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Abstract. Given a plane graph G (i.e., a planar graph with a fixed planar em-
bedding) and a simple cycle C in G whose vertices are mapped to a convex
polygon, we consider the question whether this drawing can be extended to a pla-
nar straight-line drawing of G. We characterize when this is possible in terms of
simple necessary conditions, which we prove to be sufficient. This also leads to
a linear-time testing algorithm. If a drawing extension exists, it can be computed
in the same running time.

1 Introduction

The problem of extending a partial drawing of a graph to a complete one is a funda-
mental problem in graph drawing that has many applications, e.g., in dynamic graph
drawing and graph interaction. This problem has been studied most in the planar setting
and often occurs as a subproblem in the construction of planar drawings.

The earliest example of such a drawing extension result are so-called Tutte em-
beddings. In his seminal paper “How to Draw a Graph” [10], Tutte showed that any
triconnected planar graph admits a convex drawing with its outer vertices fixed to an
arbitrary convex polygon. The strong impact of this fundamental result is illustrated by
its, to date, more than 850 citations and the fact that it received the “Best Fundamen-
tal Paper Award” from GD’12. The work of Tutte has been extended in several ways.
In particular, it has been strengthened to only require polynomial area [4], even in the
presence of collinear points [3]. Hong and Nagamochi extended the result to show that
triconnected graphs admit convex drawings when their outer vertices are fixed to a star-
shaped polygon [5]. For general subdrawings, the decision problem of whether a planar
straight-line drawing extension exists is NP-hard [9]. Pach and Wenger [8] showed that
every subdrawing of a planar graph that fixes only the vertex positions can be extended
to a planar drawing with O(n) bends per edge and that this bound is tight. The drawing
extension problem has also been studied in a topological setting, where edges are rep-
resented by non-crossing curves. In contrast to the straight-line variant, it can be tested
in linear time whether a drawing extension of a given subdrawing exists [1]. Moreover,
there is a characterization via forbidden substructures [6].

In this paper, we study the problem of finding a planar straight-line drawing exten-
sion of a plane graph for which an arbitrary cycle has been fixed to a convex polygon. It
is easy to see that a drawing extension does not always exist in this case; see Fig. 1(a).
Let G be a plane graph and let C be a simple cycle of G represented by a convex poly-
gon ΓC in the plane. The following two simple conditions are clearly necessary for the
existence of a drawing extension: (i) C has no chords that must be embedded outside
of C and (ii) for every vertex v with neighbors on C that must be embedded outside of
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C there exists a placement of v outside ΓC such that the drawing of the graph induced
by C and v is plane and bounded by the same cycle as in G. We show in this paper that
these two conditions are in fact sufficient. Both conditions can be tested in linear time,
and if they are satisfied, a corresponding drawing extension can be constructed within
the same time bound.

Our paper starts with some necessary definitions (Section 2) and useful combinato-
rial properties (Section 3). The idea of our main result has two steps. We first show in
Section 4 that the conditions are sufficient if ΓC is one-sided (i.e., it has an edge whose
incident inner angles are both less than 90◦). Afterward, we show in Section 5 that, for
an arbitrary convex polygon ΓC , we can place the neighborhood of C in such a way
that the drawing is planar, and such that the boundary C ′ of its outer face is a one-sided
polygon ΓC′ . Moreover, our construction ensures that the remaining graph satisfies the
conditions for extendability of ΓC′ . The general result then follows directly from the
one-sided case.

2 Definitions and a necessary condition

Plane graphs and subgraphs A graph G = (V,E) is planar if it has a drawing Γ in
the plane R2 without edge crossings. Drawing Γ subdivides the plane into connected
regions called faces; the unbounded region is the outer and the other regions are the
inner faces. The boundary of a face is called facial cycle, and outer cycle for the outer
face. The cyclic ordering of edges around each vertex of Γ together with the description
of the external face of G is called an embedding of G. A graph G with a planar embed-
ding is called plane graph. A plane subgraph H of G is a subgraph of G together with
a planar embedding that is the restriction of the embedding of G to H .

