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Abstract—Positioning is one of the most fundamental problems received signal strength indicator (RSS) directions using
in sensor networks: Given the network’s connectivity graph multiple receivers or directional antennas [16]. Anchor-free
and some additional local information on measured’ distances |4.alization turned out to be a hard problem in almost any
and/or angles, the goal is to recover the nodes’ positions. ting: . hort . Its in Table I. L |
Varying the assumptions regarding the nature and the quality §e _mg,_we.gllve. a_s or overV|eW.on r.esu S In 1able 1. Local-
of the measurements, there has been extensive research for both|Zat|0n IS tr|V|a| if dIStanCES a.nd d|rect|0ns betWeen Connected
hardness results and practical, distributed, positioning schemes. nodes are known and computationally easy if only directions
This paper addresses these issues for a setting that appears togre known. Given only distances, the problem beconigs
be most likely in rgal-world scenarios in the future - nodes can hard. Realizations ofinit disk graphs (UDGare even hard
roughly measure distances andelative angles. We will show that t imat d in hard if K ither dist
this problem is A'P-hard like most positioning problems even 0 aPme'ma € and remain hard Ir one knows eltner distances
for arbitrarily small errors. We will also propose an algorithm ~ Or directions. Recently, Basu et al. [21] have shown that the
combining robustness to erroneous measurements and scalability trivial case where distances and absolute directions are given
in a completely distributed fashion and provide simulation results  hecomes hard in the presence of arbitrarily small errors. This
for networks of up to 128k nodes with varying errors. paper closes an annoying gap with the proof that the more
realistic realization problem with knowelative distances and

I N recent years, expectations of large-scale wireless sen%%(r:;'ons is alsoV'P-hard in the presence of arbitrarily small

networks becoming a practical solution for many tasks i h ' lexity of position; bl h : h
monitoring and data-gathering increased notably [1]. Despite-lr € ccl;rlnp exnyfo p05|t|or_1(|jng pfr'oderrrs% "OW?VH’. IS not the
the extensive research in both theory and practice, we sfli'y probiem we face. We identified the following important

know the complexity of some of the most fundamental proﬁs_sues which ar_e_no_t solved §atisfactorily at the same time by
lems only with a high degree of idealization. Moreover, Wgny_cu_rrent posmonmg_algonthm. _
also lack algorithms that could realize the vision of thousandsPistributed computationOne of the most natural require-
of nodes that calibrate and process data in a distributed waNtS for algorithms in sensor network localization is that an
combining robustness and scalability. algorithm hgs to be performed in a_d|str|buted way. Although
Reconstructing the nodes’ positions is one of those fund€ Parallelism of computation in wireless networks could be
mental problems that arise early in sensor networks, kno®fEN @S @ benefit, most algorithms either are centralized or try
as thepositioningor localizationproblem [2], [3]: On the one to break down centralized approaches to a distributed envi-
hand, there certainly is a need to know the nodes’ positioff!Ment. Apparently, only a quite small class of approaches
for basic network operations from topology control [4] td€2lly work fully distributedly [14], [15], [21].
geographic routing [5], [6] as well as for the obvious demand
to know where data or events are sensed in a network. On TABLE |
the other hand, when talking about sensor networks, W&MMARY OF HARDNESS RESULTS OF FINDING A VALID EMBEDDING FOR
cannot hope for any powerful infrastructure like GPS due A NETWORK
to comparably high costs and size requirements for receivers
and the restriction that GPS does not work indoors. Many
localization algorithms assume the presence of a fraction of
nodes which know their position, so-calladchor-nodeg7]-
[11], but often, it will even be impossible to provide these
beacons. Thuanchor-freelocalization recently received more
attention [9], [12]-[15], i.e., positioning solely based on
known characteristics of the wireless channel and information
that nodes realistically can measure locally about their relative
positions. For example, nodes can estimate distances using the

I. INTRODUCTION

Realization Problem \ Complexity

1-hop distances & directions | ftrivial
(relative or absolute)
1-hop directions
(relative or absolute)
1-hop distances
Unit Disk Graph (UDG) only
UDG approximation
UDG with 1-hop distances
UDG with 1-hop directions
Absolute directions, distances

in P (folklore, [13])

NP-hard [17]
NP-hard [18]
NP-hard [19]
NP-hard [20]
NP-hard [13]
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arbitrarily small errors
Relative directions, distances
arbitrarily small errors

NP-hard (here)




