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ABSTRACT
To cope with the new demands of an electrical grid based on mostly

renewable energy, more flexibility on the demand-side is needed. To

test new demand-side management strategies, energy consumption

data sets which come with some information about the inherent

flexibility of the processes, are needed. However, such data sets are

often commercially sensitive and thus not published or replaced

with entirely artificial data. In the present paper, we introduce a new

benchmark data set containing scheduling scenarios of industrial

processes with flexibility information. The instances are based on a

real-world data set of a small scale industrial facility, from which

we extract process characteristics using a novel motif discovery

technique. We provide an in-depth analysis of the benchmark data

set and show that it is suitable to evaluate smart-grid scheduling

techniques.
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1 INTRODUCTION
Societies around the globe aim for future electricity grids which

rely mostly on renewable energy sources (RES). Unfortunately, the
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intermittent nature of the RES and the fact that they cannot be con-

trolled makes integrating them into todayâĂŹs grid difficult. One

difficulty is that there is often a mismatch between the supply from

RES and the actual power demand. While increasing transmission

and storage capacities is one option to ease the integration, another

one is generally referred to as demand-side management (DSM).

DSM includes all measures which aim at changing behaviour in

the energy usage by demand-side actors. DSM has been discussed

extensively in the literature ([10],[5]). An important assumption

underlying all DSM approaches is that the consumers have some

kind of temporal or operational flexibility. Thus, they can either

change when they use energy (temporal flexibility), or how they

use energy (operational flexibility).

Information about the flexibility of individual consumers, espe-

cially industrial ones, is not readily available leading to difficulties

in testing new strategies and ideas for DSM or making different

strategies comparable with each other. To test different algorithms

and frameworks, one can use data from or resembling smart meters

(e. g. [11]) or grid data (e. g. [16]). However, regardless of the type

of data, most authors either do not publish the data their analysis

is based on ([1]) or synthesize the whole data set. The synthetic

data can range from being entirely made up (e.g., [20]), being mod-

elled with specific appliances in mind (e.g., [15]) or being generated

based on data but without using algorithms to extract information

from this data (e.g., [23]). Benchmark data sets play an essential role

in making research comparable and more accessible. For general

project scheduling, for example, there exists the PSBLIB benchmark

data set from [14], which the related literature uses heavily (e. g.

[22]). However, this benchmark data set is not rooted in real-world

data. Specifically for resource-constrained project scheduling, [13]

have published a data set. Again, the data set is not derived from

real-world data. Moreover, no such benchmark data set exists for

demand-side flexibility in industrial processes.

Recently, the HIPE data set, a real-world data set with smart

meter measurements from industrial machines, has been published

[4]. This data set contains power demand time series from a set of

machines in a small-scale electronics factory. However, the data set

consists only of a relatively small amount of machines and there

is no readily available information about their flexibility. Hence,

in the present paper, we extract demand information from the

real-world data set of industrial machines, generate more process

https://doi.org/10.1145/3307772.3331021
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instances based on this information and infer flexibility attributes.

More specifically, we use a novel algorithm based on motif discov-

ery to find regular process patterns in each machine and extract

information on when each process starts throughout the day as

well as how many different processes can be identified in each ma-

chine. Based on this information we generate instances that model

real-world scenarios with available demand-side flexibility. To the

best of our knowledge, we are the first to create such artificial in-

stances based on pattern recognition through motif discovery. We

evaluate the found patterns and show that the data can be used to

evaluate performance-critical scheduling algorithms on workloads

that resemble real-world scenarios.

The remainder of the paper is structured as follows. We start

with a short introduction to a scheduling problem which we use

to evaluate the data set in Section 2. In Section 3 we describe the

methodology to extract the process pattern from the power demand

time series. We then describe how we generate instances based on

this information in Section 4. Section 5.1 goes into detail about the

origin of the time series data as well as the exact parameters chosen

to generate our benchmark data set. It also explains how to obtain

our data set. After that, we describe the respective processes found

(Section 6), and evaluate their behaviour in scheduling algorithms

(Section 7).

