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Abstract

A page (queue) with respect to a vertex ordering of a graph is a set of edges such
that no two edges cross (nest), i.e. have their endpoints ordered in an abab-pattern
(abba-pattern). A union page (union queue) is a vertex-disjoint union of pages (queues).
The page number (queue number, union page number, union queue number) of a graph is
the smallest k such that there is a vertex ordering and a partition of the edges into k
pages (queues, union pages, union queues). The local page number (local queue number)
is the smallest k for which there is a vertex ordering and a partition into pages (queues)
such that each vertex has incident edges in at most k pages (queues). For directed acyclic
graphs, we additionally require all edges to point into the same direction with respect to
the vertex ordering, i.e. from a smaller vertex to a larger vertex. The track number of a
graph is the smallest k such that there is a partition of the vertices into independent sets,
each having a vertex ordering, such that any two edges with endpoints into the same two
independent sets do not cross.

We show for a complete graph on n vertices that the local page number is n/3 + Θ(1),
that the union page number is upper-bounded by 4n/9 + Θ(1), and that both the local
queue number and the union queue number are (1 − 1/

√
2)n + Θ(1). In addition, we

show that there is a graph with treewidth 2 and track number at least 7 and that there
is a poset whose cover graph has page number at least 5.

Eine Page (Queue) ist bezüglich einer Knotenordnung eines Graphen definiert als eine
Menge von Kanten, in der sich je zwei Kanten nicht kreuzen (nicht verschachtelt sind), d.h.
die Endpunkte sind nicht in der Reihenfolge abab (abba) angeordnet. Eine Union Page
(Union Queue) ist eine Vereinigung aus paarweise knotendisjunkten Pages (Queues). Die
Page Number (Queue Number, Union Page Number, Union Queue Number) ist definiert
als das kleinste k, für das es eine Knotenordnung gibt, die eine Partitionierung der Kanten
in k Pages (Queues, Union Pages, Union Queues) ermöglicht. Die Local Page Number
(Local Queue Number) ist das kleinste k, für das es eine Knotenordnung gibt, sodass die
Kanten so in Pages (Queues) partitioniert werden können, dass jeder Knoten in höchstens
k der Pages (Queues) inzidente Kanten hat. Für gerichtete azyklische Graphen fordern
wir zusätzlich, dass alle Kanten bezüglich der Knotenordnung in die gleiche Richtung
zeigen, d.h. von einem kleineren zu einem größeren Knoten. Die Track Number eines
Graphen ist das kleinste k, für das es eine Knotenpartitionierung in unabhängige Mengen
mit jeweils einer Knotenordnung gibt, sodass sich je zwei Kanten mit Endpunkten in den
gleichen zwei Mengen nicht kreuzen.

Wir zeigen, dass die Local Page Number vollständiger Graphen mit n Knoten n/3+Θ(1)
ist, dass die Union Page Number höchstens 4n/9+Θ(1) und dass sowohl die Local Queue
Number als auch die Union Queue Number gleich (1− 1/

√
2)n+Θ(1) sind. Wir zeigen

außerdem die Existenz eines Graphen mit Baumweite 2 und Track Number 7 und eines
Posets, dessen Cover Graph mindestens Page Number 5 hat.
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1 Introduction

Ordered covering numbers have been investigated intensively over the past decades
with a focus on page numbers and queue numbers. Given a graph, we aim to find a
vertex ordering and a partition of the edges into ordered subgraphs that satisfy certain
conditions. For instance, any two edges may not cross, i.e. have alternating endpoints,
(page number) or may not nest (queue number). Before introducing the main concepts
more detailed, we give a brief overview of open problems and recent breakthroughs that
motivate our research in this direction.

The page number was introduced by Bernhart and Kainen [10] in 1979 and the queue
number by Heath and Rosenberg [32] thirteen years later. Recent results include the
existence of a planar graph with page number 4 [9, 52], a constant upper bound on the
queue number of planar graphs [18], and a linear lower bound and a single exponential
upper bound on the queue number of graphs with treewidth k [48]. Building up on this,
we introduced and investigated two new graph parameters: the local page number and
the local queue number [38, 39]. Compared to the classical (also called global) variants,
the investigation of local ordered covering numbers leads to stronger lower bounds and
weaker upper bounds. The latter offers a way to support conjectured upper bounds on
classical ordered covering numbers. In addition, there is a third type of covering numbers,
the union ordered covering number, which can be located between its local and global
counterparts. In this thesis, we take up this direction by investigating local and union
covering numbers of complete graphs.

We then consider track numbers, which are tied to queue numbers and were used
to prove the first constant upper bound on the queue number of graphs with constant
treewidth [16, 19]. We improve on the previously best known lower bound on the
maximum track number of graphs with treewidth 2, which is motivated by Di Giacomo
et al. [16] who asked for improved bounds on the maximum track number for this graph
class.

The notions of ordered covering numbers are naturally transferred to directed acyclic
graphs. Here, we have the additional constraint that the vertex ordering is a topological
ordering of the graph. Nowakowski and Parker [43] initially asked in 1989 whether cover
graphs of planar posets have constant page number. The same question occurred for
the larger class of upward planar graphs [15, 24]. Both questions are still open. For the
upper bound, there is not even a sublinear bound known. We improve the best known
lower bound on the page number both for upward planar graphs and planar posets.
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1 Introduction

1.1 Outline
We first introduce the main concepts on which the following chapters are based. This
includes a discussion of global, union, and local covering numbers in Section 1.2. In
Section 1.3, we consider some common ordered covering numbers and related graph
parameters. In particular, we define page numbers, queue numbers, and track numbers.
We conclude the introduction by locating this thesis in the state of the art and by pointing
out the main results we obtain. Definitions that are specific to the respective chapter
and more detailed surveys are given at the beginning of each chapter.

In the second chapter, we investigate local and union ordered covering numbers of
complete graphs. We start with page numbers and then continue with queue numbers.
In contrast to Chapter 2, where we consider dense graphs, we investigate two important
sparse graph classes in the last two chapters. In Chapter 3, we first survey different
variants of track layouts and then construct a graph with treewidth 2 and track number
7. Finally, we turn to directed graphs and investigate the page number of upward planar
graphs and of cover graphs of planar posets in Chapter 4. This leads to the construction
of a planar poset, and in particular an upward planar graph, that requires at least five
pages. We conclude with open questions to encourage further research in Chapter 5.

1.2 Covering Numbers
We discuss global, union, and local covering numbers based on the covering number
framework introduced by Knauer and Ueckerdt [36]. Consider a class of graphs G, called
guest class, and an input graph H. We say the graph H is covered by some covering
graphs G1, . . . , Gt ∈ G if Gi is a subgraph of H for each i and every edge of H is contained
in some covering graph, i.e. if G1 ∪ · · · ∪Gt = H. The set of covering graphs is called an
injective G-cover of H. Note that vertices and edges in H may be covered by multiple
covering graphs.

We start with the most natural number, the global covering number cnG
g (H), which is

defined as the minimum number of covering graphs needed to cover a graph H, i.e. the
minimum size if an injective G-cover of H. Many well-known graph parameters are global
covering numbers. For instance, the thickness and outerthickness are the global covering
number for the guest class of all planar graphs, respectively all outerplanar graphs [27,
41].

In contrast to the global covering number, which allows only graphs from the guest
class G as covering graphs, we may also use disjoint unions of graphs in G for the union
covering number cnG

u(H). For a graph class G, let Gu denote the class of graphs consisting
of all graphs in G and all finite vertex-disjoint unions of graphs in G. We then define the
union covering number by cnG

u(H) = cnGu
g (H). All kinds of arboricities are union covering

numbers, where the guest classes contain, for instance, all trees, paths, caterpillars, or
stars [2, 3, 26, 42].

For the local covering number cnG
` (H), we use G-covers of arbitrary size and minimize

the number of covering graphs at every vertex. We say a G-cover for a graph H is `-local
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1 Introduction

Figure 1.1: Left to right: 1-page book embedding, 3-twist, 1-queue layout, 3-rainbow

if every vertex is contained in at most ` covering graphs. Now, the local covering number
of a graph H with guest class G is defined as the smallest ` such that there is an `-local
injective G-cover of H. The local covering number was considered for the guest classes of
complete bipartite graphs, complete graphs, and different kinds of trees [36, 40].

To conclude this section, we compare the three covering numbers presented above.
Note that every G-cover is also a Gu-cover. In addition, every Gu-cover of size k yields a
G-cover (of possibly larger size) mapping at most k vertices from the covering graphs to
each vertex of the input graph by using additional covering graphs for each connected
component. Hence, for every guest class G and every input graph H, we have cnG

g (H) >

cnG
u(H) > cnG

` (H).

1.3 Book Embeddings, Queue Layouts, and Track Layouts
We continue with three well-known graph parameters – the page number, the queue
number, and the track number. The first two are covering numbers, where we have
additional constraints on the vertex ordering of the covering graphs. Based on the notions
introduced in the previous section, we define global, union, and local variants of page
numbers and queue numbers.

Consider a graph G with a linear ordering ≺ of its vertex set. The sets V (G) and
E(G) denote the vertex set, respectively edge set, of G. For subsets X,Y ⊆ V (G), we
write X ≺ Y and say X is to the left of Y and Y is to the right of X if x ≺ y for all
vertices x ∈ X, y ∈ Y . If the sets consist only of a single vertex, we use x instead of {x}.

Given a linear ordering ≺ of the vertices of a graph G, we say two edges uv, xy ∈ E(G)
cross if if u ≺ x ≺ v ≺ y or x ≺ u ≺ y ≺ v, and they nest if u ≺ x ≺ y ≺ v or
x ≺ u ≺ v ≺ y. A set of k pairwise crossing edges is called a k-twist, a set of pairwise
nesting edges a k-rainbow. A page is a set of edges with no two crossing edges. Similarly,
a queue is an edge set in which no two edges nest. See Figure 1.1 for a page, a queue,
and the respective forbidden ordered graphs. For a positive integer k, a k-page book
embedding, respectively a k-queue layout, of G consists of a vertex ordering ≺ and a
partition of the edges of G into k pages, respectively k queues. If k is not important,
then we simply write book embedding and queue layout. The vertex ordering is also
called the spine ordering. Finally, the page number pn(G) (also known as stack number
or book thickness) is the smallest k such that there is a k-page book embedding for G,
whereas the queue number qn(G) of a graph G is the smallest k such that there is a
k-queue layout for G. Both concepts are called ordered covering numbers as a partition
of edges can also be considered as covering the graph with pages or queues, respectively.
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1 Introduction

Figure 1.2: A 3-page book embedding, a 2-union book embedding, and a 2-local book
embedding of K3,3

We now define union and local variants of the parameters defined above. A vertex-
disjoint union of pages, respectively queues, with a common vertex ordering is called a
union page, respectively a union queue. A vertex ordering together with a partition of
the edges is called a k-union book embedding if the parts are union pages and is called a
k-union queue layout if the parts are queues. The union page number and union queue
number are then defined as the smallest k for which there is a k-union book embedding,
respectively a k-union queue layout. For local covering numbers, we allow partitions of
arbitrary size but minimize the number of parts at every vertex. More formally, a k-local
book embedding or queue layout is one in which every vertex has incident edges in at
most k pages or queues, respectively. The local page number pn`(G) is the smallest k
allowing for a k-local book embedding. Similarly, the local queue number qn`(G) is the
smallest k for which there is a k-local queue layout for G.

To clearly distinguish between local and union ordered covering numbers and their
classical versions, we also refer to the latter as global page number and global queue
number. Figure 1.2 shows three book embeddings for K3,3. The first is a 3-page book
embedding. Note that there are vertices taking part in all three pages. As K3,3 is
not planar, three pages are best-possible. In contrast, two union pages suffice as we
allow crossing edges if they belong to distinct connected components. The third book
embedding reduces the complexity of each page even further by introducing more pages,
while ensuring that every vertex takes part in at most two pages.

All notions defined above can be transferred to directed acyclic graphs. Here, we
additionally require the spine ordering to be a topological ordering of the graph. That is,
all edges point into the same direction.

We conclude with the definition of track layouts, which are closely related to queue
layouts. Instead of a single vertex ordering, we first partition the vertex set into
independent sets, called tracks, each having a linear vertex ordering. Let V and W
denote two tracks with orderings ≺V and ≺W . We say that two edges vw and v′w′ cross
if v ≺V v′ and w′ ≺W w or v′ ≺V v and w ≺W w′, where v, v′ ∈ V and w,w′ ∈ W . A
track layout is a partition of the vertex set into tracks such that no two edges cross. The
track number is then defined as the smallest k such that there is a track layout consisting
of k tracks. The track number is related to the queue number in the sense that the two
parameters are tied [20].
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1 Introduction

1.4 Related Work and Motivation
In this section, we give a brief overview on notions, results, and open questions that are
related to the problems discussed in this thesis. Detailed surveys presenting the state of
the art can be found at the beginning of each chapter.

Local and union ordered covering numbers unify the well-known notions of ordered
covering numbers and local and union covering numbers. The investigation of local and
union variants of pages numbers and queue numbers focuses on planar graphs and graphs
with bounded treewidth. We summarize some known results, which we presented in [38,
39] in detail.

First, we have pn`(G) 6 pnu(G) 6 pn(G) and qn`(G) 6 qnu(G) 6 qn(G), where the
gap between the union and global variants can be arbitrarily large. In contrast, the
local page number, the local queue number, the union page number, and the union
queue number are all tied to the maximum average degree. For planar graphs, there
are examples known with pn`(G) > 3, respectively qn`(G) > 3. On the other hand, the
local page number, the union page number, and the local queue number are at most
4, while the union queue number is upper-bounded by 5 for planar graphs. The local
page number and the local queue number are both linear in the treewidth. Especially for
queue layouts, these results contrast with the large gaps between the best known lower
and upper bounds on the global queue number. Dujmović et al. [18] recently proved the
first constant upper bound, which is 49, for the queue number of planar graphs, while
the best known lower bound is 4 [4]. Considering the treewidth, Wiechert [48] showed
a linear lower and an exponential upper bound on the queue number. We also remark
that the proofs of the upper bounds for the local and union variants described above are
straight-forward, whereas the proofs of the global upper bounds by Dujmović et al. [18],
Wiechert [48], and Yannakakis [51] are very involved. We hope that the investigation of
local and union ordered covering numbers gives new inside in how to find easier proofs or
improved bounds for some of the mentioned problems.

Beside page numbers and queue numbers, there is another ordered covering number
that is investigated in the literature. Instead of forbidding crossing or nesting edges, two
edges may not be in the same part of an arch layout if both endpoints of one edge are to
the left of both endpoints of the other. In contrast to the page number and the queue
number, the arch number is tied to the chromatic number [21].

Concerning track numbers, one of the main open problems is to find the maximum
track number of graphs with treewidth k between the quadratic lower bound and the
exponential upper bound [16, 19, 20, 48]. Motivated by applications of drawing series-
parallel graphs in three dimensions, Di Giacomo et al. [16] highlighted the special case
k = 2 as an open problem. We remark that there is also a covering number related to
track layouts. Similar to book embeddings and queue layouts, multicolor track layouts
partition the edges into color classes such that no two edges of the same color cross with
respect to a common partition of the vertices into tracks. See Section 3.2 for an extended
survey.

Like in the unordered case, the investigation of ordered covering numbers for directed
acyclic graphs focuses on book embeddings and queue layouts, initiated by Heath et
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1 Introduction

al. [31]. Heath and Pemmaraju [30] restricted the considered graph class to cover graphs
of posets and proved a lower bound of Ω(

√
n) on the maximum queue number of n-

element planar posets. In contrast, the question whether planar posets have bounded
page number, first asked by Nowakowski and Parker [43], is still open. However, Heath
and Pemmaraju [30] showed that there are posets whose cover graph is planar (but not
upward planar) and has page number Θ(n).

Our research is mainly motivated by the open problems discussed above. Studying
ordered graphs and covering numbers is additionally motivated by applications in very-
large-scale integration (vlsi) circuit design and bioinformatics [1, 13, 34, 47]. Covers
also appear in network design [45], while queue layouts find application in parallel
multiplications of sparse matrices [28] and both queue layouts and track layouts in
3-dimensional graph drawing [50].

1.5 Results
In this thesis, we contribute to the investigation of ordered covering numbers by improving
bounds on track numbers and page numbers. In addition, we continue the research
on local and union ordered covering numbers by initiating the study of these covering
numbers for complete graphs.

For a complete graph on n vertices, we show that the local page number is n/3 + Θ(1)
(Theorems 2.1 and 2.2). This is also the best lower bound we obtain for the union page
number of Kn. For the upper bound, we show that qnu(Kn) 6 4n/9+Θ(1) (Theorem 2.3).
In addition, we consider queue layouts and prove both the local queue number and the
union queue number of complete graphs to be (1−1/

√
2)n+Θ(1) (Theorems 2.4 and 2.6).

In the third chapter, we investigate the track number of graphs with treewidth 2. Di
Giacomo et al. [16] showed an upper bound of 15 and asked for improved lower and upper
bounds. We contribute to this problem by constructing a graph with treewidth 2 and
track number at least 7 (Theorem 3.4).

Finally, we consider book embeddings of upward planar graphs, i.e. directed acyclic
graphs that can be drawn crossing-free in the plane such that all edges monotonically
increase in y-direction. We particularly consider cover graphs of planar posets, which
is an important subclass of upward planar graphs. The main question concerning book
embeddings of these two subclasses is whether they have bounded page number. This
question was first posed by Nowakowski and Parker [43] for planar posets and was then
studied and raised again in different papers [e.g. 15, 24, 30]. We continue the investigation
of this problem by providing necessary conditions for upward planar graphs to have
bounded page number. Prior to this this thesis, the best known lower bound on the
page number of both graph classes was 4, shown by Hung [33]. However, we show that
their graph admits a book embedding without 4-twist (Remark 4.8). We present a small
upward planar graph that has a 4-twist in every book embedding (Proposition 4.9). Our
main contribution is the construction of a planar poset that has a 5-twist in every book
embedding and in particular requires five pages (Theorem 4.13).

