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Abstract

We give an overview of models and efficient algorithms for optimally solving timetable
information problems like “given a departure and an arrival station as well as a departure
time, which is the connection that arrives as early as possible at the arrival station?”
Two main approaches that transform the problems into shortest path problems are re-
viewed, including issues like the modeling of realistic details (e.g., train transfers) and
further optimization criteria (e.g., the number of transfers). An important topic is also
multi-criteria optimization, where in general all attractive connections with respect to
several criteria shall be determined. Finally, we discuss the performance of the described
algorithms, which is crucial for their application in a real system.

1 Introduction

The first electronic timetable information systems were established in the late eighties of the
last century. Current systems are for example HAFAS [13], which is used by many European
railway companies, or EFA [8], which is mainly used for local traffic limited to smaller regions
in Europe. Empirically, the resulting connections are satisfying in the majority of cases.
There are cases, however, for which the suggested itineraries are clearly not optimal (given
some optimization criterion). The main reason for such non-optimal connections is that the
algorithms behind the systems employ heuristic methods to reduce the search space (in order
to achieve an acceptable response time) that do not always guarantee optimal solutions. Such
heuristic approaches often work in two phases as described below.

In the last few years the question arose whether models and algorithms for optimally
solving timetable information problems are feasible. In this work we want to give an overview
of such approaches, which solve timetable information queries by finding a shortest path in
an appropriately defined graph. Hence, the problems are directly transformed into shortest
path problems.

In the remainder of the introduction we give a brief overview of heuristic two-phase ap-
proaches and direct shortest-path approaches. In Section 2 the timetable information prob-
lems are formally specified. Two main approaches for modeling timetable information directly
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as shortest paths are described in detail in Section 3, where first a simplified problem specifi-
cation is considered. Later on, in Section 4, extensions of the approaches that cover realistic
details are outlined. Multi-criteria optimization is discussed in Section 5, and studies investi-
gating the performance of the algorithms described in this paper are summarized in Section 6.
We conclude the survey with some final remarks in Section 7.

1.1 Two-Phase Approaches.

We want to mention two predecessors of “real” timetable information systems. Around the
year 1988, the Dutch and German train companies started to use electronic timetable infor-
mation systems. Heuristics that usually yield good solutions, but cannot always guarantee
an optimal solution, are used to keep the search spaces small enough. The two systems we
describe work both in two phases, where the first phase heuristically restricts the search space.

1.1.1 TRAINS.

Tulp and Siklòssy [37] describe the TRAINS system, which was used by the Dutch railways
(NS) at that time as a prototype: It is based on a graph where nodes represent cities. They
distinguish two levels of the network, a “static” level which consists of arcs between nodes
representing distances, and a “dynamic” level where the arcs include information about the
departure and arrival times of trains. The algorithm uses the static level to cut out the
“interesting” part of the network, without considering any information about time. Note
that this cutting is heuristic in the sense that optimal connections may be lost by that step,
which is not permitted in the models investigated later in this paper. Then, a train connection
is calculated by a modification of Dijkstra’s algorithm [7] trying to incorporate time for train
changes at stations. Once a connection to the destination station is found, a backward search
tries to improve the result (e.g., to find a connection that departs later and has the same
arrival time).

1.1.2 ARIADNE.

Baumann and Schmidt [2] outline an algorithm called ARIADNE, which can be regarded
as ancestor of HAFAS [13], the timetable information system that is nowadays used by the
German railway company Deutsche Bahn AG and many other railway companies worldwide.
As in TRAINS, the algorithm considers two different networks: a static graph representing
the topographic railway network, and a dynamic network including time, traffic days, train
classes etc. The ARIADNE algorithm works in two phases: The first phase (“Wegesuche”)
searches feasible paths in the static network by a bidirectional version of Dijkstra’s algorithm
and outputs a subgraph of the network to be considered in the second phase. Note that
again—as in the TRAINS algorithm—optimal solutions may be lost by this step. The second
phase (“Zeitsuche”) computes on the dynamic, time-dependent version of the network, limited
by the subgraph computed in the first phase, several feasible train connections. These are
rated according to measures like travel time, quality of trains, direct connection, etc.

1.2 Direct Shortest Path Approaches.

Two main approaches have been proposed for modeling timetable information as shortest path
problem: the time-expanded [19, 20, 21, 22, 26, 28, 29, 32, 33, 34], and the time-dependent
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approach [4, 5, 16, 23, 24, 25, 28, 29, 30, 32]. The common characteristic of both approaches is
that a query is answered by applying some shortest path algorithm to a suitably constructed
graph.

1.2.1 The time-expanded approach.

A time-expanded graph is constructed in which every node corresponds to a specific time
event (departure or arrival) at a station and edges between nodes represent either elementary
connections between the two events (i.e., served by a train that does not stop in-between), or
waiting within a station. Depending on the optimization criterion, the construction assigns
specific fixed lengths to the edges. This naturally results in the construction of a very large
(but usually sparse) graph. The simplified version of the earliest arrival problem—where
details like transfer rules and traffic days are neglected—has been extensively studied:

In [33], Schulz, Wagner and Weihe explicitly use the time-expanded approach to model a
simplified version of the earliest arrival problem as a shortest path problem in a static graph,
and solve the problem optimally. An extensive experimental study has been conducted and—
at least in the simplified scenario—it could be demonstrated that the running time of the
time-expanded approach on state-of-the-art computers is acceptable. To achieve this result,
several speed-up techniques, which guarantee optimal solutions, were applied to Dijkstra’s
algorithm for computing the shortest path. More details on the speed-up techniques are
provided in Section 6.