Energy awareness/congestioktany algorithms that work w(u,v) andw(v,u) as above for an edggu, v} € E instead
in a distributed manner, and thus seem to be well-suited fof definingw({u,v}); andw({u, v})s.
sensor networks, in fact demand all nodes to exchange dat&Ve denote a node’s 1-hop neighborhood in a grap
with all their neighbors as long as the algorithm is runningvith V(G v), its k-hop neighborhood withV*(G,v) (both
Among them are all approaches that use any local optimizaeluding v). A set of nodesV’ C V is called adominating
tion, e.g. [14], [15]. Although these algorithms certainly arset if for each nodev, eitherv itself or one ofv’s neighbors
distributed, they ignore the fact that in sensor networks, thsin V.
communication scheme is quite costly, as it causes interference
and other side-effects of congestion. Il. HARDNESSRESULT

Scalability and independence of deployment regicom- Recently, Basu et al. [21] have shown that the localization
paring approaches for sensor network localization with thgoblem isAP-hard if nodes know distances amdbsolute
vision of large-scale networks [22], the most striking shortangles, i.e., nodes measure angles against a common north
coming of many proposed algorithms is that first, the issymle, both with an arbitrarily small error. We extend this
of scalability almost never seems to be addressed at all, gidblem to the less artificial case where nodes measure angles
second, algorithms highly rely on implicit assumptions madsgainst their respective axis, i. e., without assuming any global
regarding the deployment of nodes, like the convexity d&howledge:
the deployment region. Typically, algorithms are evaluated onProblem 1 ERROR-REALIZATION): Given a graphG =
scenarios with 200 to 1000 nodes in a rectangular area, leaving E), edge lengths! : E — R, relative edge directions
the question open whether the algorithm works in differeat : £ — [0,27)? and smalle, § > 0, is there an embedding
setups, especially how much the size of the network influenggs 1V — R? and an orientatiom : V' — [0, 2), such that for
quality and runtime. all u,v with {u,v} € E

Our contribution to this facet of the localization problem is o (u, )
a novel algorithm scheme that overcomes these problems by A St s
combining the best centralized localization techniques with d(u, v)
the powerful idea of multi-scale optimization: The proposed Wp.o(U, v) — w(u,v) € [=0;6] mod 27 ?
algorithm distributedly reduces the positioning problem to
small subproblems which can be solved locally. Solutions areln the following, we prove that it isVP-hard to find an
aggregated hierarchically, allowing for multi-scale optimiz&émbedding such that the measured distances and angles do
tion in overlay networks without any of the disadvantage®ot differ from the embedding by more than given, arbitrarily
mentioned above. small factors and angles, respectively:

This paper is organized as follows: In Section I, we give a Theorem 1:ERROR-REALIZATION is N'P-hard even for
short description of the problem setup and some preliminariéed, arbitrarily small error bounds J.
Section Il proves the hardness of the localization problem Proof: We prove this theorem by a reduction from&$
with distances and relative directions in the presence of ariven an instance of 3-8, we draw the corresponding
trarily small errors. Our algorithm is presented in Section INnstance canonically as shown in Figure 1 with the build-
along with simulation results in Section V. Conclusions ari®g blocks, i.e., variables, wires, crossings, connectors and

€[l—¢€1+¢€ and

presented in Section VI. clauses. From this drawing, we derive an input to OBRBR-
REALIZATION problem as follows.
1. PRELIMINARIES First, we observe how to design an input to theRRER

BEALIZATION problem in order to force a graph to be em-
bedded with fixed angles in any valid embedding: Let a graph
G have a cycle of nodes we want to be realized as a polygon
with prescribed angles. If we choose the input directians

to all point outward (or all inward) by an angle &f with
respect to an arbitrary orientation of the nodes (see Figure 2),

Throughout this paper, we model a network as an undirect
graphG = (V, E) with an embedding : V — R? and an
orientationo : V' — [0, 2x) of the nodes. With respect to this
embedding and orientation, distanegsand relative directions
wp.o between pairs of nodes # v € V are canonically

denoted as
every valid embedding ofs that differs fromw by no more
dp(u,v) = |p(u)—p(v)| and thané for any edge-node incidence, embe@sas a polygon
wpo(t,v) = 4(p(v)—p(w)) —o(u) (mod 2r) . according to the given angles. We will exploit this fact in the

following.