6
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2 Complete Graphs

This chapter is joint work with Stefan Felsner, Torsten Ueckerdt, and Pavel Valtr.

We start with the investigation of one of the most fundamental graphs classes – the
complete graphs. The page number, respectively queue number, of complete graphs is
dn/2e [10], respectively bn/2c [32]. For both upper bounds, there are straight-forward
constructions that are illustrated in Figures 2.1 and 2.2.

We improve the upper bounds for the respective local and union ordered covering
numbers. The trivial lower bounds due to the density of complete graphs are (n− 1)/4
both for the local page number and the local queue number [38, 39]. In both cases, we
find improved bounds matching the respective upper bounds up to an additive constant.

2.1 Local and Union Page Numbers
In this section, we discuss book embeddings of complete graphs. We construct (n/3+Θ(1))-
local book embeddings for Kn and show that this bound is asymptotically tight. As the
union page number is lower-bounded by the local page number and upper-bounded by
the (global) page number, we immediately have n/3 + Θ(1) = pn`(Kn) 6 pnu(Kn) 6
pn(Kn) = dn/2e. We improve on the upper bound by constructing a book embedding
consisting of 4/9 + Θ(1) union pages. However, the leading coefficient of the union page
number of Kn remains open.

Due to the symmetries of Kn we may consider an arbitrary spine ordering. Moreover, it
is convenient to think of the spine as being circularly closed. The placement of the vertices
together with straight-line edges yields a convex drawing of Kn. A page assignment is
a partition of the edges into non-crossing subsets, i.e. into outerplanar subdrawings of
the convex drawing of Kn. We denote the vertices of Kn by v1, . . . , vn and assume they
occur on the spine is this ordering.

First, we analyze the outerplanar subgraphs on each page of a book embedding and
thereby show a lower bound on the local page number of complete graphs. The proof
also gives insight into how book embeddings for a matching upper bound on the local or
union page number should look like. This bound is also the best lower bound we obtain
for the union page number.

Theorem 2.1. For any n, we have pn`(Kn) >
1
3n− 1.

Proof. Let P be a page assignment of Kn which minimizes the local page number. We
assume that pn`(P) 6 n/3, otherwise we are done. Let k denote the average number
of vertex-page incidences over all vertices, i.e. k = 1

n

∑
P∈P |VP |. We shall show that

7



2 Complete Graphs

v0

v1

v2

v3

v4

v5

v6

v7

Figure 2.1: 4-page book embedding of K8. For K2n, we have pages P0, . . . , Pn−1, where
Pk contains the edge vi+kvj+k if i + j ∈ {n − 1, n}. All indices are taken
mod n.

v0 v1 v2 v3 v4 v5 v6

Figure 2.2: 3-queue layout of K7. For K2n+1, we have queues Q0, . . . , Qn−1, where Qk

contains all edges vkvi and viv2n−k with k < i 6 2n− k.
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2 Complete Graphs

k > n/3 − 1, which in particular proves that pn`(P) > n/3 − 1. Later we use that
k 6 pn`(P) 6 n/3, i.e.

k 6
n

3
. (2.1)

We assume that every edge of Kn belongs to exactly one page of P. Now for each
page P ∈ P we consider an outerplanar graph OP consisting of all edges of P and their
incident vertices VP together with the edges of the convex hull CP of VP . For each page
P ∈ P we color the edges of OP :

• The black edges are edges of CP belonging to P .

• The red edges are edges of CP which do not belong to P .

• The green edges are inner edges of OP which belong to P .

Observe that every edge e of Kn has a color in {black, green} for exactly one page, while
e may be red for any number of pages.

For a vertex v and a page P containing v, let the forward edge fwdP(v) at v be the
edge of CP which leaves v in clockwise direction. Let rv denote the number of pages for
which the forward edge of v is red, and let bv denote the number of pages for which the
forward edge of v is black. As v has exactly one forward edge on each page, v is incident
to exactly rv + bv pages in P. Hence, denoting R =

∑
v rv and B =

∑
v bv, we have

k n =
∑
P∈P

|VP | =
∑
v

(rv + bv) = R+B. (2.2)

Now, for each page P and each edge e = uv of CP with u clockwise followed by v,
let len(e) denote the distance along Kn when going clockwise from u to v. That is, for
u = vi and v = vj , we define len(e) = j − i if i 6 j and we define len(e) = j − i + n if
j < i. Since CP is a cycle, we have

∑
e∈CP

len(e) = n. Thus,

|P| · n =
∑
P∈P

( ∑
e∈CP

len(e)
)
=

∑
P∈P

( ∑
v∈VP

len(fwdP(v))
)

=
∑
v

( ∑
P :v∈VP

len(fwdP(v))
) (�)
>

∑
v

( bv∑
`=1

`
)
>

∑
v

b2v
2

(∗)
>

1

2n

(∑
v

bv

)2

=
1

2n
B2 (2.2)

=
1

2n
(kn−R)2 >

1

2n
(k2n2 − 2knR) =

k2

2
n− kR

(2.1)
>

k2

2
n− n

3
R.

For (�) ignore red forward edges at v and use that the black forward edges at v are pairwise
distinct and for (∗) use the Cauchy-Schwarz inequality with the vectors (bv1 , . . . , bvn) and
(1, . . . , 1).

Dividing both sides of the above by n we get

|P| > k2

2
− R

3
. (2.3)

9



2 Complete Graphs

Now, consider the green edges in Kn. Since OP is outerplanar and the green edges of
OP are the inner edges, there are at most |VP | − 3 green edges on page P . Therefore,

#green edges 6
∑
P∈P

(|V (P )| − 3) = kn− 3|P|
(2.3)
6 kn− 3k2

2
+R. (2.4)

On the other hand, we have

#green edges = |E(Kn)| − #black edges =
(
n

2

)
−B

(2.2)
=

(
n

2

)
− kn+R. (2.5)

Combining Equations (2.4) and (2.5) we conclude:

kn− 3k2

2
+R >

(
n

2

)
− kn+R

⇐⇒ 0 >
3k2

2
− 2kn+

(
n

2

)
⇐⇒ 0 > k2 − 4n

3
k +

n(n− 1)

3

=⇒ k >
2n

3
−

√(
2n

3

)2

− n(n− 1)

3

=⇒ k >
2n

3
−
√

n2

9
+

n

3
>

2n

3
−
√

(n+ 3)2

9
=

n

3
− 1

Thus, we have k > n
3 − 1, as desired.

Note that for the lower bound to be tight there must be no red edges, that is each page
contains the edges of the convex hull of its vertices. This is the case in the construction
for the upper bound in Theorem 2.2, which is given next.

Theorem 2.2. For any n, the local page number of Kn satisfies pn`(Kn) 6 1
3n+ 4.

Proof. We show that if n = 18k− 3 for some positive integer k, then we have pn`(Kn) 6
1
3n = 6k − 1.

For n of the form n = 18k − 3 + i with i < 18 we get a page assignment with locality
6k − 1 + i by adding stars of the i additional vertices on an extra page each. A second
option is to use a page assignment of K18(k+1)−3 and remove 18− i vertices, which yields
a page assignment with locality 6(k + 1)− 1 = 6k + 5. By taking the better of these two
choices we achieve a locality of at most n/3 + 4, as desired.

From now on, we assume that n = 18k − 3, i.e. k = (n+ 3)/18. We define the length
of an edge as the shorter distance between its two endpoints along the cyclic ordering.
The length of edge e is denoted by len(e). As n = 18k − 3 is odd, there are exactly
(n−1)/2 = 9k−2 different lengths, each realized by exactly n edges. For each vertex v of
Kn, we define a set of k pages, each containing v and together covering exactly one edge
of each possible length. These pages are denoted by Ov(t), where t = 0, . . . , k − 1. The

10
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r1(t)
r2(t)

r3(t)

r4(t) = r5(t)

r6(t)

r1(t)r2(t)

r3(t)

r4(t)
r5(t)

r6(t)

r1(t)r2(t)

r3(t)

r4(t)
r5(t)

r6(t)

Figure 2.3: Illustrating the outerplanar graph O(t) for t = 0 (left), t ≈ k/2 (middle) and
t = k − 1 (right).

page Ov(0) contains five vertices and seven edges, while for t > 0 the page Ov(t) has six
vertices and nine edges. In total this makes the needed 9(k− 1)+ 7 = 9k− 2 = (n− 1)/2
edge lengths.

Recall that the vertices of Kn are v1, . . . , vn in this cyclic order. All indices are taken
modulo n. Below, we describe the pages corresponding to v1 = vn+1. For ease of notation
we let O(t) = Ov1(t). For any t = 0, . . . , k − 1, the vertices r1(t), . . . , r6(t) of O(t) are
the following:

r1(t) = v1 = v18k−2 r2(t) = v2k−2t r3(t) = v5k+1

r4(t) = v8k−t r5(t) = v8k+t r6(t) = v13k+2t

We refer to Figure 2.3 for an illustration. Note that for t = 0, we have r4(t) = r5(t)
and for all t 6 k the vertices r1(t), . . . , r6(t) appear in the order of their indices in
the cyclic ordering of Kn. The edges of O(t) are the cycle edges e12(t) = r1(t)r2(t),
e23(t) = r2(t)r3(t), e34(t) = r3(t)r4(t), e45(t) = r4(t)r5(t), e56(t) = r5(t)r6(t), e61(t) =
r6(t)r1(t), except for e45(0) which would be a loop, and the inner edges e14(t) = r1(t)r4(t),
e24(t) = r2(t)r4(t), e15(t) = r1(t)r5(t). For t = 0, we have e15(0) = e14(0) and only
consider e14(0). Note that O(t) is indeed outerplanar.

We claim that for every length ` in the interval [1, 9k − 2] there is an edge of length `
in some O(t).

` odd, ` ∈ [1, 2k − 1] : len(e12(t)) = (2k − 2t)− 1 = 2k − 2t− 1

` even, ` ∈ [1, 2k − 1] : len(e45(t)) = (8k + t)− (8k − t) = 2t

` ∈ [2k, 3k − 1] : len(e34(t)) = (8k − t)− (5k + 1) = 3k − t− 1

` odd, ` ∈ [3k, 5k − 1] : len(e23(t)) = (5k + 1)− (2k − 2t) = 3k + 2t+ 1

` even, ` ∈ [3k, 5k − 1] : len(e61(t)) = (18k − 2)− (13k + 2t) = 5k − 2t− 2

` ∈ [5k, 6k − 1] : len(e56(t)) = (13k + 2t)− (8k + t) = 5k + t

` ∈ [6k, 7k − 1] : len(e24(t)) = (8k − t)− (2k − 2t) = 6k + t

` ∈ [7k, 8k − 1] : len(e14(t)) = (8k − t)− 1 = 8k − t− 1

` ∈ [8k, 9k − 2] : len(e15(t)) = (8k + t)− 1 = 8k + t− 1

11
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For a vertex vi and some t we obtain the page Ovi(t) from O(t) by a rotation which
maps v1 to vi. Hence, for each vi we get a set Pi = {Ovi(t) | t = 0, . . . , k − 1} of pages.
Let P denote the set of all defined pages, i.e. P =

⋃
i=1,...n Pi. We claim that P covers

all edges of Kn. Consider an arbitrary edge vavb of length ` for some ` = 1, . . . , 9k − 2.
From the analysis above, we know that there is a unique t and a unique edge eij(t) ∈ O(t)
with len(eij(t)) = `. There is a rotation which maps ri(t) to va and rj(t) to vb or vice
versa. If this rotation maps v1 = r1(t) to vc, then Ovc(t) contains the edge vavb. Hence,
P is a cover of the edges of Kn with outerplanar graphs.

In P1 there are 6(k − 1) + 5 = 6k − 1 vertex-page incidences Hence, the total number
of vertex-page incidences in P is n(6k − 1) = n2/3. Due to symmetry, each of the n
vertices is incident to exactly n/3 pages. This proves that pn`(Kn) 6 n/3 whenever n is
of the form n = 18k − 3 for some positive integer k.

For the upper bound on the union page number, we construct union pages whose con-
nected components are slightly sparser than the pages constructed above. In consequence,
we obtain a larger upper bound.

Theorem 2.3. For any n, the union page number of Kn satisfies pnu(Kn) 6 4
9n+ 18.

Proof. For any k > 0 that is divisible by 3 and n = 18k, we prove that pnu(Kn) 6 4n/9+4.
For any other n, we add stars or use the book embedding for Kn′ , where n′ is the smallest
integer with n′ > n and n′ = 54m for some integer m. The better of these options gives
pnu(Kn) 6 4n/9 + 18.

The vertices of Kn are denoted by v0, . . . , vn−1 and lie on the circularly closed spine
in this ordering. All indices are taken modulo n. Let the length len(vw) of an edge
vw denote the shorter distance between v and w along the cyclic vertex ordering. We
have n/2 = 9k different lengths, where length 9k is realized by n/2 edges and all other
lengths by n edges. We first define n/3 union pages P1, . . . ,Pn/3 that cover 7/9 of all
possible lengths and then cover the remaining edges with unions of stars. The union pages
P1, . . . ,Pn/3 consist of graphs G(i, t) and H(i, t) defined below. We refer to Figure 2.4
for an illustration. For t = 0, . . . , k − 1, we define vertices

r1(t) = v1+t r2(t) = v8k+1−t r3(t) = v9k+1+2t r4(t) = v12k−t

r5(t) = v17k−2t s1(t) = v3k s2(t) = v8k+1+t.

For t = 0, . . . , k − 1, the graph G(1, t) is then defined to consist of the vertices
r1(t), . . . , r5(t) and the edges e12(t) = r1(t)r2(t), e13(t) = r1(t)r3(t), e14(t) = r1(t)r4(t),
e15(t) = r1(t)r5(t), e23(t) = r2(t)r3(t), e34(t) = r3(t)r4(t), and e45(t) = r4(t)r5(t). The
graph H(1, t) consists of a single edge s1(t)s2(t) for t = 0, . . . , k − 1. For i = 1, . . . , n,
we obtain G(i, t) by rotating G(1, t), i.e. we use the vertices r′h = vj + i− 1 instead of
rh = vj for h = 1, . . . , 5. Similarly, H(i, t) is obtained from H(1, t) by rotation.

We claim that for i = 1, . . . , n and t = 0, . . . , k− 1, the graphs G(i, t) and H(i, t) cover
all edges of length ` with ` = k, . . . , 3k and ` = 4k + 1, . . . , 9k. We only consider the
graphs for i = 1 and observe that each length is covered at least once. By symmetry,
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r1

r2r3

r4

r5

s1

s2

Figure 2.4: The graphs G(1, 0) (orange) and H(1, 0) (green). The orange, respectively
green, arcs indicate the movement of the vertices for t = 0, . . . , k − 1.

all edges of the claimed lengths are covered. Recall that k is divisible by 3. An edge of
length ` can be found in G(1, t) or H(1, t) as follows:

` ≡ 0 mod 3, ` ∈ [k, 3k] : len(e23(t)) = k + 3t
` ≡ 1 mod 3, ` ∈ [k, 3k] : len(e15(t)) = k + 1 + 3t
` ≡ 2 mod 3, ` ∈ [k, 3k] : len(e34(t)) = 3k − 1− 3t

` ∈ [4k + 1, 5k] : len(e45(t)) = 5k − t
` ∈ [5k + 1, 6k] : len(s1(t)s2(t)) = 5k + 1 + t

` even, ` ∈ [6k + 1, 8k] : len(e12(t)) = 8k − 2t
` odd, ` ∈ [6k + 1, 8k] : len(e14(t)) = 6k + 1 + 2t

` ∈ [8k + 1, 9k] : len(e13(t)) = 9k − t

We now use the given graphs to define the union pages P1, . . . ,Pn/3. For i = 1, . . . , n/3,
we define Pi as the union of G(i, t), G(i+ n/3, t), and G(i+ 2n/3, t) for t = 0, . . . , k − 1
and H(i, t), H(i + n/3, t), and H(i + 2n/3, t) for t = 1, . . . , k − 1. To observe that
P1, . . . ,Pn/3 are indeed union pages, we list for each vertex v1, . . . , vn = v0 by which
vertices of P1 it is hit. For ease of presentation, we assume that k is even. For odd k,
swap odd and even in the listing below.

v1, . . . , vk, v6k+1, . . . , v7k, v12k+1, . . . , v13k : r1(t)
vk+2, . . . , v2k+1, v7k+2, . . . , v8k+1, v13k+2, . . . , v14k+1 : r2(t)
v2k+2, . . . , v3k, v8k+2, . . . , v9k, v14k+2, . . . , v15k : s2(t) t > 1
v3k, v9k, v15k : s1(t) t > 1
v3k+1, . . . , v5k, v9k+1, . . . , v11k, v15k+1, . . . , v17k : r3(t) odd indices
v3k+1, . . . , v5k, v9k+1, . . . , v11k, v15k+1, . . . , v17k : r5(t) even indices
v5k+1, . . . , v6k, v11k+1, . . . , v12k, v17k+1, . . . , v18k : r4(t)

The vertices v3k, v9k, and v15k are hit by s1(t) for all t and by s2(k−1), whereas all other
vertices are hit for at most one t. In particular, each vertex that is contained in some
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G(j, t) is not contained in any other component of P1. In contrast, the union of the graphs
H(j, t), j = i, i+ n/3, i+ 2n/3 and t = 1, . . . , k− 1, forms a single connected component
whose edges do not cross. Hence, each connected component of P1 is crossing-free and by
symmetry P1, . . . ,Pn/3 are union pages. None of the graphs H(i, 0), for i = 1, . . . , n, is
contained in the pages P1, . . . ,Pn/3, i.e. the edges of length 5k + 1 are left to cover. We
cover these edges with two additional union pages, each containing a perfect matching.

