop placed there. Then a demand point
is covered by a (possibly new) station if the station is within the given radius
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of that point. The problem consists in finding a set of stations with minimum
total weight placed on the graph such that all demand points are covered. In [1]
and [2] this problem is introduced as the continuous stop location problem and
proved to be NP-hard. It is also shown, that the problem can be formulated as
a set covering problem by reducing the set of potential stations to a finite set of
candidates.

Set covering problems have been studied widely, for example in the context
of crew scheduling. See [3] for an overview. As shown for example in [4], the set
covering problem is notoriously hard to solve or even to approximate. However,
it is observed already in [1] that set covering is solvable in polynomial time by
linear programming if the covering matrix has the so-called consecutive ones
property. In the geometric setting, the special case that the network consists of
only one single line satisfies the consecutive ones property. Polynomial solvability
of some similar special cases of related problems is also shown in [5].

Experiments with railway data indicate that the size of such instances can
be reduced significantly by applying a simple reduction technique mentioned al-
ready in [6]). Therefore we examine the power of data reduction for geometric
set covering instances from the station location scenario as well as on generated
instances. In addition to the known reduction techniques we apply a more ad-
vanced reduction rule and a refined enumeration algorithm to solve weighted set
covering problems. It turns out that all real world instances could be reduced
almost completely. Even the largest instances were reduced within one minute
leaving an instance that could usually be solved within a few seconds.

One explanation for this nice behaviour is that the matrices occurring in our
setting are close to having consecutive ones property or band diagonal form. In
comparison, we conducted experiments on generated matrices (nearly) having
consecutive ones property and found a similar behaviour. The computational
results suggest that the effectiveness of data reduction highly depends on “close-
ness” of the matrix to having consecutive ones property. For the real world data
considered, closeness to the consecutive ones property is obviously affected by
the underlying geometry. The study also confirms and explains results reported
in [7] about the power of data reduction for similar covering problems.

In the following section, well known reduction techniques for set covering
are introduced and our new advanced reduction technique is presented. Effi-
cient algorithms to implement these techniques are given and their behaviour
is analyzed especially for instances with consecutive ones property. In Section 3
a refined enumeration algorithm for set covering is introduced and its running
time is analyzed. Section 4 presents our experimental study and discusses the
results.

2 Data Reduction for Set Covering

2.1 Basic Definitions

An instance I := (P, F, A, w) of our problem is given by two finite sets P and
F with m := |P |, n := |F |, a positive weight function w on F and a m × n–



matrix A = (aij)i∈P,j∈F over {0, 1}. We want to find a covering of P with
minimum weight, i.e. a subset F ′ ⊆ F such that for each p ∈ P there is f ∈ F ′

such that apf = 1 and cost(F ′) :=
∑

f∈F ′ wf is minimized.
If apf = 1 for a row p and a column f of A, then p is covered by f . For

subsets F ′ ⊆ F and P ′ ⊆ P denote

cov(F ′) := {p ∈ P | f ∈ F ′, apf = 1}

precov(P ′) := {f ∈ F | p ∈ P ′, apf = 1} .

A set F ′ ⊆ F such that cov(F ′) = P is called a feasible solution for I. It is
called an optimal solution for I if cost(F ′) is minimum. The set of all optimal
solutions will be denoted by OPT (I) and the weight of an optimal solution by
cost(I). An instance has a feasible solution if and only if every row of A contains
at least one 1. We will assume in the following that all instances are solvable.
As an instance of Set Covering is fully described by its covering matrix A
and the weight function w, we also write I = (A, w) as an abbreviation. In the
following let N := |{aij = 1}|.

In the context of stop location P corresponds to the demand points in the
plane (population areas) and F to the set of facilities (stations). Usually, an
instance of the stop location problem is given by the geometric graph, the set of
stations, the set of demand points in the plane and a radius. It is obvious that the
covering matrix A can be easily derived from this. Moreover, we consider cases
where no set of stations is given explicitly. Instead, a station can be placed on
any (or given) positions on the graph. As already mentioned in the introduction,
such an instance can be transformed into an equivalent instance with a finite set
of stations.