An extension of the time-expanded approach incorporating train transfers and an exten-
sive experimental study focused on multi-criteria problems is presented by Müller-Hannemann
and Weihe in [22]. The results of this study are quite promising: in practice (among other
data also the time-expanded graph was considered) the number of Pareto-optimal paths is
often very small, and labeling approaches are feasible. In [21], Müller-Hannemann, Schnee
and Weihe focus on more realistic and complex real-world scenarios for timetable informa-
tion, in particular with respect to space limitations. Further extensions towards realistic
models and also further optimization criteria as well as bicriteria problems are presented
by Pyrga, Schulz, Wagner and Zaroliagis in [28, 29] (see also [32]), where the authors also
conducted an experimental comparison with the time-dependent approach (see below). Multi-
criteria optimization in the time-expanded graph by a labeling approach is extensively inves-
tigated by Müller-Hannemann and Schnee [20]; the notion of Pareto-optimal connections is
relaxed (cf. 5.2.2). Möhring suggests the time-expanded model as a graph-theoretic concept
for timetable information in [19]. He further discusses algorithms for solving multi-criteria
problems, and focuses on a distributed approach for timetable information, which is also the
topic of the recent projects DELFI [6] and EU-Spirit [11]: the railway network is considered
as consisting of several (overlapping) subnetworks (e.g., each subnetwork is operated by a dif-
ferent company or institution), and a global solution is constructed from several subqueries
to the conventional timetable information systems operated on the respective subnetworks.
In a sense such new systems operate like meta search engines for the web.

1.2.2 The time-dependent approach.

The idea is to avoid the maintenance of a node per event. Instead, the time-dependent graph
is used in which every node represents a station, and two nodes are connected by an edge
if the corresponding stations are connected by an elementary connection. The lengths on
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the edges are assigned “on-the-fly”: the length of an edge depends on the time in which the
particular edge will be used by the shortest path algorithm to answer the query. Dynamic
programming approaches for a time-dependent shortest-path problem have first been stud-
ied by Cooke and Halsey [5]. Later, Kostreva and Wiecek [16] generalized this approach
towards multiple criteria. However, no performance guarantees are given for these dynamic
programming approaches. Orda and Rom [24, 25] thoroughly investigated the complexity of
time-dependent shortest path problems and give efficient algorithms for special cases. Brodal
and Jacob [3, 4] argued that in the simplified case of the earliest arrival problem, Dijkstra’s al-
gorithm considers many redundant edges in the time-expanded approach. They suggest to use
a time-dependent network instead and proved by a detailed theoretical analysis of operation
counts in both approaches that a variant of a time-dependent shortest-path algorithm intro-
duced by Orda and Rom is more efficient than the time-expanded approach. Pyrga, Schulz,
Wagner and Zaroliagis extended the time-dependent model to cope with realistic problem
specifications [30]. A subsequent study [28, 29, 32] compares these models experimentally
with the time-expanded models, where also bicriteria problems are considered.

The work of Nachtigal [23] can also be classified as a time-dependent approach to timetable
information. The problem specification he uses is different to most other approaches: given a
source station, for all other stations arrival functions depending on the departure time shall
be computed. Hence, the departure time is not part of the query, and solutions are computed
for all possible departure times.

2 Problem Specification

2.1 Data

A timetable consists of data concerning: stations (or bus stops, ports, etc), trains (or busses,
ferries, etc), connecting stations, departure and arrival times of trains at stations, and traffic
days. More formally, we are given a set of trains Z, a set of stations B, and a set of elementary
connections C whose elements c are 5-tuples of the form c = (Z,S1, S2, td, ta). Such a tuple
(elementary connection) is interpreted as train Z leaves station S1 at time td, and the next
stop of train Z is station S2 at time ta. If x denotes a tuple’s field, then the notation x(c)
specifies the value of x in the elementary connection c.

The departure and arrival times td(c) and ta(c) of an elementary connection c ∈ C within
a day are integers in the interval [0, 1439] representing time in minutes after midnight. The
length of an elementary connection c, denoted by length(c), is the time that passes between
the departure and the arrival of c.

A timetable is valid for a number of N traffic days, and every train is assigned a bit-field of
N bits determining on which traffic day the train operates (for overnight trains the departure
of the first elementary connection counts).

At a station S ∈ B it is possible to transfer from one train to another only if the time
between the arrival and the departure at that station S is larger than or equal to a given,
station-specific, minimum transfer time, denoted by transfer(S). There may also be more
complicated transfer rules, for example the transfer time can be smaller for trains that depart
from the same platform. The most general notion is to specify a station-specific minimum
transfer time, and exceptions in the form of a set of feasible and a set of forbidden transfer
trains for each arrival of a train at a station.
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Between stations that are located close to each other it is possible to walk by foot. Such
data is available through so-called foot-edges between stations. Each foot-edge is associated
with a natural number representing the time in minutes needed for the walk. Formally, we
treat a foot-edge like an elementary connection c, where the train Z and the departure and
arrival times td and ta are invalid, and length(c) is the associated walking time. Foot-edges
are independent of traffic days.

2.2 Connections

Let P = (c1, . . . , ck) be a sequence of elementary connections (and foot-edges) together with
departure times depi(P ) and arrival times arri(P ) for each elementary connection ci, 1 ≤
i ≤ k. We assume that the times depi(P ) and arri(P ) include data regarding also the
departure/arrival day by counting time in minutes from the first day of the timetable. A time
value t is of the form t = a · 1440 + b, where a ∈ [0, 364] and b ∈ [0, 1439]. Hence, the actual
time within a day is t (mod 1440) and the actual day is ⌊t/1440⌋.

Such a sequence P is called a consistent connection from station A = S1(c1) to station
B = S2(ck) if it fulfills some consistency conditions: the departure station of ci+1 is the arrival
station of ci, and the time values depi(P ) and arri(P ) correspond to the time values td and ta,
resp., of the elementary connections (modulo 1440) and respect the transfer times at stations.
More formally, P is a consistent connection if the following conditions are satisfied:

ci is valid on day ⌊depi(P )/1440⌋,

S2(ci) = S1(ci+1),

depi(P ) ≡ td(ci) (mod 1440),

arri(P ) = depi(P ) + length(ci),

depi+1(P ) − arri(P ) ≥











0 if Z(ci+1) = Z(ci) or
ci is a foot-edge, and

transfer(S2(ci)) otherwise.

2.3 Criteria and Queries

For the timetable information problems we are additionally given a large, on-line sequence of
queries. A query generally defines a set of valid connections, and an optimization criterion
(or criteria) on that set of connections. The problem is to find the optimal connection (or a
set of optimal connections) w.r.t. the specific criterion or criteria.