Finally, we define union pages consisting of disjoint unions of stars to cover the remaining
edge lengths 1, . . . , k − 1 and 3k + 1, . . . , 4k. For this, we define stars Si consisting of
the edges vivi+1, . . . , vivi+k−1 and Ti consisting of the edges vivi+3k+1, . . . , vivi+4k−1 for
i = 1, . . . , n. For i = 1, . . . , k, the union page Si, respectively Ti, is defined as the union
of Si+jk, respectively Ti+jk, where j = 0, . . . , 17. As each union page is the disjoint
union of stars, each connected component is crossing-free. The union pages S1, . . . ,Sk

and T1, . . . , Tk cover all remaining edge lengths except for the length 4k. Again, we use
two additional union pages containing a perfect matching each. Summing up, we have
n/3 + 2 + 2k + 2 = 4n/9 + 4 union pages.

Comparing the presented construction with the lower bound of Theorem 2.1, we remark
that we have n2/18 + Θ(n) connected components and Θ(n2) red edges due to the stars.
To obtain an upper bound of n/3, however, we need exactly n2/18 connected components
that are partitioned into n/3 union pages. In this case, each union page uses all vertices
and each connected component is a maximal outerplanar graph, i.e. there are no red
edges. It remains open whether such a book embedding exists. Note that the book
embedding constructed for Theorem 2.2 consists of n2/18 pages and has no red edges.
Partitioning these pages into union pages containing n/6 outerplanar graphs each thus
would suffice to prove an upper bound of n/3 + Θ(1) for the union page number of Kn.

2.2 Local and Union Queue Numbers
In this section, we investigate queue layouts of complete graphs. We first give a lower
bound on the local queue number and then show that it is tight up to a constant additive
term both for the local queue number and the union queue number.

Theorem 2.4. For any n, we have qn`(Kn) > (1− 1√
2
)(n− 1

2).

Proof. Consider a k-local queue layout Q of Kn. Without loss of generality, each edge is
contained in exactly one queue. Moreover, the vertices are ordered v1 ≺ · · · ≺ vn, and the
length of an edge vivj is defined as |i− j|. For any edge e = vivj with i < j, consider the
queue Q ∈ Q containing e. We call e left-longest if there is no edge in Q that is longer
than e and has the same right endpoint as e, i.e. Q contains no edge vi′vj with i′ < i.
Similarly, we call e = vivj ∈ Q right-shortest if there is no edge in Q that is shorter than
e and has the same left endpoint as e, i.e. Q contains no edge vivj′ with i < j′ < j. We
observe that

(i) every edge of Kn is left-longest or right-shortest (or both).
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In fact, if vivj ∈ Q is of neither type, then Q would contain two nesting edges vi′vj and
vivj′ with i′ < i < j′ < j, and hence Q would not be a queue.

For each vertex vi let `i, respectively ri, denote the number of left-longest edges whose
right endpoint is vi, respectively the number of right-shortest edges whose left endpoint
is vi. That is,

`i = #{va ∈ V (Kn) | a < i and vavi left-longest} and
ri = #{vb ∈ V (Kn) | i < b and vivb right-shortest}.

Further, let bi denote the number of queues in Q with at least one edge whose right
endpoint is vi and at least one edge whose left endpoint is vi. That is,

bi = #{Q ∈ Q | ∃ a, b with a < i < b and vavi, vivb ∈ Q}.

We can then write the number of queues in Q containing the vertex vi in terms of `i,
ri and bi. If Q ∈ Q contains an edge incident to vi, then it contains a left-longest or
a right-shortest or both, i.e. the contribution of Q to `i + ri − bi is exactly one. We
conclude that

(ii) vertex vi has incident edges in exactly `i + ri − bi queues in Q.

As every vertex is in at most k queues, we have bi 6 k for i = 1, . . . , n. In addition, every
vertex vi is the right endpoint of at most i− 1 edges and thus bi 6 i− 1. Similarly, vi is
the left endpoint of at most n− i edges and thus bi 6 n− i. Together, we know that

(iii) for every vertex vi we have bi 6 min{i− 1, n− i, k}.

Using the above we calculate

kn >
n∑

i=1

#{Q ∈ Q | vi ∈ V (Q)} (ii)
=

n∑
i=1

(`i + ri − bi)

(i)

> |E(Kn)| −
n∑

i=1

bi
(iii)

>

(
n

2

)
−

k∑
i=1

(i− 1)−
n∑

i=n−k+1

(n− i)− (n− 2k)k

=

(
n

2

)
− 2

(
k

2

)
− (n− 2k)k,

which can be solved for the desired k > (1− 1/
√
2)(n− 1/2) as follows.

kn >

(
n

2

)
− 2

(
k

2

)
− (n− 2k)k

⇐⇒ 0 > k2 + (1− 2n)k +

(
n

2

)

=⇒ k > n− 1

2
−

√(
n− 1

2

)2

−
(
n

2

)

=⇒ k > n− 1

2
−

√(
n− 1

2

)2

− 1

2

(
n− 1

2

)2

=

(
1− 1√

2

)(
n− 1

2

)
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We conclude this chapter by proving a matching upper bound both for the local queue
number and the union queue number. We first make an observation that might be of
independent interest. We follow the proof of the same statement for book embeddings
in [38]. However, we stress that the vertex ordering is arbitrary as we make use of this in
the proof of Lemma 2.7. The maximum average degree mad(G) of a graph G is defined
by mad(G) = max{2 |E(H)| / |V (H)| : H ⊆ G,H 6= ∅}.

Proposition 2.5. Every graph G with maximum average degree mad(G) admits a
(mad(G) + 2)-union queue layout with any vertex ordering.

Proof. Nash-Williams [42] proved that every graph can be partitioned into mad(G)/2+1
forests. Each forest, in turn, can be partitioned into two star forests [5]. Choosing an
arbitrary vertex ordering, each of the mad(G) + 2 star forests is a union queue as the
edges of a star cannot nest.

Using this proposition, we set out to construct a queue layout whose queues can be
merged into few union queues. .

Theorem 2.6. For any n > 0, we have

qn`(Kn) 6

⌈
1− 1√

2

⌉
n+ 11 and qnu(Kn) 6

⌈
1− 1√

2

⌉
n+ 42.

We prove that whenever k > (1− 1/
√
2)(n+ 1), there is a (k + 11)-local queue layout

and a (k+42)-union queue layout of Kn+1. Let v1 ≺ · · · ≺ vn+1 be a fixed vertex ordering
of Kn+1. For ease of presentation, we model the edge set of Kn+1 as a point set Tn in Z2

with triangular shape defined by

Tn = {(x, y) ∈ Z2 | x+ y 6 n+ 1; x > 1; y > 1}.

Element (x, y) of Tn corresponds to edge vn+2−yvx in Kn+1 and conversely edge vivj in
Kn+1 with i > j corresponds to element (j, n+ 2− i) in Tn. Two edges vivj with i > j
and vi′vj′ with i′ > j′ nest if and only if the corresponding elements (j, n+ 2− i) and
(j′, n+2−i′) in Tn are comparable in the strict dominance order of Z2 (i.e. coordinate-wise
strict inequalities of points). Hence, an edge set Q ⊆ E(Kn+1) forms a queue if and
only if the corresponding points in Tn form a weakly monotonically decreasing chain, see
Figure 2.5.

A vertex vi of Kn+1 corresponds to column i and row n + 2 − i in Tn. We call the
union of row i and column n+ 2− i the hook of vertex vi. If H is the hook of vertex vi
and Q is a queue corresponding to chain C ⊆ Tn, then vertex vi is contained in queue Q
if and only if H ∩ C 6= ∅. For our construction of a (k + 11)-local queue assignment of
Kn+1, we use the equivalent model of covering the triangular point set Tn with monotone
chains such that no hook intersects more than k + 11 chains.

Analogously to union queues, we call a subset S ⊆ Tn a union chain if there is a
partition of S into weakly monotonically decreasing chains C1, . . . , Cm such that each
hook intersects at most one of the chains C1, . . . , Cm. To prove Theorem 2.6, we partition
Tn into k + 42 union chains and therefore get a (k + 42)-union queue layout for Kn+1.
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Figure 2.5: An example showing the triangle T8 corresponding to K9 and the hook of
vertex 4. The blue entries represent a queue with 7 edges, the light blue
zig-zag emphasizes that the blue edges are non-nesting.

1

n

n+ 1− k

n− 2k + 1

Figure 2.6: Chains L1, . . . , Lk. The bottom left triangle Tn−2k is covered by vertical and
horizontal chains as shown in Figure 2.7.

Lemma 2.7. For any integer n > 0 and any integer k > (1− 1/
√
2)(n+ 1), the points

of Tn can be partitioned into k + 42 union chains. In addition, the points of Tn can be
partitioned into chains such that each hook intersects at most k + 11 chains.

Proof. First, we define weakly monotonically decreasing chains that cover Tn such that
no hook intersects more than k + 11 chains. We then partition the constructed chains
into sets of chains that form the basis for our union chains. We assume that n is even
and that k is the smallest even integer with k > (1− 1/

√
2)(n+ 1). To compensate for

this assumption, we construct chains such that each hook intersects at most k + 9 chains
and a partition of Tn into k + 40 union chains. We need n > 3k for the construction,
which is the case for n > 42. For smaller n, however, we have n/2 6 k + 9, so an
(n/2)-queue layout of Kn+1 gives the desired partition of Kn+1, respectively Tn, into
queues, respectively chains.

We start by defining a family L of k chains L1, . . . , Lk, illustrated in Figure 2.6. Chain
Li is composed of three blocks. The first block consists of the 2(k − i + 1) topmost
elements in column i of Tn. The second block starts at the lowest element of the first
block, continues with a right and down alternation for 2(n− 2(k − 1)) steps, and ends in
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row i. The last block consists of the 2(k − i+ 1) rightmost elements in row i. Formally,
for i = 1, . . . , k we set

Li = {(i, y) ∈ Tn | n+ 1− i > y > n− 2k + i}
∪ {(x, y) ∈ Tn | x, y > i and n− 2(k − i) 6 x+ y 6 n− 2(k − i) + 1}
∪ {(x, i) ∈ Tn | n− 2k + i 6 x 6 n+ 1− i}.

The chains of L cover all points of Tn except for the bottom left triangle Tn−2k. The
remaining points are now covered by chains containing only points of a single column
or row. We refer to these chains as vertical and horizontal chains, respectively. Note
that vertical and horizontal chains correspond to stars in Kn+1. We only define families
A, . . . ,G containing vertical chains, the horizontal chains A′, . . . ,G′ are then defined
symmetrically, i.e. M′ = {(y, x) ∈ Tn | (x, y) ∈ M} for M = A, . . . ,G. The resulting
layout of Tn−2k is illustrated in Figure 2.7.

The families A, . . . ,D cover the bottom left square Sn/2−k = {(x, y) ∈ Tn | 1 6 x, y 6

n/2− k}. For this, let A consist of chains A1, . . . , An−3k and Â1, . . . , Ân−3k with Ai ∪ Âi

having size (n − 3k)/2 or (n − 3k)/2 + 1 for i = 1, . . . , n − 3k. The chains Ai consist
of points in column i starting with the bottommost point in row i. Chains Ai with
points above y = n − 3k continue as Âi from the bottom. Note that Âi is empty for
i 6 (n− 3k)/2. For i = 1, . . . , n− 3k we define

Ai = {(i, y) ∈ Tn | i 6 y < (n− 3k)/2 + i and y 6 n− 3k} and
Âi = {(i, y) ∈ Tn | 1 6 y 6 i− (n− 3k)/2}.

The defined chains together with the chains in A′ cover all points whose x- and y-
coordinates are at most n− 3k. Some points, however, are covered twice. We may choose
any of the two covering chains for the respective points to obtain a partition.

Family B is located to the right of A and consists of chains B1, . . . , B(4k−n)/2 and
B̂1, . . . , B̂(4k−n)/2. Above A, we have chains C1, . . . , Cn−3k and Ĉ1, . . . , Ĉn−3k forming
family C. Considering the y-coordinates of the bottommost points of the chains Bi in B,
we have a slope s = n−3k

(4k−n)/2 (=
√
2 for k = 1− 1/

√
2). Symmetrically, the slope is 1/s

in C. For i = 1, . . . , (4k − n)/2 and j = 1, . . . , n− 3k we define

Bi = {(n− 3k + i, y) ∈ Tn | bsic 6 y 6 dsie+ (3n− 10k)/2 and y 6 n− 3k},
B̂i = {(n− 3k + i, y) ∈ Tn | 1 6 y 6 dsie+ (3n− 10k)/2− (n− 3k)},
Cj = {(j, y) ∈ Tn | n− 3k + bj/sc 6 y 6 3(n− 3k)/2 + dj/se and

n− 3k < y 6 n− 2k}, and
Ĉj = {(j, y) ∈ Tn | n− 3k < y 6 3(n− 3k)/2 + dj/se − (n− 2k)}.

Note that B̂i and Ĉj are empty for i 6 (n− 3k)/2 and j 6 (3n− 10k)/2. The chains in
B ∪ C′, and symmetrically B′ ∪ C, form a rectangle containing (n− 3k)(4k − n)/2 points.
Again, we choose any chain for points that are covered by multiple chains.
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Figure 2.7: Triangle Tn−2k is covered by families A, . . . ,G and A′, . . . ,G′ of vertical,
respectively horizontal, chains
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Family D, together with the corresponding horizontal chains in D′, accomplishes the
square Sn/2−k. For this, we have (4k − n)/2 chains D1, . . . , D(4k−n)/2, where Di has size
i. For i = 1, . . . , (4k − n)/2 let

Di = {(n− 3k + i, y) ∈ Tn | n− 3k < y 6 n− 3k + i}.

Finally, we cover to remaining two triangles with three families E ,F , and G of vertical
chains. Families E and G consist of chains E1, . . . , E(4k−n)/2, respectively G1, . . . , Gn−3k,
each filling a triangle, whereas the chains F1, . . . , F(4k−n)/2 ∈ F all have size n− 3k and
cover a rectangle. For i = 1, . . . , (4k − n)/2 and j = 1, . . . , n− 3k we define

Ei = {(n− 3k + i, y) ∈ Tn | n/2− k < y 6 k − (i− 1)},
Fi = {(n/2− k + i, y) ∈ Tn | 1 6 y 6 n− 3k}, and
Gj = {(k + j, y) ∈ Tn | 1 6 y 6 n− 3k − (j − 1)}.

The chains in E ′, F , and G together cover the all points (x, y) of Tn−2k with x > n− 3k,
and symmetrically E , F ′, and G′ cover the triangle above Sn/2−k.

Next we show that each hook intersects at most k + 9 chains. Recall that a hook of a
vertex is the union of the row and the column representing that vertex. We first count
for each row y = 1, . . . , n and each column x = 1, . . . , n the number of intersecting chains
and then add up the results to obtain the number of intersecting chains for each hook.
We start by counting the vertical chains, which intersect rows 1, . . . , k. Note that no
vertical chain intersects any row above y = k. If n = 3k, then B and C are empty, so we
may assume s > 0 when counting these chains.

A: For y = 1, . . . , (n− 3k)/2, row y intersects chains A1, . . . , Ay and Â(n−3k)/2+y, . . . ,

Ân−3k, which sums up to (n− 3k)/2 + 1 chains. The chains Â1, . . . , Ân−3k do not
contain any points above row (n−3k)/2 and thus row y = (n−3k)/2+1, . . . , n−3k
intersects exactly Ay−(n−3k)/2+1, . . . Ay, i.e. (n− 3k)/2 chains.

B: For the upcoming calculation, note that (4k−n)2 > 2(n−3k)2 for k > (1−1/
√
2)n.

For row y = 1, . . . , (3n − 10k)/2, we have chains Bi for i 6 (y + 1)/s and B̂i for
(4k − n)/2 > i > y−1−(n−3k)−(3n−10k)/2

s = y−1+(4k−n)/2
s . This sums up to

2

s
− (4k − n)2

2(n− 3k)2
n− 3k

2
+

(4k − n)

2
6

(4k − n)

2
− n− 3k

2
+

2

s

(∗)
<

7k − 2n

2
+ 4

chains. For y = (3n− 10k)/2 + 1, . . . , n− 3k, each row intersects at most

y + 1

s
− y − (3n− 10k)/2− 1

s
=

3n− 10k

2s
+

2

s
= (n− 3k − 4k − n

2
)/s+

2

s

=
4k − n

2
− (4k − n)2

2(n− 3k)2
n− 3k

2
+

2

s
6

4k − n

2
− n− 3k

2
+

2

s

(∗)
<

7k − 2n

2
+ 4

chains. For (∗), we remark that 2/s < 4 holds for all n > 104. For smaller n,
recall that there are only (4k − n)/2 columns containing vertical chains in B. That
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is, if (7k − 2n)/2 + 4 > (4k − n)/2, then (7k − 2n)/2 + 4 certainly upper-bounds
the number of chains in B that intersect any row. However, if n < 104 and
(7k − 2n)/2 + 4 < (4k − n)/2, then we also have 2/s < 4.

C: For y = 1, . . . , (n− 3k)/2, chain Ci intersects row n− 3k + y only if i 6 (y + 1)s
and Ĉi intersects row n− 3k + y only if n− 3k > i > (y − 1− (7k − 2n)/2). So we
have at most

(y + 1)s+ n− 3k − (y − 1 + (7k − 2n)/2)s

= 2s+
2(n− 3k)2

(4k − n)2
4k − n

2
6 2s+

4k − n

2
6

4k − n

2
+ 3

chains. For y = (n− 3k)/2 + 1, . . . , (4k − n)/2, we have Ci in row n− 3k + y for
(y − 1− (n− 3k)/2)s < i < (y + 1)s, which upper-bounds the number of chains by

((n− 3k) + 2)s =
2(n− 3k)2

(4k − n)2
4k − n

2
+ 2s 6

4k − n

2
+ 3.

D: The vertical chains in D intersect the rows n− 3k + 1, . . . , n/2− k. Precisely, for
y = 1, . . . , (4k − n)/2, row n− 3k + y intersects the chains Dy, . . . , D(4k−n)/2, i.e.
(4k − n)/2− (y − 1) chains.