Let G be a plane graph and let C be a simple cycle of G. Cycle C is called strictly
internal, if it does not contain any vertex of the outer face of G. A chord of C is called
outer if it lies outside C in G. A cycle without outer chords is called outerchordless.
The subgraph of G inside C is the plane subgraph of G that is constituted by vertices
and edges of C and all vertices and edges of G that lie inside C.

Connectivity A graphG is k-connected if removal of any set of k−1 vertices ofG does
not disconnect the graph. For k = 2, 3 a k-connected graph is also called biconnected
and triconnected, respectively. An internally triangulated plane graph is triconnected if
and only if there is no edge connecting two non-consecutive vertices of its outer cycle
(see, for example, [2]).

Star-shaped and one-sided polygons Let Π be a polygon in the plane. Two points
inside or on the boundary of Π are mutually visible, if the straight-line segment con-
necting them belongs to the interior of Π . The kernel K(Π) of polygon Π is the set
of all the points inside Π from which all vertices of Π are visible. We say that Π is
star-shaped if K(Π) 6= ∅. We observe that the given definition of a star-shape ensures
that its kernel has a positive area.

A convex polygon Π with k vertices is called one-sided, if there exists an edge e
(i.e., a line segment) of Π such that the orthogonal projection to the line supporting e
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Fig. 1. Convex polygon of cycle C is denoted by black. Vertex wi,j cannot be placed on the plane
without changing the embedding or intersecting C. Vertices wi,j and wl,k are petals of C, where
wl,k ≺ wi,j . Petal wl,k is realizable, while petal wi,j is not. (b) Illustration of Fact 1.

maps all polygon vertices actually onto segment e. Then e is called the base edge of
Π . Without loss of generality let e = (v1, vk) and v1, . . . , vk be the clockwise ordered
sequence of vertices of Π .

Extension of a drawing Let G be a plane graph and let H be a plane subgraph of G.
Let ΓH be a planar straight-line drawing of H . We say that ΓH is extendable if drawing
ΓH can be completed to a planar straight-line drawing ΓG of the plane graph G. Then
ΓG is called an extension of ΓH . A planar straight-line drawing of G is called convex,
if every face of G (including the outer face) is represented as a convex polygon.

The following theorem by Hong and Nagamochi [5] shows the extendability of a
prescribed star-shaped outer face of a plane graph.

Theorem 1 (Hong, Nagamochi [5]). Every drawing of the outer face f of a 3-connected
graph G as a star-shaped polygon can be extended to a planar drawing of G, where
each internal face is represented by a convex polygon. Such a drawing can be computed
in linear time.

Petals and stamens LetG be a plane graph, and let Puv be a path inG between vertices
u and v. Its subpath from vertex a to vertex b is denoted by Puv[a, b]. Let C be a simple
cycle ofG, and let v1, . . . , vk be the vertices ofC in clockwise order. Given two vertices
vi and vj of C, we denote by C[vi, vj ] the subpath of C encountered when we traverse
C clockwise from vi to vj . Assume thatC is represented by a convex polygon ΓC in the
plane. We say that a vertex vi, 1 ≤ i ≤ k of ΓC is flat, if ∠vi−1vivi+1 = π. Throughout
this paper, we assume that convex polygons do not have flat vertices.

A vertex w ∈ V (G) \ V (C) adjacent to at least two vertices of C and lying outside
C in G, is called a petal of C (see Figure 1(a)). Consider the plane subgraph G′ of G
induced by the vertices V (C) ∪ {w}. Vertex w appears on the boundary of G′ between
two vertices of C, i.e. after some vi ∈ V (C) and before some vj ∈ V (C) in clock-
wise order. To indicate this fact, we will denote petal w by wi,j . Edges (wi,j , vi) and
(wi,j , vj) are called the outer edges of petal wi,j . The subpath C[vi, vj ] of C is called
base of the petal wi,j . A vertex vf is called internal, if it appears on C after vi and
before vj in clockwise order. A petal wi,i+1 is called trivial. A vertex of V (G) \ V (C)
adjacent to exactly one vertex of C is called a stamen of C.