2 PRELIMINARIES
The main contribution of the data set described in Section 5 is

a set of real-world-data based benchmark instances for certain

scheduling problems. The problems at hand arise in smart grids

when flexible electrical demands can be moved in time to optimize

various objectives. In this section, we introduce such a scheduling

problem, which we also use in Section 7.2 to evaluate the suitability

of the benchmark instances. Additionally, we show in Section 2.2

how the assumptions of the problem in Section 2.1 can be relaxed.

2.1 Single-Resource Project Scheduling
In a first step, we define the problem under the assumption that all

processes have constant power demand during their execution. In

Section 2.2 we describe how the defined problem can be used to

optimize scenarios where processes’ power demand changes over

time without the need for a more elaborate model.

In the scheduling problem, every time-moveable process consti-

tutes one job. Let ji be a job. Then, ji has a processing time pi , i. e.,
a time during which it must be executed without interruption. The

job also has a release time ri , which is the earliest time during which

the job can execute, and a deadline di , which is the earliest time at

which the job must be finished. Finally, every job has a usage ui ,
which is the (constant) amount of power required by ji during its
execution.

Given a set of n such jobs J = {j1, j2, . . . jn }, a problem instance

also has an edge-weighted directed acyclic graph G = (J ,D,w)

on J , with edge set D ⊂ J × J and weight function w : D → Z.
The edge set D defines dependencies between two jobs, while the

weight function indicates the necessary lag between the two jobs.

If (ja , jb ) ∈ D, then jb can start at the earliestw((ja , jb )) time steps

after ja has started.

Based on these definitions, we now define the problem used

throughout this paper, which models a peak shaving scenario.

Problem 1 (Single-Resource Acqirement Cost Problem).

Given an instance as J and G as defined above, find a start time
for each job such that the peak demand of the resulting schedule is
minimized.

Using the notation for project scheduling problems developed

by Herroelen et al. [12], the S-RACP problem can be denoted as

1 | cpm, ρ j ,δj | av .

2.2 Non-Constant Power Demands
The problem defined in Section 2.1 assumes power demands to be

constant over time. This assumption might be an especially unre-

alistic and simplifying one. Therefore, we describe in this section

how the model from Section 2.1 can be used to model jobs with

fluctuating power demand.

b1

b2
b3

Figure 1: Decomposition of a stepwise power demand func-
tion into blocks. The fat black line is the original demand
function with 11 steps. The three blocks b1, b2 and b3 approx-
imate this function.

The power demand function of a job is a stepwise function. To

model a stepwise power demand function for a job, we perform a

block decomposition, which is illustrated in Figure 1. For a perfect

representation of a stepwise power demand function with k steps,

we decompose the respective job intok blocks. From the perspective

of the scheduling problem, each of the blocks again is an individual

job. However, we will use the term block for a job with constant

power demand that is part of a decomposition of a job with non-

constant power demand. It is easy to see that the k blocks of a

job, when executed consecutively, behave like a single job with the

appropriate stepwise power demand function.

Thus, we must make sure that the blocks are executed consec-

utively and without any pauses between them. To this end, we

use the dependencies introduced in Section 2.1. Let b1,b2, . . .bk
be the k blocks that we decomposed a job ja into. Then, for every

i ∈ {1, . . .k−1}, we add (bi ,bi+1) toD, with aweightw((bi ,bi+1)) =

pi . With this, no block can start before its predecessor has fin-

ished (but immediately after). Finally, we add (bk ,b1) to D with

w((b1,bk )) = −1 ·
∑k−1

i=1
pi . This negative lag forces the last block

to start at the latest
∑k−1

i=1
pi time steps after b1 started. Combined,

these dependencies cause the chain of b1,b2, . . .bk to be executed

concurrently.

When modelling a real-world process (with a stepwise power

demand function) in this way, the obvious k to choose is the number

of steps in the respective power demand function. As mentioned
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before, this would result in a perfect representation of the original

stepwise power demand function. However, one can also choose a

smaller number. If one chooses k smaller, the job’s power demand

function can not reflect the original process’ power demand func-

tion perfectly, but only approximate it. In Section 7, we take a closer

look at how well this approximation works with a low value for k ,
as well as how the value k influences the complexity of S-RACP

instances.

