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Shooting Bricks with Orthogonal Laser Beams:
A First Step towards Internal/External Map Labeling

Maarten Löffler∗ Martin Nöllenburg†

Abstract

We study several variants of a hybrid map labeling prob-
lem that combines the following two tasks: (i) a set A
of points in a rectangle R needs to be labeled with rect-
angular labels on the right boundary of R using (axis-
aligned) orthogonal one-bend polylines called leaders to
connect points and labels; (ii) a maximum subset B′ of
a set B of fixed internal congruent rectangular labels in
R needs to be selected such that B′ is an independent
set of labels and no leader intersects any label in B′. We
also call the points in A aliens, the labels of B bricks,
and the leaders laser beams. Then the problem trans-
lates into every alien shooting a laser beam so that in
total as few bricks as possible are destroyed. We pro-
vide algorithms and NP-hardness results for different
variants of the problem.

1 Introduction

Assume that we are given a rectangular map R with
n points that are to be labeled by rectangular labels.
It is required for readability of the map that no label
overlaps another label or any of the input points. In
internal labeling models, each label must be close to the
labeled point, i.e., it usually needs to touch the point
on its boundary. For instance, in the p-position model
for p ∈ {1, 2, 4} labels must touch the points at one of
p admissible corners. Maximizing the number of labels
that can be placed is NP-hard for p = 2 and p = 4 and
in some cases even for p = 1 [4,7].

An alternative external labeling model, in which all
n input points can always be labeled (for sufficiently
large R), is known as boundary labeling [1–3,6]. In this
model all labels are placed on one, two, or four sides of
the boundary of R. Points are connected to their la-
bels with arcs called leaders. In order to keep the map
clean, leaders are usually required to be crossing-free
and to have a prescribed simple shape, e.g., rectilinear
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Figure 1: An alien surrounded by bricks. (a) Shooting straight
destroys four bricks. (b) The optimal solution.

polylines with at most one bend. Typical optimization
criteria in boundary labeling are minimizing the total
leader length or minimizing the total number of bends.

In the boundary labeling model, however, all labels
must be on the boundary of R, even though some points
would allow for an internal label, which is generally
more favorable from the application’s perspective. One
of the open problems mentioned by Bekos et al. [1] and
Kaufmann [6] is to study map labeling in a mixed model,
where some points receive internal (fixed-position) la-
bels and the remaining points are labeled externally. In
such a mixed model, an additional requirement is that
no leader intersects any of the internal labels.

In this paper, as a first step towards map labeling in
the mixed model, we assume that the n input points are
already partitioned into two sets A and B. The points
in A must all be labeled externally using so-called po-
leaders (they first run parallel to and then orthogonal
to the labeled side of R) [2], which have by definition
at most one bend. We consider the one-sided boundary
labeling model, where all labels are placed on the right
side of R. The points in B, on the other hand, can only
be labeled internally using congruent rectangular labels
with a fixed position. Depending on the placement of
the leaders for A, some points in B may or may not be
labelable. The goal is to label all points in A and to
maximize the number of labeled points in B.

In the following we call the points in A aliens. We iden-
tify each point in B with its fixed label and call the
labels in B bricks. Figure 1 shows an example. Since
we do not want labels to occlude any points in A we can
assume that no brick in B contains an alien in A. In-
stead of connecting each alien with a leader to the right
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Figure 2: An ABP instance with five aliens. (a) For non-spaced
ABP at least three bricks need to be destroyed. (b) For spaced
and crossing ABP at least five bricks need to be destroyed.

side of R, we say that each alien has a laser gun that can
shoot a one-bend (axis-aligned) orthogonal laser beam
to the right side of R. Each laser beam consists of a
(possibly empty) vertical laser segment followed by a
horizontal laser ray. Consequently, we can say that a
laser beam destroys all bricks that it intersects. The
map labeling problem then translates into the problem
that every alien must shoot its laser gun exactly once
in a way that minimizes the total number of destroyed
bricks. We call this problem the aliens-and-bricks prob-
lem (ABP).

1.1 Parameters

Even in this simple setting (just one bend per leader and
one position for internal labels), there are still several
variants of the problem that can be of interest. We
investigate the following three independent parameters
and their effects on the complexity of the problem.

1. Bricks are either all disjoint or they overlap each
other; in the latter case we need to find an inde-
pendent set of bricks. Accordingly, we call an ABP
instance disjoint or overlapping. We may further
require that any selected brick does not occlude a
given (e.g., the top left) corner of any other brick.