E : Similarly, the vertical chains in E intersect the rows n/2 − k + 1, . . . , k. For
y = 1, . . . , (4k−n)/2, row n/2−k+y intersects the chains E1, . . . , E(4k−n)/2−(y−1),
i.e. (4k − n)/2− (y − 1) chains.

F : All chains of F intersect the rows 1, . . . , n − 3k exactly once, that is we have
(4k − n)/2 additional vertical chains in these rows.

G: Row y = 1, . . . , n−3k intersects the chains G1, . . . , Gn−3k−(y−1), i.e. n−3k−(y−1)
chains.

Summing up the number of vertical chains intersecting the rows y = 1, . . . , n− 3k, we get
at most k+5−y chains from A,B,F , and G. Additionally we have at most four horizontal
chains in A′ and C′. Rows y = n− 3k + 1, . . . , n/2− k intersect vertical chains in C and
D, which sums up to k−y+4 chains. There are at most four additional horizontal chains
in B′,D′, and E ′ intersecting these rows. Finally, rows y = n/2− k + 1, . . . , k intersect
only vertical chains in E and horizontal chains in F ′, summing up to k − y + 2 chains.
Together, we have at most k − y + 9 vertical and horizontal chains in row y = 1, . . . , k
and only one horizontal chain from G′ in row k + 1, . . . , n− 2k. Symmetrically, there are
at most k − x + 9 vertical and horizontal chains intersecting column x = 1, . . . , k and
one vertical chain in each column k + 1, . . . , n− 2k.

Now, we count the number of chains intersecting the hook Hx of vertex vx for x =
1, . . . , n + 1. Recall that hook Hx corresponds to column x and row n + 2 − x. For
x = 1, . . . , k, hook Hx intersects L1, . . . , Lx and k − x+ 9 vertical and horizontal chains.
Note that row n+ 2− x is above row n− 2k and thus does not intersect any vertical or
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horizontal chains in Tn−2k. Hooks Hk+1, . . . , Hn/2+1 intersect all k chains in L and at
most one vertical chain from G. By symmetry all hooks intersect at most k + 9 chains.

The chains defined above induce a (k + 9)-local queue layout. To obtain a (k + 40)-
union queue layout, we partition the set of all chains into sets of chains S1, . . . ,Sk+6 with
Li ∈ Si for i = 1, . . . , k.

We first introduce some notions that allow us to transform a set of chains into a union
chain and outline the rest of the proof. Consider some set S = {S1, . . . , Sm} of chains.
Note that

⋃
i∈[m] Si is not necessarily a union chain as two chains may intersect the same

hook. We call the set of all hooks that intersect at least two chains of S the common
hooks of S. If S has no common hooks, then S is already a union chain. Otherwise,
we assign each of the common hooks to at most one chain and remove points from the
chains of S until each common hook intersects only the chain to which it is assigned. In
particular, each hook then intersects at most one chain and thus the resulting chains
form a union chain. Note that a hook that does not intersect the chain to which it is
assigned yields a vertex that has no incident edges in the corresponding queue of Kn+1.
Consider an assignment of common hooks to chains of S. A point that is contained in
some chain S ∈ S and in some common hook that is not assigned to S is called a bad
point. Removing all bad points yields chains that together form a union chain.

We now aim to define S1, . . . ,Sk+6 such that the resulting bad points can be covered
by a constant number of union chains. For this, we associate each vertical (horizontal)
chain C with the interval IC ⊆ [k] that consists of the y-coordinates (x-coordinates) of
the points that are contained in C. We say two vertical (horizontal) chains overlap if the
corresponding intervals are not disjoint.

Consider the set Si for some i = 1, . . . , k+ 6. We add vertical and horizontal chains to
Si such that

(i) chains in Si do not overlap,

(ii) the y-coordinates (x-coordinates) of all points in vertical (horizontal) chains in Si

are smaller than i, and

(iii) there is no vertical (horizontal) chain in Si in column (row) i.

We first assume that Conditions (i) to (iii) hold and show that they can indeed be satisfied
at the end of the proof. We merge vertical (horizontal) chains of Si that are in the same
column (row) into a single chain. Next, we assign common hooks to chains and use the
three conditions to show that 34 union chains suffice to cover all bad points. For the
analysis of bad points, we concentrate on vertical chains. The result for horizontal chains
follows symmetrically.

Consider a vertical chain C ∈ Si in column x and let HC denote the hook that contains
C. Recall that vertical chains of Si that are in the same column are merged into a single
chain. If HC is a common hook, we assign it to C. Note that each hook either contains
vertical chains or horizontal chains, and thus no hook is assigned to multiple chains. See
Figure 2.8 for an illustration of bad points in Si. Assigning HC to C implies that all
points of HC that are contained in some other chain of Si are bad points. We say that

22



2 Complete Graphs

Figure 2.8: A set Si with two vertical chains and their hooks (dashed). Bad points are
marked red.

these bad points are caused by C. We now analyze how many bad points are caused by
C. If x > i, then HC intersects Li in at most four points, i.e. we have at most four bad
points in HC ∩Li. In this case, no horizontal chain in Si intersects HC by Condition (ii).
Otherwise we have x < i (due to Condition (iii)), and Condition (i) ensures that HC

intersects at most one horizontal chain C ′ ∈ Si. We thus have at most one bad point in
HC ∩ C ′. In either case, C causes at most four bad points.

It is left to show that each bad point is caused by some vertical or horizontal chain. For
this, we keep Si fixed and consider a hook H whose column x intersects the triangle Tn−2k,
i.e. with x 6 n− 2k. We show that each bad point in H is caused by a vertical chain.
The result for hooks whose row intersect Tn−2k follows symmetrically with horizontal
chains. Hooks that do not intersect Tn−2k contain no bad points since Li is the only
chain in Si that intersects such a hook. Note that the row of H is above Tn−2k and thus
does not intersect any vertical or horizontal chains. If x < i, then H does not intersect
Li. It intersects at most one horizontal chain due to Condition (i). That is, if H contains
a bad point, then it also contains a vertical chain causing this bad point. If x = i, then H
intersects neither vertical nor horizontal chains by Conditions (ii) and (iii). Thus, Li is
the only intersected chain in Si and there are no bad points. If x > i, then H intersects
no horizontal chains in Si by Condition (ii). Hence, if there are bad points, then they are
caused by a vertical chain in column x.

We are now ready to cover the bad points by a constant number of union chains.
Let G ⊆ Kn+1 denote the graph that is induced by all bad points. For a vertical or
horizontal chain C ⊆ Tn−2k, let vC ∈ V (Kn+1) denote the vertex that is represented by
hook HC . We orient the edges of G such that every edge whose corresponding bad point
is caused by chain C is oriented away from vC . Each hook contains at most four vertical
or horizontal chains (see Figure 2.7 and recall that each hook either contains vertical
chains or horizontal chains). In addition, each chain causes at most four bad points.
Thus, we have a 16-orientation of G, i.e. the out-degree of every vertex of G is at most
16. By Proposition 2.5, the graph G can be covered with mad(G) + 2 = 2 · 16 + 2 = 34
union queues using an arbitrary vertex ordering. Hence, the bad points can be covered
by 34 union chains.

Finally, we show how to partition the vertical chains of the presented (k+9)-local layout
such that Conditions (i) to (iii) are satisfied. Let H denote the interval graph that is given
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by the intervals that correspond to vertical chains, i.e. V (H) = {IC ⊆ [k] | C ∈ A∪· · ·∪G}
and there is an edge between two vertices if and only if the intervals are not disjoint. A
clique of m vertices in H corresponds to a row that intersects m vertical chains. Recall
that every row y = 1, . . . , k intersects at most k − y + 5 vertical chains. In particular,
the clique number of H is at most k + 4. Note that any proper (k + 6)-coloring and
an arbitrary mapping between color classes and the sets of chains S1, . . . ,Sk+6 satisfies
Condition (i).

To satisfy Conditions (ii) and (iii), we define an ordering on the vertices of H by
decreasing topmost points of the intervals, i.e. [a, b] ≺ [a′, b′] if and only if b > b′ or b = b′

and a > a′. We color the vertices of H greedily with k + 5 colors k + 6, . . . , 2. That is,
for an interval in column x, we choose the largest color that is not used by any smaller
neighbor and that does not equal x. We then define Si to contain the vertical chains
whose intervals have color i. Since H is an interval graph, the set consisting of a vertex
[a, b] ∈ V (H) and its smaller neighbors induces a clique that corresponds to row b. The
vertex [a, b] thus has at most k − b+ 4 smaller neighbors. There are at least two colors
left that are larger than b and that are not already used by a smaller neighbor. Choosing
one that does not equal x satisfies Conditions (ii) and (iii).

By symmetry, we color the horizontal chains with colors k + 6, . . . , 2 such that Con-
ditions (i) to (iii) hold. We now have a partition of all chains into k + 6 sets of chains
S1, . . . ,Sk+6, each forming a union chain when bad points are removed. Together with
the 34 union chains for bad points, we get a partition of Tn into k + 6 + 34 = k + 40
union chains.
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3 Track Layouts of Graphs with Bounded
Treewidth

We first give the necessary definitions for this chapter and then survey the state of the
art on track numbers of different graphs classes. We also discuss the relation between
track layouts and queue layouts more detailed. The main contribution of this chapter is
an improved lower bound on the maximum track number of graphs with treewidth 2.

3.1 Definitions
We start by defining the graph classes discussed in this chapter and then give definitions
of different variants of track layouts and related concepts. The graph classes in this
chapter mainly include k-trees (defined in Section 3.1.1). We further consider some
subgraphs of planar graphs, in particular leveled planar graphs and weakly leveled planar
graphs. A graph is called weakly leveled planar if its vertex set can be partitioned into
levels such that there is a plane straight-line drawing with x-coordinates indicated by the
levels and the edges only connect vertices in the same or in consecutive levels. If there
is such a drawing without edges between vertices in the same level, the graph is called
leveled planar. Recall that the arched leveled planar graphs are the 1-queue graphs (see
Section 1.3). We remark that the 2-trees considered in Section 3.3 are also planar graphs.

3.1.1 Tree Decompositions
A k-tree is a (k + 1)-clique or is obtained from a smaller k-tree by choosing a clique C
of size k and adding a new vertex u which is adjacent to all vertices of C. Fixing an
arbitrary construction ordering, the vertex u is called a child of C, and C is called the
parent clique of u. We also say u is a child of each vertex of C. For a parent vertex v of
some vertex in C, we say u is a grandchild of v and v is a grandparent of u. If there is a
path (u = v1, . . . , vn = w) between two vertices u and w such that vi is a child of vi+1

for i = 1, . . . , n, then we call u a descendant of w and w an ancestor of u. Two vertices
having the same parent clique are called twins.

A tree decomposition of a graph G is a tree T whose vertex set consists of subsets of
V (G) such that

(i) each vertex of G is contained in some vertex of T , i.e.
⋃

X∈V (T )X = V (G),

(ii) for each vertex v ∈ V (G), the vertices of T containing v induce a subtree in T , and

(iii) for each edge vw ∈ E(G), there is a vertex X ∈ V (T ) with v, w ∈ X.
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The vertices of T are called bags. The width of a tree decomposition is defined as the size
of a largest vertex of T minus 1. The minimum width over all tree decompositions of
a graph G is called the treewidth of G. It is well known that the maximal graphs with
treewidth k are exactly the k-trees.

A path decomposition is a tree decomposition that is a path, and the minimum width
over all path decompositions of a graph G is called the pathwidth of G. A layered path
decomposition is a path decomposition together with a layering, i.e. a partition of the
vertices of G into a sequence of layers L1, . . . , Lt such that the endpoints of each edge
are in the same layer or in two consecutive layers. The layered pathwidth is defined as
the smallest k such that there is a layered path decomposition with at most k vertices in
the intersection of any bag of the decomposition with any layer.

3.1.2 Track Layouts
A t-track assignment of a graph G is a partition of the vertex set V (G) into t independent
sets, called tracks, each having a linear vertex ordering. Fixing an arbitrary ordering
of the tracks and denoting them by V1, . . . , Vt, we define the length of an edge vw with
v ∈ Vi and w ∈ Wj by |i − j|. The span then denotes the maximum length among all
edges.

Consider two tracks V and W with orderings ≺V and ≺W . Two edges vw and v′w′

with v, v′ ∈ V and w,w′ ∈ W cross if v ≺V v′ and w′ ≺W w or v′ ≺V v and w ≺W w′.
In this case, we also say that vw and v′w′ form an X-crossing. A set of c edges that
pairwise form an X-crossing is called a c-crossing tuple. If a t-track assignment has no
X-crossings, then it is called a t-track layout. Now, the track number tn(G) of a graph G
is defined as the smallest t such that there is a t-track layout for G.

More generally, a (c, t)-track layout consists of a t-track assignment and a c-edge
coloring such that there is no monochromatic X-crossing. The minimum t such that a
graph G admits a (c, t)-track layout is denoted by tnc(G). That is, (1, t)-track layouts
are t-track layouts and we have tn1(G) = tn(G) for every graph G. On the other hand,
the t-track thickness Θt(G) of a graph G denotes the smallest c such that there is a
(c, t)-track layout.

Dujmović et al. [19] and Di Giacomo et al. [16] used the notion of nice orderings
of cliques to deal with track layouts of graphs with bounded treewidth. Recently,
Pupyrev [44] used this concept to improve upper bounds on the track number of planar
graphs and subclasses thereof. We say a clique C covers the set of tracks containing a
vertex of C. Consider a track assignment of a set C of cliques. We denote the tracks by
V1, . . . , Vt and its orderings by ≺1, . . . ,≺t. We call a linear ordering ≺C of C nice if for
each two cliques C,C ′ ∈ C that have vertices v ∈ V (C) and v′ ∈ V (C ′) with v ≺i v

′ in
the same track Vi, we have C ≺C C ′. That is, if there is one track in which a vertex of C
is to the left of a vertex of C ′, then we have v ≺i v

′ in all tracks that contain a vertex v
of C and a vertex v′ of C ′. In this case, we also say that C is nicely ordered by the track
assignment. Finally, we call a track layout of a graph G `-clique-colorable if the set of
maximal cliques of G can be partitioned into at most ` nicely ordered subsets of cliques.
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3.2 State of the Art
We first survey track numbers of several graph classes and then consider multicolor track
layouts. We conclude the section by relating track layouts and queue layouts.

Dujmović et al. [20] characterized 2-track graphs as forests of caterpillars. Bannister
et al. [7] showed that the bipartite graphs with track number at most 3 are exactly
the leveled planar graphs, which are exactly the graphs with layered pathwidth 1. As
recognizing leveled planar graphs is NP-complete [32], it is also NP-complete to test
whether a (bipartite) graph has track number at most 3. The maximum track number of
the related classes of weakly leveled planar graphs, respectively arched leveled planar
graphs, is 6 [7, 44], respectively 4 [17, 20]. Continuing with planar graphs, Pupyrev [44]
proved that the track number of planar graphs is at most 225. The best lower bound for
the maximum track number of planar graphs is given by a 3-tree with track number 8,
while the best known upper bound on the track number of planar 3-trees is 25 [44]. For
the track number of outerplanar graphs, Dujmović et al. [20] gave an upper bound of
5 that is tight due to Pupyrev [44]. Felsner et al. [23] showed that the maximum track
number of trees is 3. Turning to cliques, Dujmović et al. [19] showed that a set of cliques
that all cover the same set of tracks is nicely ordered by any track layout. This implies
that caterpillars admit 1-clique-colorable 2-track layouts. In addition, Pupyrev [44] proved
that every tree admits a 2-clique-colorable 3-track layout and that every outerplanar
graph admits a 2-clique-colorable 5-track layout. For 2-trees and 3-trees, Di Giacomo
et al. [16] presented track layouts with at most 15, respectively 5415, tracks. For k > 4,
Wiechert’s [48] bound of (k + 1)(2k+1 − 2)k is the best known upper bound on the track
number of k-trees. On the other hand, Dujmović et al. [19] constructed a k-tree with
track number (k + 1)(k + 2)/2 for every k > 0.

We continue with multicolor track layouts and their relation to the track number and
the queue number. Consider a graph G with t-track assignment T . Dujmović et al. [20]
showed that there is a (c, t)-track layout using T as track assignment if and only if T
contains no two tracks inducing a (c+ 1)-crossing tuple. Note that coloring the edges
between two tracks such that there is no monochromatic X-crossing is equivalent to
finding a proper coloring of a permutation graph.

Dujmović et al. [20] gave a general lower bound on the track number in terms of the
number of edges. They showed that for any graph on n vertices and m > 1 edges, we
have tnc(G) > (m + c)/(cn) + 1. For upper bounds, the span of a track layout turns
out to be more important than the actual number of tracks. In particular, Dujmović
et al. [20] showed that for every graph G admitting a (c, t)-track layout with maximum
span s, we have tnc(G) 6 2s+ 1 and tn2c(G) 6 s+ 1. It is worth mentioning that the
structure of the original layout is preserved when reducing the number of tracks. In
fact, the track layout is wrapped, that is track Vi+(k+1)m is appended to track Vi+km for
m = 2s+ 1, respectively m = s+ 1, for each i = 1, . . . ,m, and k > 0.

In addition, Dujmović et al. [20] provided means for a trade-off between the number of
colors and the number of tracks. To reduce the number of tracks, they showed that every
(c, t)-track layout having maximum span s and a proper vertex coloring with t′ colors
admits a (2sc, t′)-track layout such that the tracks correspond to the color classes. On
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the other hand, every (c, t)-track graph G has track number at most t · 4(
c
2
)(t−1). If all

cycles of G contain vertices in at least three tracks, then we have tn(G) 6 tct−1.
Comparing track number and queue number, Dujmović et al. [20] showed that these

two graph parameters are tied. They proved that every (c, t)-track graph G with
maximum span s admits a cs-queue layout. In particular, we have qn(G) 6 c(t − 1).
Bounding the track number in terms of the queue number q of a graph G, they showed
tn(G) 6 4q · 4q(2q−1)(4q−1). If G admits a proper vertex coloring with t colors, then it also
admits a (2q, t)-track layout such that the tracks correspond to the color classes. As the
chromatic number is at most four times the queue number [21], G admits a (2q, 4q)-track
layout. They conclude that we have tn(G) 6 t(2q)t−1 if G admits an acyclic t-coloring,
that is a proper t-coloring that does not result in bichromatic cycles.