3 FINDING PROCESS PATTERNS
It is a typical unsupervised learning problem to find patterns in

time series. The most popular methods for finding these patterns

include different forms of clustering. In the present paper, we use

a variation of the motif discovery algorithm [7]. The advantage

of motif discovery in contrast to other time series clustering ap-

proaches is that it uses a symbolic approximation (SAX) of the time

series. This approximation allows for a more fuzzy matching of the

compared sequences which is essential for us as we are not looking

for exact pattern matches but rather patterns which are similar yet

not the same. Additionally, motif discovery uses random projection

[6] making it a lot faster than other clustering approaches; however

with similar results [19].

Motif discovery relies on several parameters, most importantly

are the size of the pieces in each sequence, the word sizew which is

compared and the size and distribution of the alphabet a for SAX.

In the original motif discovery algorithm, a predefinedwindow of

sizew is moved over the time series to find the patterns. Thismoving

window works excellent when looking for patterns of equal length

and especially patterns which occur at regular intervals. However,

in the case of the machine data we have at hand, the patterns are

highly irregular both in their size and their occurrence over time.

We thus need an initial step of finding the relevant sequences we

want to compare. Similar to [18], we find those sequences with an

event search. An event starts when the power values are greater

than zero and ends when they are equal to zero again. As found in

[2] some of the machines seem to have a standby mode or some

minor issues with recording zero values and thus have a small

offset. In the cases where such an offset is present, an event starts

as soon as the power values are above this offset and ends as they

are below this offset. Each time series from a machine now consists

of several sequences which we assume to describe active states of

the corresponding machine. To find the processes running on each

machine, we want to compare these sequences with the help of an

adapted motif discovery algorithm.

As stated before, following the approach in [7] we want to make

a piecewise approximation of the time series and distribute an al-

phabet. The found sequences from the machines differ significantly

in their length, thus to compare them easily later we approximate

each sequence in such a way, that the length of each sequence from

one machine time series is the same sizew . The size of each piece

in a sequence thus depends on the length of the sequence n and the

predefined word size w . The word size is in our case specified as

the median length of all sequence from a time series.

Given the sequences and their piecewise approximation we can

now distribute the letters of the alphabet. Contrary to the orig-

inal motif discovery algorithm [7], our alphabet distribution is

based on the empirical cumulative distribution function (ECDF)

of the time series, which is defined as follows. For observations

x = (x1,x2, . . . ,xn ), Fn (p) is the fraction of observations less or

equal to p, i. e.,

Fn (p) =
1

n

n∑
i=1

I(xi ≤ p).

The letters for each sequence are taken to be the percentiles

of the ECDF of the current time series. We are thus limiting the

alphabet to size a = 10. The ECDF is chosen as most of the machines

do not follow a normal distribution even after normalization. The

time series sequences are thus better characterized using the ECDF.

With the symbolic approximation of all time series sequences,

we can then apply the random projection algorithm. We determine

the number of iterations based on the length of the sequences,

defining the number of iterations as 10% of the maximum length of

sequences from one time series. The parameters which determine

when a new motif candidate is found are left at their default values

from the TSMining implementation in R [9]. The motif candidates

found are then evaluated using the dynamic time warping distance.

The motifs and their occurrences are then real-valued time series

sequences of different sizes. Each time series has at least one motif

with at least two occurrences attributed to this motif.

As final step in the pattern finding process, we determine block

decompositions for each detected occurrence, as necessary for the

process to represent jobs with non-constant power demand intro-

duced in Section 2.2. In Section 7, we specify a measure for what

we consider a good block decomposition of an occurrence. For

each occurrence, and each k , i. e., each number of blocks the occur-

rence is to be decomposed into, we use a sequential least-squares

programming solver to find a decomposition into k blocks that

optimizes the measure from Section 7. The block decompositions

of all occurrences are part of the data set we release, see Section 5

for how to obtain them.

4 GENERATING S-RACP INSTANCES
After detecting motifs, their occurrences and their block decomposi-

tions, we generate jobs that form instances of the Single-Resource

Acqirement Cost Problem (cf. Section 2.1). Several parameters

influence the generation. First, the instance size specifies the num-

ber of jobs per instance. Also, a time horizon must be given, i.e., the

latest deadline of any job, assuming that the earliest release time is

0. For the individual jobs, we first must specify the block count, i. e.,
into how many blocks a job should be decomposed. Also, we must

specify how much flexibility we assume to be part of the instance,

which is done in terms of a window growth mean, a window growth
standard deviation and a window base factor.