2. Laser beams can either cross each other at 90-
degree angles or they cannot cross each other. We
call an ABP instance crossing or non-crossing, ac-
cordingly.

3. Horizontal laser rays can either come arbitrarily
close to each other or they have to stay at least one
unit apart. Accordingly, we call an ABP instance
spaced or non-spaced. We may further extend the
spacing requirement to the whole laser beams (in-
cluding the vertical segments), i.e., a fixed-width
strip along each laser beam must not intersect any
other laser beam; we call such an ABP instance fully
spaced.

Figure 2 shows two examples of different variants that
we study.

The requirement in the overlapping variant that no
brick may occlude the top left corner of any other brick
relates to the 1-position model in map labeling, where
all labels are placed with their top left corner on the
corresponding point of interest. Then the requirement
simply means that all points – whether labeled or not –
must remain visible.

In the classical external map labeling setting, crossings
can usually be avoided at no additional cost. Interest-
ingly, this is not the case anymore in our problem, so we
explicitly study the problem with and without allowing
laser beams to cross.

Spaced variants of ABP have the advantage that we can
immediately attach unit-height labels at their vertical
midpoints to the leader ends without producing any la-
bel overlaps. In non-spaced versions of the problem, we
either need to use extra bends in a track-routing area [2]
in order to separate the labels vertically, or the labels
must be placed in multiple columns to the right of R.
Spacing of laser beams, in particular for both the verti-
cal segments and the horizontal rays, also has a positive
effect on the readability of the drawing as it makes dif-
ferent laser beams visually easier to distinguish.

2 Non-Spaced Laser Beams

In this section we consider non-spaced laser beams. We
note that in this case the issue of crossings is irrelevant:
any crossing could be removed at no additional cost by
shortening the vertical laser segment involved in a cross-
ing so that the laser beam turns horizontal just before
hitting the other horizontal laser ray. So we can restrict
ourselves to non-crossing laser beams.

2.1 Disjoint Bricks

When the interiors of the bricks are all disjoint, we can
solve the problem in polynomial time using dynamic
programming. We define subproblems in half-strips that
extend to the right and are bounded by two laser rays
and a vertical line on the left that goes through an alien.
Because we never use crossings, this alien must then
shoot somewhere between the two rays, which subdi-
vides the problem into two smaller subproblems.

Let a ∈ A be an alien and consider the right-open half-
strip S that is defined by the vertical line `a through
a, the y-coordinate yt of the lowest horizontal laser ray
above a, and the y-coordinate yb of the highest laser
ray below a. Furthermore, let Ba ⊆ B be the set of
bricks that are stabbed by `a and lie completely between
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Figure 3: (a) A subproblem defined by a current alien (indi-
cated by the black vertical line `), two laser rays above and
below it, and a marking of the bricks stabbed by `. (b) A pos-
sible way for the current alien to shoot, and the resulting two
subproblems.

yb and yt. Then the subproblem for all points in S is
in fact defined by S and additionally an indexing of
Ba that indicates which bricks of Ba have already been
shot by previous aliens. Figure 3 shows an example of
a subproblem and how it divides into two independent
smaller subproblems.

The algorithm is now standard dynamic programming.
We store the solution of each subproblem, starting with
the smallest ones (defined by the rightmost aliens). To
solve a subproblem, we just go over the linear number
of combinatorially different possible ways to shoot the
current beam, look up the resulting two subproblems,
and add the number of new bricks that we shot to their
joint cost. We then choose the solution with minimum
possible cost. The number of newly shot bricks can be
computed by sweeping the horizontal laser ray over the
half-strip of the subproblem and keeping track of the
number of intersected bricks. This clearly takes linear
time for each subproblem.

Since we use non-spaced laser beams there is an op-
timal solution in which no two laser beams intersect
each other, even if crossings were allowed. This is be-
cause as soon as a vertical laser segment reaches an ex-
isting horizontal laser ray, it can follow that ray with-
out destroying any other bricks. Therefore splitting a
subproblem into two independent smaller subproblems
along the current laser ray yields a correct algorithm
that computes an optimal solution.

However, it is not so clear that the algorithm is efficient,
since there could in principle be an exponential number
of subsets of Ba that are marked as unshot, and there-
fore an exponential number of subproblems to solve. So,
we proceed by showing that this is not the case and that
it suffices to consider a linear number of subsets of Ba.