2.3.1 The basic query.

The most fundamental query is also referred to as the earliest arrival problem. A query
(A,B, t0) consists of a departure station A, an arrival station B, and a departure time t0.
Connections are valid if they do not depart before the given departure time t0, and the
optimization criterion is to minimize the difference between the arrival time and the given
departure time. Additionally, one may ask among all connections that are solutions to such
a query for the connection that departs as late as possible.
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2.3.2 Extended queries.

Other important optimization criteria involve the number of transfers and the price of a
connection. In the minimum number of transfers problem, the query is to ask, given two
stations A and B, for a connection with as few transfers as possible, which doesn’t involve a
departure or arrival time at all. Similarly, one can ask for a connection with the lowest price.

A query can also contain a sequence of via stations together with the duration of the stays
at the respective stations. Further, certain trains or train classes can be excluded from the
set of trains, e.g., if one intends to use a ticket that is valid only for local trains the intercity
trains should be excluded. Also, instead of specifying the departure time, as in the earliest
arrival problem, the aspired arrival time may be given. Alternatively, such time specifications
can be given as time intervals.

3 Basic Modeling: The Earliest Arrival Problem

In this section, we review models for solving the first and most fundamental basic query,
namely the earliest arrival problem, in both the time-expanded and the time-dependent ap-
proach. We consider throughout this section a simplified specification of train connections: We
assume that (i) a transfer between trains at a station takes negligible time, i.e., transfer(S) = 0
for each station S, (ii) every train is operated daily, i.e., every day is the same in the timetable,
and (iii) there are no foot-edges. In the following section we show how the models can be
extended to comply with the realistic specification, and also consider the extended types of
queries.

3.1 Time-Expanded Model.

The time-expanded model [33] is based on the directed time-expanded graph which is con-
structed as follows. There is a node for every time event (departure or arrival) at a station,
and there are two types of edges. For every elementary connection (Z,S1, S2, td, ta) in the
timetable, there is a train-edge in the graph connecting a departure node, belonging to station
S1 and associated with time td, with an arrival node, belonging to station S2 and associated
with time ta. In other words, the endpoints of the train-edges induce the set of nodes of the
graph. For each station S, all nodes belonging to S are ordered according to their time values.
Let v1, . . . , vk be the nodes of S in that order. Then, there is a set of stay-edges (vi, vi+1),
1 ≤ i ≤ k − 1, and (vk, v1) connecting the time events within a station and representing
waiting within that station. The length of an edge (u, v) is tv − tu (for edges over midnight
the length is 1440+ tv − tu, respectively), where tu and tv are the time values associated with
u and v, respectively. Figure 1 illustrates this definition.

A shortest path in the time-expanded graph from the first departure node s at the depar-
ture station A with departure time later than or equal to the given start time t0 to one of the
arrival nodes of the destination station B constitutes a solution to the earliest arrival problem
in the time-expanded model. The actual path can be found by Dijkstra’s algorithm [7].

3.2 Time-Dependent Model.

The time-dependent model [4] is also based on a digraph, called time-dependent graph. In
this graph there is only one node per station, and there is an edge e from station A to station
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Figure 1: The time-expanded graph (left) and the time-dependent graph (right) of a timetable with

three stations A, B, C. There are three trains that connect A with B (elementary connections u,v,w),

one train from C via B to A (x,y) and one train from C to B (z).

B if there is an elementary connection from A to B. The set of elementary connections
from A to B is denoted by C(e). The definition is illustrated in Figure 1. The length of an
edge e = (v,w) depends on the time at which this particular edge will be used during the
algorithm. In other words, if T is a set denoting time, then the length of an edge (v,w) is
given by f(v,w)(t) − t, where t is the departure time at v, f(v,w) : T → T is a function such
that f(v,w)(t) = t′, and t′ ≥ t is the earliest possible arrival time at w. The time-dependent
model is based on the assumption that overtaking of trains on an edge is not allowed, i.e., for
any two given stations A and B, there are no two trains leaving A and arriving to B such
that the train that leaves A second arrives first at B.

A modification of Dijkstra’s algorithm [7] can be used to solve the earliest arrival problem
in the time-dependent model [4]. Let D denote the departure station and t0 the earliest
departure time. The differences, w.r.t. Dijkstra’s algorithm, are: set the distance label δ(D)
of the starting node corresponding to the departure station D to t0 (and not to 0), and
calculate the edge lengths “on-the-fly”. The edge lengths (and implicitly the time-dependent
function f) are calculated as follows. Since Dijkstra’s algorithm is a label-setting shortest-
path algorithm, whenever an edge e = (A,B) is considered the distance label δ(A) of node
A is optimal. In the time-dependent model, δ(A) denotes the earliest arrival time at station
A. In other words, we indeed know the earliest arrival time at station A whenever the edge
e = (A,B) is considered, and therefore we know at that stage of the algorithm which train
has to be taken to reach station B via A as early as possible: the first train that departs later
than or equal to the earliest arrival time at A. The particular connection c ∈ C(e) can be
easily found by binary search if the elementary connections C(e) are maintained in a sorted
array (or with more sophisticated techniques in constant time). The edge length of e, ℓe(t),
is then defined to be the time to wait for the departure of c plus length(c). Consequently,
fe(t) = t+ℓe(t). The correctness of the algorithm is based on the fact that f is non-decreasing
(t ≤ t′ ⇒ f(t) ≤ f(t′)) and has non-negative delay (∀t, f(t) ≥ t).

3.3 Comparison of Models.

In the simplified scenario we are investigating in this section, the graphs that are used in the
two approaches are strongly related: Contracting all nodes that belong to the same station
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in the time-expanded graph and deleting parallel edges afterwards yields the time-dependent
graph. Further, the algorithm used in the time-dependent approach can be viewed as an
improved implementation of the simple shortest-path search by Dijkstra’s algorithm in the
time-expanded approach: If the first edge from some station A to another station B has
already been processed by Dijkstra’s algorithm in the time-expanded graph, all other edges
e′AB from station A to station B do not have to be considered anymore. The reason is that
such an edge doesn’t provide an improvement since the path through the first edge extended
by some stay-edges to the head of the edge e′AB has the same length. In a sense, the time-
dependent algorithm implements this observation.