Let v be a petal of C and let u be either a petal or a stamen of C, we say that u is
nested in v, and denote this fact by u ≺ v, if u lies in the cycle delimited by the base
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and the outer edges of petal v. For two stamens u and v, neither u ≺ v nor v ≺ u. So
for each pair of stamens or petals u and v we have either u ≺ v, or v ≺ u, or none of
these. This relation ≺ is a partial order. A petal or a stamen u of C is called outermost
if it is maximal with respect to ≺.

Necessary petal condition Let againG be a plane graph and letC be an outerchordless
cycle of G represented by a convex polygon ΓC in the plane. Let wi,j be a petal of C.
Let G′ be the plane subgraph of G, induced by the vertices V (C)∪{wi,j}. We say that
wi,j is realizable if there exists a planar drawing of G′ which is an extension of ΓC .
This gives us the necessary condition that ΓC is extendable only if each petal of C is
realizable. In the rest of the paper we prove that this condition is sufficient.

3 Combinatorial Properties of Graphs and Petals

In this section, we derive several properties of petals in graphs, which we use through-
out the construction of the drawing extension in the remaining parts of this paper. Due
to space constraints the proofs can be found in the full version of this paper [7]. Propo-
sition 1 allows us to restrict our attention to maximal plane graphs for which the given
cycle C is strictly internal. The remaining lemmas are concerned with the structure of
the (outermost) petals of C in such a graph.

Proposition 1. Let G be a plane graph on n vertices and let C be a simple outerchord-
less cycle of G. There exists a plane supergraph G′ of G with O(n) vertices such that
(i) G′ is maximal, (ii) there are no outer chords of C in G′, (iii) each petal of G′ with
respect to C is either trivial or has the same neighbors on C as in G, and (iv) C is
strictly internal to G.

In the following we assume that our given plane graph is maximal, and the given
cycle is strictly internal, otherwise Proposition 1 is applied.

Lemma 1. LetG be a triangulated planar graph with a strictly internal outerchordless
cycle C. Then the following statements hold. (i) Each vertex of C that is not internal to
an outermost petal is adjacent to two outermost petals. (ii) There is a simple cycle C ′

whose interior contains C and that contains exactly the outermost stamens and petals
of C.

Lemma 2. Let G be a maximal planar graph with a strictly internal outerchordless
cycle C. Let u and v be two adjacent vertices on C that are not internal to the same
petal. Then there exists a third vertexw ofC such that there exist three chordless disjoint
paths from u, v and w to the vertices of the outer face of G such that none of them
contains other vertices of C.

4 Extension of a one-sided polygon

Let G be a plane graph, and let C be a simple outerchordless cycle, represented by a
one-sided polygon ΓC . In this section, we show that if each petal of C is realizable,



Drawing Planar Graphs with a Prescribed Inner Face 5

then ΓC is extendable to a straight-line drawing ofG. This result serves as a tool for the
general case, which is shown in Section 5.

The drawing extension we produce preserves the outer face, i.e., if the extension
exists, then it has the same outer face asG. It is worth mentioning that, if we are allowed
to change the outer face, the proof becomes rather simple, as the following claim shows.

Claim 1 Let G be a maximal plane graph and let C be an outerchordless cycle of G,
represented in the plane by a one-sided polygon ΓC . Then drawing ΓC is extendable.