Lemma 1 Let S be a half-strip defined as before by a
leftmost alien a and the y-coordinates yb < yt of two
horizontal laser rays. Then the number of subsets of Ba

that can be shot vertically by aliens on the left of `a is
at most |Ba|.
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Figure 4: (a) An alien a and two horizontal rays at height yt

and yb. (b) The set of aliens Aa in the vertical strip between
`′a and `a, and the set of bricks Ba intersecting `a. (c) The
leftmost brick b in Ba that is not shot determines the shooting
direction of all aliens to the right of b.

Proof. Consider the line `′a that lies one brick-width
to the left of `a, see Figure 4(a). Observe that no alien
on the left of `′a can shoot bricks in Ba without also
hitting S. Therefore, we are only concerned with the set
Aa ⊂ A of aliens in the vertical strip between `′a and `a,
see Figure 4(b). Since beams cannot go through S, any
alien in Aa that lies between the lines y = yb and y = yt

must either shoot above yt or below yb. Aliens below
yb that shoot above yb must actually shoot above yt

and, similarly, aliens above yt that shoot below yt must
actually shoot below yb. Aliens below yb that shoot
down or aliens above yt that shoot up cannot influence
the subset of bricks being shot.

Now, let b ∈ Ba be a brick, and assume that the con-
figuration of laser beams belonging to aliens in Aa is
such that b is the leftmost brick among those in Ba that
is not shot. We claim that this completely determines
the subset of bricks that are shot. Indeed, any aliens
to the right of the left side of b cannot shoot through b,
and therefore must shoot in the opposite direction, as
illustrated in Figure 4(c). Note that an alien below yb

(or above yt) could still shoot either up or down, but its
laser beam must stay below yb (or above yt) and there-
fore this choice does not influence the subset of Ba. On
the other hand, every alien to the left of b can still shoot
in either direction, but by definition all bricks that ex-
tend further left than b are shot, and these aliens cannot
influence the subset of bricks to the right of the left side
of b. Note that it could be that the aliens to the left of
b are not capable of shooting all bricks to the left of b;
in that case b cannot be the leftmost brick that is not
shot. We conclude that the entire subset of bricks of Ba

that are shot is fixed.

Since there are |Ba| bricks in Ba to choose as the left-
most brick that is not shot, we conclude that there are
at most |Ba| possible subsets that can be shot. �

For a given alien a and the vertical line `a there is a
linear number of possible locations yt for the lowest hor-
izontal beam above a and a linear number of locations
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Figure 5: (a) An edge consists of a diagonal strip of width 2
of overlapping bricks that can make turns. An edge has two
states, with the same cost. (b) A vertex is simply a single brick
that overlaps up to three edges. For each edge, its two incident
vertices overlap a different state of the edge; if v1 is present
then v2 cannot be present too.

yb for the highest beam below it. For each such triple
(a, yt, yb) Lemma 1 tells us that we need to consider a
linear number of subsets of Ba that can be shot verti-
cally. So we have a total of O(n4) possible subproblems.

Looking up a specific subproblem in constant time is
not trivial since it is not clear how to index a particular
subset of bricks. We suggest to order all bricks in B,
e.g., lexicographically from left to right and top to bot-
tom and then use for each half-strip defined by the three
parameters (a, yt, yb) a simple search tree according to
the order of B to access the correct value correspond-
ing to a particular subset of bricks of Ba. By Lemma 1,
this tree has linear size, but its height can also be linear.
Therefore, looking up the value of a particular subprob-
lem takes linear time in the worst case. This yields the
following time and space bounds:

Theorem 2 The disjoint, non-spaced ABP can be
solved in O(n6) time using O(n4) space.

2.2 Overlapping Bricks

For overlapping bricks it is generally NP-hard to find
a maximum independent set of bricks, even when there
are no aliens. Klau and Mutzel [7] mention that this can
be proven using a reduction from the NP-complete max-
imum independent set problem in planar graphs with
maximum degree 3 [5], but they do not provide details,
so we briefly sketch how this can be done. Given a pla-
nar input graph of degree at most 3, we “draw” the
graph using edges made of diagonal double chains of
overlapping bricks, as illustrated in Figure 5(a). Within
each edge, there are exactly two maximum independent
sets possible. Then, we use a single brick for each ver-
tex as in Figure 5(b), where the two vertices incident to
the same edge intersect two bricks belonging to differ-
ent states of the edge. This ensures that we can only
take the maximum number of bricks from the edge if
not both incident vertices are selected. The reduction
from maximum independent set is now immediate.

(a) (b) (c)

Figure 6: (a) When the bricks are congruent and cannot con-
tain top left corners of other bricks, they can only form mono-
tone chains. (b) The intersection graph of this sequence. (c)
A maximum independent set can be found by greedily selecting
bricks from left to right.