Note, however, that on the one hand the edge lengths have still to be computed in the
time-dependent algorithm, which consumes running time as well, so that it is not immediately
clear which algorithm is faster. We will discuss this question in Section 6. On the other hand,
the similarity of the graphs and the algorithms is disturbed when the realistic specifications
are incorporated into the models in the following section.

4 Realistic Modeling

In this section, we explain how the approaches introduced so far for the simplified earliest ar-
rival problem can be extended towards realistic problem specifications and other optimization
criteria.

4.1 Transfers Rules

We summarize first how transfer times at stations can be incorporated in the time-expanded
and the time-dependent models, and after that discuss the case of extended transfer rules.

4.1.1 Time-Expanded Model.

To incorporate transfer times in the time-expanded model the realistic time-expanded graph is
constructed as follows (cf. [22, 28, 29]). Based on the time-expanded graph, for each station,
a copy of all departure and arrival nodes in the station is maintained which we call transfer-
nodes; see Figure 2. The stay-edges are now introduced between the transfer-nodes. For every
arrival node there are two additional outgoing edges: one edge to the departure of the same
train, and a second edge to the transfer-node with time value greater than or equal to the
sum of the time of the arrival node and the minimum time needed to change trains at the
given station. If the earliest arrival problem shall be solved, the edge lengths are defined as
in the definition of the original model (see Section 3.1).

4.1.2 Time-Dependent Model.

The original time-dependent model is extended in [30] (cf. also [4]) using information on the
routes that trains may follow. Hence, we assume that we are given a set of train routes and
their respective time schedules. In the following, we describe the construction of the train-
route graph. We say that stations S0, S1, . . . , Sk−1, k > 0, form a train route if there is some
train starting its journey from S0 and visiting consecutively S1, . . . , Sk−1 in turn. If there are
more than one trains following the same schedule (with respect to the order in which they
visit the above nodes), then we say that they all belong to the same train route.
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Figure 2: Modeling transfer times in the time-expanded approach using the realistic time-expanded

graph (left) and in the time-dependent approach using the train-route graph (right).

The node-set of the train-route graph consists of the station-nodes S representing the
stations, and for each station S of one additional route-node per route that passes through
the station S, denoted by pS

i , where i is an index of the specific route passing through station
S. There are three types of edges: (i) edges from each station-node to the route-nodes
belonging to the same station model boarding a train belonging to the specific route; (ii)
edges from each route-node to the station-node model getting off a train at that station; (iii)
for each train route S0, . . . Sk−q edges that connect the corresponding route-nodes model the
actual train trips.

To solve the earliest arrival problem with transfer times, edge lengths are defined as
follows. The edges modeling boarding a train at a station S are assigned the transfer time
gS = transfer(S), edges modeling getting off a train are assigned zero length, and the edges
representing the train routes have time-dependent lengths as in the basic modeling described
in Section 3.2. Given the query to solve, all internal edges are assigned zero length, and the
modified version of Dijkstra’s algorithm (cf. Section 3.2) is applied.

4.1.3 Extended transfer rules.

Additionally to the transfer times at stations, exceptions which explicitly allow specific trans-
fers can be modeled in the realistic time-expanded graph as additional edges connecting the
arrival with the departure node of the corresponding elementary connections. Concerning the
time-dependent approach, in [30] a graph similar to the train-route graph is constructed that
allows to model also variable transfer times.

4.2 Foot-Edges

In the time-dependent approach a foot-edge from station A to station B can be directly
modeled as an edge in the train-route graph between the two nodes representing the stations
A and B. For the earliest arrival problem, such an edge is assigned a constant edge length:
the walking time.

The straight-forward modeling of foot-edges in the time-expanded case is of course done
by time expansion. For each transfer node of A in the (realistic) time-expanded graph an
additional edge is maintained to the first possible transfer node at B. Another solution for
the time-expanded approach is to apply the time-dependent idea and compute the additional
edges during the algorithm (the node at B has to be calculated depending on the arrival time
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at B) instead of explicitly constructing them.

4.3 Traffic Days

Edges representing elementary connections of trains that are not valid can be simply ignored
during Dijkstra’s algorithm in the time-expanded approach, and the test whether an elemen-
tary connection is valid or not can be done by a lookup in the traffic day bit-mask of the
corresponding train, if the day of departure is known. However, the algorithm has to be
slightly modified because it may happen that an optimal connection stays more than a day at
a station, and such connections would not be found otherwise. See [28] for details concerning
the modification of the algorithm. In the time-dependent approach, the traffic days have to
be considered in the calculation of the time-dependent edge lengths.

Problems with traffic days occur when speed-up techniques for Dijkstra’s algorithm are
applied that require preprocessing (cf. Section 6), because then every day is different and the
preprocessing basically has to be done separately for each day.

4.4 The Minimum Number of Transfers Problem

The realistic time-expanded graph as well as the train-route graph (cf. Section 4.1.2) can be
used to solve a minimum number of transfers query with a similar method (cf. [20, 22, 28, 29]):
edges that model transfers are assigned a length of one, and all the other edges are assigned
length zero. In the time-expanded case all incoming edges of transfer nodes have length one,
whereas in the time-dependent case the edges that represent getting off a train, except those
belonging to the departure station, are assigned length one, and all other edges have length
zero. Note that the edge lengths in the time-dependent train-route graph are all static here.

A shortest path in one of the graphs from a node belonging to (resp. representing) the
departure station to a node belonging to (resp. representing) the arrival station provides a
solution to the minimum number of transfers problem.

4.5 Extended Queries

4.5.1 Latest departure.

Determining a connection optimized for the latest departure combined with the earliest ar-
rival can be done in the time-expanded case by introducing the latest departure as second
criterion and determining the lexicographically first solution. In the time-dependent model
the standard approach is to carry out a backward search from the destination station to the
arrival station once the earliest arrival at the destination station is known.

