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Abstract. The problem of finding k minimum energy, edge-disjoint
paths in wireless networks (MEEP) arises in the context of routing and
belongs to the class of range assignment problems. A polynomial algo-
rithm which guarantees a factor-k-approximation for this problem has
been presented before, but its complexity status was open. In this paper
we prove that MEEP is NP-hard and give new lower and upper bounds on
the approximation factor of the k-approximation algorithm. For MEEP
on acyclic graphs we introduce an exact, polynomial algorithm which is
then extended to a heuristic for arbitrary graphs.

1 Introduction

Links between nodes of a wireless network are less reliable than connections in
wired networks, because of effects like fading, interference, or obstructions. For
reliable routing in wireless networks it can therefore be desirable to communicate
not only over one path but over various, disjoint paths. This can help to achieve
connections that are more reliable, have less latency, or higher bandwidth. En-
ergy is a sparse resource in ad hoc and especially in sensor networks, therefore it
is usually vital to achieve the connectivity goal with a minimum energy usage.
The advantage of a wireless networks node, in this respect, is their ability to do
multicasts to all of their neighbors, using only energy for one transmission. If
several paths have a node in common, energy can be saved by doing just one
multicast at this node instead of several unicast transmissions.

In [1] Srinivas and Modiano showed several algorithms for finding sets of k
edge-disjoint or node-disjoint paths in wireless ad hoc networks. They gave
a polynomial time algorithm for finding an energy-minimal set of k node-disjoint
paths and a polynomial time algorithm for finding an energy-minimal pair of
edge-disjoint paths. The node-disjoint case is less complex in the sense that, as
the paths share no nodes except the start node s, only s can save energy by
doing a multicast to its neighbors. For the edge-disjoint case a k approximation
algorithm was presented in [1] (the LDMW algorithm). However, the complexity
of the problem has remained unknown. Therefore, in this paper we concentrate
on the edge-disjoint case. Here, energy can be saved also at intermediate nodes.
The disadvantage of paths that are merely edge-disjoint is that they may not
protect against node failures. One main difference between node and edge failures
is that the reasons for the latter are often only temporary (e.g., interference or
obstruction) whereas reasons for node failures are often permanent (e. g., power
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loss or mobility). The permanent interruption of a path, therefore, has to be
dealt with differently, namely by establishing a new path, whereas, in case of
a transient failure, the system might just use the alternative paths until the
failing link becomes available again.

1.1 Related Work and Overview

Energy-efficient routing has been looked at many times before. One of the first
works was probably [2], followed by many more. Disjoint path routing is already
present in [3] and has been rediscovered in the context of wireless sensor and
ad hoc networks, e.g. in [4] or [5]. But [1] seems to be the first work on the
combined problem of finding energy-minimal disjoint paths (namely MEEP). It
is closely related to work on finding energy-efficient strongly connected ([6]) or
strongly k-connected ([7]) subgraphs in the context of topology control. These
two problems and the k-MEEP problem belong to the class of range assign-
ment problems. One of the first works on this type of problem was [8], and [9]
was another predecessor of [1]. Range assignment has been studied widely in
the meantime, see also [10] for a survey. In a successive paper ([11]), MEEP is
extended and analyzed under lifetime aspects.

As Srinivas and Modiano already pointed out, the problem of finding minimum
energy disjoint paths is more focused than finding k-connected subgraphs, in the
sense that it is only concerned with finding disjoint paths between one pair of
nodes and therefore does not need to maintain routes between nodes that may
never have to communicate with each other at all. Whereas they gave polynomial
time algorithms for finding minimum energy node-disjoint paths and pairs of
edge-disjoint paths, our first result (Sect. 3) is that the MEEP problem is NP-
complete, at least, if k is part of the input. It was shown in [1] that an algorithm
for finding k minimum length edge disjoint paths (like, for example Suurballe’s
algorithm, [3]) provides at least k-approximation. In Sect. 4 we show that the
factor of k is exact. However if we assume all edge weights to be equal we can
prove a asymptotically tight bound of Θ(

√
n) for the approximation factor of this

algorithm. Finally, in Sect. 5, we present an exact, polynomial time algorithm
for acyclic graphs. Based on this algorithm, we describe a simple heuristic for
arbitrary graphs in Sect. 6.