Theorem 3 The overlapping, non-spaced ABP without
further restrictions is NP-hard.

However, if we assume that no brick in B contains a
fixed corner (say, the top left one) of any other brick,
then the structure of the overlapping bricks becomes
much simpler. Let B′ ⊆ B be a maximal set of bricks
such that the intersection graph of B′ is connected. We
call such a set of bricks a chain. The following lemma
is illustrated in Figure 6(a).

Lemma 4 Let B′ be a chain of bricks. Then the point
set consisting of the top left corners of all bricks in B′

forms an xy-monotone sequence.

Proof. Let p and q be two points in this set, and as-
sume that the lemma is not true, i.e., the x-coordinate
of p is smaller than the x-coordinate of q, while the
y-coordinate of p is larger than the y-coordinate of q.
Clearly, the bricks of p and q cannot overlap, otherwise
p’s brick would contain q. However, as the intersection
graph of B′ is connected, there must be a path from p to
q in the intersection graph. Let P be the shortest such
path. If this path contains another pair of points that
are in the same configuration as p and q, we recurse on
that subpath, so we assume that this is not the case:
all consecutive pairs in the path are to the bottom left
/ top right of each other. But since q is not to the top
right of p, the path must contain a triple of consecutive
points u, v, w such that the direction changes from u, v
to v, w, e.g., v is to the top right of u, but w is to the
bottom left of v. Now we claim that if the bricks are
congruent, then u must intersect w, meaning P was not
the shortest path, contradiction. �

We call a chain that satisfies Lemma 4 a monotone
chain. For monotone chains the independent set prob-
lem can be easily solved by picking an independent set
of bricks greedily from one end of the chain, as seen in
Figure 6(c).
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Lemma 5 A maximum independent set for a mono-
tone chain B′ ⊆ B can be computed in linear time after
sorting the bricks.

Proof. The algorithm picks greedily the leftmost brick
in the sequence, removes it together with all bricks that
it intersects and continues to pick the next leftmost
brick. It is clear that the set of chosen bricks is indepen-
dent. To show that it is also a maximum independent
set, assume we are given a maximum independent set
M . If the leftmost of the bricks in M is actually the left-
most brick in B′ the two sets agree in the first element
and we recurse. Otherwise, we can replace the leftmost
brick b in M by the leftmost brick b′ in B′. Since b′ is
below and to the left of b it cannot intersect any other
brick in M and thus the new set is again a maximum
independent set of B′. Now the greedy independent set
and M agree on the first element and we recurse. This
process is a cardinality-preserving transformation of M
into the greedy independent set, which concludes the
proof. �

We would now like to use the previous DP-algorithm
again. We need to make a few modifications. The value
of any subproblem, which is still defined as before, is
the number of unshot bricks in its half-strip including
those intersecting `a. Whenever we need to compute
the value of a particular location for the current laser
beam, we need to consider a maximum independent set
M of the unshot bricks that are in the current subin-
stance but in none of the two subproblems. So for every
chain of unshot bricks we begin to build an independent
set greedily from the left as in Lemma 5. If any such
chain extends into the strip of a subproblem we mark
those bricks intersecting its left vertical strip bound-
ary as either present or absent depending on the greedy
independent set. This is exactly the information nec-
essary to extend the independent set of the chain into
the subproblem so that in fact the subproblem needs no
information about the bricks to its left.

However, to bound the number of subsets of Ba that can
be present in a subproblem, we now not only need to
consider which bricks are shot by aliens, but also which
bricks are intersected by other bricks that were greedily
picked to be in an independent set. Which of those are
chosen again depends on which other bricks in the same
chain were shot by aliens, though. Unfortunately, it is
not possible to immediately generalize Lemma 1. As
Figure 7 indicates, for subinstances defined as before,
monotone chains that intersect the vertical line `a may
originate below the lower boundary y = yb of the current
subinstance with half-strip S. Now if these chains can
be shot by laser beams that stay below yb their status
(i.e., the actual maximum independent subset of the
bricks) is independent of the definition of the current

S
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Figure 7: In the worst case an exponential number of subsets
of bricks can intersect the line `a.

subinstance. So if there are k such independent chains
Ω(2k) different subsets of Ba are possible, where k may
be linear in n.

In order to keep the number of subsets polynomially
bounded we can bound the maximal length of a chain
of overlapping bricks by some constant k. Then no more
than k independent chains of bricks originating below
yb can intersect the line `a, because the topmost chain
must intersect `a at least k units above yb and thus
needs at least k bricks in order to extend below yb. We
can consider all combinations of their statuses, which is
a constant number.