Proof. Let (v1, vk) be the base edge of ΓC . Edge (v1, vk) is incident to two faces of G,
to a face fin inside C and to a face fout outside C. We select fout as the outer face ofG.
With this choice, edge (v1, vk) is on the outer face of G. Let v be the third vertex of this
face. We place the vertex v far enough from ΓC , so that all vertices of ΓC are visible
from v. Thus, we obtain a planar straight-line drawing of the subgraph Gv induced by
the vertices V (C) ∪ {v}, such that each face is represented by a star-shaped polygon.
Each subgraph of G inside a face of Gv is triconnected, and therefore, we can complete
the existing drawing to a straight-line planar drawing of G, by Theorem 1. ut

In the rest of the section we show that extendability of ΓC can be efficiently tested,
even if the outer face ofG has to be preserved. The following simple geometric fact will
be used in the proof of the result of this section (see Figure 1(b) for the illustration).

Fact 1 Let pqrt be a convex quadrilateral and let o be the intersection of its diagonals.
Let Spt be a one-sided convex polygon with base pt, that lies inside triangle4opt. Let
ab and cd be such that b, d ∈ Spt, ordered clockwise as t, d, b, p and a, c ∈ qr, ordered
as q, a, c, r. Then, neither ab and cd intersect each other, nor do they intersect a segment
between two consecutive points of Spt.

We are now ready to prove the main result of this section.

Theorem 2. Let G be a maximal plane graph and C be a strictly internal simple out-
erchordless cycle of G, represented in the plane by a one-sided polygon ΓC . If every
petal of C is realizable, then ΓC is extendable.

Proof. Let v1, . . . , vk be the clockwise ordering of the vertices of C, so that (v1, vk) is
the base of ΓC . We rotate ΓC so that (v1, vk) is horizontal. Let a, b, c be the vertices of
the external face of G, in clockwise order, see Fig. 2. By Lemma 2, there exists a vertex
vj , 1 < j < k, such that there exist chordless disjoint paths between v1, vj , vk, and the
vertices a, b, c, respectively. Without loss of generality assume they are Pv1a, Pvjb and
Pvkc. Some vertices of Pv1a and Pvkc are possibly adjacent to each other, as well as to
the boundary of C. Depending on these adjacencies, we show how to draw the paths
Pv1a, Pvkc and how to place vertex b, so that the graph induced by these vertices and
cycle C is drawn with star-shaped faces. Then, the drawing of G can be completed by
applying Theorem 1. Let vi be the topmost vertex of ΓC . It can happen that there are two
adjacent topmost vertices vi and vi+1. However, vi−1 and vi+2 are lower, since ΓC does
not contain flat vertices. In the following, we assume that vi and vi+1 have the same
y-coordinate. The case when vi is unique can be seen as a special case where vi = vi+1.
Without loss of generality assume that i + 1 ≤ j ≤ k − 1, the case where 2 ≤ j ≤ i
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Fig. 2. Illustration for the proof of Theorem 2. Edges between C[v1, vi] and Pv1a[v1, w
′]∪ {vk}

are gray. Edges between C[vi+1, vj ] and Pv1a[w, a] are dashed.

is treated symmetrically. Notice that the presence of the path Pvjb ensures that edges
between vertices of Pv1a and Pvkc can only lie in the interior of the cycle delimited by
these paths and edges (v1, vk) and (a, c) (refer to Figure 2). Consider a vertex of Pv1a

which is a petal of C. The base of such a petal cannot contain edge (vk−1, vk), since
this would cause a crossing with Pvkc. Moreover, if the base of this petal contains edge
(v1, vk), then it cannot contain any edge (vf , vf+1) for i ≤ f < j, since otherwise
this petal would not be realizable. Thus a vertex of Pv1a is either adjacent to vk or to a
vertex vf , where i + 1 ≤ f ≤ j, but not both. It is worth mentioning that a vertex of
Pv1a cannot be adjacent to any vf , j + 1 ≤ f ≤ k − 1, since such an adjacency would
cause a crossing either with Pvjb or with Pvkc.