3.3 Lower Bounds
In this section, we investigate track layouts of graphs with bounded treewidth. As the
track number is a monotone graph parameter, it suffices to consider maximal graphs
with treewidth k, i.e. k-trees, instead of arbitrary graphs with treewidth k.

Di Giacomo et al. [16] asked for improved upper and lower bounds on the maximum
track number of 2-trees. Prior to this thesis, their upper bound of 15 and the lower
bound of 6 due to Dujmović et al. [19] are the best known bounds. We first present (a
slight variation of) the proof given by Dujmović et al. and then improve the lower bound.

Recall that a vertex may not be assigned to the same track as any of its parents as
tracks are independent sets. The following lemma basically forbids to assign vertices to
the same track as any of its grandparents.

Lemma 3.1. For any k, t > 0 and any k-tree G, there is a k-tree G′ such that for every
t-track layout, G′ contains G as a subgraph such that no vertex of G is assigned to the
same track as any of its grandparents.

Proof. Let n denote the number of vertices of G and let m = 2(t − k) + 1. We fix an
arbitrary construction ordering of G and denote the vertices of G by 1, . . . , n according
to this ordering. We now construct G′ and thereby assign a label between 1 and n
to each vertex. We start with a k-clique whose vertices get labels 1, . . . , k. For each
i = k+1, . . . , n in increasing order, we proceed as follows. Let p1, . . . , pk denote the parent
vertices of vertex i in G. To each k-clique in G′ whose vertices have labels p1, . . . , pk, we
add m vertices if vertex i has children in G and only a single vertex otherwise. In either
case, all added children get the label i.

Note that there are many copies of G in G′, where the label of a vertex in G′ indicates
to which vertex of G it corresponds. We fix an arbitrary t-track layout of G′ and find a
copy of G such that no vertex is assigned to the same track as any of its grandparents.
We start with the k vertices in G′ that have labels 1, . . . , k. For i = k + 1, . . . , n in
increasing order, we shall find a vertex with label i that has no children in the same
track as any of its parent vertices. We only consider vertices whose parents have been
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p1

c p2 c

p3

` x r

Figure 3.1: A 3-clique with three children `, x, and r in the same track. If a child c of x
is placed in the same track as one of the parent vertices p1, p2, or p3 of x,
then there is an X-crossing.

chosen for the copy of G. If i has no children in G, then there is only one such vertex.
We choose it and are done for vertex i as there are no children to take care of.

If i has children, then there are m = 2(t−k)+1 twins with label i in G′ whose parents
have been chosen for G. As vertices are not placed in the same track as their parents,
there are t− k tracks left for these twins. Thus, there is a track containing three of them.
We denote these vertices by `, x, and r. Without loss of generality, we have ` ≺ x ≺ r in
this track. We choose x for the copy of G.

Suppose that x has a child c in the same track as some parent vertex p of x as shown
in Figure 3.1. If c is to the left of p, then p` and xc cross. Symmetrically, pr and xc cross
if c is to the right of p. We conclude that no child of x is in the same track as any of its
parents. Continuing with the subgraph of G′ containing only descendants of the chosen
vertices, we find the desired copy of G.

As the constructed graph G′ again is a k-tree, we get the following corollary.

Corollary 3.2. Let k, t > 0. If every k-tree admits a t-track layout, then every k-tree
admits a t-track layout such that no vertex is placed in the same track as any of its
grandparents.

Next, we prove a lower bound on the track number of k-trees. Our proof differs from
that given by Dujmović et al. [19] in that we make use of Corollary 3.2 and thus can
present a smaller k-tree that requires (k+1)(k+2)/2 tracks under the condition that no
vertex is assigned to the same track as any of its grandchildren. In contrast to Dujmović
et al., we do not use the arguments of Lemma 3.1 until the end of the proof, which
increases the size of the constructed graph. However, our graph contains their graph as a
subgraph.

Theorem 3.3 (Dujmović et al. [19]). For every k > 0, there is k-tree with track number
at least (k + 1)(k + 2)/2.
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c0 c1 c2 c3 d1 d2 d3 e1 e2 f1

C G

Figure 3.2: 3-Tree that needs 10 tracks if no vertex is assigned to the same track as any
of its grandparents. The vertices e1, e2, and f1 belong to the cliques that
were added in previous induction steps.

Proof. We proceed by induction on k showing that there is a k-tree that requires
(k+1)(k+2)/2 tracks if no vertex is assigned to the same track as any of its grandparents.
A single vertex is a 0-tree and needs one track. Let k > 0 and assume that there is a
k-tree G needing k(k + 1)/2 tracks to avoid vertices being in the same track as their
grandparents. We construct a k-tree by starting with a (k + 1)-clique C whose vertices
we denote by c0, . . . , ck. Now take a copy of G and denote the vertices of an arbitrary
k-clique by d1, . . . , dk. Connecting di to the vertices ci, . . . , ck for each i = 1, . . . , k and
additionally connecting each vertex of G to ck yields a k-tree. See Figure 3.2 for an
illustration.

Note that all vertices of C are parents or grandparents to each vertex of G. Hence,
we need k + 1 tracks for the clique C and by induction additionally k(k + 1)/2 tracks
for G, i.e. (k + 1)(k + 2)/2 tracks in total. By Corollary 3.2, there is a k-tree with track
number at least (k + 1)(k + 2)/2.

Note that the proof by Dujmović et al. [19] above gives a lower bound of 6 on the
maximum track number of 2-trees. Based on the presented construction, we improve this
bound.

Theorem 3.4. There is a 2-tree with track number at least 7.

Proof. We construct a 2-tree and suppose there is a 6-track layout such that no vertex
is in the same track as any of its parents or grandparents. We show that such a track
layout does not exist and conclude with Corollary 3.2 that there is a 2-tree with track
number at least 7.

We start with a 2-clique consisting of the vertices a and b. For ease of presentation,
we introduce vertices ai and bi with ai = a and bi = b for i = 1, . . . , 49. For each
i = 1, . . . , 49, we add vertices

ci with parents ai and bi,

di with parents bi and ci,

ei with parents ci and di,
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h2 a

b

c1 c2

d1 g2 d2

e1 `2 e2

f1 f2

m2

Figure 3.3: Parts of the 2-tree with track number at least 7. The edges are oriented
toward their parent vertices.

fi with parents ci and ei,

gi with parents ci and fi,

hi with parents gi and fi,

`i with parents gi and hi, and
mi with parents gi and `i.

See Figure 3.3 for an illustration. Let Gi denote the subgraph induced by the vertices
ai, . . . , fi. Note that each Gi is isomorphic to the 2-tree constructed in Theorem 3.3. We
observe that each vertex of Gi is a child or grandchild of all formerly introduced vertices
with the same index. Thus, no two vertices of Gi are assigned to the same track of any
track layout.

Fix an arbitrary 6-track layout. We continue by analyzing the track assignment of
multiple Gi’s. The vertices a and b are assigned to two distinct tracks which we denote
by Ta and Tb, respectively. For each i, there are four tracks left for the vertices ci, di,
ei, and fi. As there are 24 possible permutations of these four vertices, there are three
indices i, j, and k such that xi, xj , and xk are in the same track for each x = c, d, e, f .
We denote these tracks by Tc, Td, Te, and Tf , respectively. Without loss of generality, we
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3 Track Layouts of Graphs with Bounded Treewidth

have i = 1, j = 2, and k = 3 and c1 ≺ c2 ≺ c3 in track Tc.
Next we observe that the ordering of track Tc is preserved in the tracks Td, Te, and

Tf . Recall that di, ei, and fi are adjacent to ci for i = 1, 2, 3. If we have xj ≺ xi for
some x = d, e, f and 1 6 i < j 6 3, then the edges cixi and cjxj cross. Hence, we have
x1 ≺ x2 ≺ x3.

Finally, we consider the vertices g2, h2, `2, and m2. For the first three vertices, we
determine a unique track that contains neither parents nor grandparents and in which
they can be placed without creating an X-crossing. The last vertex, however, fits in none
of the six tracks. The subgraphs G1 and G2 and the four additional descendants of G2

are shown in Figure 3.3.
Vertex g2 has parents in tracks Tc and Tf and grandparents in Ta, Tb, and Te. Thus,

we have g2 ∈ Td. Note that the G1 and G3 are symmetric with respect to G2. Without
loss of generality, g2 is to the left of d2. On the other hand, g2 is to the right of d1 as
otherwise c2g2 and c1d1 cross. Next, the vertex h2 has parents in the tracks Td and
Tf and grandparents in Tc and Te. If h2 is in track Tb, then the edge g2h2 forms an
X-crossing either with bd1 or with bd2. We conclude that h2 is in track Ta. The vertex
`2 is in track Te as it has parents or grandparents in the tracks Ta, Tc, Td, and Tf and
creates an X-crossing with bd1 or bd2 if placed in track Tb. Finally, the vertex m2 has
parents in the tracks Td and Te and grandparents in Ta, Tc, and Tf . Again, track Tb is
not possible as g2m2 would cross bd1 or bd2. We find that there is no track to place m2

and thus we need a seventh track.

We remark that Dujmović et al. [19] constructed their lower bound on the maxi-
mum track number of k-trees inductively. Starting the induction with our 2-tree from
Theorem 3.4 slightly improves the lower bound for k-trees with k > 2.

Corollary 3.5. For every k > 2, there is k-tree G with tn(G) > (k + 1)(k + 2)/2 + 1.
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4 Book Embeddings of Upward Planar
Graphs

In this chapter we discuss book embeddings of upward planar graphs. A directed graph
is called upward planar if there is a plane drawing such that all edges are y-monotone.
In particular, upward planar graphs are acyclic. Heath et al. [31] initiated the study
of book embeddings of directed acyclic graphs, where the spine ordering respects the
orientation of the edges. Building up on their work, Binucci et al. [11], Di Giacomo
et al. [15], and Frati et al. [24] particularly highlighted the question whether upward
planar graphs have bounded page number and, if not, a characterization of upward planar
graphs with constant page number, as open problems. We first give some definitions
used in this chapter and summarize the state of the art. Subsequently, we investigate
book embeddings of upward planar graphs without large twists. Section 4.3 establishes
necessary conditions that upward planar graphs need to satisfy to admit book embeddings
with few pages. This prepares the construction of a planar poset, and in particular an
upward planar graph, that requires at least five pages. Our poset with page number
at least 5 improves on the previously best known lower bounds on the page number of
planar posets and of upward planar graphs, which were proved by Hung [33] in 1993.

4.1 Definitions
A directed graph G consists of a vertex set and an edge set containing ordered pairs of
vertices. As in the undirected case, we denote the vertex set by V (G) and the edge set by
E(G). For a directed graph, vw denotes the directed edge from v to w, that is the pair
(v, w). Replacing each directed edge vw by an undirected edge with the same endpoints
results in a graph that is called the underlying undirected graph. Note that the underlying
undirected graph still has an edge set, that is we do not have multi-edges, even if there
are directed edges in both directions between two vertices. In the case of a directed graph,
a cycle refers to a subgraph consisting of pairwise distinct vertices v1, . . . , vn, for some
n > 1, and edges vnv1 and vivi+1 for i = 1, . . . , n− 1. A directed graph is called acyclic
if it contains no cycle. Note that the underlying undirected graph of a directed acyclic
graph may have cycles. Every directed acyclic graph admits a topological ordering, that
is a linear vertex ordering ≺ such that for every edge vw, we have v ≺ w. Considering
a drawing of a directed graph, an edge e is called upward if the curve representing e
increases strictly monotonically in vertical direction. A drawing is called upward plane if
all edges are upward and no two edges intersect except maybe at a common endpoint. A
graph is called upward planar if it admits an upward plane drawing.
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4 Book Embeddings of Upward Planar Graphs

A book embedding of a directed acyclic graph G consists of a topological vertex ordering
and a partition of the edges into pages, where no two edges vw and xy in the same page
cross, i.e. have alternating endpoints. That is, we have an additional constraint on the
vertex ordering compared to book embeddings of undirected graphs. In this chapter, all
our graphs are directed and the term book embedding refers to a book embedding of a
directed graph as defined above.

Next, we give some definitions that refer to the relation between two vertices and
identify some special vertices. Consider an upward planar graph. We say a vertex w
is reachable from some vertex v and v reaches w if there is a path from v to w. The
down-set of a vertex v is defined as the set of all vertices that reach v. Similarly, the
up-set is defined to contain all vertices that are reachable from v. In particular, every
vertex is contained in its own up-set and down-set. We say two vertices v and w are
comparable if v reaches w or w reaches v. Otherwise they are called incomparable. A
vertex that has no incoming edges is called a source and a vertex that has no outgoing
edges is called a sink. If a graph has a single source s, a single sink t, and an edge st, it
is called an st-graph.

Having the basic definitions, we define two subclasses of upward planar graphs whose
page number is investigated in the literature. First, series-parallel digraphs (also called
two-terminal series-parallel digraphs [15]) are defined as follows. A directed edge is a
series-parallel digraph. Consider two series-parallel digraphs G and G′ with sources s,
respectively s′, and sinks t, respectively t′. Identifying the sink t of G with the source
s′ of G′ yields a series-parallel digraph. Identifying the sources s and s′ and the sinks t
and t′ also results in a series-parallel digraph. Note that series-parallel digraphs have
a single source and a single sink. We remark that the underlying undirected graphs of
maximal series-parallel digraphs are exactly the 2-trees, that is the maximal graphs with
treewidth 2.

We conclude this section by discussing another important subclass of upward planar
graphs. A partially ordered set (poset) is a set X together with a relation 6 that is
reflexive, transitive, and antisymmetric. If x 6 y and x and y are distinct, we write
x < y. We call two elements x and y of X incomparable if neither x 6 y nor y > x holds.
We denote this by x ‖ y. Otherwise, x and y are called comparable. The set of elements
x with x 6 y is called the down-set of y and the set of elements z with y 6 z is called the
up-set of y. If the intersection of the up-sets of two elements x and y has a least element,
we call it the join of x and y. If the intersection of the down-sets has a largest element,
we call it the meet of x and y.

A relation x < y is called a cover relation if there is no z with x < z < y. The cover
graph of a poset (X,6) is defined as the directed graph with X as vertex set and an
edge xy if and only if x < y is a cover relation. Note that the definitions of comparable,
up-set, and down-set coincide for a poset and its cover graph. A poset is called planar if
its cover graph is upward planar. An upward drawing of a cover graph is called a Hasse
diagram. We define a book embedding, respectively the page number, of a poset as a book
embedding, respectively the page number, of its cover graph.
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w3

v3 w2

v2 w1

v1
v1 v2 w1 w2 w3 v3

Figure 4.1: Outerplanar directed graph with page number 2 (left) and a 2-page book
embedding of the same graph (right)

4.2 State of the Art
Asymptotically, there are no nontrivial bounds known for the page number of upward
planar graphs. That is, the page number is in Ω(1) and O(n). The best known lower
bound is 4, provided by Hung [33] with a poset and by Bekos et al. [9] and Yannakakis [52]
with an undirected planar graph with page number 4. We improve on this in Section 4.4.1.
Upper bounds are known for some subclasses of upward planar graphs. If the underlying
undirected graph of some directed graph G is a tree, then G has page number 1 [31].
Di Giacomo et al. [15] showed that every series-parallel digraph admits a 2-page book
embedding. Directed acyclic graphs whose underlying undirected graph is a planar 3-tree
also have constant page number [24].

Frati et al. [24] gave improved upper bounds under certain conditions. In particular, if
every 4-connected component of any n-vertex upward planar triangulation G admits a
vertex ordering with maximum twist size f(n), then G admits a vertex ordering with
maximum twist size O(f(n)), where f(n) ∈ Ω(1) and f(n) ∈ O(n). Using results on the
χ-boundedness of circle graphs by Černý [12] and Kostochka and Kratochvíl [37], they
conclude that every upward planar triangulation G whose 4-connected components have
page number at most k, satisfies pn(G) 6 min{O(k logn),O(2k)}. However, Davies and
McCarty [14] later bounded the chromatic number of circle graphs with maximum clique
size ω by 7ω2, which improves the upper bound to pn(G) 6 min{O(k logn),O(k2)}. We
remark that Bekos et al. [9] and Yannakakis [52] constructed their undirected planar
graphs with page number 4 by repeatedly inserting small graphs into triangular faces,
which yields 4-connected components that require only few pages. That is, orienting
these graphs is not a promising approach for constructing upward planar graphs with
large page number.

Consider a subclass of upward planar graphs whose n-vertex graphs have a maximum
path of length of o(n/ log(n)). Frati et al. [24] showed that such a graph class has page
number o(n). In addition, they showed that every upward planar triangulation has page
number o(n) if and only if every upward planar triangulation with maximum degree
O(

√
n) has page number o(n).

Concerning the computational complexity, Heath and Pemmaraju [29] presented a
linear time algorithm for recognizing directed graphs with page number 1. Note that
there are outerplanar directed graphs that do not admit a 1-page book embedding, see for
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vn

v3

v2

v1

wn

w3

w2

w1

w1 w2 w3 … wn v1 v2 v3 … vn

w1 v1 w2 v2 w3 v3 … … wn vn

Figure 4.2: A family of planar directed acyclic (but not upward planar) graphs with 2n
vertices and page number n (left). The vertex ordering is uniquely determined
by the directed path (w1, . . . , wn, v1, . . . vn), which results in an n-twist (top).
The underlying undirected graph admits a 3-page book embedding (bottom).

instance Figure 4.1. On the other hand, Binucci et al. [11] showed that deciding whether
a (not necessarily planar) st-graph admits a k-page book embedding is NP-complete for
each k > 3. However, it is open whether 2-page book embeddings can be found efficiently
for directed acyclic graphs. Note that every directed acyclic graph with page number at
most 2 is upward planar. In comparison, deciding whether an undirected (planar) graph
has page number 2 is NP-complete [10, 49].

