Morphing Polygonal Lines: A Step Towards Continuous Generalization

Damian Merrick*

Abstract

We study the problem of morphing between two poly-
lines that represent a geographical feature generalized
at two different scales. Some cartographical general-
izations are not handled well by traditional morphing
algorithms, e.g., when three consecutive bends in a
river or road are generalized to two bends at a smaller
scale. We attempt to handle such cases by modeling
the problem as an optimal matching between charac-
teristic parts of each polyline. A dynamic program-
ming algorithm is presented that solves the match-
ing problem in O(nm) time, where n and m are the
respective number of characteristic parts of the two
polylines. We also show the results of applying this
algorithm on real road data.

1 Introduction

Visualization of geographic information in the form of
maps has been established for centuries. Depending
on the scale of the map the level of detail of displayed
objects must be adapted in a generalization process.
Be it done manually or (semi-)automatically, gener-
alization methods usually produce a map at a single
target scale. This is a well-studied field, surveyed, for
example, by Weibel et al. [12].

In current geographic information systems users
can interactively zoom in and out of the map, ide-
ally at arbitrary scales and with smooth, continuous
changes. However, current approaches are often char-
acterized by a fixed set of scales or by simply zoom-
ing graphically without modifying map objects. To
overcome these deficiencies continuous generalization
methods are needed.

This paper studies an algorithm for continuously
generalizing linear features like rivers or roads be-
tween their representations at two scales. Instead of
line-simplification methods with a single target scale,
we consider morphing between a source and a target

*School of Information Technologies, University of Syd-
ney and National ICT Australia (funded through the
Australian Government’s Backing Awustralia’s Ability initia-
tive, in part through the Australian Research Council),
dmerrick@it.usyd.edu.au

TFaculty of Informatics, Karlsruhe University, Ger-
many, {noelle,mbenkert}@iti.uka.de. Supported by grant
WO 758/4-2 of the German Research Foundation (DFG).

fDepartment of Mathematics and Computing Science,
Technische Universiteit Eindhoven, The Netherlands,
http://www.win.tue.nl/~awolff

Martin Nollenburg®

Alexander Wolff* Marc Benkert®

scale in a way that keeps the maps at intermediate
scales meaningful. Of specific interest are morphings
that can deal with a certain amount of exaggeration
and schematization such as reducing the number but
increasing the size of road serpentines at the smaller
scale. Our method first partitions the input poly-
line into characteristic segments and then defines dis-
tances between these segments. Based on those dis-
tances we compute an optimum morphing of the poly-
line segments at the two input scales using dynamic
programming. We have implemented a prototype of
the algorithm and compare its output with that of a
simple linear morph.

2 Related work

Cecconi and Galanda [3] study adaptive zooming for
web applications with a focus on the technical imple-
mentation. While maps can be produced at arbitrary
scales there is no smooth animation of the zooming. A
set of continuous generalization operators is presented
by van Kreveld [11], including two simple algorithms
for morphing a polyline to a straight-line segment.
Existing algorithms for the geometric problem of
finding an optimal intersection-free geodesic morph-
ing between two simple, non-intersecting polylines [2]
cannot be applied here because the two input poly-
lines intersect in general. Given the correspondence
between nodes of two plane graphs, Erten et al. [5]
and Surazhsky and Gotsman [10] compute trajecto-
ries for an intersection-free morphing using compat-
ible triangulations. In computer graphics, Cohen et
al. [4] match point pairs sampled uniformly along two
(or more) parametric freeform curves. They compute
an optimal correspondence of the points w.r.t. a sim-
ilarity measure based on the tangents of the curves.
The algorithm is similar to ours in that it also uses dy-
namic programming to optimize the matching, but it
does not take into account the characteristic points of
geographic polylines. Samoilov and Elber [9] extend
the method of Cohen et al. by eliminating possible
self-intersections during the morphing.