Let `a, ` and `c be three distinct lines through vj that lie clockwise between the
slopes of edges (vj−1, vj) and (vj , vj+1) (see Figure 3). Such lines exist since ΓC does
not contain flat vertices. Let `i be the line through vi with the slope of (vi−1, vi). Let `1a
be the half-line originating at an internal point of (v1, vk) towards −∞, slightly rotated
counterclockwise from the horizontal position, so that it crosses `i. Let q denote the
intersection point of `1a and `i. Let p be any point on `1a further away from v1 than q.
Let `2a be the line through p with the slope of `. By construction of lines `a, ` and `c,
line `2a crosses `a above the polygon ΓC at point pa and line `c below this polygon at
point pc.

Let G′ be the plane subgraph of G induced by the vertices of C, Pv1a, and Pvkc.
The outer cycle of G′ consists of edge (a, c) and a path Pac between vertices a and c.

Claim 2 The vertices of Pv1a and Pvkc can be placed on lines `1a, `2a and `c such that
in the resulting straight-line drawing of G′, path Pac is represented by an x-monotone
polygonal chain, and the inner faces of G′ are star-shaped polygons.

The vertices of Pv1a will be placed on line `1a between points p and q and on line `2a
above point pa. The vertices of Pvkc will be placed on `c below pc. In order to place
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Fig. 3. Illustration for the proof of Theorem 2. For space reasons lines were shown by curves.

the vertices, we need to understand how the vertices of Pv1a are adjacent to vertices of
C. As we travel on Pv1a from v1 to a, we first meet all vertices adjacent to v1, . . . , vi
and then all vertices adjacent to vi+1, . . . , vj , since G is a planar graph. Let w be the
first vertex of Pv1a adjacent to vf , i+ 1 ≤ f ≤ j, and let w′ be the vertex preceding w
on Pv1a. We place vertices of Pv1a[v1, w

′], in the order they appear in the path, on line
`1a, between q and p, in increasing distance from v1. We place all vertices of Pv1a[w, a]
on `2a above pa in increasing distance from p. We draw the edges between the vertices
of C and Pv1a. Notice that vertex w might not exist, since it might happen that none of
the vertices of Pv1a is adjacent to vf , i + 1 ≤ f ≤ k. In this case all vertices of Pv1a

are placed on line `1a, between q and p. In the following, we show that the constructed
drawing is planar. Notice that the quadrilateral formed by the points w, a, vj , vi+1 is
convex, by the choice of line `2a and the positions of vertices w and a on it. Also, notice
that the points of vertices vi+1, . . . , vj form a one-sided polygon with base segment
vi+1vj , which lies in the triangle 4ovjvi+1, where o is the intersection of vi+1a and
vjw. Thus, by Fact 1, the edges connectingC[vi+1, vj ] and Pv1a[w, a] do not cross each
other. By applying Fact 1, we can also prove that edges connecting Pv1a[v1, w

′] with
C[v1, vi], cross neither each other, nor ΓC . Recalling that vertices of Pv1a[v1, w

′] can be
also adjacent to vk, we notice that these edges also do not cross ΓC , by the choice of line
`1a. Finally, path Pv1a is chordless, and therefore the current drawing is planar. Notice
that the subpath of Pa,c that has already been drawn is represented by an x-monotone
chain. We next draw the vertices of Pvkc. We observe that in the already constructed
drawing path Pv1a taken together with edge (v1, vk) is represented by an x-monotone
chain, each point of which is visible from any point below the line `2a. This means that
any point below line `2a, can be connected by a straight-line segment to the vertices
V (Pv1a) ∪ {vk} without creating any crossing either with Pv1a or with (v1, vk). We
also notice that any of the vertices vj , . . . , vk can be connected to a point of `c, without
intersecting ΓC . Recall that pc denotes the intersection point of `c and `2a. Thus we
place the vertices of Pvkc on the line `c, below `2a, in increasing distance from point pc.
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Fig. 4. (a) Vertex wi,j is the petal of C with base C[vi, vj ]. Point apex(wi,j) is red, region
cone(wi,j) is gray. (b) Graph Gshell. Polygon ΓC is black. Cycle Cshell is bold gray. Cycle
C′

shell is blue. Graph G′
shell is comprised by blue, red and black edges. Vertices of B are squares.