To show that for a constant maximum chain length the
number of subproblems is still polynomial, we extend
Lemma 1 to the situation where we consider all chains
that intersect the vertical line `a instead of only the
bricks intersecting `a themselves. Let Ca be the set of
all chains that intersect the line `a between yb and yt,
where a brick that does not overlap any other brick is
also considered a chain. We define |Ca| to be the number
of bricks in the union of all chains in Ca.

Lemma 6 Let S be a half-strip defined as before by a
leftmost alien a and the y-coordinates yb < yt of two
horizontal laser rays. If the maximum length of a chain
of overlapping bricks is bounded by a constant k then
there are at most 2k|Ca| subsets of Ba that can be either
shot vertically by aliens on the left of `a or removed
because they overlap greedily chosen bricks.

Proof. We follow the same argument as in Lemma 1.
However, since we consider chains rather than single
bricks, all aliens Aa to the left of `a may influence the
subset of Ba if their laser beams intersect the left-open
horizontal half-strip S′ defined by `a, y = yb, and y = yt.
Let b be a brick above yb in one of the chains c in Ca

and assume that the configuration of laser beams of the
aliens in Aa is such that b is the leftmost brick among all
bricks above yb of chains in Ca that is not shot. Since
no alien in Aa can shoot any brick of c that is to the
right of the left side of b we know for all aliens to the
right of the left side of b how they shoot within S′. This
determines which bricks of chains in Ca are shot. We
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use Lemma 5 to compute a maximum independent set
of the remaining bricks. This induces, for each of the at
most 2k different intersection patterns between `a and
the chains extending below yb, a unique subset of unshot
bricks of Ba. Since the number of choices for b is |Ca|,
the number of subsets of Ba that can be shot is at most
2k|Ca|. �

So to actually compute the value of a subproblem, we
add for any possible location of the current laser beam
the values of the two induced subproblems and the size
of the left-greedy independent set M . Now, for each of
the O(n4) subproblems (by Lemma 6) we have a linear
number of possible laser beams, for each of which we
greedily compute a maximum independent set in lin-
ear time. So we spend quadratic time per subproblem
(which we needed anyway for looking up the subprob-
lems) and this yields the same O(n6) time and O(n4)
space bounds as in Theorem 2.

Theorem 7 The overlapping, non-spaced ABP, where
bricks cannot contain top left corners of other bricks and
the maximum length of a chain of overlapping bricks is
bounded by a constant, can be solved in O(n6) time using
O(n4) space.

We note that if the maximum length of chains of over-
lapping bricks is unbounded we can at least obtain a
polynomial-time approximation scheme as follows. For
an integer k we split all chains of overlapping bricks
with an independent set larger than k into a minimum
number of subchains whose maximum independent sets
contain at most k bricks. Applying Theorem 7 to the
induced instance yields a (1− 1/k)-approximation.

3 Spaced Laser Beams

If we add the vertical spacing requirement for horizon-
tal laser rays, surprisingly the problem becomes NP-
hard, at least if we allow crossings. Otherwise, for non-
crossing laser beams, the previous algorithm can still be
applied.

3.1 Crossing Laser Beams

We show that the ABP is NP-hard if we require ver-
tically spaced horizontal laser rays and allow crossings
between laser beams. This result is independent of hav-
ing overlapping or disjoint bricks.

Let I be an instance of Max2Sat with n variables
x1, . . . , xn and m clauses c1, . . . , cm such that each vari-
able xi appears in at most three clauses. The problem

true

x2

x3

x4

x1

true

true

false

x1 ∨ x2
x2 ∨ x4

x2 ∨ x3

x1 ∨ x3

Figure 8: Aliens (points) and bricks representing a Max2Sat
formula with four variables and four clauses.

of finding a truth value assignment for the variables that
maximizes the number of satisfied clauses in I is NP-
complete [8]. We will now describe a reduction from
Max2Sat to the spaced and crossing ABP. Figure 8
shows an example of our reduction with four variable
and four clause gadgets.

The variable gadget consists of an alien whose laser
beam is vertically blocked by two indestructible bricks.
These indestructible bricks are actually blocks of 4 × 4
regular bricks, but distinguishing two types of bricks
saves space in the figure. Shooting an indestructible
brick thus destroys at least four regular bricks. Towards
the right, each variable alien has an upper and a lower
choice of shooting its laser ray. Both choices destroy
exactly three bricks. We assign the value true to the
upper choice and false to the lower choice. We order all
variable gadgets from top to bottom by their variable
index. Furthermore, there is a “wall” of bricks to the
far right that must be crossed by any horizontal laser
ray between the gadgets for x1 and xn.