Note that, unlike distances between nodes, directions are noBased on the arguments above, we construct variables by
symmetric. Thus, the input of a localization problem, i. e., locluilding a rectangle of four nodes. We then introduce an
measurements on distances and directions, contains per ealdgitional inner edge that can deviate from being parallel to
one distance, but two direction measurements, one for edhk rectangle’s sides by in both directions (see Figure 3).
node incidence. We therefore model the input distances \A& also assign lengths to all edges, namely,c € R,
functiond : E — Ry and the input directions as functionsuch that the triangle shown in Figure 3 is valid. One can see
w: E — [0,27)2. To facilitate readability, we will rather usethat in every valid embedding of the six nodes, first, angles
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Fig. 3. The gadget for variables has fixed angles at vertite®3, C and
D. The edgeY X can deviate from being parallel td B (right). Input edge
lengths are constructed for givend (left).
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Fig. 4. \Variables have only two valid embeddings, corresponding to truth
values false (left) and true (right).

must comply with one of the drawings in Figure 4, second,
the edgesAB and CD are maximally stretched, i.e., have
lengths(1 + €)b, while the edgeX'Y" has its minimum length

of (1 — €)e, and third, either edgeX A andY C have length

(1 + €)a and BY and DX have lengths(1 — €)a or vice
versa. We will call the former gue assignment, the latter a
false . Now, the edgeX A andBY correspond to the literals

x andT respectively, i.e., a lengtfil + ¢)a corresponds to a
true literal, length(1 — ¢)a to false . Wiring, connecting
and crossing is comparably easy. The gadgets are shown in
Figure 5(a) to 5(d). Essentially, they all are rectangles with
fixed angles, which therefore must have the same lengths
for opposite edges. Variables and wires have all directions

Fig. 1. Schematic drawing of a 3% instance (a) and in a grid-like fashion pointing outward, while in crossings and connectors, directions

with building blocks, i.e., variables, wires (horizontal/vertical), crossingi,oint inward by&. These two kinds of gadgets are put together
connections and clauses (b).

alternately (see Figure 1(b)). Note that all rows have heights
of =~ a, but the width of columns is a only for columns
corresponding to literals, whilst its necessary for the other
columns containing horizontal links to have width b like
variables.

The last gadget is a clause, shown in Figure 5(e). If we
choosez, such that

I-ez=0B14+e)+2(1—¢)-a=(b+ea=(1-¢€x ,

i.e., even with the edges with length « having the shortest
possible length(1 — ¢)x, there must be no more than two

Fig. 2. A polygon with fixed angles. Input directions are dotted and difféshort’ edges on the right side, that is, at least one connected

all by 6 from a polygon with the given angles.

literal must betrue , and more are always possible. On the
other hand, it is easy to see how a valid assignment can be



a a For those algorithms that really work in a distributed way,

- Lo - - AN S - a typical approach is to first find folding free embedding,
A v \ 4 i.e., an embedding without overlappings of different parts of
a a a a . ..
y N 4 » the network, and then perform any kind of local stress mini-
L e = L e ey mization. Examples are AFL [14] and EIGEN [15]. In order
a a to embed the network folding free, the former spreads nodes

between five heuristically chosen reference nodes, the latter
uses a distributed version of a spectral graph layout algorithm.
Both these approaches implicitly rely on the assumption that
the deployment area has some regular shape, e.g., is convex
( [14]). Moreover, these approaches (and more) extensively
use local stress minimization to gain a good localization.
This can certainly be done distributedly, but it incorporates
mass pairwise communication — continuously, every node has
to send its current position and receive positions from its
neighbors. We do believe that this kind of mass concurrent
communication has to be restricted as far as possible for any
localization scheme to be applied in real networks, since this
really is the worst case in terms of network congestion and
energy consumption.

Our approach, in contrast, tries to overcome the mentioned
problems following two basic ideas: First, rather than be-
ing overly distributed, it seems reasonable for us to let a
sample of nodes localize some (constant-size) neighborhood
in a centralized fashion. This minimizes the communication
overhead without violating the restriction that nodes only
have small memory and computational power. Second, because
iteratively putting those local solutions together would still
lead to increasing errors in large networks, we adapt the
idea of graph filtration and multi-scale graph layout, which is
known from graph drawing [24]. Graph filtration here denotes
(e) clause the process to successively restrict a graph to a fraction of
nodes, i.e., starting with all nodes, a filtration is a sequence
V=YVyDV, DDV ={0}. In graph drawing, the usual
way is then to find a layoubp-down Given a layout for the

transformed into a valid embedding: Rows that correspof@des fromV;, the nodes fronmy;, \ V; are placed according
to an occurrence of a literal have the respective height, tffeSOMe good guess based on the layouvgfthe resulting