Applying Fact 1 we can prove that the edges induced by {vj , . . . , vk} ∪ V (Pvkc) are
drawn without crossings. Edges between Pvkc and Pv1a cross neither Pv1a, nor (v1, vk)
by the choice of lines `c and `2a.

We have constructed a planar straight-line drawing of G′. We notice that path Pac

is drawn as an x-monotone polygonal chain. We also notice that the faces of G′, cre-
ated when placing vertices of Pv1a (resp. Pvkc) are star-shaped and have their kernels
arbitrarily close to the vertices of Pv1a (resp. Pvkc).

Notice that vertex b is possibly adjacent to some of the vertices of Pac. Thus, plac-
ing b at an appropriate distance above Pac, the edges between b and Pac can be drawn
straight-line without intersecting Pac and therefore no other edge of G′. The faces cre-
ated when placing b are star-shaped and have their kernels arbitrarily close to b. We
finally apply Theorem 1. ut

5 Main theorem

Let G be a maximal plane graph and C be a strictly internal simple outerchordless
cycle of G, represented by an arbitrary convex polygon ΓC in the plane. In Theorem 3
we prove that it is still true that if each petal of C is realizable, then ΓC is extendable.
Before stating and proving Theorem 3, we introduce notation that will be used through
this section.

Recall that v1, . . . , vk denote the vertices of C. Let wi,j be an outermost petal of C
in G. Let `i (resp. `j) be a half-line with the slope of edge (vi, vi+1) (resp. (vj−1, vj))
originating at vi (resp. vj) (see Figure 4(a)). Since wi,j is realizable, lines `i and `j
intersect. Denote by apex(wi,j) their intersection point and by cone(wi,j) the subset
of R2 that is obtained by the intersection of the half-planes defined by `i and `j , not
containing ΓC . It is clear that any internal point of cone(wi,j) is appropriate to draw
wi,j so that the plane subgraph of G induced by V (C) ∪ {wi,j} is crossing-free. For
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Fig. 5. Construction of drawing of graph Gshell shown in Figure 4(b). (a) Apex points are gray,
points of B are black squares. (b) Polygon Π is gray, lines {`(w) | w ∈ S ∩C′

shell} are dashed.

consistency, we also define cone(w) and apex(w) of an outer stamenw ofC as follows.
Assume that w is adjacent to vi ∈ C. Then cone(w) ⊂ R2 is the union of the half-
planes defined by lines of edges (vi−1, vi) and (vi, vi+1), that do not contain ΓC . We
set apex(w) = vi.

Let P (resp. S) denote the set of outermost petals (resp. stamens) of C in G. By
Lemma 1, there exists a cycle Cshell in G that contains exactly P ∪S. Let Gshell denote
the plane subgraph of G induced by the vertices of C and Cshell. (Figure 4(b)). Let
C ′shell denote the outer cycle of Gshell. We denote the graph consisting of C, C ′shell
and edges between them by G′shell. Each petal or stamen of C, say w, that belongs to
Cshell but not to C ′shell, belongs to a face of G′shell. We denote this face by shell(w).
We categorize the faces of Gshell as follows. The faces that lie inside cycle C are called
faces of C. The faces that are bounded only by Cshell and its chords, are called faces
of Cshell. Notice that each face of Cshell is a triangle. Notice that a face of Gshell that
is comprised by two consecutive edges adjacent to the same vertex of C (not belonging
to C), is a triangle, and contains no vertex of G \ Gshell, since both facts would imply
that the taken edges are not consecutive. Finally, faces bounded by a subpath of C and
two edges adjacent to the same petal, are called petal faces. The plane subgraph of G
inside a petal face is triangulated and does not have a chord connecting two vertices of
its outer face, and therefore is triconnected. Thus we have the following

Observation 1 Each vertex of G \Gshell either lies in a face of C, or in a face that is
a triangle, or in a petal face, or outside C ′shell. Each subgraph of G inside a petal face
is triconnected.