On its way to the right, each laser ray passes through up
to three clause-connector bricks before hitting the wall.
In a variable’s true state, the clause-connector bricks in
the upper row are destroyed and in its false state, the
bricks in the lower row are destroyed. This is used to
encode the truth values for the clause gadgets as follows.
For a clause ck containing variables xi and xj , i < j, we
place an alien a in a new row between the gadgets for
xi and xi+1. Now if xi is a positive (negative) literal
of ck, we add a clause-connector brick vertically above
a in the upper (lower) row of xi. Analogously, we add
a clause-connector brick for the literal of xj vertically
below a. Additionally, we add a dummy brick in the
respective other row to the right of the wall so that we
always destroy an equal number of bricks in both truth
states. For every clause we use a new column so that a
vertical line through any clause alien intersects exactly
the two connector bricks for that clause, see Figure 8.
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Now the reduction works as follows. If one of the lit-
erals of a clause is true then its corresponding clause-
connector brick is destroyed by the variable’s laser ray.
Hence the clause alien can shoot its vertical laser seg-
ment through that brick at no cost until it reaches be-
yond the top- or bottommost variable, where it can turn
to the right and reach the boundary of R. If, however,
both literals of a clause are false, then no matter how
the alien shoots its laser beam, it must destroy at least
one brick.

In summary, we know that in an optimal solution (where
all clauses are satisfied) the variable laser beams destroy
exactly 3n bricks. Every non-satisfied clause causes ex-
actly one more brick to be shot. So the Max2Sat in-
stance I has an optimal solution that satisfies at least
K clauses if and only if the aliens destroy at most
3n + m−K bricks. The reduction clearly takes polyno-
mial time.

Theorem 8 The spaced and crossing ABP is NP-hard.
This is independent of the disjointness of the bricks.

3.2 Non-Crossing Laser Beams

For the non-crossing variant we can still exploit the
fact that a laser beam from the leftmost alien in any
subproblem splits that instance into two independent
smaller subproblems. So we keep the same definitions
for a subproblem as in Section 2. Again we assume that
bricks can overlap, but not contain top left corners of
other bricks and each chain is of constant size. Note
that the problem for disjoint bricks is a special case of
this. The only additional constraint is that we only con-
sider locations for the new laser ray that stay at least
one unit away from the boundaries of the subproblem.
If no such location is available the cost will be ∞. We
conclude:

Theorem 9 The spaced non-crossing ABP, where
bricks cannot contain top left corners of other bricks and
the maximum length of a chain of overlapping bricks is
bounded by a constant, can be solved in O(n6) time using
O(n4) space.

3.3 Fully Spaced Laser Beams

When we require laser beams to be horizontally spaced
as well as vertically, we assume that bricks have a con-
stant width w (and unit height), which means that at
most w beams can cross the same brick vertically. We
then require the space between any pair of vertical laser
segments or horizontal laser rays to be at least 1. Note
that this also solves the case where different amounts
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Figure 9: (a) The set of aliens Aa in the vertical strip of width
w. (b) Only w aliens can potentially influence the situation for
this subproblem while shooting down through the line y = yb,
since they must have disjoint rectangles of width 1. (c) Simi-
larly, only w aliens can influence the subproblem while shooting
up.

of spacing are desired by simply stretching the input
appropriately.

We first observe that a solution is not always possible:
if there are too many aliens in too small a space, they
can simply never shoot their laser beams without some
of them getting too close to each other. Therefore, we
assume that some solution exists (and if this is not the
case, an algorithm should report this). If we do allow
crossings, then the NP-hardness construction of the pre-
vious section can be used unchanged to show that this
problem is also hard.

However, without crossings and for disjoint bricks we
can find an optimal solution (if it exists) in O(n4) time.
We use essentially the same dynamic programming ap-
proach as before. To speed it up, though, we now bound
the number of subsets of Ba for a given subproblem in
a different way.

For a given subproblem defined by an alien a ∈ A and
two rays at height yb and yt, let `a be the vertical line
through a and `′a be the line w to the left of `a, and
let Aa be the set of aliens between `′a and `a, as in
Section 2.1. For each alien a′ ∈ A let (xa′ , ya′) be the
point, where a′ is located. Even though Aa can have
arbitrarily many aliens, we now argue that only 2w of
them can actually influence the subset of Ba. For each
alien a′ ∈ Aa, consider the rectangle [xa′ − 1, xa′ + 1]×
[yb, ya′ ]. If this rectangle contains no other aliens of Aa,
we call a′ free to shoot down. Let A↓a ⊆ Aa be the set of
all aliens that are free to shoot down. Similarly, we call
a′ free to shoot up if the rectangle [xa′ − 1, xa′ + 1] ×
[ya′ , yt] contains no other aliens of Aa, and denote this
set by A↑a. Figure 9 shows an example of these subsets.