For undirected planar graphs, Yannakakis [51] established an upper bound of 4. That
is, if upward planar graphs do not have constant page number, then the page numbers of
upward planar graphs are not tied to the page numbers of their underlying undirected
graphs. We remark that this is the case if we consider planar directed acyclic graphs
instead of upward planar graphs, as shown in Figure 4.2.

4.3 Topological Orderings of Upward Planar Graphs
We now investigate book embeddings of upward planar graphs that have no large twists.
First, we observe that there are upward planar graphs that require stronger constraints
on the vertex ordering than implied by the orientation of the edges. That is, there are
upward planar graphs such that not every topological ordering admits a book embedding
with bounded maximum twist size. We identify structures that can lead to large twists
and prevent these twists by adding additional edges and choosing a topological ordering
of the augmented graph. At the end of this section, we show that if the augmented graph
is acyclic, then there is a plane drawing of the original graph G such that all edges of G
and all added edges are upward.

Consider two vertices v and w. For k > 2, a k-flag from v to w consists of k pairwise
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w1 w2 w3 w v v1 v2 v3

Figure 4.3: A 3-flag and a book embedding with w ≺ v

Figure 4.4: A graph (black) with multiple 3-flags. The orange edges belong to G+
3 , the

blue edge belongs to G∗
3 but not to G+

3 .

comparable vertices in the up-set of v, denoted by v1 ≺ · · · ≺ vk, k pairwise comparable
vertices in the down-set of w, denoted by w1 ≺ · · · ≺ wk, and edges wivi for each
i = 1, . . . , k. The edges wivi are called flag edges. Recall that every vertex is contained
in its up-set and down-set and thus v = v1 or wk = w is possible. If k is not important,
we simply say flag. Figure 4.3 shows a 3-flag. Observe that v and w are not necessarily
comparable. However, we show that v needs to be to the left of w to avoid a k-twist.

Lemma 4.1. Every book embedding of a k-flag from v to w in which w is to the left of
v has a k-twist.

Proof. As v1 is in the up-set of v and wk is in the down-set of w, we have v ≺ v1 and
wk ≺ w. Assuming w ≺ v, we obtain w1 ≺ · · · ≺ wk 4 w ≺ v 4 v1 ≺ · · · ≺ wk. Hence,
the flag edges form a k-twist. See Figure 4.3 for an illustration.

Given an upward planar graph G, we augment it to a directed graph G+
k by adding

the edge vw for each two vertices v and w for which there is a k-flag from v to w, where
v = w is allowed. This may result in multi-edges if the edge vw already exists in G.
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However, we add at most one new edge vw, even if there are multiple flags from v to
w. We now say that two vertices v and w are comparable if they are comparable in G+

k .
If there is a directed path consisting of edges of G between two vertices, then we say
they are comparable in G. This way, we possibly obtain new flags in G whose vertices
are only comparable in G+

k as shown in Figure 4.4. Note that flag edges still need to be
edges of the original graph G. We continue adding edges for each k-flag of G until no
new flags are created. The resulting graph is denoted by G∗

k. We say that some vertex v
is in the up-set, respectively down-set, of some vertex w if there is a path from w to v,
respectively from v to w, in G∗

k.
Lemma 4.1 shows that a spine ordering that is not a topological ordering of G∗

k+1,
yields a (k + 1)-twist. In particular, G∗

k+1 being acyclic is a necessary condition for G
admitting a k-page book embedding.

Lemma 4.2. Every k-page book embedding of any upward planar graph G uses a
topological ordering of G∗

k+1 as spine ordering.

However, this condition is not sufficient for every k. Even stronger, we find that
choosing a topological ordering of G∗

k for some small k can lead to arbitrarily large twists
even if the graph admits a book embedding with few pages. The following example shows
that k needs to be chosen carefully to obtain a book embedding with small maximum
twist size. Note that the ideas presented here also find application in Proposition 4.11 in
the next section, where we prove a similar statement for a larger k.

Example 4.3. For every p > 0, there is an upward planar graph G such that no
topological ordering of G∗

2 admits a p-page book embedding.

Proof. Let r = p3 + 1. We define a graph G on 5r vertices that are partitioned into five
levels and illustrated in Figure 4.5. For each i = 1, . . . , r, we have vertices ai, bi, ci, di,
and ei that belong to levels A, . . . , E, respectively. They are connected by two paths
(ai, bi, ci, di, ei) for i = 1, . . . , r and (ai, bi+1, ci, di+1, ei) for i = 1, . . . , k − 1. In addition,
there are edges aici, bidi, and ciei connecting non-consecutive levels.

Consider a topological ordering ≺ of G∗
2. We show that all vertices of level B are

placed to the left of all vertices of level C, whereas all vertices of level D are to the right
of all vertices of level C. That is, we prove B ≺ C ≺ D. For this, we show that there are
edges bicj and cidj in G∗

2 if |i− j| 6 t by induction on t. It follows that bi ≺ cj ≺ di.
For t = 0, we have edges bici and cidi in G, which settles the base case. For t > 0, we

now find a 2-flag from bi to ci+t, see Figure 4.6. The edges bi+tci, cidi+t, and ci+tdi exist
by symmetry. By induction, there is an edge bici+t−1 in G∗

2 and thus ci+t−1 is in the
up-set of bi. In addition, there is an edge ci+t−1di+t ∈ E(G). In the down-set of ci+t, we
have the comparable vertices ai+t−1 and bi+t. As ai+t−1ci+t−1 and bi+tdi+t are edges in
G, we have a 2-flag from bi to ci+t.

Having B ≺ C ≺ D, we find a (p+1)-twist. We consider the r triangles induced by the
vertices bi, ci, and di for i = 1, . . . , r. As we only consider these triangles, we may assume,
without loss of generality, that b1 ≺ · · · ≺ br. We call a sequence of vertices increasing,
respectively decreasing, if their indices are increasing, respectively decreasing, in the
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e1 e2 e3

d1 d2 d3

c1 c2 c3

b1 b2 b3

a1 a2 a3

Figure 4.5: Upward planar drawing of the graph constructed in Example 4.3 with r = 3

di di+t−1 di+t

ci ci+t−1 ci+t

bi bi+t−1 bi+t

ai ai+t−1 ai+t

Figure 4.6: Partly augmented graph, where t = 2. The orange edge belongs to G+
2 and is

part of the 2-flag that creates the blue edge. The flag edges for the blue edge
are drawn thick.
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vertex ordering. If there is an increasing sequence of p+ 1 (not necessarily consecutive)
vertices in C, then we have a (p+ 1)-twist between these vertices and their neighbors
in B. Hence, there are at most p increasing vertices and by Erdős and Szekeres [22] we
have a decreasing sequence of p2 + 1 vertices v1, . . . , vp2+1 in C. Consider the neighbors
of v1, . . . , vp2+1 in D. Again by Erdős and Szekeres [22], we have an increasing or a
decreasing sequence of size p+ 1. In the first case, we have a (p+ 1)-twist consisting of
edges between B and D. In the second case, we have (p+ 1)-twist consisting of edges
between C and D. In either case, the constructed graph does not admit a p-page book
embedding.

The graph constructed in Example 4.3 is a subgraph of a triangulated grid considered
by Frati et al. [24], who showed that there is a book embedding with constant maximum
twist size. Following their approach, we construct a 6-page book embedding for arbitrary
r > 0. The chosen vertex ordering is a topological ordering of G∗

7 but not of G∗
2. We

define the vertex ordering as follows. The vertices of the levels A and B are laid out
alternatingly, that is a1 ≺ b1 ≺ a2 ≺ b2 ≺ · · · ≺ ar ≺ br. To the right of br, we have cr.
We then continue with cr−1 ≺ dr ≺ cr−2 ≺ dr−1 ≺ · · · ≺ c2 ≺ d3 ≺ c1 ≺ d2. Finally, we
have d1 ≺ e1 ≺ e2 ≺ · · · ≺ er. The book embedding is illustrated in Figure 4.7. All edges
are oriented from left to right since we have A∪B ≺ C ∪D ≺ E and for each i = 1, . . . , r,
we have ai ≺ {bi, bi+1} and ci ≺ {di, di+1}. Observe that the triangles considered in the
proof of Example 4.3 are not laid out as required by a topological ordering of G∗

2. In
particular, we do not have C ≺ D.

Two pages suffice for the edges between A and B and between C and D. Note that the
vertices in C and the vertices in D are laid out in reverse order, that is cj ≺ ci and dj ≺ di
for i < j. Because of that, the edges aici and bici, i = 1, . . . , r, can be embedded in a
single page. For the same reason, the edges bidi, i = 1, . . . , r, and bi+1ci, i = 1, . . . , r− 1,
do not cross. The remaining two pages are used for the edges between C, respectively D,
and E.

Recall that an acyclic G∗
k+1 is a necessary condition for G admitting a k-page book

embedding. However, for k 6 4 there are graphs G such that G∗
k has loops or larger

cycles as shown in Figures 4.8 and 4.9.
To conclude this section, we consider drawings of upward planar graphs whose flags do

not create cycles. Consider an upward planar graph G such that G∗
k is acyclic for some k

and let ≺ denote a topological ordering of G∗
k. As G is a subgraph of G∗

k, the ordering ≺
is also a topological ordering of G. Using a result by Giordano et al. [25] on a variant of
book embeddings, we conclude that G admits an upward plane drawing such that adding
the edges of G∗

k keeps the drawing upward. As every upward planar graph is a subgraph
of a maximal planar st-graph [35], it suffices to consider the latter.

An upward topological book embedding of a directed graph G is an upward plane drawing
such that the vertices of G lie on an oriented line in y-direction, called the spine. The
ordering in which the vertices occur on the spine is called the spine ordering. Note that
the spine ordering is a topological ordering of G. The spine divides the plane into two
half-planes that correspond to the pages of a 2-page book embedding. However, edges
may cross the spine in an upward topological book embedding. Given a topological
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a1 b1 a2 b2 a3 b3 a4 b4 c4 c3 d4 c2 d3 c1 d2 d1

a1 b1 a2 b2 a3 b3 a4 b4 c4 c3 d4 c2 d3 c1 d2 d1

c4 c3 d4 c2 d3 c1 d2 d1 e1 e2 e3 e4

Figure 4.7: 6-page book embedding for the graph constructed in Example 4.3 with r = 4
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Figure 4.8: A graph G such that G+
2 has a loop (left), G+

2 has a 2-cycle (middle),
respectively G∗

3 has a 2-cycle and loops (right). The orange edges belong to
G+

2 , respectively G+
3 , but not to G. The blue loops belong to G∗

3 but not to
G+

3 . The vertices that form the flag creating the orange left-to-right edge
and the flag creating the left loop are highlighted in black.

ordering ≺, an upward topological book embedding is called ≺-constrained if ≺ is used
as spine ordering.

Theorem 4.4 (Giordano et al. [25]). For every maximal planar st-graph G and every
topological vertex ordering ≺ of G, there is a ≺-constrained upward topological book
embedding.

Note that a ≺-constrained upward topological book embedding is, in particular, an
upward plane drawing such that the vertices are ordered in y-direction according to ≺.
Choosing a topological vertex ordering of G∗

k, we get the following corollary.

Corollary 4.5. Let k > 2 and let G be a maximal upward planar st-graph. If G∗
k is

acyclic, then there is an upward drawing of G∗
k that contains a plane drawing of G.

4.4 Lower Bounds
The previously best known lower bound on the maximum page number of upward planar
graphs is provided by Hung [33] with a planar poset requiring four pages. However,
we show that this poset admits a book embedding without 4-twists. In this section,
we present a small upward planar graph that has a 4-twist in every book embedding.
Building up on the previous section, we then construct a planar poset that has a 5-twist
in every book embedding and, in particular, requires five pages.

Hung’s [33] example for a planar poset with page number at least 4 is a 48-element
poset (see also [6]). We define a family of posets that contains their construction. For
i > 1, we define a poset Pi as follows, see Figure 4.10. We start with i elements c1, . . . , ci
having a common meet a and a common join e. We then add elements bj,j+1 and dj,j+1
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Figure 4.9: An upward planar graph whose augmented graph G∗
4 contains a cycle (top

left). The upward edges (blue) of the cycle are created using four vertical flag
edges each (top right). The horizontal edges of G∗

4 (orange) are created using
the thin edges of G (bottom left) and then connect the vertical flag edges for
the downward edge (green) of the cycle (bottom right).
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e

d1,2 d2,3

c1 c2 c3 … ci

b1,2 b2,3

a

Figure 4.10: Poset Pi

a bi,i−1 … b2,3 b1,2 c1 c2 c3 di,i−1 … d2,3 d1,2 e

Figure 4.11: 4-page book embedding for Pi

with four cover relations bj,j+1 6 cj , cj+1 6 dj,j+1 for each j = 1, . . . i− 1. The poset P3

has page number 3 [43] and Hung [33] showed that P16 requires four pages.

Theorem 4.6 (Hung [33]). The page number of P16 is at least 4.

Using an online framework for computing linear layouts by Bekos et al. [8], we obtain
a 3-page book embedding of P7 but already P8 requires four pages. On the other hand,
the upper bound of 4 holds not only for P16 but for all Pi.

Remark 4.7. For each i > 1, there is a 4-page book embedding for Pi.

Proof. We obtain a 4-page book embedding by choosing the vertex ordering a ≺ bi−1,i ≺
· · · ≺ b1,2 ≺ c1 ≺ · · · ≺ ci ≺ di−1,i ≺ . . . d1,2 ≺ e as shown in Figure 4.11. We use one
page for the edges bj,j+1cj and bj,j+1cj+1 and another page for the edges cjdj,j+1 and
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a b1,2 c1 b2,3 c2 d1,2 b3,4 c3 d2,3 c4 d3,4 e

Figure 4.12: A topological ordering of the cover graph of P4 that does not create a 4-twist

A1

A2

A3

A4

E1

E2

E3

E4

A2

B2,3

E2

D1,2

A1

A2 A3

A4

B3,4

B2,3

B1,2D3,4

D2,3

D1,2
B1,2

B2,3

B3,4

D1,2

D2,3

D3,4

Figure 4.13: Parts of the conflict graph H4

cj+1dj,j+1 for j = 1, . . . , i− 1. In both pages, the edges are pairwise incident or nesting.
The other two pages each contain a star with all edges incident to a, respectively e. Since
edges of a star cannot cross, both pages are crossing-free.

Despite requiring four pages in any book embedding, all of the constructed posets
admit a book embedding without 4-twist.

Remark 4.8. For each i > 1, there is a book embedding for Pi without 4-twist.

Proof. Let Gi denote the cover graph of Pi. We consider the vertex ordering a ≺ c1 ≺
· · · ≺ ci ≺ e, where bj,j+1 is inserted directly to the left of cj and dj,j+1 directly to the
right of cj+1 for j = 1, . . . , i − 1. See Figure 4.12 for an illustration. Note that the
b-vertices and d-vertices are inserted such that their incident edges are oriented to the
right. The edges incident to a, respectively e, are also oriented to the right as a is the
leftmost vertex and e is the rightmost vertex.

For ease of presentation, we consider the conflict graph Hi of Gi with respect to ≺.
That is, the vertex set of Hi consists of the edges of the cover graph Gi and two vertices
of Hi are adjacent if the respective edges cross. Note that a clique in Hi corresponds to
a twist in Gi of the same size. We call the vertices of Hi nodes and the edges conflicts
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to avoid ambiguities. Note that the edges bj,j+1cj and cj+1dj,j+1 do not cross any other
edge as their endpoints are consecutive in the vertex ordering. The respective nodes are
isolated in Hi and are omitted from now on. Observe that each edge of the cover graph
Gi is incident to exactly one c-vertex. We identify the edges by its other endpoint and
denote acj by Aj , cje by Ej , bj,j+1cj+1 by Bj,j+1, and cjdj,j+1 by Dj,j+1.

We now show that Hi does not contain a 4-clique. See Figure 4.13 for the described
parts of H4. First, observe that {Aj : j = 1, . . . , i} and {Ej : j = 1, . . . , i} are independent
sets in Hi since they form stars in Gi. The nodes Aj and E` have a conflict if and only
if j > `. In addition, Aj and Ej have conflicts with B-nodes and D-nodes if and only
if cj is between the endpoints of the respective B- or D-edge in the vertex ordering
of Gi. That is, AjB`,`+1, AjD`−1,`, B`,`+1Ej , and D`−1,`Ej are conflicts if and only if
j = `. In particular, each B-node and each D-node has conflicts with Aj and Ej for
exactly one j. Recall that AjEj is not a conflict. It follows that every triangle of the
conflict graph Hi contains at most one of A1, . . . , Ai, E1, . . . , Ei. However, each node
X ∈ {Aj , Ej : i = 1, . . . , i} has degree 2 in the subgraph of Hi induced by X and all
B-nodes and D-nodes and therefore is not contained in any 4-clique.

Hence, a possible 4-clique consists only of B-nodes and D-nodes. We observe that
the nodes B1,2, . . . , Bi−1,i form an induced path. To see this, note that bj,j+1 ≺ cj ≺
cj+1 ≺ bj+1,j+2 implies a crossing of the edges bj,j+1cj+1 and cjbj+1,j+2. On the other
hand, we have Bj,j+1 ≺ B`,`+1 for j + 1 < `, that is these two nodes have no conflict.
Analogously, the nodes D1,2, . . . , Di−1,i form an induced path. Finally, we consider
conflicts between a B-node and a D-node. The nodes Bj,j+1 (edge bj,j+1cj+1) and
Dj,j+1 (edge cjdj,j+1) have a conflict as we have bj,j+1 ≺ cj ≺ cj+1 ≺ dj,j+1. In
addition, we have conflicts Dj−1,jBj,j+1 due to the edges cj−1dj−1,j and bj,j+1cj+1 with
cj−1 ≺ bj,j+1 ≺ cj ≺ dj−1,j ≺ cj+1. Note that there is no conflict between Bj−1,jDj,j+1

as both edges are incident to cj . To conclude, we observe that we have Bj,j+1 ≺ D`,`+1

and Dj,j+1 ≺ B`,`+1 for j + 1 < `. Thus, there are no conflicts between these nodes. In
particular, the largest clique induced by B-nodes and D-nodes consists of three nodes.
It follows that the conflict graph Hi has no 4-clique and therefore the chosen vertex
ordering does not yield a 4-twist.