Definition 2.1. A matrix over {0, 1} has the strong consecutive ones property,
if the ones in every row are consecutive. It has the (simple) consecutive ones
property (C1P) if its columns can be permuted such that the resulting matrix
has the strong consecutive ones property.

For a matrix with C1P, a permutation of its columns to induce a matrix
with strong consecutive ones property can be found in linear time using PQ–
trees (cf. [8]).

2.2 Reduction

Definition 2.2. For columns f and g of A, f is dominated by g if either
cov(f) ⊆ cov(g) and wf ≥ wg or cov(f) = ∅. For rows p and q of A, p is
dominated by q if precov(q) ⊆ precov(p).

For an instance (P, F, w, A) we use the following terminology:

– If there are rows p 6= q such that row p is dominated by q, we call the
instance reducible by rows. If there are columns f 6= g such that column f is
dominated by g, we call the instance reducible by columns. An instance that
is neither reducible by rows nor by columns is called completely reduced.



– A reduction step is denoted by a triple (M, i, k), where M ∈ {row, col}, i, k
denote two rows (resp. columns) and i is dominated by k.

– Let σ = (row, i, k) (resp. τ = (col, i, k)) denote a reduction step. By σA
(resp. τA) we denote the matrix resulting from deleting row (resp. column)
i. The according instance is denoted by σI (resp. τI).

It is a well known fact (see e.g. [6]) that dominated rows and columns can be
deleted without changing solvability. Even more, the value of an optimal solution
is maintained. More precisely:

Lemma 2.3. Let σ be a reduction step for an instance I. Then we have

cost(σI) = cost(I) and OPT (σI) ⊆ OPT (I) .

Accordingly, in order to solve an instance of Set Covering one can first
apply a sequence of reduction steps and then solve the (completely) reduced
instance. It can be even shown that a completely reduced instance is in a certain
sense unique:

Theorem 2.4. Let I = (A, γ) an instance and I = (A, c) and J = (B, d) two
completely reduced instances derived from I. Then we have, for a suitable per-
mutation π of the rows and columns of A

πA = B and πc = d (1)

and thus

cost(I) = cost(I) = cost(J) (2)

OPT (I) ⊆ OPT (I) ⊇ OPT (J) (3)

|OPT (I)| = |OPT (J)| . (4)

We omit a formal proof here. Note that (2) already follows from Lemma 2.3.
Equation (1) follows from the fact that, for two different reduction steps σ and τ
for a matrix A, either τA = σA or τ is still a valid reduction step for σA. Using
this observation one can derive a bijection between the sequences of reduction
steps leading to I and J respectively. ⊓⊔

2.3 Advanced Reduction

In many cases, a column is dominated in the sense that a combination of two
or more other columns would dominate it. Consider a column f and a set of
columns G such that cov(f) ⊆ cov(G) and

wf ≥
∑

g∈G

wg .

Then f is dominated by G. If a column f is dominated by a set of columns G,
we call its deletion advanced reduction step. However, it seems computationally



infeasible to consider for a column f all combinations of other columns. Instead
we apply the following approach. For every row r and column f denote fmin(r)
a column in precov(r) with minimal weight. Then column f is dominated by
g together with the set of columns {fmin(r)|r ∈ cov(f) − cov(g)} if cov(f) ∩
cov(g) 6= ∅ and

wf ≥ wg +
∑

r∈cov(f)−cov(g)

wfmin(r) .

For this advanced reduction, analogous results to Lemma 2.3 and Theo-
rem 2.4 can be proved. Note however, that by applying advanced reduction
certain types of solutions might be lost. Consider for example the covering ma-
trix ( 1 1 0

1 0 1 ) with weights (2, 1, 1). It is not reducible by simple reduction, optimal
solutions are S1 = {1} and S2 = {2, 3}. By advanced reduction it can be reduced
to ( 1 0

0 1 ), with only a two element optimal. In the next section we will show that
the advanced reduction can be implemented without increasing the asymptotic
worst-case running time of the reduction.