Lemma 10 The number of subsets of Ba that can be
shot by aliens in Aa is the same as the number of subsets
of bricks that can be shot by aliens in A↓a ∪A↑a.

Proof. Recall that any alien whose laser beam influ-
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ences the subset of Ba that is shot must start shooting
vertically up or down, and the vertical laser segment
must continue until it is outside the extended strip con-
taining S (between yb and yt). Now, let a′ ∈ Aa be
an alien that shoots down and influences the subset (in
some configuration). This means that its vertical seg-
ment must at least span the y-interval [yb, ya′ ]. But by
the spacing requirement, this is only allowed if there are
no other aliens close to that segment, i.e. if the rectan-
gle [xa′ − 1, xa′ + 1] × [yb, ya′ ] is empty, i.e. if a′ ∈ A↓a.
The argument for A↑a is symmetric. �

In other words, we can ignore any aliens not in A↓a ∪
A↑a. Next, we will show how to bound the number of
subsets of Ba in terms of |Aa| rather than |Ba|, replacing
Lemma 1.

Lemma 11 Let S be a half-strip defined as before by
a leftmost alien a and the y-coordinates yb < yt of two
horizontal laser rays. Let A′ ⊂ A be a set of aliens on
the left of `a. Then the number of subsets of Ba that
can be shot by aliens in A′ is at most |A′|2.

Proof. Let At ⊆ A′ be the aliens above yt, Ab ⊆ A′

the aliens below yb, and Ac ⊆ A′ the aliens between yb

and yt, see Figure 10(a). Now, we define a subdivision
C of the center region bounded by all four lines. For
each alien z ∈ Ac, we draw a horizontal line segment
between z and `′a. Then, for each alien z ∈ Ac, we
draw a vertical line segment through z that extends up
and down as far as possible without crossing any of the
horizontal segments or the lines y = yt and y = yb. This
divides the rectangle into a set of smaller rectangles, the
cells of C. Figure 10(b) shows C for the example.

Consider an assignment of shooting directions for all
aliens in A′ between `a and `′a, and let V be the re-
gion visible from S when looking to the left, where a
point is “visible” if the horizontal ray from that point
to the right does not intersect a laser beam. Figure 10(c)
shows an example. First, we claim that V can only have
O(|Ac|·|At∪Ac∪Ab|) different shapes. Observe that the
boundary of V consists of a leftmost segment, and two
staircases connecting it to the corners of S. Once this
leftmost segment is fixed, the whole shape of V is fixed,
since any aliens to the right of it must shoot away in or-
der not to block the segment, and any aliens to the left
of it are by definition not contributing to V . Now, the
leftmost segment of V must lie inside a cell C ∈ C, and
V will be the union of the right half of C and all cells
to the right of C. Clearly, there are O(|Ac|) cells in C.
Furthermore, there are at most O(|At∪Ac∪Ab|) choices
for the x-coordinate of the segment, since it must come
from some alien shooting vertical.

Now, consider the bricks in Ba. We first observe that
the subset of Ba that is shot by the aliens is exactly the
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Figure 10: (a) An alien a and two horizontal rays at height
yt and yb define three regions of interest. The aliens in the
vertical strip between `′a and `a are divided into three groups.
(b) The subdivision C indicates the possible locations for the
leftmost segment of V . (c) A possible shape of the visibility
region V . (d) The bricks shot by aliens are exactly the bricks
that are not completely inside S ∪ V .

subset that intersects the left boundary of V , because all
these bricks intersect `a. Figure 10(d) illustrates this.
Hence, the number of subsets that can be shot cannot
be larger than the number of shapes that v can have,
which is O(|A′|2). �

Now, observe that there cannot be more than w aliens
in A↓a. For this, consider the narrower rectangles
[xa′ − 1

2 , xa′ + 1
2 ] × [yb, ya′ ] of the aliens in A↓a. These

rectangles must be disjoint, otherwise the alien defin-
ing one of these rectangles would be contained in the
broader rectangle of the other. Since Aa is contained in
a vertical strip of width w and these narrow rectangles
have width 1, there can be at most w of them. Similarly,
there are only w aliens in A↑a.