4.5.2 Time intervals.

In pre-trip planning one often seeks the fastest connection which starts within a certain
departure interval [t0, t1] (or arrives within a certain arrival time interval). This variant can
also be solved by Dijkstra’s algorithm. With a single starting point, Dijkstra’s algorithm
starts by labeling the corresponding event node with distance 0 and puts it into the priority
queue. With a time interval the only difference is that one initially inserts a label for each
departure event between t0 and t1 into the priority queue and marks all corresponding nodes
with a distance label of 0.
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4.5.3 Excluding trains.

The exclusion of specific trains or of train classes, the exclusion or required inclusion of train
attributes with respect to a given query can be handled like traffic days: We simply mark
train edges as invisible for the search if they do not meet all requirements of the given query.

4.5.4 Via stations.

A query may contain one (or more) so called vias, i.e., stations the connection has to visit and
where at least a specified amount of time can be spent. Assume that we have a query (A =
S0, B = Sk, t0) with via stations S1, S2, Sk−1 and corresponding stay durations d1, d2, . . . dk.
To answer such a query, one can simply split the query into basic queries without vias. More
precisely, we first answer the query (A,S1, t0) and may find out that the earliest arrival time
at S1 is t1. Then we answer the query (S1, S2, t1 + d1). If ti denotes the earliest arrival time
at Si (provided that we have visited S1, S2, . . . , Si−1 before), we continue with basic queries of
the form (Si, Si+1, ti + di) for i = 1, . . . , k − 1. Finally, we concatenate the connections found
in each of the basic queries to get the connection which solves the earliest arrival problem.

4.5.5 Cheapest connections.

Many customers are interested in finding a cheapest connection from station A to B within a
certain time interval. Unfortunately, given the complicated fare regulations in most countries,
this goal seems to be intractable. Recall that a shortest path problem on a given digraph
usually assumes that the length of a path can be calculated as the sum over the edge lengths
which constitute the path. Given nonnegative lengths, the separability of the objective func-
tion then suffices to apply Dijkstra’s algorithm.

Even in the standard tariff, the fare of a connection is usually not additive based on
its elementary connections. The situation becomes substantially worse if one would also
like to consider the many exceptions and special offers which exist and frequently change.
Hence, there is no hope to solve the cheapest connection problem exactly and simultaneously
efficiently.

However, what one can do is to use fare estimations based on a simpler model. Müller-
Hannemann and Weihe [22] and Müller-Hannemann and Schnee [20] use a simplified fare
model which assumes that the basic fare is proportional to the distance traveled. Depending
on the train class an extra supplementary fare is charged. For the fastest trains like German
ICE and French TGV, this supplement is assumed to be proportional to the speed of the train,
whereas certain trains like Eurocity and Intercity trains have a constant surcharge which has
to be paid at most once. With such a simplified fare model we can again use Dijkstra’s
algorithm if we store in our distance labels also flags indicating which train classes have been
used.

Müller-Hannemann and Schnee [20] use these fare estimates to find low cost connections
in a framework which does not only look for a single best connection but for several attractive
connections.

5 Multi-criteria Optimization

In the previous sections we focused on single-criterion optimization, and in particular on
finding fastest connections. In practice, however, one wishes to find optimal connections
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under several criteria. For instance, a customer may want to ask for a connection with a
small number of transfers that departs later than a given time and does not arrive at the
destination too late.

Other additional criteria of interest are fares, convenience (for example, measured by the
used train classes in a connection), stability of a connection in case of delays (for example,
measured by the minimum buffer time of a transfer within a connection, where the buffer
time of a transfer is the difference between the waiting time and the minimum transfer time),
seat reservability (is it possible to get a seat reservation for all those parts of a connection
where the used trains do in principle allow a seat reservation), etc.

Computing optimal connections under multiple criteria reduces (in a completely analogous
to the single-criterion case) to the multi-criteria or multi-objective shortest path (MOSP)
problem – a fundamental problem in the area of multi-criteria or multi-objective optimization
[10]. An instance of a multi-criteria optimization problem is associated with a set of feasible
solutions Q and a d-vector function f = [f1, . . . , fd]

T (d is typically a constant) associating
each feasible solution q ∈ Q with a d-vector f(q) (w.l.o.g we assume that all objectives
fi, 1 ≤ i ≤ d, are to be minimized). In multi-criteria optimization we are interested not in
finding a single optimal solution, but in computing the trade-off among the different objective
functions, called the Pareto set (or curve) P, which is the set of all feasible solutions in Q
whose vector of the various objectives is not dominated by any other solution (a solution p
dominates another solution q iff fi(p) ≤ fi(q), for all 1 ≤ i ≤ d, and fj(p) < fj(q), for at least
one j, 1 ≤ j ≤ d).

Multi-objective optimization problems are usually NP-hard (as indeed is the case for
MOSP), since the Pareto set is typically exponential in size (even in the case of two objectives).
Hence, exact methods (i.e., methods that find all Pareto optimal solutions) may be efficient
under certain circumstances that depend on the particular instance of a given problem. On
the other hand, even if a decision maker is armed with the entire Pareto set, s/he is still left
with the problem of which is the “best” solution for the application at hand. Consequently,
three natural approaches to deal with multiobjective optimization problems are to: (i) study
approximate versions of the Pareto set that result in (guaranteed) near optimal but smaller
Pareto sets; (ii) optimize one objective while bounding the rest (constrained approach); and
(iii) proceed in a normative way and choose the “best” solution by introducing a utility (often
non-linear) function on the objectives (normalization or decision maker’s approach).

In the following, we will discuss the above exact and non-exact approaches in computing
optimal connections under multiple criteria.

5.1 Exact Approaches

The straightforward approach in dealing with multiple criteria is to find the entire Pareto
set, that is, all Pareto-optimal (i.e., feasible and undominated) solutions (connections). As
mentioned above, this may be a hard problem. Even very simple instances of graphs – actually
chains of parallel arcs with just two criteria – may have exponentially many different Pareto
optima [14]. In certain cases, however, the cardinality of the Pareto set may not be too large
and the Pareto set can be computed efficiently. In the following, we discuss such cases.
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5.1.1 Size of the Pareto Set.