2 Network Model

We use a slightly more general network model than that of [1]. A network consists
of n nodes. Each node v has a maximum transmission power Emax(v) and can
transmit at any power in the interval [0, Emax(v)]. For each (ordered) pair (u, v)
of distinct nodes we are given a weight w(u, v). The node u can establish a link
to a node v if it transmits with power greater than or equal to w(u, v). These
weights need not be symmetric, nor does the triangle inequality need to hold.
This includes energy metrics (with d(u, v) = δ(u, v)α for α ∈ {0, 1, 2, ...}) as well
as other, more general metrics.
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Clearly, such a network can be modeled by a weighted directed graph where
the nodes are the nodes of the network and there is an edge from a node u to
a node v if Emax(u) ≥ w(u, v), i. e. if there can be a link from u to v. In this case
the corresponding edge weight is w(u, v).

As mentioned above, we can use the wireless character of a network to save en-
ergy in a multicast setting (the so-called wireless multicast advantage (WMA)).
Consequently, the cost of a set of paths should not be measured by the sum of
the edge weights. Instead we define the following cost function which we call
energy:

Definition 1 (Energy). The energy E(P ) of a set P of paths in a directed
graph is defined as

E(P ) =
∑

u∈V (P )

max
(u,v)∈A(P )

w(u, v)

where V (P ) denotes the nodes and A(P ) the edges in the path and we set for
convenience max∅ = 0. The weight of P is

w(P ) =
∑

(u,v)∈A(P )

w(u, v) .

Formally, the decision version of the problem of finding k minimum energy edge-
disjoint paths can be stated as follows:

Definition 2 (MEEP). Given a directed acyclic graph D = (V, A) with weights
w : A → R

+, two nodes s, t ∈ V , B ∈ N and the number k ∈ N of paths. Are
there k edge-disjoint paths P from s to t with E(P ) ≤ B?

3 Complexity

There are polynomial time algorithms for finding k edge-disjoint paths of mini-
mum weight (i. e. sum of edge weights) in a graph [3]. However, since in MEEP
a different cost function is used, the problem becomes NP-complete for gen-
eral k (i. e. for k being part of the input). We will show this in the following by
reduction of SET COVER to MEEP.

Theorem 1. Given a directed graph D = (V, A) with weights w : A → R
+,

start node s ∈ V , end node t ∈ V , k ∈ N and a threshold B ∈ N. Then it is
NP-complete to decide if there is a set P of k edge-disjoint paths from s to t with
E(P ) ≤ B.

Proof. We will show the theorem by a reduction of the classic SET COVER prob-
lem to MEEP. Let us first remind the reader of the definition of SET COVER:

Definition 3 (SET COVER). Given a set U = {u1, . . . , un}, a family F =
{S1, . . . , Ss} of subsets of U and an integer B. Can we select B (or less) subsets
from F such that every element of U is in at least one of the selected subsets?
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It is a well-known fact that SET COVER is NP-complete [12]. Given an in-
stance of SET COVER, we can construct a directed acyclic graph D = (V, A)
in polynomial time such that there is a correspondence between n edge-disjoint
paths in D and the set covers. The construction is as follows: The nodes V of D
consist of the elements of U and F , two nodes s and t, and for every set Si ∈ F
with ni elements, we have nodes vi,1, . . . , vi,|Si|. From s there is an edge to every
vi,j (i ∈ {1, . . . , s}, j ∈ {1, . . . , |Si|). From the nodes vi,j there are edges to the
corresponding sets Si. From each set Si there is an edge to every node u ∈ U
with u ∈ Si. Finally, there are edges from all the nodes in U to t. All edges are
assigned a weight of 1. Fig. 1 shows an example of this reduction.

Fig. 1. Reduction of an instance of SET COVER with U = {u1, . . . , u7}, F =
{S1, . . . , S5}, S1 = {u1, u3}, S2 = {u2, u4, u5}, S3 = {u1, u2, u3}, S4 = {u5, u6},
S5 = {u4, u7} to MEEP

Clearly, the size of this graph is polynomial in the size of the SET COVER
problem and it can be constructed in polynomial time. We will show that there
is a set cover of size less than or equal to B if and only if there are n edge-disjoint
paths P from s to t with E(P ) ≤ B + 2n + 1.