3 Model and algorithm

In this paper, we consider the problem of morphing
between two given polylines, each generalized at a dif-
ferent scale. Our algorithms to solve the problem can
be extended in a straightforward manner to finding a

series of morphs across many scales, by solving each
pair of polylines in the problem independently. The
same approach can be applied to two networks with
identical topology.

The problem of morphing between two polylines is
two-fold. Firstly, a correspondence must be found be-
tween points on the two lines. Secondly, trajectories
that connect pairs of corresponding points must be
specified. Here we focus on the correspondence prob-
lem and assume straight-line trajectories.

In addressing the correspondence problem, our goal
is to match parts of each polyline that have the same
semantics, e.g. represent the same series of hairpin
bends in a road at two levels of detail. We wish to
do this in a way that allows the mental map to be
retained as much as possible. We therefore want to
minimize the movement of points from one polyline to
another. To create a morph with these desired prop-
erties, we first detect characteristic points of a poly-
line (Section 3.1) and use these to find an optimum
correspondence (Section 3.2).

Formally, we are given two polylines f and g in the
plane R2. In the correspondence problem we need
to find two continuous, monotone parameterizations
a:[0,1] — f and 8 : [0,1] — g, such that «(0) and
B(0) map to the first points of f and g and «(1) and
B(1) map to the last points, respectively. These two
parameterizations induce the correspondence between
f and g¢: for each u € [0, 1] the point a(u) is matched
with B(u).

3.1 Detection of characteristic points

In order to solve the correspondence problem, we first
need to divide each polyline into subpolylines to be
matched up. We do this by locating points on each
line that are considered to be characteristic of the line;
each of these characteristic points then defines the end
of one subpolyline and the start of another.

Previous work on generalization notes the impor-
tance of inflection points, bend points, and start and
end points in defining the character of a line [8]. To
find such points, we process each of the vertices in
a polyline in order, checking at each if the sign of
curvature has changed (an inflection point) or if the
vertex is a point of locally maximal curvature (a bend
point). We also apply thresholding and Gaussian fil-
tering techniques to minimize error on noisy or poorly
sampled polylines, as detailed in Algorithm 1. Gaus-
sian filtering is a method of smoothing curves often
used to assist in analyzing noisy curves; Lowe [7] gives
further details and an efficient algorithm.

Algorithm 1 requires O(|f| + n’) time and space,
where |f| is the number of vertices of the polyline f
and n’ is the number of sample points. All input pa-
rameters are user-defined. Their values influence the
number of characteristic points that will be detected.

Algorithm 1 Characteristic point detection

Input: Polyline f, number of sample points n’, Gaus-
sian smoothing factor o, threshold angles 6;, 6,
and 6.

Output: Set of characteristic points C.

1: Resample f using n’ equally-spaced points to cre-
ate a new polyline f’.

2: Apply a Gaussian filter (factor o) to smooth f’.

3: Mark inflection vertices with inflection angle > 6;.

4: Mark bend vertices with bend angle between ad-
jacent edges > 6, and change in curvature > 6,
from last point of locally minimal curvature.

5: Mark first and last vertices.

6: Proceed through the smoothed polyline f’ and
store the distance of each marked vertex from the
start of f’ as a percentage of the length of f'.

7: Return set C of points at the stored percentage
distances along the original polyline f.

3.2 Finding an optimum correspondence

We detect the characteristic points of f and g inde-
pendently of each other. Assume that there are n+ 1
such points on f and m + 1 points on g, which di-
vide the polylines into two sequences of subpolylines
(f1,---, fn) and (g1,...,9m). Next, we approach the
correspondence problem. Basically, there are five pos-
sibilities to match a subpolyline f;:

last

(a) fi is mapped to the last characteristic point g;
of a subpolyline g; (i.e., f; disappears),

(b) a subpolyline g; is mapped to the last point flast
of f; (i.e., g; disappears),

(c) fi is mapped to a subpolyline g;,
(d) fi is mapped to a merged polyline g;. (1), and

(e) fi is part of a merged polyline f,
mapped to a subpolyline g;.

i...(e+k) that is

Clearly, the linear order of the subpolylines along f
and g has to be respected by the assignment.