If the range of valid values of some criterion is restricted to a small discrete set, adding such
a criterion cannot lead to an exponential blow-up. For example, for the number of transfers
we can safely assume a small constant k as an upper bound on its number in practice. Hence,
if we add the number of transfers as an additional criterion to one or more other criteria, the
size of the Pareto set can only increase by a factor of k.

Empirical results indicate that one may have small Pareto sets in timetable information.
In a recent study with 25000 queries to the server of Deutsche Bahn AG, Müller-Hannemann
and Schnee observed only 3.6 Pareto optimal connections on average if the three criteria travel
time, number of transfers, and fares are used. The observed maximum was 19 Pareto-optimal
connections.

Müller-Hannemann and Weihe [22] studied the size of the Pareto set also from a theoretical
point of view. They considered certain characteristics found in the application scenario in an
attempt to explain the huge gap between the potentially exponentially sized Pareto set and
the small sizes observed in practice.

An important characteristic of our application is that we can partition the edge set of our
graph models into a small number of different edge classes such that each edge class has a
certain semantics. Naturally, we can take the different types of edges as individual classes.
Moreover, we can refine the class of those edges modeling elementary train connections into
further classes derived from the type of train (train classes). A similar way to partition the
edge set is to group them by average speed.

Average speed as the ratio of travel distance and travel time relates two criteria together.
If we now assume that there are only k different average speeds (and therefore only k dif-
ferent edge classes), we arrive at the ratio-restricted lengths model. More generally than just
considering speed, but still with two criteria, we assume in this model that every edge class
is equipped with a value r which denotes the ratio between the length values of the first and
second criterion, respectively. But even in a bicriteria model with at most k > 1 different
ratios, the number of Pareto optima can still be exponentially large (Lemma 2.1 in [22]).

Another important characteristic of our application is that Pareto-optimal connections
typically show a certain pattern with respect to the order of used train classes. Namely, if we
order the train classes by their maximum speed, from slowest to fastest means of transporta-
tion, then most connections turn out to be bitonic: they consist of one acceleration and one
deceleration phase. In the acceleration phase, we start with a slower train and from transfer
to transfer we monotonically use trains with higher average speed until we reach a maximum.
Then the deceleration phase starts and we use again slower and slower trains. Of course,
there are exceptions: for example, in cities like Paris or London one may have to use the
subway when changing between two high-speed trains. But it seems reasonable to assume
that the number of changes between acceleration and deceleration phases is rather limited for
Pareto-optimal connections. This model has been called restricted non-monotonical.

Combining the ratio-restricted lengths model with the restricted non-monotonical case it
is possible to give tight polynomial worst case bounds on the size of the Pareto set (Lemma
2.3 and Lemma 2.7. in [22]).
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5.1.2 Finding the Pareto Set.

The standard approaches to the case that all Pareto optima have to be computed are gen-
eralizations of the standard algorithms for the single-criterion case (for a survey see Ehrgott
and Gandibleux [10]).

The main difference is that instead of one scalar distance label, each node v maintains
a list of d-dimensional distance labels assuming that we work with d criteria. Such a list
contains a set of Pareto-optimal paths from the start node to v.

This immediately leads to a “Pareto version” of Dijkstra’s algorithm (first described by
Hansen [14] and Martins [18]). Instead of storing temporarily labeled nodes, the priority
queue now maintains d-dimensional labels. In each iteration of the main loop, we extract
the lexicographic smallest label from the priority queue instead of choosing the node with
smallest distance label. If v is the corresponding node to the extracted label one updates for
all feasible edges of type (v,w) the list of Pareto optima stored at the head node w. More
precisely, a tentative new d-dimensional label is created and compared to all labels in the list
of Pareto-optima held at node w. It is only inserted into that list if it is not dominated by
any other label in the list. Moreover, labels dominated by the new label are removed. For
a more detailed description of the generalized Dijkstra algorithm and a correctness proof we
refer to [19] and [35].

An adaption of this algorithm has been used by Müller-Hannemann and Schnee to build
the timetable information server PARETO [20] which relies on the time-expanded graph
model.

In [28, 29], Pareto-optimal connections concerning the earliest arrival and minimum num-
ber of transfers have been considered for the time-dependent approach. In this work, it is
further shown that the Pareto-set in the special case of a bicriteria problem involving the
earliest arrival as one criterion can be determined in the time-expanded approach by running
Dijkstra’s algorithm on the realistic time-expanded graph with lexicographically ordered dis-
tance labels. The Pareto-optimal solutions are enumerated by the solutions that Dijkstra’s
algorithm reports at the destination station (i.e., the algorithm is not terminated until all
Pareto-optimal solutions have been found).

5.2 Approximation Approaches

The ultimate goal of a traffic information system is to offer a small set of highly attractive
connections as an answer to a customer query. In that respect finding the whole set of
Pareto-optimal solutions bears two problems:

1. Not every Pareto-optimal solution is really noteworthy for a customer.

2. Many attractive connections are dominated only slightly.

The first of these two problems can be solved easily by filtering out unattractive connec-
tions. To tackle the second problem, we need a proper notion of approximate Pareto optimal
solutions. Current research concentrates along two directions: the (recently re-investigated)
concept of (1+ε)-Pareto set [27], and the concept of relaxed Pareto dominance, usually called
ε-efficiency [17, 42].
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5.2.1 Approximate Pareto Sets.

Despite so much research in multiobjective optimization [9, 10], only recently a systematic
study of the complexity issues regarding the construction of approximate Pareto sets has been
initiated [27]. Informally, an (1 + ε)-Pareto set Pε is a subset of feasible solutions such that
for any Pareto optimal solution and any ε > 0, there exists a solution in Pε that is no more
than (1 + ε) away in all objectives. Although this concept is not new (it has been previously
used in the context of bicriteria and multiobjective shortest paths [14, 41]), Papadimitriou
and Yannakakis in a seminal work [27] show that for any multiobjective optimization problem
there exists a (1 + ε)-Pareto set Pε of (polynomial) size |Pε| = O((4B/ε)d−1), where B is the
number of bits required to represent the values in the objective functions (bounded by some
polynomial in the size of the input). They also provide a necessary and sufficient condition
for its efficient (polynomial in the size of the input and 1/ε) construction. In particular, Pε

can be constructed by O((4B/ε)d) calls to a GAP routine that solves (in time polynomial
in the size of the input and 1/ε) the following problem: given a vector of values a, either
compute a solution that dominates a, or report that there is no solution better than a by
at least a factor of 1 + ε in all objectives. Extensions to that method to produce a constant
approximation to the smallest possible (1 + ε)-Pareto set for the cases of 2 and 3 objectives
are presented in [38], while for d > 3 objectives inapproximability results are shown for such
a constant approximation.