Instance generation works by creating a set of job generators,
one for each motif and each block count k , and then generating

jobs from these generators up to the desired instance size. The

idea behind the job generators is to fit random distributions to

the respective motif’s occurrences. When generating a job that

should be divided into k blocks, we start with the respective mo-

tifs’ occurrences that have been decomposed into k blocks as per

Section 3. For each block, we obtain its length and total energy
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consumption, for a total of 2k values for each of the motif’s oc-

currences. To these values, we fit a 2k-variate Gaussian Mixture

Model (GMM). We chose Gaussian Mixture Models because they

are universal density approximators, as shown by e.g. Plataniotis

and Hatzinakos [21], meaning they can approximate any given

probability density with arbitrary precision (under the condition

that the GMM has enough components). Since we do not want to

make any assumptions about the underlying distribution of the

duration and energy values, GMMs seem appropriate. Drawing

from this distribution results in the shape of a new job: For each

of the job’s blocks, we get a duration and an energy consumption,

from which we determine the power demand.

To determine a release time and a deadline, we first fit a distri-

bution to the start times of the motif’s occurrences. However, the

start times do empirically not fit a (mixed) normal distribution well.

Thus, we instead use a mixture of uniform distributions. To do so,

we first cluster the start times using the DBSCAN algorithm [8] to

account for the assumption that there might be multiple separate

time spans throughout a day during which the respective process is

usually started. Then, we determine the 0.1 and 0.9 quantile of each

determined cluster to account for outliers. These form the lower

and upper limit of one uniform distribution each. We weight each

uniform distribution by the number of occurrences assigned to the

respective cluster. Randomly selecting one such uniform distribu-

tion by their weight and then drawing from that distribution yields

a preliminary start time s .
However, we need a release time r and and a deadline d (together

forming the window of the job). We obtain them by determining a

window sizew and then setting r = s − (w/2) and d = s +p + (w/2)

(with p being the processing time, cf. Section 2.1). We determine

w in two components, the window base wb and the window growth
wд . The window base is meant to reflect the flexibility we see in the

real-world data. However, the factory we retrieved the real-world

data from was so far not managed with demand-side management

in mind, thus we assume that more flexibility could be created if

operations were changed to facilitate DSM, which is why we add

the window growth component.

The window basewb is determined by the span of the uniform

distribution we drew the start time from multiplied by the window

base factor. We assume that the more flexible a process is, the larger

the spans of its uniform start-time distributions will be. The window

growth is determined by drawing from a normal distribution with

the specified window growth mean and window growth standard

distribution.

To generate an instance with n jobs, we n times perform a

weighted selection on the set of job generators. We weight the

generators by the number of occurrences in the respective motif.

Each time, we generate one job using the selected generator. For

each job generated in this way, the release times and deadlines

produced by the job generator are based on time-of-day. Thus, we

finally move each generated job to a random day within the time

horizon. Note that although the S-RACP as defined in Section 2.1

allows for dependencies between jobs, we only use these dependen-

cies for the block decomposition as described in Section 2.2. The

real-world data we obtained (cf. Section 5.1) does not contain any

satisfactory information about dependencies between processes

(cf. Section 6), thus we do not incorporate these into the generated

instance sets.

4.1 Grouped Generation
To evaluate the effect of k , i. e., the number of blocks into which jobs

are decomposed, we generate groups of instances that differ only

in the value of k . We do this by first generating an instance with

k = 1. Then, to generate an instance with k = 2, we iterate over all

jobs in the k = 1 instance. For each such job, we generate a k = 2

job from the same motif, scale the job so that the total duration and

energy consumption is the same as for the k = 1 job, and set the

same window. We proceed in the same way for all values for k .

5 THE BENCHMARK DATA SET
Based on the process to generate instances as described in Section 4,

we now describe the real-world data in which the instance sets are

based, the concrete instance sets we generated and explain how to

obtain these instance sets and the accompanying auxiliary data.

5.1 Data Origin
As mentioned above, real-world data forms the basis for our gen-

erated instances. This real-world data comes from a data set of

smart meter measurements in a small scale electronics factory and

is called HIPE [4]. In the present paper, we use a subset in machines

and superset in time of the originally published HIPE data set. The

instances are generated based on 6 machines: a chip press, a high

temperature oven, a screen printer, a soldering oven, a vacuum

oven and a washing machine. We only use this subset of machines

since for each of the other machines, the data quality for the se-

lected time range (see below) was questionable for various reasons.