Let A′ = A↓a∪A↑a. Clearly |A′| ≤ 2w, and by Lemma 11
there can be at most O(w2) subsets of Ba in any sub-
problem. (Note that this means, in particular, that
|Ac| ≤ 2w, since all aliens in Ac must shoot either up or
down inside the extended strip. If this is not the case
then this subproblem has no valid solutions.)

The rest of the algorithm remains the same. If we as-
sume w is a constant, then we arrive at the following
time and space bounds for the algorithm, which are ac-
tually a bit better than for the non-spaced case:

Theorem 12 The fully spaced disjoint non-crossing
ABP can be solved in O(n4) time using O(n3) space.

Furthermore, in the case of overlapping bricks we can
also extend the algorithm in a similar way. In this case
we cannot use the region V defined above to argue about
the number of subsets, but we can still say that at most
2kw aliens can be involved in the subsets if at most k
bricks can be part of any chain, since these aliens would
have to be in a strip of width kw. Then, these aliens
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together can clearly not lead to more than 22kw differ-
ent configurations. Additionally, as in Section 2.2, there
can be at most k chains that extend outside the current
strip, and these can lead to another 2k different config-
urations. In total, there are at most 2O(kw) subsets of
Ba per subproblem, which is still constant for constant
k and w, and the problem can still be solved in O(n4)
time and O(n3) space.

4 Discussion

We have studied the ABP in which a set of aliens A and
a set of bricks B, both inside a rectangle R, are given,
and we want each alien in A to shoot an orthogonal
laser beam to the right side of R. In total, the aliens
must destroy as few bricks in B as possible. We studied
six main variants of the problem, and presented algo-
rithms or hardness results for each variant. There is a
trade-off between the different versions: by adding more
restrictions (such as not allowing crossings or requiring
laser beams with spacing) the resulting drawing may
look cleaner, but obviously fewer bricks can be placed.
Perhaps surprisingly, the least and most restricted vari-
ants of the problem can both be solved in polynomial
time using essentially the same algorithm, while one of
the in-between variants is NP-hard. Apart from the
variants we studied, many more variants are conceiv-
able by considering different ways for internal labeling
(more or different label positions) or external labeling
(more bends per leader, labels at multiple sides of R)
that would be interesting to study.

Our polynomial-time algorithms have a rather high de-
pendency on n. Partly this is due to the worst-case
nature of the analysis: the linear number of subsets of
Ba is in fact only linear in the number of bricks and
aliens in a small subregion of R which may be expected
to be much smaller than n. Additionally, we have cho-
sen n to be the total number of input points in A and
B combined, but some of the factors can be separately
bounded by either of those numbers. Nonetheless, the
number of half-strips that need to be considered is re-
ally as big as O(n3), but we have found no evidence that
using this much time and space should be required.

4.1 One-Class ABP

We have assumed that the sets of aliens A and bricks
B are given as two separate sets. However, in the map
labeling formulation of the problem, it may be more re-
alistic to assume that all input points belong to a single
set, and that every point is labeled either internally or
externally.We then want to maximize the number of in-
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Figure 11: Changes to the gadgets in order to cover the
case where destroyed bricks become aliens.

ternally labeled points. This version of the problem was
suggested by [1, 6], and mostly remains open.

One easy observation is that, if no two bricks overlap,
the problem becomes trivial since in the optimal so-
lution all points will be labeled internally. Although
it seems plausible that the dynamic programming algo-
rithm still works in some settings, we no longer have the
equivalent of Lemma 1, so the number of subproblems
may be exponential.

The hardness result of Theorem 8 does extend to the
case where destroyed bricks become aliens that shoot
their own laser gun. The previous gadgets need to be
adapted slightly to accommodate the additional laser
beams as shown in Figure 11. First of all, we replace
each variable and clause alien of Figure 8 by two over-
lapping bricks such that the upper left one contains the
top-left corner of the lower right one. That way, the
upper left brick must always be an alien. The wall
and all dummy bricks on the right-hand side are di-
agonally shifted such that each destroyed brick among
them turns into an alien that can shoot vertically down-
wards without hitting any other brick. Moreover, the
clause-connector bricks, once destroyed, also become
aliens that can shoot vertically up- or downward with-
out hitting any other brick: in each column there are
exactly two such bricks so that the upper one can always
shoot upward and the lower one always downward. In
that way we obtain a behavior that is identical to the
reduction in the proof of Theorem 8.

Other than these relatively simple observations though,
this problem remains open. We hope that our results in
this paper constitute a first step towards solving it.

Acknowledgments. M. Nöllenburg is supported
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