Now assume that there is a morphing cost § as-
sociated with the morph between two polylines. We
suggest a morphing distance in the next section, but
Algorithm 2 is independent of the concrete distance.
It is based on dynamic programming and computes
a minimum-cost correspondence. Algorithm 2 recur-
sively fills an n x m table T, where the entry T[i, j]
stores the minimal cost of morphing fi. ; to g1 ;.
Consequently, we can obtain the optimum correspon-
dence from T'[n, m].

The required storage space and running time of Al-
gorithm 2 is O(nm) provided that the look-back pa-
rameter K is constant. Otherwise the running time
increases to O(nm(n +m)). The parameter K deter-
mines the maximum number of subpolyline segments

Algorithm 2 Optimum correspondence

InPUt: Polylines f = (f17 RS .fn)a g = (gla B 7gm)7
distance matrix 4.

Output: Optimum correspondence for f and g.

1: T[0,0] =0
2: T[0,7] =T[0,5 — 1] + 6(fii™t, g;), j=1...m
3 T[i,0) =T[i — 1,0+ 6(fi, g™Y), i=1...n
4: fori=1ton do
5. for j =1tomdo
6: T[i,j] =
Tli— 1,51+ 6(fi, g7")
Ti,j — 1]+ 6(f*", g5)
Tli—1,5—1)+6(fi,95)
min § T'[i — 1,5 — k] + 0(fi, 9(G—k+1)...5)5
k=2,....K
Tli—k,j— 1+ 6(fi—rt1)...i: 95)s
k=2,....K
7 Store pointer to predecessor, i.e., to the table

entry that yielded the minimum.
8: end for
9: end for
10: Generate optimum correspondence from T'[n,m]
using backtracking along pointers.

that can be merged in order to match them with an-
other segment in cases (d) and (e).

Distance measure. Algorithm 2 relies on a distance
function ¢ that represents the morphing cost of a pair
of polylines. Distance functions for polylines can be
defined in many ways, e.g., morphing width [2] and
Fréchet distance [1].

We define a new distance measure that takes into
account how far all points move during the morphing
by integrating over the trajectory lengths. Assume
that two subpolylines f; and g; with uniform param-
eterizations o and § are given. Each point a(u) on f;
will move to B(u) on g; along the connecting segment
of length ||a(u) — B(u)||. Then the morphing distance
is defined as

5(fi,7) / lex(us) — B(w)] (1)

and can be computed in time linear in the complexity
of fz and gj-

Optionally, we can add further terms to the base
distance §. Adding the length difference of f; and
g, or alternatively the length of the polyline y(u) :=
a(u) — f(u) favors pairs of polylines that are roughly
the same length or orientation. We can also multiply §
by the ratio of the subpolylines’ length with the total
length of the containing polylines f and g, to account
for their relative visual importance.

Finally, we wish to avoid self-intersections in the
morph. We do this locally by setting the effective

morphing distance to oo if matching two subpolylines
causes a self-intersection in the morph between them.
However, in rare cases intersections between two non-
corresponding subpolylines may still occur.

4 Results

We ran our implementations on a small set of French
roads from the BD Carto® and the TOP100 series
maps produced by the IGN Carto2001 project [6]. For
each road, we used a polyline from BD Carto® at
scale 1:50,000, and a generalized version at scale
1:100,000 from the Carto2001 TOP100 maps. Fig-
ures 1(a) and 1(b) show one example of a road in the
dataset, at the two respective scales. The character-
istic points that Algorithm 1 detected are marked by
little squares. Currently, the parameters used to ob-

(a) Road 1 (1:50,000) (b) Road 1 (1:100,000)

Figure 1: Example roads at two scales with detected
characteristic points marked.

tain these results were set by trial and error; so far we
have no automatic process to pick reasonable values.