All of the machines have been equipped with smart meters which

record several quantities such as voltages, currents, frequencies

etc. at a frequency of 50Hz. Out of a large number of measured

quantities we only consider the active power. The first active power

value we use is the last day of 2016 10 pm, while the last power

value is from 31.12.2018 10:59 pm. We thus use two full years of

data. We down-sample the data to one minute resolution, where

the one minute values are the mean values from the original 50Hz

measurements during that minute. Due to some problems during

the recording of the measurements, not all machines have data for

all minutes in the considered time period. For the machines with a

complete set of power values we consider 1,051,260 minutes. For

more information on the origin of the data and the machines we

refer the interested reader to [4].

5.2 Data Set Parameters and Publication
The instance generation process from Section 4 requires several

parameters to be set. Table 1 list the parameters we chose for the

instance set we generated. If a table cell contains three values like

(a,b, c), that means we chose all values from a to b (inclusive) in

increments of c . Between all parameters where we choose more

than one value, we take the cartesian product to obtain the final

parameter space. The chosen parameter space results in a total of

1764 instances.
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Table 1: Generated instance sets parameters. Three values
(a,b, c) in a cell indicate that a range of parameters was cho-
sen: from minimum a to maximum b (inclusive), with steps
of size c.

Parameter Name Chosen Values

Job Count (200, 500, 15)

Window Growth Mean (50, 200, 50)

Window Growth Std.Dev. 20

Window Base Factor (0.05, 0.15, 0.05)

Time Horizon 5 days

Time Resolution 1 minute

Block Count {1, 2, 3, 4, 5, 7, 10}

Table 2: Characteristics of the individual machines and the
patterns found in the sequences. Where Ē is the average en-
ergy needed in a sequence per machine and n̄ is the average
length of a sequence per machine.

Machine Sequences Pattern Ē(kW ) n̄(min)
High Temperature Oven 226 7 1.13 74.50

Screen Printer 173 1 0.32 285.51

Soldering Oven 206 4 1.89 146.32

Vacuum Oven 572 7 0.41 12.57

Washing Machine 66 4 1.95 188.47

Chip Press 51 2 1.09 433.63

We publish the instance set generated as above together with

some auxiliary data as a separate data publication [17], accessible

at https://doi.org/10.5445/IR/1000094324.

The data archive itself contains a detailed description of its con-

tents and the file formats. The instance file format is suitable to

be used with the TCPSPSuite software package
1
, which is what

we used for all optimizations performed for the evaluation. The

auxiliary data includes a description of the motifs discovered (as

described in Section 3) as well as for every instance the best solution

we computed during our evaluation. These solutions can be used

as a baseline for benchmarks.

6 EVALUATION: CHARACTERISTICS OF THE
PATTERNS

In Section 3 we have shown how to extract the patterns from the

machine time series before we generate a bigger set of instances. In

this section, we want to briefly characterise the patterns we have

found using the above described method on the HIPE data set. Ta-

ble 2 summarises how many sequences and patterns were found for

each machine as well as the average energy and time they needed.

Dependencies among machines is often an argument against any

flexibility in operation. We thus want to gather some information

from the real machines that help us to determine whether they

are dependent on each other. For this purpose, we examine the

correlation between the start and end times of all machines, which

could indicate a temporal dependency.

As can be seen in Figure 2, the time dependencies among the

processes are all relatively low. Therefore, we assume that either

1
https://github.com/kit-algo/TCPSPSuite
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Figure 2: Pearson correlation between the end times (inmin-
utes after midnight) and start times (in minutes after mid-
night) among all processes.

all output can be stored efficiently in between operating dependent

machines, or that the machines do not depend on each other much.

Either way, we assume we can ignore dependencies for the moment,

as already mentioned in Section 4.

Although there does seem to be no dependency between the

machines, we check for other dependencies such as the time of day

a machine is operated. As shown in Table 3, most machines show a

correlation between the start time of a process and the length of

the process, with shorter processes starting later in the day than

longer processes. The main reason for this seems to be the fact

that working hours are roughly between 6 am and 6 pm. Thus,

any machine or process which needs supervision or needs to have

ended before the workers go home is not started late in the day.