Theorem 3. Let G be a maximal plane graph and let C be a strictly internal simple
outerchordless cycle of G, represented by a convex polygon ΓC in the plane. ΓC is
extendable to a straight-line drawing of G if and only if each petal of C is realizable.

Proof. The condition that each petal of C is realizable is clearly necessary. Next we
show that it is also sufficient.

We first show how to draw the graph G′shell. Afterward we complete it to a drawing
of Gshell. Our target is to represent C ′shell as a one-sided polygon, so that Theorem 2
can be applied for the rest of G that lies outside C ′shell. We first decide which edge of
C ′shell to “stretch”, i.e., which edge will serve as base edge of the one-sided polygon
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Fig. 6. Construction of Case 1. Corresponding Gshell is shown in Figure 4(b).

for representing C ′shell. In order to be able to apply Theorem 2, this one-sided polygon
should be such that each petal of C ′shell is realizable. Thus we choose the base edge e
of C ′shell as follows. If C ′shell contains an edge on the outer face of G, we choose e to be
this edge. Otherwise, we choose an edge e, such that at least one of the end vertices of
e is adjacent to an outermost petal of C ′shell in G. Such a choice of e ensures that each
petal of C ′shell is realizable.

Claim 3 Polygon ΓC can be extended to a straight-line drawing of graph G′shell, such
that its outer face C ′shell is represented by a one-sided polygon with base edge e. More-
over, C ′shell contains in its interior all points of {apex(w) | w ∈ Cshell}.

Recall that P (resp. S) denotes the set of outermost petals (resp. stamens) of C in
G. Let B denote the set of vertices of C, to which stamens S ∩ C ′shell are adjacent
(refer to Figure 4(b)). By construction of the apex points, the set {apex(w) | w ∈
P ∩ C ′shell} ∪ B is in convex position, and we denote by Π its convex hull. Polygon
Π may be degenerate, and may contain only a single vertex or a single edge. We treat
these cases separately to complete the construction of the drawing of the graph G′shell.
Next, we explain the construction in the non-degenerate case; the degenerate cases are
covered in the full version of this paper [7].

Let p be a point inside Π . Let `(w) denote a half-line from p through w, where w
is a vertex of Π . If we order the constructed half-lines around p, any two consecutive
lines have between them an angle less than π. If w ∈ B, we substitute `(w) by the
same number of slightly rotated lines as the number of stamens of C ′shell adjacent to w,
without destroying the order (refer to Figure 5(b)). Thus, for each w ∈ C ′shell, a line
`(w) is defined. Notice that, for any w ∈ P ∩C ′shell, line `(w) passes through apex(w),
and the infinite part of `(w) lies in cone(w). Thus, for any position of w on a point of
`(w)∩cone(w), edges between C and w do not cross ΓC . For a stamen w ∈ S∩C ′shell,
line `(w) crosses cone(w) very close to apex(w), and its infinite part lies in cone(w).
Thus, similarly, for any position of w on a point of `(w) ∩ cone(w), edges between C
and w do not cross ΓC .

Recall that e = (u, v) is the edge of C ′shell that we have decided to “stretch”. Re-
call also that `(u) and `(v) are consecutive in the sequence of half-lines we have con-
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structed. Let κ be a circle around ΓC that contains in the interior the polygon Π and the
set of points {apex(w)|w ∈ Cshell}. Let ` be a half-line bisecting the angle between
`(u) and `(v) (refer to Figure 6). Let λ be a parabola with ` as axis of symmetry and
the center of κ as focus. We position and parametrize λ such that it does not cross ` and
κ.