Given a set cover of size B – w. l. o. g. the sets S1 . . . , SB – we can construct
n edge-disjoint paths from s to t as follows: For every element of U we can
find a set in S1, . . . , SB that covers the element. Let ni ≤ |Si| (i ∈ {1, . . . , B})
denote the number of elements that are thus associated with set Si. Clearly
n1 + . . .+nB = n. Now we construct ni edge-disjoint paths from s to Si (via the
nodes vi,1, . . . , vi,ni) and ni edge-disjoint paths from Si to t (via the elements that
are covered by Si. Together, we have constructed n edge-disjoint paths from s
to t. Since all edge weights are 1, the energy consumed by the paths is equal to
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the number of nodes (except t), namely E(P ) = 1 + n + B + n = B + 2n + 1, as
desired.

Given n edge-disjoint paths from s to t they must visit exactly n of the
nodes vi,j and n of the nodes u1, . . . , un, by construction of the graph. Thus, the
energy of the paths is B + 2n + 1, where B is now the number of used nodes
in S1, . . . , Ss. The paths easily induce a set cover by taking for every element
u ∈ U the predecessor on the path visiting u (one of S1, . . . , Ss). As a result, we
have found a set cover with B or less sets.

We have shown that there is a set cover of size B if and only if there is a set
of n edge-disjoint paths from s to t in D with energy 1 + 2n + B, which implies
NP-completeness. ��

Remark 1. From the NP-completeness proof we can derive a result about the
best possible approximation factor for MEEP using a result of Feige: Feige could
show in [13] that there cannot exist an approximation algorithm for SET COVER
with an approximation factor better than O(1−o(1)) log n unless NP has slightly
superpolynomial time algorithms. Using this result one can easily show that un-
der the same conditions the same bound holds for the approximation of MEEP.

4 Approximation

As we have seen in the previous section we cannot expect to find an approxi-
mation algorithm with an approximation factor of less than O(log k) for MEEP.
In [1] the so-called Link-Disjoint Minimum-Weight (LDMW) algorithm was pro-
posed and shown to possess an approximation factor of less than or equal to k.
In this algorithm, the k paths of minimum weight are computed instead of the
paths of minimum energy (e. g. using Suurballe’s algorithm [3]). The example in
Fig. 2 shows, that the approximation factor of the LDMW algorithm is exactly k.

Fig. 2. An example that shows an approximation factor of k for the LDMW approxi-
mation algorithm
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In this example, all of the upper paths (via w) have a weight of 1 + 3ε, whereas
the lower paths have a weight of 1 + ε. Thus, the k paths found by the LDMW
algorithm are the lower paths which need an energy of k + ε. The energy of the
upper paths, however, is 1 + (2k + 1)ε. For ε → 0 the quotient of the LDMW
solution and the optimal solution approaches k.

4.1 The Binary Case

The example in Fig. 2 works because of great differences in edge weights. It
is an interesting question if we can attain a better approximation factor if no
such great differences can occur. We studied the case where all edges have the
same weight (w. l. o. g. 1) and called this restricted problem BMEEP (for Binary
MEEP), because the nodes can either send or not, but not send at different
energy levels. Note that our proof of NP-completeness works for BMEEP as well.
As explained above, however, the example that shows an approximation factor
of k for the LDMW algorithm applied to MEEP does not work for BMEEP. Can
we expect LDMW to work better on BMEEP?

We can give an example that shows for k ∈ N of the form k = 1+2+ . . .+ l for
some l ∈ N that the approximation factor cannot be better than 1 + l

2 which is
Ω(

√
k). Fig. 3 shows the example for k = 1+2 = 3. We will discuss this example

and briefly show how it can be extended to the general case.

Fig. 3. A lower bound on the approximation factor of LDMW applied to BMEEP

Let P1 = (s, u1, v1, v2, . . . , v2m, u′
1, t),

P2 = (s, u2, v2, v4, . . . , v2m, u′
2, t),

P3 = (s, u3, v1, v3, . . . , v2m−1, u
′
3, t), and

P ′
1 = (s, u′, v′1, . . . , v

′
2m, t)

denote four s-t-paths. Clearly, the weights of the paths are W (P1) = 2m + 3,
W (P2) = W (P3) = m + 3 and W (P ′

1) = 2m + 2. Thus, the three paths of
minimum weight are P ′

1, P2 and P3 with an energy of E(P ′
1, P2, P3) = 4m + 6.