Table 3: Pearson correlation between the length of the pro-
cesses and the time they are started for all machines.

Machine ρ
Vacuum oven -0.01

Washing machine -0.15

Chip press -0.42
∗∗∗

High temperature oven -0.17
∗∗∗

Screen printer -0.48
∗∗∗

Soldering oven -0.39
∗∗∗

Stars indicating the significance level, with
∗∗∗

for p < 0.01.

The dependency on working hours seems to also be relevant

during the lunch break. As we can see in Figure 3 there is a sig-

nificant drop in starting times of processes during noon. In total,

most processes get started during the peaks occurring before and

after the lunch break. Most machines exhibit the pattern seen in

Figure 3a, with the exception of the screen printer which is more

often started before noon.

Overall, the starting times are spread over the whole working day

and there seems to be only little time restriction on the processes

other than when the workers have a break or go home.

https://doi.org/10.5445/IR/1000094324
https://github.com/kit-algo/TCPSPSuite
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Figure 3: Density of processes started during each hour of a
day for all machines Figure 3a and the most unusual start
time distribution found for the screen printer Figure 3b.

7 EVALUATION: BLOCK DECOMPOSITION
GRANULARITY

Since the data has one-minute time resolution, the power demand

curve for every occurrence detected in Section 3 is a stepwise func-

tion, with one step per minute. However, for many algorithmic

approaches, for example scheduling algorithms, the run-time com-

plexity increases significantly if the demand functions have too

many steps. Many approaches even can not deal with non-constant

demand, i.e., require a demand function with exactly one step.

For this reason, in Section 4 we generate jobs with varying, but

low numbers of steps in their power demand function. We also

call the number of steps in the demand function the number of

blocks that we decompose a job into. In this section, we analyze

the effects that the number of blocks of a job has. In Section 7.1,

we evaluate how closely we can approximate the original power

demand functions with various numbers of blocks. In Section 7.2,

we look at the increase in optimization complexity that comes

with a rising number of blocks, using a mixed-integer program for

the S-RACP as an example. Finally, in Section 7.3, we look at how

well solutions for instances with low k values work for the same

instances with high k values.

7.1 Approximation of the Original Power
Demand Curve

In Section 2.2 we describe a block decomposition that allows to

approximate the (stepwise) power demand curve of some original

process with a varying number of steps (resp. blocks).

In this section, we analyze how close a given power demand

curve with a low number of steps can be to the original curve it

tries to approximate. As original curves, we take the occurrences

discovered during motif discovery. First, we need a distance mea-

sure between two stepwise functions. Given the stepwise demand

function of an occurrence o as Po , and a stepwise demand function

with k steps P̃o,k that approximates Po , we use the measure

∆
(
Po , P̃o,k

)
=

1

No

∫ ∞

0

(
Po (t) − P̃o,k (t)

)
2

dt . (1)

Here, No is a normalization factor determined as No =
∫ ∞

0
Po (t)dt ,

i.e., the total energy of the original occurrence. Intuitively, the

distance between two stepwise functions should correlate with the

area between the two curves. However, we assume that — especially

Figure 4: ∆ measures for each occurrence, ordered by motif
(on the x axis), for k = 1.

Figure 5: ∆ measures for each occurrence, ordered by motif
(on the x axis), for k = 5.

for peak shaving applications — a large deviation over a short time

is worse than a small deviation over a longer time, which is why

we square the difference inside the integral.

We now investigate how well the detected occurrences can be

approximated with a low number of steps (resp. blocks) according

to this measure. Note that this is very different from generating jobs

as described in Section 4 and then computing (1) for each job. A job

is never generated from a single occurrence, and therefore does not

approximate any single occurrence’s power demand function. In-

stead, for a given k , we compute for every occurrence of every motif

a block decomposition that minimizes (1). If ∆(Po , P̃o,k ) becomes

small for a given occurrence o and its optimal k-block approxima-

tion P̃o,k , that means that occurrence o can be approximated well

using only k blocks.