With this placement of λ, each half-line `(w), w ∈ Π , crosses λ, moreover, inter-
sections with `(u) and `(v) are on different branches of λ and appear last on them as
we walk on λ from its origin to infinity. LetΠ ′ be the convex polygon comprised by the
intersection points of lines {`(w) : w ∈ V (C ′shell)} with λ. We make λ large enough,
so that the polygon Π ′ still contains the circle κ in the interior. As a results, for each
w ∈ C, cone(w) ∩Π ′in 6= ∅, where Π ′in denotes the interior of Π ′. This concludes the
proof of the claim in the non-degenerate case.

Let Γ ′shell be the constructed drawing of G′shell. Recall that each petal or stamen
w of C, that does not belong to C ′shell, lies in a face of G′shell, denoted by shell(w).
Let Γshell(w) denote the polygon representing face shell(w) in Γ ′shell. By construction,
cone(w) ∩ Γshell(w) 6= ∅. We next explain how to extend the drawing of G′shell to
the drawing of Gshell. For each edge (u, v) of C ′shell, we add a convex curve, lying
close enough to this edge inside Γ ′shell. Let µ be the union of these curves for all edges
of C ′shell. We notice that we can place them so close to C ′shell that all the points of
{apex(w) | w ∈ C} are still in the interior of µ. Thus µ is intersected by all the sets
cone(w), for each w ∈ C. We place each vertex w of Cshell \C ′shell on µ ∩ cone(w) in
the order they appear in Cshell. Since all edges induced by Cshell lie outside of Cshell,
and both end points of such an edge are placed on a single convex curve, they can be
drawn straight without intersecting each other, or other edges of Gshell. Thus, we have
constructed a planar extension of ΓC to a drawing of Gshell, call it Γshell.

Recall the definitions of faces of C, faces of Cshell and petal faces from the begin-
ning of this section. The faces of C appear in Γshell as convex polygons. The faces of
Cshell are triangles, and the petal faces of Gshell are star-shapes whose kernel is close
to the corresponding petal. By Observation 1, each vertex of G \ Gshell either lies in a
face of C, or in a face that is a triangle, or in a petal face, or outside C ′shell. Moreover
a subgraph of G inside a petal face is triconnected. Thus, by multiple applications of
Theorem 1, we can extend the drawing of Gshell to a straight-line planar drawing of the
subgraph of G inside C ′shell.

Finally, notice that in the constructed drawing of Gshell each petal of its outer cycle,
i.e. C ′shell, is realizable. This is by the choice of edge e. Moreover, by construction
of Gshell, C ′shell has no outer chords. In case C ′shell is not strictly internal, we apply
Proposition 1, to construct a maximal plane graph G′, such that G is a plane subgraph
of G′, C ′shell is a strictly internal outerchordless cycle of G′ and each petal of C ′shell
is realizable. Then, we apply Theorem 2, to complete the drawing of G′, lying outside
C ′shell. Finally, we remove the edges of G′ that do not belong to G. ut

We conclude with the following general statement, that follows from Proposition 1,
Theorem 3 and one of the known algorithms that constructs drawing of a planar graph
with a prescribed outer face (e.g. [4, 10] or Theorem 1).

Corollary 1. LetG be a plane graph andH be a biconnected plane subgraph ofG. Let
ΓH be a straight-line convex drawing of ΓH . ΓH is extendable to a planar straight-line



12 Tamara Mchedlidze, Martin Nöllenburg, Ignaz Rutter

drawing of G if and only if the outer cycle of H is outerchordless and each petal of the
outer cycle of H is realizable.

6 Conclusions

In this paper, we have studied the problem of extending a given convex drawing of
a cycle of a plane graph G to a planar straight-line drawing of G. We characterized
the cases when this is possible in terms of two simple necessary conditions, which
we proved to also be sufficient. We note that it is easy to test whether the necessary
conditions are satisfied in linear time. It is readily seen that our proof of existence of
the extension is constructive and can be carried out in linear time. As an extension of
our research it would be interesting to investigate whether more envolved necessary
conditions are sufficient for more general shape of a cycle, for instance a star-shaped
polygon.
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