A sequence of snapshots' of the final morph, af-
ter applying Algorithm 2, is shown in Figure 2(b). A
look-back parameter K of 5 was used. For the purpose
of comparison, Figure 2(a) shows a simple linear mor-
phing between the same polylines, where both poly-
lines were uniformly parameterized to establish the
correspondence between points. On a 3.0GHz Pen-
tium 4 with 1GB RAM, the entire processing time
was under 3 seconds.

The optimum-correspondence morphing shows
some clear improvements over the naive linear mor-
phing. The linear morphing in Figure 2(a) shows
one of the large serpentine sections at the top being
flipped “inside-out” during the morph. In contrast,
the optimum-correspondence morphing in Figure 2(b)
simply expands the bends. It is evident that the total
movement overall is much higher for the linear mor-
phing than for the optimum matching morphing.

5 Concluding remarks

The algorithms in this paper should be improved in
two ways. Ensuring that self-intersections do not

1The full animation and an additional example are available
at http://illwww.iti.uni-karlsruhe.de/morphingmovies

Bissi

(a) Linear

BSdss

(b) OpTCoOR

Silssy
R

Figure 2: A comparison between simple linear morphing and the optimum-correspondence morphing (OPTCOR).
In each snapshot, the previous two frames are drawn in successively lighter shades of grey. Areas of particular
interest are marked with dashed circles.

occur during a morph could potentially be accom-
plished by utilizing the algorithm of Surazhsky and
Gotsman [10] to compute non-linear trajectories for
points. Also, the detection of appropriate character-
istic points with little or no user interaction requires
further investigation.

Acknowledgements

The authors thank Sébastien

Mustiere for providing the Carto2001 data.

References

[1]

(6]

H. Alt and M. Godau. Computing the Fréchet
distance between two polygonal curves. Int. J.
Comp. Geom. € Appl., 5(1-2):75-91, 1995.

S. Bespamyatnikh. An optimal morphing be-
tween polylines. Int. J. Comp. Geom. & Appl.,
12(3):217-228, 2002.

A. Cecconi and M. Galanda. Adaptive zooming
in Web cartography. Computer Graphics Forum,
21(4):787-799, 2002.

S. Cohen, G. Elber, and R. Bar-Yehuda. Match-
ing of freeform curves. Computer-Aided Design,
29(5):369-378, 1997.

C. Erten, S. G. Kobourov, and C. Pitta.
Intersection-free morphing of planar graphs. In
Proc. 11th Int. Sympos. Graph Drawing (GD’03),
volume 2912 of Lecture Notes in Computer Sci-
ence, pages 320-331. Springer Verlag, 2004.

F. Lecordix,
E. Hauboin.

Y. Jahard, C. Lemarié, and
The end of Carto 2001 project:

Top100 based on bdcarto database. In Proc. 8th
ICA Workshop on Generalisation and Multiple
Representation, A Corufia, Spain, July 2005.

D. Lowe. Organization of smooth image curves
at multiple scales. International Journal of Com-
puter Vision, 3(2):119-130, 1989.

C. Plazanet, J.-G. Affholder, and E. Fritsch. The
importance of geometric modeling in linear fea-
ture generalization. Cartography and Geographic
Information Systems, 22(4):291-305, 1995.

T. Samoilov and G. Elber. Self-intersection
elimination in metamorphosis of two-dimensional
curves. The Visual Computer, 14:415-428, 1998.

V. Surazhsky and C. Gotsman. Morphing stick
figures using optimized compatible triangula-
tions. In Proc. Ninth Pacific Conf. on Comp.
Graph. and App. (PG’01), pages 40-49, 2001.

M. van Kreveld. Smooth generalization for con-

tinuous zooming. In Proc. 20th Int. Cartographic
Conf. (ICC’01), pages 2180-2185, 2001.

R. Weibel and G. Dutton. Generalising spatial
data and dealing with multiple representations.
In P. A. Longley, M. F. Goodchild, D. J. Maguire,
and D. W. Rhind, editors, Geographical Informa-
tion Systems — Principles and Technical Issues,
volume 1, chapter 10, pages 125-155. John Wiley
& Sons, 1999.