Figures 4, 5 and 6 show the ∆ values for k in {1, 10} and every

occurrence. Larger plots, as well as plots for all k in 1 to 10 plus

15 and 20, can be found in the appendix in Section A. In the plots,

every dot is one occurrence, which are arranged into columns by

their motif. We see that there are some motifs the occurrences of

which can be well approximated with only one block. However, for

many motifs, one block is not enough for a good approximation.

On the other hand, we can also see that the effects of using more

than 5 blocks is small.

Figure 7 shows a line plot of the change in ∆ for changing values

of k (on the x axis). Here, for every occurrence o, and every k ∈

{1, . . . 10}, we set the y value to ∆(Po , P̃o,k ) − ∆(Po , P̃o,20), giving

an insight into how much one can improve the approximation for

that occurrence when changing k from its respective value to 20.

Here, we again see that until about k = 5, there is a sharp drop in

∆ values, with the curve being rather flat afterwards. Thus, we can

conclude that for the processes we mined from the time series data,

a block decomposition into 5 blocks might be a good compromise

between accuracy and instance complexity.
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Figure 6: ∆ measures for each occurrence, ordered by motif
(on the x axis), for k = 10.

Figure 7: ∆(Po , P̃o,k ) − ∆(Po , P̃o,20) for all occurrences, with k
being on thehorizontal axis. The solid blue line indicates the
mean, and all lines for all occurrences fall within the green
shaded area.

7.2 Scheduling Complexity
When choosing the number of blocks to decompose jobs into, one

important consideration is the time complexity of the optimization

problem one intends to solve. In this section, we explore how the

complexity of optimizing S-RACP using a mixed-integer program

changes with changing block decomposition.

To this end, we use the MIP formulation introduced by Barth et

al. [3], which supports all necessary features for the block decom-

position as described in Section 2.2, such as dependencies which

negative time lags. We optimize every instance for 30 minutes us-

ing Gurobi 7.0 with 16 threads on a machine with 16 Intel
®
Xeon

®

E5-2670 CPUs and 64 GBs of RAM. All resulting models fit into

the available RAM. Figure 8 shows how complexity changes with

increasing number of blocks in the instance. Every dot is one op-

timized instance. The y axis indicates the MIP gap achieved after

30 minutes, the x axis reports the number of blocks in the instance.

The color of a dot indicates how many blocks every job in the

respective instance has been decomposed into.

We see that for the instances with one block per job, the solver

usually achieves a MIP gap of at most 5%. With two blocks per job,

the achieved MIP gaps increase significantly. For most instances,

they go up to around 10%, however there is a sizeable fraction of

instances that can only be optimized to around 40% MIP gap. Going

to three blocks per job again worsens MIP gaps, however there

seems to be no drastic further deterioration for four and five blocks

per job. For seven and ten blocks per job, most instances can still

be optimized to below 40% MIP gap, however we now have some

instances with a MIP gap of 100%, i. e., for which the solver could

not find any feasible solution.

These results indicate that if one is to choose at least three blocks

per job, one might as well go with a finer decomposition, since it

does not increase computational complexity significantly. How-

ever, it is already questionable whether expected MIP gaps around

40% are still acceptable. If not, one is restricted to coarser block

decompositions.

7.3 Quality of Schedules with Few Blocks
Regarding the decision into how many blocks to decompose jobs,

an obvious question is how well a solution for a low-block decom-

position translates to a high-block decomposition of the same jobs.

If the solutions translate well, one does not gain much by choosing

a higher number of blocks, and since the number of blocks increases

computational complexity (cf. Section 7.2), it would be advisable to

chose a low number of blocks.

As described in Section 4.1, we generated instances that are

suitable to evaluate this question: We generated groups of instances,

within which the same jobs are decomposed into varying numbers

of jobs. The maximum number of blocks we decomposed each job

into is 10. We evaluate the quality of a low-block solution as follows:

For each job in the low-block instance, determine its computed start

time. Then, set that start time as the start time of the corresponding

job in the high-block (with k = 10) instance. Doing this for all

jobs in an instance leads to a new solution for the k = 10 instance.

We determine the factor between the quality of the so constructed

solution and the best solution computed for the k = 10 instance.

Figure 9 shows the results of this evaluation. Every dot is one

instance. The x axis depicts the number of blocks that the jobs

in the instances in the respective column were decomposed into.