2.4 Reduction Algorithm

We shortly review the algorithmic realization of reduction. In the following we
consider a matrix obtained by reductions consisting of reduction steps as well as
advanced reduction steps.

Theorem 2.5. A matrix can be reduced by columns in O(nN) and by rows in
O(mN). Furthermore a matrix can be reduced completely in O(Nmn).

Proof. Compare each pair of columns and delete dominated columns. If the ma-
trix is represented as n adjacency lists, comparing one column to all others has
cost O(N), which leads to O(nN) steps. Note that for advanced reductions the
fmin(r) have to be computed only once. Obviously, the cost for computing the
fmin(r) is as well within O(nN). Reduction by rows is analogous. For complete
reduction of a matrix, reductions by rows and reductions by columns are applied
alternating until no reduction step at all is applicable. In each reduction step at
least one row or one column is deleted. Accordingly, the procedure is finished
after O(min(m, n)) alternations. This induces cost O(Nmn) for complete reduc-
tion. ⊓⊔

Remark 2.6. If the matrix is very sparse the analysis can be improved further.
Let the number of ones in every row and every column be smaller than a constant
c, then every column has to be compared with at most c2 other columns, where
each comparison has cost O(c). Then the matrix is reduced by columns within
O(c3n) reduction steps. As before it follows that complete reduction can be done
in O(nm).

Remark 2.7. Theorem 2.5 can be slightly improved using results of [9] and [10]:
These papers present a lower bound and algorithms for the problem of finding
extremal sets, which is equivalent to reduction by column (resp. rows). In [9] a



lower bound of Ω(N2/ log2(N)) is proved, and an algorithm with time complex-
ity O(N2/ log(N)) is given in [10] which is only slightly better than the running
time of our much simpler approach.

2.5 Instances with Consecutive Ones Property

Instances with C1P can be reduced very effectively. A matrix with C1P maintains
this property after every reduction step. If the weights are all equal it can be even
reduced to the unit matrix. For the weighted case, reduction can still be done very
efficiently by establishing strong C1P and then sorting the rows lexicographically.

Remark 2.8. Note that a reduced matrix with C1P for rows has C1P for columns.

Set Covering for matrices with C1P can be solved by applying a shortest
path algorithm in a graph with n nodes as described in [11]. In our experiments,
we used Algorithm 1 which is exponential for general instances but polynomial
on instances with C1P.

3 A Refined Enumerative Algorithm

For solving a completely reduced set covering problem, it is favorable to apply
an algorithm that takes into account the (observed) special structure of the real
world instances. More precisely, we aim at an algorithm that is especially effec-
tive for instances that are “close” to having C1P. Although the well-established
approaches for solving integer linear programs as e.g. branch and bound are
very successful in practice, they are often disadvantageous for nicely structured
instances.

Alternatively, we designed the following simple, however refined enumerative
solution algorithm. The basic idea is simply to enumerate all solutions by com-
bining the covering columns for each row. This leads to partial solutions for all
the rows considered so far and finally to a solution for the entire instance. This
procedure is described in Algorithm 1.

Throughout Algorithm 1 the cover of partial solutions is maintained in matrix
B, the weights of the columns in array w′, and the partial solutions in array S.
It always terminates, because in every iteration at least one row is removed from
C. Before each iteration the following invariants hold by induction:

– For every column f of B

• the partial solution Sf covers all rows deleted in step 2 up to this iteration
and the rows with a one in column f of B.

• Sf has weight w′

f .

– S contains a subset of an optimal solution for I.

The key argument is that step 1 adds all solutions covering the first row. The
correctness of the returned solution follows if C = (1).