Apart from the above general results, there has been very recent work on improved approx-
imation algorithms (FPTAS) for multiobjective shortest paths by Tsaggouris and Zaroliagis
in [36]. In that paper, a new and remarkably simple algorithm is given that constructs
(1+ε)-Pareto sets for the single-source multiobjective shortest path problem, which improves
considerably upon previous approaches. The algorithm can be viewed as a generalization
of the Bellman-Ford algorithm. It proceeds in rounds. In each round i and for each node
v, the algorithm maintains a d-dimensional label representing an approximate Pareto set to
all Pareto optimal s-v paths with no more than i edges (s is the source node). When an
edge (u, v) is considered during round i, the algorithm performs (instead of a relaxation) an
extend-&-merge operation. This operation extends the node label of u in round i − 1 with
the edge (u, v) and merges the resulting set with the label associated with v by keeping the
solution that approximately dominates all other solutions. This keeps the size of all labels
polynomially bounded, contrary to previous label correcting or setting approaches which used
to keep all undominated solutions and thus resulting in exponentially large sets of labels.

5.2.2 Relaxed Pareto Dominance.

Müller-Hannemann and Schnee [20] recently generalized the concept of relaxed Pareto dom-
inance (also known as ε-efficiency [17, 42]) and applied it to traffic information. In relaxed
Pareto dominance, a solution p dominates (in the relaxed-Pareto sense) another solution q
iff fi(p) + hi(p, q) ≤ fi(q), for all 1 ≤ i ≤ d, and fi(p) + hi(p, q) < fi(q), for at least one
j, 1 ≤ j ≤ d, where hi(p, q) is an appropriately chosen relaxation function. The idea is to
make more pairs of connections mutually incomparable by redefining the dominance relation
for certain criteria. For example, if we do not want to suppress a connection with a slightly
longer travel time, say of less than 5 minutes, then we would define that connection A will
dominate connection B with respect to travel time only if the travel time of A plus these 5
minutes are less or equal to the travel time of B. For more examples how to apply relaxed
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dominance, see [20].

5.3 Normalization Approaches

In this approach, a utility function is introduced that translates (in a linear or non-linear
way) the different criteria into a common cost (utility) measure. For instance, when traveling
in a traffic network one typically wishes to minimize travel distance and time; both criteria
can be translated into a common cost measure (e.g., money), where the former is linearly
translated, while the latter non-linearly (small amounts of time have relatively low value,
while large amounts of time are very valuable). Under the normalization approach, we seek
for a single optimum in the Pareto set (a feasible solution that optimizes the utility function).
We distinguish between the case where all criteria are linearly translated to the common cost
measure and to the case where some (or all) of the criteria are non-linearly translated.

5.3.1 The Linear Case – Weighted Sum of Criteria.

The straightforward (and simplest) approach could be to express the relative importance of
optimization criteria by weights and then to optimize a weighted sum of the criteria. This
approach reduces the multi-criteria problem to a single-criterion optimization which can be
solved by the standard Dijkstra algorithm provided we use a graph model where each criterion
is non-negative and additive on the edges. Setting all but one weight to zero, we get the single-
criterion optimization as a special case.

Such an approach has two serious drawbacks. First, it will inevitably miss many attrac-
tive connections as it will find just one single solution (and not all Pareto optima). The
second drawback of such an approach lies in the choice of suitable weight parameters. Each
potential customer has its own preference system, but typically this preference system is not
given explicitly in terms of weight parameters. The user (customer or salesperson of a train
company) of a traffic information system and/or the system itself might set the parameters
incorrectly as neither of them will typically know the customer’s preference system to its full
extent.

5.3.2 The Non-linear Case.

The case of non-linear utility function is the most interesting one, since it reflects realistic
scenaria in traffic optimization. Experience shows that users of traffic networks value certain
attributes (e.g., time) non-linearly [15]: small amounts have relatively low value, while large
amounts are very valuable. Also, the vast majority of transit systems have a non-additive
(non-linear) fare structure [12]. Consequently, the most interesting theoretical models for
traffic equilibria involve minimizing a monotonic non-linear utility function. In this case, the
problem of computing optimal connections reduces to the so-called non-additive shortest path
(NASP) problem: given a digraph whose edges are associated with d-dimensional cost vectors,
the task is to find a path that minimizes a certain d-attribute non-linear cost function.

Very recently, Tsaggouris and Zaroliagis [36] presented the first FPTAS for NASP. In
particular, they showed how the FPTAS for multiobjective shortest paths can provide a
FPTAS for NASP for any number of objectives and for a rather general form of a utility
function that includes all polynomials of bounded degree with non-negative coefficients. For
the bicriteria case, a FPTAS for NASP was independently presented in [1].
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5.4 Lexicographical Ordering

One other possibility is to settle for only one specific Pareto-optimal solution: the lexicograph-
ically first one. Dijkstra’s algorithm works not only for non-negative real edge weights, but
in general for semi-rings [31]. In our case, edge weights and node labels are d-tuples, with
lexicographical ordering and element-wise addition.

With the simplified version of the time-expanded approach the lexicographically first so-
lution can be computed for any d-tuples as edge weights. For example, if d = 2, the first
element being the travel time and the second one the number of transfers, among all fastest
connections the one with the minimum number of transfers is computed. With the realistic
version of the time-expanded approach only tuples can be used where the first criterion is
travel time. This restriction is due to the 24-hour cycles induced by the stay-edges belonging
to each station. A special case are pairs as edge weights with travel time as first criterion. In
this case all Pareto-optimal solutions can be computed by Dijkstra’s algorithm (cf. the last
paragraph of Section 5.1.2).