Next, we discuss graphs that have 4-twists in every book embedding. We start with a
small upward planar graph and then construct a planar poset.

Proposition 4.9. There is a 13-vertex upward planar graph that does not admit a book
embedding without 4-twist.

Proof. We construct the graph starting with two paths (b1, b2, b3, b4) and (d1, d2, d3, d4)
that are joined by the edges bidi for i = 1, 2, 3, 4. In each of the inner faces, we add a
vertex and connect it to all vertices incident to that face. That is, we add three vertices
c1, c2, c3 and the edges bici, bi+1ci, cidi, and cidi+1 for i = 1, 2, 3. Finally, we add a source
a that is incident to all bi and a sink e that is incident to all di. Figure 4.14 shows an
upward planar embedding.

We now analyze book embeddings of the constructed graph and show that every book
embedding has a 4-twist. Consider the edges bidi for i = 1, 2, 3, 4 and assume they do
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d1

d2

d3

d4

c1

c2

c3

b1

b2

b3

b4

a

e

Figure 4.14: Upward planar graph that does not admit a book embedding without 4-twist

a b1 b2 b3 d1 b4 d2 d3 d4 e

(a) The edges b1d1, b2d2, b3, d3 and b2d2, b3d3, b4d4 each form a 3-twist.

a b1 b2 c1 d1 b3 c2 d2 d3 e

(b) The edges b1d1, b2d2, and b3, d3 do not form a 3-twist.

Figure 4.15: 4-twists in book embeddings of the upward planar graph constructed for
Proposition 4.9
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a b1 b2 c1 d1 b3 c2 d2 b4 c3 d3 d4 e

(a) Only the edges bidi and the edges incident to some ci

a b1 b2 c1 d1 b3 c2 d2 b4 c3 d3 d4 e

(b) Only the paths consisting of b-vertices, respectively d-vertices, and edges incident to a or e

a b1 b2 c1 d1 b3 c2 d2 b4 c3 d3 d4 e

(c) The complete book embedding

Figure 4.16: 4-page book embedding of the graph constructed for Proposition 4.9

not form a 4-twist. We observe that di is reachable from bi+1 for i = 1, 2, 3. Thus, we
have bi ≺ bi+1 ≺ di ≺ di+1, and the edges bidi and bi+1di+1 cross. Hence, the maximal
twists formed by the four considered edges bidi are 2-twists or 3-twists. We distinguish
whether all of these maximal twists are 3-twists or whether there is some 2-twist. In
both cases we have a ≺ b1 and d4 ≺ e as the respective edges exist.

The first case is shown in Figure 4.15a. The first three edges (i.e. bidi for i = 1, 2, 3)
and the last three edges (i.e. bidi for i = 2, 3, 4) each form a 3-twist. That is, we have
b1 ≺ b2 ≺ b3 ≺ d1 ≺ b4 ≺ d2 ≺ d3 ≺ d4. It follows that the edges ab4, b2d2, b3d3, and b1e
form 4-twist.

Now, assume that the three edges bidi do not form a 3-twist for i = 1, 2, 3 or for
i = 2, 3, 4. Without loss of generality, this is the case for i = 1, 2, 3 as shown in
Figure 4.15b. Hence, we have b1 ≺ b2 ≺ d1 ≺ b3 ≺ d2 ≺ d3. Inserting a, c1, c2, and e, we
get a ≺ b2 ≺ c1 ≺ d1 ≺ b3 ≺ c2 ≺ d2 ≺ e, which implies a 4-twist consisting of the edges
ab3, b2c2, c1d2, and d1e. We conclude that there is a 4-twist in all cases.

Note that the graph constructed for Proposition 4.9 has a 4-page book embedding,
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(1, 1)

(1, 2)

(1, 3)

(1, 4)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(3, 1)

(3, 2)

(3, 3)

(3, 4)

(4, 1)

(4, 2)

(4, 3)

(4, 4)

Figure 4.17: A 4× 4 upward grid. Consider the vertex (2, 2). The first left upper vertex
is (3, 2), the second left upper vertex is (4, 1), the first right upper vertex is
(2, 3), and the second right upper vertex is (1, 4).

which is shown in Figure 4.16. We also remark that the graph is upward planar but not
the cover graph of a poset.

4.4.1 5-Twists
Next, we use the concept of k-flags introduced in Section 4.3 to first construct an upward
planar graph that has a 5-twist in every book embedding. We then find this graph in the
augmented graph G∗

5 of the cover graph G of a planar poset.
Recall that for an upward planar graph G, the graph G∗

5 denotes the graph that is
augmented with all edges vw for which there is a 5-flag from v to w (including the
flags created after partly augmenting the graph). By Lemma 4.2, the spine ordering of
any book embedding of an upward planar graph G that does not have a 5-twist is a
topological ordering of G∗

5. The following lemmas build on arguments used in the proof of
Example 4.3 and the graph we now construct contains that of Example 4.3 as a subgraph.

For any n > 0, we define an n× n upward grid Gridn as follows (see Figure 4.17). The
vertex set of Gridn consists of vertices (`, r) for 1 6 `, r 6 n. The vertices are partitioned
into levels, where level Lh contains the vertices (`, r) with `+r = h. The edge set of Gridn

consists of three subsets. There are left edges containing the edges (`, r)(`+1, r) for each
r = 1, . . . , n and ` = 1, . . . , n−1. Symmetrically, the edges (`, r)(`, r+1) for ` = 1, . . . , n
and r = 1, . . . , n− 1 are called right edges. Finally, we have edges (`, r)(`+ 1, r + 1) for
1 6 `, r 6 n− 1 and call them vertical edges.

Consider a vertex v = (`v, rv) in some level Lh of an upward grid. A vertex w = (`w, rw)
in level Lh+1 is called an i-th left (right) upper vertex of v if `w = `v + i (rw = rv + i). A
vertex that is an i-th left upper vertex or an i-th right upper vertex of v is also called an
i-th upper vertex of v. Note that every vertex in Lh+1 is an i-th upper vertex of v for
some i > 0.

Based on an n× n upward grid, we define an n× n N-grid, which we denote by Nn,
where n is an integer. We then show that an n× n N-grid has a 5-twist in every book
embedding for large n. An n×n N-grid contains an n×n upward grid as a subgraph and
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(`, r)

(`, r + 1)(`+ 1, r)

(`+ 1, r + 1)

b

a

(`, r)

(`, r + 1)(`+ 1, r)

(`+ 1, r + 1)

c

d

Figure 4.18: Parts of an N-grid with N-vertices a = a`,r, b = b`,r, c = c`,r, and d = d`,r.
The N-edges are highlighted orange.
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an additional vertex in each face of Gridn. The additional vertices are called N-vertices,
whereas the vertices that belong to Gridn are called grid vertices. See Figure 4.18 for an
illustration. Consider two triangles in Gridn that share a vertical edge. That is, they
consist of vertices (`, r), (`+ 1, r), (`, r + 1), and (`+ 1, r + 1) as shown in Figure 4.18.
If `− r is even, then we insert a vertex a`,r into the left triangle and add edges (`, r)a`,r,
a`,r(` + 1, r), and a`,r(` + 1, r + 1). In addition, we insert a vertex b`,r together with
the edges (`, r)b`,r, (`, r + 1)b`,r, and b`,r(` + 1, r + 1) into the right triangle in this
case. If `− r is odd, then we insert vertices c`,r and d`,r into the right, respectively left,
triangle and add edges (`, r)c`,r, c`,r(`, r + 1), c`,r(` + 1, r + 1), (`, r)d`,r, (` + 1, r)d`,r,
and d`,r(` + 1, r + 1). We call an edge that is vertical or of the form a`,r(` + 1, r + 1),
(`, r)b`,r, c`,r(`+1, r+1), or (`, r)d`,r an N-edge (note that they form N-shapes, compare
Figure 4.18). We keep the definitions of levels and upper vertices, where the N-vertices
do not belong to any level.

The rest of this chapter is devoted to proving that a sufficiently large N-grid yields
a 5-twist with every vertex ordering and then to construct a poset whose augmented
cover graph contains an N-grid. For this, we consider the graph N∗

n,5 that results from
augmenting Nn via 5-flags. Recall that every vertex ordering that is not a topological
ordering of N∗

n,5 yields a 5-twist. Hence, we only need consider topological orderings
of N∗

n,5. To find an N-grid in the poset that we construct at the end of this chapter,
we make use of edges that are created by 5-flags and do not belong to the cover graph.
However, flag edges have to be edges of the original graph, which is why we need to keep
track of which edges are used as flag edges. The next lemma separates the levels of an
N-grid given that the vertex ordering is a topological ordering of N∗

n,5.

Lemma 4.10. For every n > 0, there is an n′ > n such that every book embedding (P,≺)
of Nn′ that uses a topological ordering of N∗

n′,5 as spine ordering, contains a copy of Nn

such that the levels of Nn are separated by ≺. That is, we have L2 ≺ · · · ≺ L2n for the
levels Lh, h = 2, . . . , 2n, of Nn. Moreover, the statement still holds if we replace all edges
except for the N-edges by edges in N∗

n′,5, that is only N-edges may be used as flag edges.

Proof. We show by induction on i that for any i > 0 and any n > 0, there is an n′ > n
such that N∗

n′,5 contains a copy of Nn, where each grid vertex of Nn has edges in N∗
n′,5

to all its i-th upper vertices. We thereby only use N-edges as flag edges to augment Nn′

to N∗
n′,5. Note that we quantify n in each induction step. We then conclude for n = i

that in every book embedding of Nn whose spine ordering respects the orientation of
the additional edges of N∗

n′,5, all vertices of level Lh are to the left of all vertices of the
subsequent level Lh+1 for h = 2, . . . , 2n− 1.

Observe that each grid vertex is adjacent to its first left upper vertex via a left edge
and to its first right upper vertex via a right edge, which settles the base case i = 1. Let
i > 1 and assume that we find an Nn+2 such that every vertex v in Nn+2 has edges to
all j-th upper vertices for 0 < j < i. We first drop all grid vertices on the outer face of
Nn+2 then remove all N-vertices that are now on the outer face. This yields an n× n
N-grid Nn. Note that for every grid vertex in Nn the incoming vertical edge and the
outgoing vertical edge is an edge of Nn+2. We next find a 5-flag from each grid vertex of
Nn to its i-th upper vertices in Nn.
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w1

w2

w4

w5

v1

v3

v4

v5

v2

w3

Figure 4.19: 5-Flag from v = v1 to w = w5, where w is the second right upper vertex of v

Consider a grid vertex v = (`v, rv) of Nn. Without loss of generality, we assume that
`v − rv is even. Swap left and right otherwise. Let w = (`w, rw) ∈ E(Nn) denote the i-th
right upper vertex of v. By definition of an i-th right upper vertex, we have rw = rv + i.
As the two vertices are in consecutive levels, we have `v + rv = h and `w + rw = h+ 1,
where Lh is the level of (`v, rv). It follows that `w = `v − i+ 1.

Now, consider the vertices

w1 = (`v − 1, rv − 1),

w2 = (`v − 1, rv),

w3 = c`v−1,rv ,

w4 = (`v − 1, rv + 1), and
w5 = (`v − i+ 1, rv + i) = w.

See Figures 4.19 and 4.20 for an illustration. These five vertices form the lower part of
the desired 5-flag. Note that w1 is connected to v by a vertical edge and thus is a vertex
of Nn+2. We observe that w1, . . . , w5 are pairwise comparable. The first four vertices
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w5

w1

w2

w4

v5

v1

v3

v4

v2

w3

Figure 4.20: 5-Flag from v = v1 to w = w5, where w is the third right upper vertex of v.
The orange edges exist by induction.
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form a path in Nn+2. The vertices w4 and w5 are incomparable in Nn+2 (unless i = 2)
but there is an edge w4w5 ∈ E(N∗

n+2,5) by induction. To see this, observe that w4 and w5

are in consecutive levels as (`v − i+1+ rv + i)− (`v − 1+ rv +1) = 1. The r-coordinates
of the two vertices differ exactly by i− 1 and thus w5 is an (i− 1)-st right upper vertex
of w4.

Next, consider the vertices

v1 = (`v, rv) = v,

v2 = d`v−1,rv ,

v3 = (`v, rv + 1),

v4 = (`v, rv + 2), and
v5 = (`w + 1, rw + 1) = (`v − i+ 2, rv + i+ 1).

These five vertices serve as the upper part of the 5-flag from v to w. Again, we find that
there is a path connecting the five vertices in N∗

n+2,5. First, the edges v1v2 and v2v3 exist
by construction of an N-grid. The edge v3v4 is a right edge in Gridn+2. We obtain the
remaining edge v4v5 by induction as v5 is an (i− 1)-st right upper vertex of v4. Finally,
we find the desired flag by observing that w1v1, w4v4, and w5v5 are vertical edges (and
in particular N-edges), while w2v2 and w3v3 are non-vertical N-edges.

The proof for the i-th left upper vertex works symmetrically, except for that we first
use edges we obtain be induction and then use N-vertices to find the remaining four flag
edges. Let w = (`w, rw) = (`v + i, rv − i+ 1) ∈ E(Nn) denote the i-th left upper vertex
of v. We find a 5-flag from v to w using the vertices

w1 = (`w − i− 1, rw + i− 2) = (`v − 1, rv − 1),

w2 = (`w − 2, rw),

w3 = (`w − 1, rw),

w4 = a`w−1,rw , and
w5 = (`w, rw) = w

for the lower part, while the upper part is formed by the vertices

v1 = (`w − i, rw + i− 1) = v,

v2 = (`w − 1, rw + 1),

v3 = b`w−1,rw ,

v4 = (`w, rw + 1), and
v5 = (`w + 1, rw + 1).

See Figures 4.21 and 4.22 for an illustration. Note that the coordinates of w3 have an
even difference as (`w − 1) − rw = (`v + i − 1) − (rv − i + 1) = `v − rv + 2i − 2, which
means that we indeed have the claimed a- and b-vertices. The edges w1w2 and v1v2 exist
by induction, the other vertices are connected by two paths in Nn+2. Again, the flag
edges wivi are N-edges for i = 1, . . . , 5, which completes the 5-flag from v to w.
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w1

w2

v1w3

v2w5

v4

v5

v3

w4

Figure 4.21: 5-Flag from v = v1 to w = w5, where w is the second left upper vertex of v
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w1

v1

w2

w3

v2w5

v4

v5

v3

w4

Figure 4.22: 5-Flag from v = v1 to w = w5, where w is the third left upper vertex of v.
The orange edges exist by induction.
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w1

w2

w3

w4

v1

v2

v3

v4

w2

w3

w4

w1

v2

v3

v4

v1

Figure 4.23: 4-flag from v = v1 to w = w4, where w is the second right upper vertex
(left), respectively the third right upper vertex of v (right)

We remark that the same argumentation as for Nn in the proof of Lemma 4.10 works
for Gridn if we use 4-flags instead of 5-flags. For this, the two non-vertical N-edges in
each 5-flag are replaced by a vertical edge as shown in Figure 4.23. Also note that the
graph shown in Figure 4.9 whose augmented graph G∗

4 contains a cycle is a subgraph of
an N-grid.

We next use the separated levels of an N-grid the find large twists. Note that the
following proposition strengthens Example 4.3 in that it uses 5-flags instead of 2-flags.
Also recall that if the maximum page number among upward planar graphs is bounded
by some constant c, then every optimal book embedding of an upward planar graph uses
a topological ordering of G∗

k as spine ordering, for some k 6 c+ 1. We show that such a
k, if it exists, is at least 6.

Proposition 4.11. For every p > 0, there is an upward planar graph G such that no
topological ordering of G∗

5 admits a p-page book embedding.

Proof. Following the ideas of Example 4.3, we find r = p3+1 triangles whose vertices are
ordered by the levels of an n× n N-grid, where n = r + 1. For this, consider the levels
Ln, Ln+1, and Ln+2 of Nn. See Figure 4.24 for an example. Observe that each of these
levels has at least r vertices. For i = 1, . . . , r, we define a triangle Ti consisting of the
vertices xi = (n− i, i) ∈ Ln, yi = (n− i, i+1) ∈ Ln+1, and zi = (n− i+1, i+1) ∈ Ln+2.
We fix a book embedding whose spine ordering ≺ is a topological ordering of G∗

5. By
Lemma 4.10, we may assume that Ln ≺ Ln+1 ≺ Ln+2.

We now define an ordering ≺T on the triangles and use it to find a (p+ 1)-twist. We
define Ti ≺T Tj if and only if xi ≺ xj . We then say a sequence of vertices yi1 , . . . , yis is
increasing if their ordering corresponds to ≺T , that is if yi ≺ yj if and only if Ti ≺T Tj
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Figure 4.24: Three triangles in N4 with vertices in levels L4, L5, L6 (bottom to top)

for every i, j = i1, . . . , is. Similarly, a sequence of vertices yi1 , . . . , yis is called decreasing
if their reverse ordering corresponds to ≺T , that is if yj ≺ yi if and only if Ti ≺T Tj for
every i, j = i1, . . . , is. Increasing and decreasing sequences of vertices in level Ln+2 are
defined analogously.