On the other hand E(P1, P2, P3) = 2m+7. Thus the factor between the LDMW
solution and the optimal solution is 4m+6

2m+7 which approaches 2 for m → ∞.
The idea of the general case is to use i paths of “step size” i where i ∈

{1, . . . , l} as optimal paths (P1 with step size 1; P2 and P3 with step size 2
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above) and m = l(l−1)
2 parallel paths that are slightly shorter than the paths of

“step size” l − 1. Then one can show the factor of 1 + l
2 between the LDMW

solution and the optimal solution.
The next lemma shows that this approximation factor is asymptotically tight.

Lemma 1. For k ≥ 6 the approximation factor of the LDMW algorithm is at
least 2

√
k.

Proof. Let P ∗ be the set of k edge-disjoint paths with minimum energy and
P ′ the set of k edge-disjoint paths with minimum weight. It is sufficient to
show that E(P ′) ≤ W (P ′) ≤ W (P ∗) ≤ 2

√
k · E(P ∗) where all but the last

inequality is obvious. Let’s have a look at the graph that is induced by P ∗. It
is the union of k shortest (directed) s-t-paths and therefore (w.l.o.g.) a directed
acyclic graph of n nodes (if there are cycles, they can be removed). There exists
an order s = v1, v2, v3, . . . , vn−1, vn = t of the nodes of this graph (for instance
the topological order) such that every edge goes “upward”. The weight of P ∗ is
the number of edges of this graph. The energy is the number of nodes (minus 1).
The more edges the graph has, the shorter they have to be (where the length of
an edge (vi, vj) is |j − i|). There are at most n − 1 edges of length 1, n − 2 edges
of length 2 and so on. Every path leads from node s to node t, so the “distance”
it crosses is n − 1. Even if P ∗ uses only the shortest possible edges, we claim
that the total distance is “used up” after edges of length 2

√
k are used because

it is at least

2
√

k∑

i=1

i(n − i) =
∑

in −
∑

i2 = 2nk + n
√

k − 8/3k
√

k − 6
√

k − 1

≥ k(n − 1)

for n ≥ k ≥ 6. Therefore the number of used edges is at most

W (P ∗) ≤
2
√

k∑

i=1

(n − i) = 2n
√

k − 2k −
√

k ≤ 2
√

kE(P ∗) . ��

For the case k = 3 we could show that the approximation factor is exactly k.
The proof is rather long and technical and cannot be given here. It can be found
in other works by the authors. For the case of general k, the lower bound of 1+ l

2

(for k = l(l+1)
2 ) asymptotically matches the upper bound of 2

√
k.

5 An Algorithm for Acyclic Graphs

In Sect. 3 we have shown that MEEP is NP-complete for weighted directed
graphs and the number k of paths part of the input. In this section we will show
that there is an exact, polynomial time algorithm if we restrict the graphs to
be considered to acyclic graphs and fix a certain k ∈ N. The algorithm relies on
a notion from graph drawing that has to be presented first, so-called layerings.
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We will first give an algorithm for properly layered graphs and then show briefly
how we can transform an acyclic graph to a properly layered graph. Combining
these steps we get a polynomial time algorithm for acyclic (directed) graphs.

5.1 Algorithm for Properly Layered Graphs

Layerings are a well-studied problem in graph drawing. The following definitions
are from [14].

Definition 4. A layering of an acyclic digraph D = (V, A) is a partition of V
into subsets (layers) L1, . . . , Lh, such that if (u, v) ∈ A, u ∈ Li and v ∈ Lj, then
i > j. The span d(e) of an edge e = (u, v) where u ∈ Li and v ∈ Lj is defined
as d(e) = j − i − 1. A layering is called proper if d(e) = 0 for all edges e ∈ A.

For every acyclic digraph a layering can be computed in linear time, e.g. by
longest path layering [14]. From now on, we confine ourselves to finding k edge-
disjoint paths in properly layered graphs for fixed k.

Theorem 2. Given a weighted acyclic digraph D = (V, A) with weights
w : A → R

+, a proper layering into layers L0, . . . Lh, start node s and end
node t, we can compute k minimum-energy edge-disjoint paths from s to t in
time O(nkmk).