In the time-dependent approach the edge weights are required to be non-decreasing (cf.
Section 3.2). This is not necessarily true for arbitrary d-tuples as edge weights, but it can
be shown that for the case d = 2, where the first element is the number of transfers and
the second one is the travel time, the time-dependent version of Dijkstra’s algorithm can be
extended to find the lexicographically first solution. See [29, 30, 32] for further details.

6 Performance

As mentioned in the introduction, the performance of the core algorithms is crucial for a
timetable information system. The average performance is particularly important in a sce-
nario of a central server that has to answer several hundreds of (on-line) queries which are
issued, for example, through the Internet or through terminals at train stations. We re-
view the results of experimental studies involving the approaches introduced in the previous
sections.

6.1 Simplified Earliest Arrival Problem

The approaches introduced in Section 3 for solving the simplified earliest arrival problem have
been extensively studied, both in the time-expanded and the time-dependent approach.

6.1.1 Time-expanded approach.

Schulz, Wagner, and Weihe [33] conducted an experimental study based on the time-expanded
graph (cf. Section 3.1) with realistic timetable data of the German railway company Deutsche
Bahn and a sample of half a million of real-world customer queries. Using a single 336
MHz Ultra-SPARC-II processor, the average running time per query of Dijkstra’s algorithm
was 0.103 seconds. The main contribution of the study is that it demonstrates that the
average running time of Dijkstra’s algorithm can be drastically improved by applying distance-
preserving speed-up techniques (which still guarantee optimal solutions): a speed-up of a
factor of 34 could be observed, yielding an average running time of 0.003 seconds. More
precisely, they used a geometric speed-up technique based on angular sectors limiting the
reachable nodes through an edge, and a graph decomposition technique based on a small
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“backbone graph” for finding the shortest path. Both techniques reduce the search space
of the algorithm and rely on a preprocessing step in which the additional information is
pre-computed. Wagner and Willhalm [40] have shown that other geometric containers are
better suited and yield even higher speed-up factors, in particular bounding boxes around the
reachable nodes through an edge show good results.

The second technique has been generalized by Schulz, Wagner, and Zaroliagis in [34]. They
demonstrated, also conducting experiments with the same time-expanded graph as in [33],
that several hierarchical levels (3 or 4 levels for the data used) of backbone graphs yield better
running times than only one additional level (by a factor of roughly 3). See also [39] for a
survey on speed-up techniques for shortest path algorithms.

6.1.2 Time-dependent approach.

Brodal and Jacob proved in [4] by a detailed theoretical analysis of operation counts in both
approaches that the time-dependent approach is more efficient than the time-expanded ap-
proach. This was also the starting point of an experimental comparison of the two approaches
conducted by Pyrga, Schulz, Wagner, and Zaroliagis [28, 29]. They revealed that indeed the
time-dependent approach is faster than the time-expanded approach by factors in the range
12 to 40 depending on the data set (timetables consisting of French and German long-distance
traffic as well as two timetables consisting of local traffic have been used).

Basically, the preprocessing speed-up techniques mentioned above for the time-expanded
case can also be applied in the time-dependent approach; however, we are not aware of
experimental studies dealing with this issue.

6.2 Realistic Single-Criterion Problems

In the experiments mentioned above [29], also the realistic specifications have been considered.
Solving the minimum number of transfers problem is clearly faster (by a factor of roughly
4) in the train-route graph than in the realistic time-expanded graph. This is due to the
fact that in this case the train-route graph is also static and smaller than the time-expanded
graph.

Concerning the realistic earliest arrival problem, the picture looks different: The average
running times of the time-expanded and the time-dependent approach are almost equal, only
a speed-up factor of 1.5 was observed. Comparing the average running time for solving the
simplified earliest arrival problem to the realistic earliest arrival problem, the time-expanded
implementations solved the simplified version only slightly faster (by a factor of less than 2),
while the simplified time-dependent implementation was faster by a factor of 5.

6.3 Multi-Criteria Optimization

Finding all attractive connections with respect to travel time, fare, and number of interchanges
is of course more expensive than just searching for a fastest connection. In the implementation
of [20], such a search needs about 10 times as long as the search with a single criterion. For
the multi-criteria case, we still need more effective speed-up techniques.
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7 Conclusion

We have discussed time-expanded and time-dependent models for several kinds of single- and
multi-criteria optimization problems for timetable information systems that provide optimal
solutions via shortest paths. Extensions that model realistic requirements (like train transfers)
can be integrated in both approaches.

The time-dependent approach is clearly superior with respect to performance when the
simplified earliest arrival problem is considered, and speed-up factors in the range from 10
to 40 were observed. When considering extensions of the models for the solution of real-
istic versions of optimization problems in the single-criterion case, the performance of the
two approaches is almost equal. Speed-up techniques yield running times indicating that
these approaches are applicable in practice. The main open question is how these speed-
up techniques—relying on additional information computed beforehand—can be extended
to deal with dynamic changes of the timetable; such a change of the timetable invalidates
the preprocessed information. Possibly, the additional information can be adapted by small
updates to cope with both “off-line” changes like the treatment of different traffic days and
“on-line” changes caused for example by accidents.

For other optimization criteria, it is more likely that the integration can be modeled
directly by edge lengths in the time-expanded model than in the time-dependent model: In
case the criterion can be expressed as additive costs for elementary connections, these costs
induce edge lengths in the time-expanded graph. In contrast, in the time-dependent approach
it is not clear if the costs can be mapped to feasible edge lengths, since only the first elementary
connection per edge is considered. Because of this most studies concerning multi-criteria
optimization have focused on the time-expanded approach. In that, (relaxed) Pareto-optimal
solutions are desirable, and it turns out that in practice the size of the Pareto frontier is
quite small, such that labeling approaches are feasible. For practical application, the multi-
criteria optimization techniques provide the most satisfactory solutions. However, further
speed-up techniques are required (the techniques for the single-criterion problems cannot be
directly applied for the general multi-criteria algorithms) in order to yield a performance that
is acceptable for a real-world timetable information system.
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