Algorithm 1: Combi solver

Input : Instance I = (P, F, w, A)

Output : Optimal solution

Start
B := (0) ∈ {0, 1}|P |×1, weights w′ := (0), solutions S := (∅);

C :=

„

A B

0 1

«

;

while C 6= (1) do
forall the columns f of B with 0 in first row do

forall the columns g of A with 1 in first row do
1 Add a new column Ag + Bf to B, a weight wg + w′

f to w′ and
solution Sf ∪ {g} to S;

Remove column f ;

2 Remove first row of A and B ;

Reduce C :=

„

A B

0 1

«

and remove corresponding entries of w′ and S;

return S1 and w′
1;

End

In order to keep the effort for computing the partial solutions reasonable, we
apply again our reduction technique throughout the algorithm. Of course, the
running time of Algorithm 1 is exponential in general. The size of matrix B,
which contains all the partial solutions obtained so far can be still exponentially
large. For certain kinds of instances, however, we can prove some nice properties:

Theorem 3.1. If the covering matrix A has strong C1P, is reduced, the rows
are sorted in lexicographic order, and c is the maximum number of ones per row
and per column. Then Algorithm 1 has time complexity O(c3n).

Proof. Let c be the maximum number of ones in a column or row of A. If the
covering matrix A has strong C1P, is completely reduced, and the rows are sorted
in lexicographic order it has, as noted in remark 2.8, also strong C1P for columns.
This implies that after each iteration, the first column of B contains only zeroes,
all other columns have strong C1P, contain a one in the first row, and no two
columns are equal. Thus, B has at most c columns. So during Algorithm 1 for
each column of A a new column is added to B at most c times. Each reduction
is in O(c3) as stated in Theorem 2.5. ⊓⊔

Even for a weaker property than C1P Algorithm 1 has polynomial running
time:

Theorem 3.2. If the distance between the first and last entry in each column
of the covering matrix is at most k, then at any time throughout Algorithm 1
the number of columns in matrix B is in O(2kn). The time complexity is in
O(mn222kk).



Proof. We prove by induction that after each iteration, the ones in B are con-
tained in rows 1 to k−1. As B is completely reduced, no two columns are equal,
so there are at most 2k different columns. In every iteration only those columns
of A with a one in the first row are considered. The ones of these columns are
again contained in rows 1 to k. Therefore for every column of B at most n new
columns are added, having all their ones in rows 1 to k. After addition of all new
columns there are at most 2kn columns in B and there are at most 2knk ones
in B. So by Theorem 2.5 reduction by columns is in O((2kn)2knk). There are
at most m iterations which leads to the claimed upper bound. ⊓⊔

As Theorem 3.2 indicates, the ordering of the rows is crucial for the running
time of the algorithm. We have made good experiences with the Cuthill-McKee
ordering (cf. [12]). This means that the rows are chosen in their order of ap-
pearance in a breadth first search on the covering graph with adjacency matrix
(

0 A
AT 0

)

. A simple on-line-heuristic which always tries to minimize the size of B
in the next step leads to even better running times.

4 Experimental Results

The implementation is in C++ and runs on a i686-Linux platform. The experi-
ments were performed on a Xeon(TM) CPU with 2.80GHz and 2GB RAM.

4.1 Instances

Real World Instances. We tested our algorithm with different data sets. The
original motivation of this work was a project in collaboration with the largest
German railway company. Its goal was to optimize the accessibility of customers
to local train service. We therefore had access to the data on the German rail-
way network (circa 8200 nodes and 8700 edges) and German settlements (circa
30000). We tested different radii. According to the railway company, radii of two
to five kilometers are the most realistic.

We also had two different versions of the problems. The first version contains
all settlements that are within the given radius of the railway network, the second
version contains only those settlements that were not already covered by one of
the (approx. 6800) existing German railway stations. The edges and nodes were
weighted by the number of customers traveling through them.