The y axis shows the quality of the solution transferred from

k = {1, 2, 3, 4, 5, 7} divided by the respective k = 10 instance. We

see a downward trend. While for many k = 1 instances, the transfer

results in a deterioration by up to 40%, for k = 7, the deterioration

is mostly limited to 20%. There are some instances where the trans-

ferred solution is better than the solution computed on the k = 10

instance — this is likely because the k = 10 instance was harder to

solve and could not be well optimized within the time limit.

Because of these mixed results, we conclude that the approach of

transferring a solution from one block decomposition to another it-

self has a stronger influence on the result than the number of blocks.

Therefore, it must be decided on a case-by-case basis whether this

approach is valid in practice.

8 CONCLUSION
In the present paper, we presented a new benchmark data set of

industrial demand-side flexibility scheduling scenarios. The data

set is based on real-world smart meter information from a small

industrial facility and has been up-sampled to address large scale

problems. The instances in the data set vary in terms of their size,

the assumed amount of flexibility and the complexity of their pro-

cesses’ power demand functions, such that the data set covers a
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(a) k ≤ 4 (b) k ≥ 5

Figure 8: MIP gaps achieved after 30 minutes of optimization versus number of blocks in the instance. Every dot represents
one instance. Color denotes the number of blocks each job is decomposed into. For readability reasons split into block decom-
positions with less than 5 blocks (a) and at least 5 blocks (b). Where the gap is 1.0, the solver did not find any feasible solution
within 30 minutes.

Figure 9: Every dot depicts an instance with k as per the x
axis. The value on the y axis is the relation between the so-
lution obtained by transferring the best solution of the re-
spective instance to the corresponding instance with k = 10,
and the best solution computed for the corresponding k = 10

instance.

wide range of conceivable scheduling problems. We evaluated how

the precision of the approximation of the found patterns with dif-

ferent blocks influences the scheduling performance and find that

the complexity does not increase much as the job is split in more

than three blocks. Additionally, there is no straight forward answer

to the question how good a schedule with few blocks is compared

to a schedule with more blocks per job. One should decide the used

block count on a case-by-case basis, based on the need for accuracy

weighted against the need for performance. Please note that it is

in no way necessary that all jobs are decomposed into the same

number of blocks.

Overall, we believe that the benchmark data set can be used to

evaluate scheduling techniques dealing with demand-side manage-

ment. The instances are complex enough to provide a challenge, yet

because of the large parameter space diverse enough to point out

strengths and weaknesses in the algorithms to be evaluated. Our

evaluation has shown that the block decomposition we perform is

to a certain extend suitable to reflect the original power demand

curves, thus we may assume that our instances resemble real-world

scenarios.

In the future, it would be interesting to enrich the data set with

additional constraints from real-world scenarios, such as dependen-

cies between processes, storage constraints, etc.
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A FULL FIGURES FOR SECTION 7.1
Here, we supply larger plots for the analysis performed in Section 7.1 and for all values for k in {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20}. Note that in

rare cases, the ∆(Po , P̃o,k ) value slightly increases with increasing k for some occurrences. This is likely because the algorithm we used to

optimize the block decomposition is not exact. We used 10
5
iterations of sequential least-squares programming.

Figure 10: ∆ measures for each occurrence, ordered by motif (on the x axis), for k = 1.

Figure 11: ∆ measures for each occurrence, ordered by motif (on the x axis), for k = 2.
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Figure 12: ∆ measures for each occurrence, ordered by motif (on the x axis), for k = 3.

Figure 13: ∆ measures for each occurrence, ordered by motif (on the x axis), for k = 4.

Figure 14: ∆ measures for each occurrence, ordered by motif (on the x axis), for k = 5.
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Figure 15: ∆ measures for each occurrence, ordered by motif (on the x axis), for k = 6.

Figure 16: ∆ measures for each occurrence, ordered by motif (on the x axis), for k = 7.

Figure 17: ∆ measures for each occurrence, ordered by motif (on the x axis), for k = 8.
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Figure 18: ∆ measures for each occurrence, ordered by motif (on the x axis), for k = 9.

Figure 19: ∆ measures for each occurrence, ordered by motif (on the x axis), for k = 10.

Figure 20: ∆ measures for each occurrence, ordered by motif (on the x axis), for k = 15.
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Figure 21: ∆ measures for each occurrence, ordered by motif (on the x axis), for k = 20.
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