We now only consider the subgraph of Nn that is induced by the triangles T1, . . . , Tr.
That is, a neighbor of a vertex v refers to a vertex in the same triangle as v. If there is
an increasing sequence of p+ 1 (not necessarily consecutive) vertices in Ln+1, then we
have a (p+1)-twist between these vertices and their neighbors in Ln. Hence, there are at
most p increasing vertices and by Erdős and Szekeres [22] we have a decreasing sequence
of p2 + 1 vertices v1, . . . , vp2+1 in Ln+1. Consider the neighbors of v1, . . . , vp2+1 in Ln+2.
Again by Erdős and Szekeres [22], we have an increasing or a decreasing sequence of size
p+ 1. In the first case, we have a (p+ 1)-twist consisting of edges between Ln and Ln+2.
In the second case, we have (p+ 1)-twist consisting of edges between Ln+1 and Ln+2. In
either case, the constructed graph does not admit a p-page book embedding.

The next lemma again restricts which edges we use as flag edges. Edges that are not
used as flag edges can then be replaced by flags to obtain a poset with page number at
least 5.

Lemma 4.12. There is an n such that every book embedding of an n× n N-grid has a
5-twist that uses only N-edges and right edges as flag edges.

Proof. Similar to the proof of Proposition 4.11, we find many copies of a small graph in an
N-grid whose levels are separated in the spine ordering. Recall that Lemma 4.10 separates
the levels of an N-grid using only N-edges as flag edges. Here, the small subgraphs consist
only of vertical edges and right edges. We then find a 5-twist using multiple of these
copies.

We choose a large n with n ≡ 1 mod 3 in the course of the proof and first define
pairwise disjoint subgraphs G1, . . . , G(n−1)/3 whose vertices are contained in six levels
of Nn, see Figure 4.25. For i = 1, . . . , (n− 1)/3, the subgraph Gi consists of the vertices
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a′

b′′

a

b′

c′

d′′

b

c

d′

e′

d

e

f ′

Figure 4.25: Subgraph G1 in an 4× 4 N-grid

ai = (n− 2− 3(i− 1), 1 + 3(i− 1)) ∈ Ln−1,
a′i = (n− 3− 3(i− 1), 2 + 3(i− 1)) ∈ Ln−1,
bi = (n− 1− 3(i− 1), 1 + 3(i− 1)) ∈ Ln,
b′i = (n− 2− 3(i− 1), 2 + 3(i− 1)) ∈ Ln,
b′′i = (n− 3− 3(i− 1), 3 + 3(i− 1)) ∈ Ln,
ci = (n− 1− 3(i− 1), 2 + 3(i− 1)) ∈ Ln+1,
c′i = (n− 2− 3(i− 1), 3 + 3(i− 1)) ∈ Ln+1,
di = (n − 3(i− 1), 2 + 3(i− 1)) ∈ Ln+2,
d′i = (n− 1− 3(i− 1), 3 + 3(i− 1)) ∈ Ln+2,
d′′i = (n− 2− 3(i− 1), 4 + 3(i− 1)) ∈ Ln+2,
ei = (n − 3(i− 1), 3 + 3(i− 1)) ∈ Ln+3,
e′i = (n− 1− 3(i− 1), 4 + 3(i− 1)) ∈ Ln+3, and
f ′
i = (n − 3(i− 1), 4 + 3(i− 1)) ∈ Ln+4.

The edges of Gi are the vertical and right edges with both endpoints in Gi. We call the
graphs G1, . . . , G(n−1)/3 copies.

Consider a book embedding that does not have a 5-twist consisting of N-edges. By
Lemma 4.10, we may assume that the levels of Nn are separated, that is we have
Lh ≺ Lh+1 for h = 2, . . . , 2n− 1. We aim to find a 5-twist consisting of edges of some
copies. As the copies contain only vertical edges and right edges, this gives a 5-twist
consisting of vertical and right edges.

Let X = {a, a′, b, b′, b′′, c, c′, d, d′, d′′, e, e′, f ′} denote a set of thirteen elements repre-
senting the respective vertices in some copy Gi. Two corresponding vertices xi and xj in
different copies are called twin vertices and two edges xiyi ∈ E(Gi) and xjyj ∈ E(Gj)
are called twin edges for x, y ∈ X. Now, consider two copies Gi and Gj with i < j. We
define a vector vij , indexed by X, that indicates the order of each pair of corresponding
vertices of Gi and Gj . That is, for x ∈ X we define

vijx =

{
forward if xi ≺ xj

backward if xi � xj .

We call vij the interleaving vector of Gi and Gj .
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Next, we argue that for large enough n, there is an arbitrary number of copies satisfying
the following conditions.

(i) The interleaving vector is the same for each pair of copies.

(ii) Each two twin edges are nesting.

(iii) Twin vertices of each two copies are laid out in the same order. That is, if xi and
yi are vertices in some copy and xj and yj are their twin vertices in another copy,
then we have xi ≺ yi if and only if xj ≺ yj .

For Condition (i), we consider the complete graph K having the copies G1, . . . , G(n−1)/3

as vertex set. We color each edge of K with the interleaving vector of its endpoints. Note
that we have at most 2|X| = 213 colors. By the multi color Ramsey theorem [46], for
each k there is an n such that every edge-coloring of K(n−1)/3 with 213 colors contains a
monochromatic complete graph on k vertices. This monochromatic complete graph then
corresponds to k copies having pairwise the same interleaving vector.

To justify the second condition, note that all twin edges have endpoints in two distinct
levels. Hence, any two twin edges are crossing or nesting. We observe that twin edges of
k copies with pairwise the same interleaving vector form a k-twist or a k-rainbow. We
choose n large enough such that there are at least five copies having pairwise the same
interleaving vector. If we have crossing twin edges, then we have a 5-twist and are done.
Hence, the twin edges nest.

For Condition (iii), note that there are only three levels containing two vertices of
the same copy and only two levels containing three vertices. Thus, there are at most
23 · 62 = 288 possibilities to lay out each copy. We choose 288(k − 1) + 1 copies that
satisfy Conditions (i) and (ii). This yields k copies whose vertices are laid out in the
same order and thus satisfy all three conditions, for any k.

From now on, we assume that all considered copies satisfy Conditions (i) to (iii). We
continue the proof by finding configurations that imply twists, given that we have at
least five copies satisfying the first three conditions. We write G for an arbitrary copy
Gi. That is, if we say that G contains a certain subgraph, then we mean that each copy
contains this subgraph. The following configurations are shown in Figure 4.26.

(iv) Consider six vertices u ≺ v ≺ w ≺ x ≺ y ≺ z in G together with the edges
uw, vw,wy, and wz forming a star and the edge vx. If such a configuration exists,
then there is a 5-twist.

(v) Symmetrically, consider six vertices u ≺ v ≺ w ≺ x ≺ y ≺ z in G together with the
edges ux, vx, xy, and xz forming a star and the edge wy. If such a configuration
exists, then there is a 5-twist.

To find the claimed 5-twists, we take five copies G1, . . . , G5. We consider Configura-
tion (iv). The 5-twist in Configuration (v) exists by symmetry. Without loss of generality,
we assume w1 ≺ · · · ≺ w5. Since the edges v1w1, . . . , v5w5 nest by Condition (ii), we
conclude v5 ≺ · · · ≺ v1. Analogously, the edges v1x1, . . . , v5x5 imply x1 ≺ · · · ≺ x5.
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u

v

w

x y

z

u v w x y z (iv)
 u4 v5 v1 w2 w3 w4 w5 x1 y2 z3

u

v w

x

y

z

u v w x y z (v)
 u2 v2 w5 x1 x2 x3 x4 y5 y1 z2

Figure 4.26: Configurations that imply a 5-twist

b′′ b′ b c′ c d′′ d′ d e′ e

Figure 4.27: 5-twist in Nn. The vertex ordering inside each level is established by
Configurations (iv) and (v).

As we have x ≺ y in Configuration (iv), we obtain x1 ≺ x2 ≺ y2. Together, this gives
u4 ≺ v5 ≺ v1 ≺ w2 ≺ w3 ≺ w4 ≺ w5 ≺ x1 ≺ y2 ≺ z3 and a 5-twist consisting of the edges
u4w4, v5w5, v1x1, w2y2, and w3z3.

We now set out to identify the vertex ordering of some copy. Recall that all copies
have the same vertex ordering by Condition (iii). We omit the indices indicating the copy
therefore. As the graph is laid out level-wise, we only need to consider pairs of vertices
that are in the same level. We first find the ordering of the vertices b and b′. Suppose
we have b ≺ b′. Then we have Configuration (v) consisting of the vertices a, b, b′, c, d′,
and e, which implies a 5-twist. Analogously, we obtain b′′ ≺ b′. Symmetrically, we
get Configuration (v) consisting of the vertices a, b, c, d, d′, and e if d ≺ d′. Again, we
also have d′′ ≺ d′. The same configurations show up one level higher. That is, the
vertices b′, c, c′, d′, e′, and f ′ form Configuration (v) if c ≺ c′. If e ≺ e′, then the vertices
b′, c, d′, e, e′, and f ′ form Configuration (iv). Hence, we need c′ ≺ c and e′ ≺ e to avoid a
5-twist.

However, we now have b′′ ≺ b′ ≺ b ≺ c′ ≺ c ≺ d′′ ≺ d′ ≺ d ≺ e′ ≺ e (see Figure 4.27),
which implies a 5-twist consisting of the edges b′′d′′, b′d′, bd, c′e′, and ce.

Note that increasing the size of the copies yields twists of arbitrary size, given that we
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(` + 1, r)

(`, r)

v1

v5

w1

w5

Figure 4.28: Replacing left edges by 5-flags

use a topological ordering of N∗
n,5, similar to Proposition 4.11 where we find arbitrarily

many triangles. However, if we choose a spine ordering that is a topological ordering of
N∗

n,6 but not of N∗
n,5, we loose the separated levels that are guaranteed by Lemma 4.10.

We are now ready to construct a poset based on an N-grid.

Theorem 4.13. There is a planar poset that does not admit a vertex ordering without
5-twist.

Proof. We choose n such that every book embedding of Nn has a 5-twist using only
N-edges and right edges as flag edges by Lemma 4.12. We construct a poset P = (X,<)
with cover graph G such that G+

5 contains Nn as a subgraph, where all N-edges and right
edges are edges of G, while the other edges are created by 5-flags. Lemma 4.12 then
shows that G does not admit a book embedding without 5-twist.

We start with the vertex set of Gridn, that is {(`, r) ∈ Z2 : 1 6 `, r 6 n} ⊆ X. Between
these elements, we have cover relations (`, r) < (`+1, r+1) for 1 6 `, r < n corresponding
to vertical edges and (`, r) < (`, r+1) for ` = 1, . . . , n and r = 1, . . . , n−1 corresponding
to right edges.

Next, we add 5-flags that result in the missing left edges as shown in Figure 4.28.
For this, consider two elements (`, r) and (` + 1, r) in X, where ` = 1, . . . , n − 1 and
r = 1, . . . , n. We add five elements v`,r1 , . . . , v`,r5 with cover relations (`, r) < v`,r1 <

· · · < v`,r5 . Similarly, we add another five elements w`+1,r
1 , . . . , w`+1,r

5 with cover relations
w`+1,r
1 < · · · < w`+1,r

5 < (` + 1, r). Finally, we introduce cover relations w`+1,r
i v`,ri for

i = 1, . . . , 5. Note that (`, r) and (` + 1, r) together with the ten new vertices form a
5-flag from (`, r) to (`+ 1, r) in G. That is, all left edges of Gridn occur in G+

5 and we
conclude that Gridn ⊆ G+

5 .
We continue by adding the N-vertices to G as shown in Figure 4.29. Consider an

element (`, r) ∈ X with `, r < n. For ` and r with even difference, we add elements a`,r
and b`,r with cover relations a`,r(` + 1, r + 1) and (`, r)b`,r. In addition, we introduce
new elements forming 5-flags from (`, r) to a`,r, from a`,r to (`+ 1, r), from (`, r + 1) to
b`,r, and from b`,r to (`+ 1, r + 1) as above. If `− r is odd, then we insert elements c`,r
and d`,r. We add edges cover relations c`,r(` + 1, r + 1) and (`, r)d`,r and 5-flags from
(`, r) to c`,r, from c`,r to (`, r + 1), from (`+ 1, r) to d`,r, and from d`,r to (`+ 1, r + 1).
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(`, r)

(`, r + 1)(`+ 1, r)

(`+ 1, r + 1)

b

a

(`, r)

(`, r + 1)(`+ 1, r)

(`+ 1, r + 1)

c

d

Figure 4.29: N-vertices and 5-flags in the cover graph of the poset constructed for Theo-
rem 4.13 (bottom) in comparison with the N-edges of Nn, where a = a`,r,
b = b`,r, c = c`,r, and d = d`,r (top)

Figure 4.30: Cover relations between elements that are represented by vertices of Nn

(black). The gray edges connect elements that share an edge in the augmented
cover graph G+

5 but are incomparable in P .
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We observe that each added flag is the cover graph of a planar poset. Also note that
adding the 5-flags keeps the cover graph planar and does not create new relations between
the vertices of Nn. That is, the cover relations between these elements correspond to
the N-edges and right edges in the cover graph. See Figure 4.30 for an illustration. We
conclude that P is indeed the cover graph of a poset.

Recall that a k-twist in every book embedding is stronger than having page number at
least k as circle graphs are not perfect. Nevertheless, we stress the following corollary of
Theorem 4.13.

Corollary 4.14. There is a planar poset which requires at least five pages in every book
embedding.

64



5 Conclusions

In this thesis, we investigated local and union ordered covering numbers of complete
graphs, track layouts of 2-trees, and book embeddings of upward planar graphs and
planar posets. In particular, we showed bounds for the local page number, the local
queue number, and the union queue number of complete graphs that are tight up to
a constant additive term. However, there remains a gap between the lower bound of
n/3 + Θ(1) and the upper bound of 4n/9 + Θ(1) on the union page number of Kn.

Question 5.1. What is the union page number of complete graphs?

It also remains open to find the exact maximum track number of 2-trees between our
lower bound of 7 and the upper bound of 15 by Di Giacomo et al. [16]. For arbitrary
k, the lower bound on the maximum track number of k-trees is quadratic [19], while
the upper bound is 2O(k2) [48]. It would be interesting to see whether our approach for
2-trees also works for larger k, possibly resulting in a cubic lower bound.

Question 5.2. What is the maximum track number of graphs with treewidth k, especially
for k = 2?

Finally, we augmented upward planar graphs with further edges to find possible vertex
orderings for book embeddings with small maximum twist size. In particular, we showed
that for any upward planar graph G, the augmented graph G∗

k+1 is acyclic if the page
number of G is at most k. For small k up to 4, however, we presented upward planar
graphs whose augmented graphs contain cycles. We do not know whether such cycles
exist for larger k and whether it helps to forbid transitive edges.

Question 5.3. Is there a k such that for every upward planar graph G, the augmented
graph G∗

k is acyclic?

Question 5.4. Is there a k such that for every planar poset with cover graph G, the
augmented graph G∗

k is acyclic?

Note that acyclicity is necessary but not sufficient to avoid k-twists. For instance, an
n× n N-grid is acyclic when augmented by 5-flags but does not admit a vertex ordering
without 5-twist. However, using 4-flags instead does create cycles (see Figure 4.9). We
propose to investigate how large this gap can be.

Question 5.5. Is there a function f such that every upward planar graph (cover graph
of a planar poset) G with acyclic G∗

k satisfies pn(G) 6 f(k)?
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Figure 5.1: Assume there is a path (orange) from w4 to v1 in the augmented graph. We
insert the edge w4w3 to avoid a 4-flag from v1 to w4 as this would result in
the orange dashed edge closing a cycle. The left graph is an illustration of
the setting. However, it is not clear whether the orange path can be realized
in this embedding. In contrast, the paths in the middle and right graph can
be created by an edge and by a flag from w4 to v1, respectively.

Given a fixed vertex ordering, recall that the page number is bounded by the maximum
twist size [14]. That is, we may as well replace page number by maximum twist size
in this question. A negative answer in particular would mean that the page number of
upward planar graphs, respectively planar posets, is unbounded, answering longstanding
open problems [15, 24, 30, 43]. On the other hand, an affirmative answer would give
new hope to find upper bounds on the page number of upward planar graphs and planar
posets. In the particular case of a constant upper bound, it would suffice to answer
Questions 5.3 and 5.4 affirmatively. That is, the condition that there is some k such
that G∗

k is acyclic for every upward planar graph G would be not only necessary but also
sufficient.

Although k-flags that are laid out in the wrong order are a natural way to cause large
twists, there is no obvious reason why this should be the only way. We are thus interested
in more constraints on the vertex ordering. For instance, assume we try to avoid k-twists
and there is a graph in which adding some edge vw yields a k-flag that closes a cycle,
where vw is not used as flag edge (see Figure 5.1). Then we certainly may insert the
edge wv, i.e. enforce w ≺ v, as a cycle results in a k-twist. Note that we use the same
argument for Configurations (iv) and (v) in the proof of Lemma 4.12, see Figure 5.2.

In addition, we can translate Conditions (i) to (iii) of the proof of Lemma 4.12 into a
setting in which we only consider copies instead of the whole graph but in return have
stronger constraints how edges inside and between these copies are directed, as indicated
in Figure 5.2. For instance, if we have sufficiently many copies, we may fix an ordering of
some copies and then know that edges between a set of twin vertices are all forward or
all backward. Note that the order of the copies does not necessarily correspond to the
left-to-right order in an upward planar embedding. However, finding flags does not rely
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v w

Figure 5.2: Five copies of a subgraph considered in Configuration (iv) in the proof of
Lemma 4.12. The vertices are ordered level-wise, i.e. we already have edges
between each two vertices that are not in the same level (omitted here except
for three). The dotted edges are justified by Conditions (i) to (iii). If there is
an edge from v to w, then we have a 5-flag (blue with green flag edges) that
creates the orange dashed edge closing a cycle. We hence insert the edge wv.

on the embedding. Following the ideas of Lemma 4.12, we find a cycle in such a stronger
augmentation of an N-grid, which is another (but very similar) proof of that lemma. We
conclude by asking for stronger ways to augment an upward planar graph such that a
vertex ordering that does not result in k-twists needs to be a topological ordering of the
augmented graph. Questions 5.3 to 5.5 are naturally transferred to such an augmented
graph.
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