Generated Instances. As a second data set we considered randomly generated
instances with C1P and suitably modified instances having almost C1P. We
experimented with unweighted instances (all weights equal to 1) and instances
where the weights were chosen randomly (equally distributed) between 1 and a
maximum weight of 10 or 100. The matrices consist of 50 to 50000 rows with 10
to 200 non-zero entries per row. Up to 20% of the ones were randomly flipped
to zero resulting in perturbed instances.



4.2 Performance of Reduction

Real World Instances. The original problem consisted in solving instances
that contain only those settlements that are not already covered by existing
railway stations. Our experiments on practical data showed that these are always
reduced to almost trivial instances in very short time.

Moreover these instances tend to become easier to solve with increasing ra-
dius. For large radii many settlements are already covered by old stations and
the instance decomposes into many, small components.

The situation is different for
instances without existing sta-
tions. As an illustrative example
for the effect of reduction see the
figure on the left. It shows a sec-
tion of the railway graph near
the city of Karlsruhe. The cover-
ing radius was 2.5km. The settle-
ments are squares, potential can-
didates for stops are ellipses. The
original instance is colored grey,
the instance remaining after re-

duction is black. Obviously the solution for the shown part of the remaining
instance is already trivial. The largest remaining component of the covering
matrix after reduction contained 8 rows and 9 columns.

With increasing radius, however, these instances get quite complex in terms
of total matrix size and number and size of independent components. However,
reduction is still very effective here. Figure 1 summarizes reduction rates for the
German railway graph and radii between 1 and 10km. In these examples the
advanced reduction technique is much more effective, especially for large radius.
It even seems that the size of the reduced matrix does not grow with increasing
radius.

Generated Instances. When looking at the C1P matrices, we first observe
that the unweighted instances can be reduced completely, that is, to the trivial
unit matrix. The weighted matrices could not be reduced completely by the first
step, but almost completely by the improved reduction.

Perturbed instances are harder to reduce. For weighted, perturbed instances
simple reduction is not very effective but advanced reduction yields very good
results as Figure 2 illustrates. Figure 3(a) shows that unweighted instances with
10% perturbation could usually be reduced by a factor of 10, instances with 20%
only by a factor of around 2.

Increasing the Radius. Of course, N grows with increasing radius, but also
the combinatorial structure of the instances changes. This affects the effective-
ness of reduction. As r increases the reduction ratio decreases first, increases for
moderate radii and finally drops to almost zero for very large radii (The left side
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of Figure 4 shows this effect for a sub-instance of the german railway graph).
For generated instances this effect could only be simulated to a certain extent
by just increasing the number of ones per row (see right side of Figure 4).

4.3 Time Complexity

As noted before real world instances with existing stops can be reduced very
fast, because they decompose into many, small components. For the variants
without existing stations, although the reduction rates were always very good,
the running time for solving the instances grew quite fast for radii greater or equal
to around 10km. Note, however, that radii larger than 10km are irrelevant in our
scenario. For moderate radii we observed a quadratic or slightly subquadratic
behaviour (in terms of the matrix size) of the running times for reduction and
an almost linear running time for solving the set covering problem.

Looking at the generated instances, our experiments suggest a quadratic time
complexity for reduction and an almost linear time complexity for solving the
set covering problem (Figure 5). Only for the 20% perturbed, unweighted C1P
matrices we observed a quadratic behaviour.

For weighted instances advanced reduction also improved the running time
for our solver. Figure 3(b) shows this for the case of 10% perturbed, weighted,
generated instances. A speedup factor of 100 and more could be observed here.
Even the running time for advanced reduction was usually reduced, owing to a
the reduced matrix size after the first rounds of reduction.

5 Conclusions

The station location problem was solved almost completely by reduction for our
initial real world data. The experimental study confirms the conjecture that one
reason for this nice behaviour is the closeness of our instances to C1P. This
explains also the results from [7] about the power of data reduction for similar
covering problems. Actually it is likely that the data considered there in many
cases have (at least almost) C1P.
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