Proof. W. l. o. g. we can assume that L0 = {s} and Lh = {t}.
Since we have a proper layering, all edges go from one layer to the next. Thus

the set of edges can be divided into layers as well. Let

Ai = {(u, v) ∈ A|u ∈ Li−1, v ∈ Li}

for i = 1, . . . , h. Clearly A is the disjoint union of A1, . . . , Ah.
Obviously, a set of k edge-disjoint paths from s to t must use exactly k (differ-

ent) edges from each edge layer. In the following we will consider k edge-disjoint
paths from the source s to k-combinations of nodes from the same layer. For
a k-combination (without repetitions) (e1, . . . , ek) of edges from a layer Ai let
φ(e1, . . . , ek) be the combination of the start nodes and ψ(e1, . . . , ek) the com-
bination of the end nodes.

Let (u1, . . . , uk) be a k-combination (with repetitions) of nodes from layer Li

(i = 0, . . . , h − 1). E(u1, . . . , uk) denotes the minimum energy of k edge-disjoint
paths from s to (u1, . . . , uk) and E(e1,...,ek)(u1, . . . , uk) the minimum energy of
k edge-disjoint paths from s to the node combination (u1, . . . , uk) using the edge
combination (e1, . . . , ek).

Given a k-combination with repetitions (u1, . . . , uk) of nodes from a layer Li

(i = 1, . . . , h), let A(u1,...,uk) denote the set of k-combinations of edges leading
to (u1, . . . , uk). Then

E(u1, . . . , uk) = min
(e1,...,ek)∈A(u1,...,uk)

E(e1,...,ek)(u1, . . . , uk)

= min
(e1,...,ek)∈A(u1,...,uk)

E(φ(e1, . . . , ek)) + Δ(e1,...,ek) .
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Here, Δ(e1,...,ek) is the increase in energy when a set of k paths to a combination
of nodes of a layer Li is extended by edges e1, . . . , ek to a combination of nodes
of layer Li+1. Due to the multicast advantage, we get the following formula:

Δ(e1,...,ek) =
∑

u∈φ(e1,...,ek)

max
(u,v)∈(e1,...,ek)

w(u, v) .

This leads to a dynamic programming approach: In order to compute the
k minimum-energy paths to a combination (v1, . . . , vk) of nodes in layer Li+1,
we use the minimum-energy paths to all combinations of nodes in layer Li: We
enumerate all possible k-combinations (without repetitions) of edges from edge
layer Ai+1 leading to (v1, . . . , vk) and pick the combination with minimum total
energy. The energy E(t, . . . , t) is the energy of k minimum-energy edge disjoint
s-t-paths and the paths themselves can be found by backtracking: For every
combination of nodes we have to store the k edges on the minimum-energy
paths leading there. The predecessor edges on the k edge-disjoint minimum-
energy paths to a combination (u1, . . . , uk) are denoted by pred(u1, . . . , uk).

In summary we can give the following dynamic programming algorithm:

– Initialization for all combinations (with repetitions) (v1, . . . , vk) of nodes
from layers L0, . . . , Lh:

• Emin(v1, . . . , vk) =

{
0 if v1 = v2 = . . . = vk = s

∞ otherwise
– For all edge layers Ai = A1, . . . , Ah do

• For all combinations (without rep) (e1, . . . , ek) of edges from Ai

∗ If Emin(ψ(e1, . . . , ek)) > Emin(φ(e1, . . . , ek)) + Δ(e1, . . . , ek)
· Emin(ψ(e1, . . . , ek)) = Emin(φ(e1, . . . , ek)) + Δ(e1, . . . , ek)
· pred(ψ(e1, . . . , ek)) = (e1, . . . , ek)

– E(t, . . . , t) is the energy of k minimum energy edge-disjoint paths.
– k minimum-energy edge-disjoint paths are found by backtracking.

The running time of the algorithm above is determined by the total number
of edge combinations to be considered. If we set mi = |Ai| (i = 1, . . . , h) this
number is

h∑

i=1

(
mi

k

)
≤

(
m
k

)
∈ O(mk) .

The algorithm needs to hold in memory a table of predecessor edges and the
energy of a minimum-energy path for every combination of nodes from the same
layer. Setting ni = |Li| the number of combinations is

h∑

i=0

(
ni + k − 1

k

)
≤

h∑

i=0

nk
i ∈ O(nk) ,

since the number of combinations with repetitions can clearly be bounded by
the number of permutations with repetitions. ��
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5.2 Algorithm for Acyclic Graphs

For every acyclic digraph, a layering can be computed in linear time, e.g. by
longest path layering [14]. From there, we can easily construct a proper layering
by introducing new nodes for all edges e = (u, v) ∈ A that span more than one
layer. If, for example, u ∈ Li, v ∈ Lj and j > i + 1, we introduce j − i − 1 new
nodes ve,1, . . . , ve,j−i−1 and replace e by the path (u, ve,1, ve,2, . . . , (ve,j−i−1, v)).
The weights of the new edges are set to w′(u, ve,1) = w(e) and w′(e′) = 0 for all
other introduced edges e′. An example of the transformation of a layered graph
to a properly layered graph and for a mapping of paths in one graph to the other
graph can be seen in Fig. 4.

(a) Two edge-disjoint paths in a layered acyclic graph

(b) The corresponding paths in the properly layered graph
constructed by our algorithm

Fig. 4. An example for the transformation of layered graphs to properly layered graphs
and corresponding paths

Combining the algorithms we can derive an algorithm for general acyclic
graphs. Given an acyclic graph D = (V, A) with n nodes and m edges, we first
compute a layering. Then we compute in time O(nm) a properly layered graph
D′ = (V ′, A′) with O(mn) nodes and edges. Applying the algorithm for properly
layered graphs to D′ we can compute k edge-disjoint minimum-energy paths in
D′ in time O(|A′|k) = O(mknk) and with space in O(|V ′|k) = O(mknk). Finally,
we have to find the corresponding paths in D, which can be done in linear time
(given appropriate data structures, e. g. pointers from the edges in A′ to the cor-
responding edges in A). For a fixed k ∈ N we can thus find k minimum-energy
edge-disjoint paths in polynomial time.
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6 A Heuristic for General Graphs

Most graphs that arise of real-world networks are not acyclic, e. g. if we assume
symmetry of our weights w(u, v) and the maximum energy of the nodes is equal
we get a symmetric graph. However, we can apply our algorithm for acyclic
graphs to derive a heuristic for the general case: In the first step we compute
an appropriate acyclic subgraph and use our exact algorithm in the acyclic sub-
graph. One natural way of doing this assumes that the coordinates of the nodes
are known (i. e. we have information about the geometry of the network). Then
we can just remove any edge whose end point is further from the target than the
starting point (in terms of euclidean distance). Edges adjacent to s are treated
differently: All edges leaving s remain in the graph, whereas edges leading to s
are removed.

We did some experiments with graphs of different sizes and randomly created
layouts. We placed nodes uniformly at random in a square of a given size and
computed the LDMW paths in the original graph and the exact solution in the
acyclic subgraph. We assumed that the enrgy (i.e., the edge lengths) depend
only on the euclidian distances of nodes (i. e. we used the network model of [1]).
Due to the high running time and memory requirements of the algorithm we
could only make comparisons for k = 3. They showed that our heuristic usually
outperformed the LDMW algorithm. Energy savings were up to 40% and the
average was between 10% and 15%, depending on the “density” of the graph.
We also found that removing edges in order to get an acyclic graph did not
decrease the number of edge-disjoint s-t-paths dramatically. In summary we
could show that the paths found by the LDMW approximation algorithm usually
are far from optimal. Thus it would be worth searching for better approximation
algorithms.

(a) three paths with E(P ) = 415381 (b) three paths with E(P ) = 359295

Fig. 5. Comparison between the LDMW heuristc (left) and acyclic graph heuristic
(right)
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7 Conclusion

We have seen that MEEP is NP-complete in the general case where k is not
bounded (but part of the input). The complexity of MEEP for a fixed k ∈ N is
still unknown. If we restrict our problem to graphs of equal edge weights, there
remains a small gap between the Ω(

√
k) lower bound and the 2

√
k upper bound

for k > 6 for the approximation factor of the LDMW algorithm. It is also worth
searching for better approximation algorithms, as we are still far away from
the theoretical lower bound of around log(k). And there is still no satisfying
(heuristic or approximative) distributed algorithm for finding energy-optimal
disjoint paths.
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