other rows have heightl + ¢)a. Columns that correspond tol@yout is refined by local optimization and so on. In [25], a
a literal again have the width induced by the literal’'s valydariant has been proposed for sensor network localization, but
other columns have widthl + )b. m again only in a centralized fashion. Moreover, this algorithm

works only top-down, guessing initial distances and directions
by dead reckoning. It thus cannot work for arbitrarily large
networks, as these initial errors will become arbitrarily high.
Although almost every anchor-free localization problem Our approach consists of both a bottom-up and a top-down
is hard — especially in the presence of errors, recent wostage: In the bottom-up pass, we first choose a fraction of the
has shown strengths and weaknesses of existing heuristic mpdes to collect and localize their neighborhood. For those
proaches: Obviously, any kind of purely incremental algorithiairs of chosen nodes that are close to each other, we introduce
cannot prevent an increase in errors, but there are many othietual edges (i. e., multi-hop connections), deriving distances
techniques that work quite well in some sense. The firahd directions from the local solutions (see Figure 6). This
observation is, that we have many techniques at hand tfiitation step is done recursively on the resulting overlay
could be used to localize small networks, although the bestraftwork until we end up with a single node, to which we
them typically work in a centralized manner and sometimes aassign arbitrary coordinates.
highly complex, e.g., use linear or semidefinite programming In the top-down stage, knowing local solutions and coor-
as in [23]. They seem to be unsuitable for larger networks, bdinates for the chosen subset of nodes is enough to assign
on the other hand, they can still be used to let nodes localizeordinates to all nodes of one abstraction level. Optionally,
some reasonably small neighborhood. local problems can be solved again to refine local solutions

(c) vertical wire

(d) horizontal wire

Fig. 5. Gadgets. Symbols correspond to blocks in Figure 1(b).

IV. HIERARCHICAL LOCALIZATION



(a) Bottom-up stage: The input network (left) is filtered repeatedly until we reach an instance, which can be solved by a single node: On every
level, a dominating set of nodes is chosen, virtual edges span between chosen nodes that lie in some neighborhood. Edge distances and directions
are derived from local solutions on the current level.

(b) Top-down stage: Starting with the positions of the topmost level, the nodes of the next levels can be positioned successively using local solutions
on the respective level.

Fig. 7. Two stages of the hierarchical localization.

when the chosen subset of nodes knows their final positioAdgorithm 1 LOCALIZE(G = (V, E), d,w)
This process is depicted in Figure 7. Note that a main.: if |[V| =1 then
difference to other approaches is that in the top-down stage return any localization
every node is assigned a position only once, without ang: end if
refinement when other nodes have been placed, saving a lot choose dominating subs&t c V
of communication. 5: E' ()
A more detailed view on this technique is given in Al- 6 for all v € V' do
gorithm 1: Given a connected graght = (V, E) together 7. G, « G[N3(G,v)]
with erroneous edge lengths: E — R, and relative edge 8 (py,0,) «— SOLVECENTRALLY (G, d,w)
directionsw : E — [0,2m), we first choose a dominating 9: for all w € V' N N3(G,v) do

subset of node§”’ C V. For the nodes irl//, we use any 10: E' — E'U{{v,u}}
central algorithm to localize their 3-neighborhood. For pairsi: d'(v,u) — dp, (v,u)
of nodes that mutually lie in this neighborhood, 12: W' (v,u) — wp, 0, (V,u)
13:  end for
V/ . d f
E = {{u,v}e ( > |u€./\/3(G,v)} , 14: end for
2 15: (p’,0') « LOCALIZE(G' = (V' E'),d',u)

: : P N P 16: for all v € V' do
we derive distanced’ : £/ — R, and directions.’ : £/ — 17 for all uwe M)\ V' do

[0,27) from the local solutions. We recursively apply the,
algorithm toG’ = (V’, E’) and, given a localization fob’”’ igj eng)f(gr)’o(u)) < (p(v),0(v)) & (Pu(u), 0u(u))
from this recursion, localize the nodes ¥\ V'’ using the 20: end for
(refined) local solution of the closest nodelifi. 21; return (p, o)

Note that this scheme still has two degrees of freedom: ’
The choice of the algorithm applied to local problems and
the choice ofl”’. We leave the choice of the algorithm open,
but assume that we sele&t’ in the following way: For a Network's structure by
fixt_ed numberk of _roynds, every node which nejther h_as a c<PpeV]<l-c-(1-c) ,
neighbor inV’ nor is itself a member oV’ selects itself with
a fixed probabilityd0 < ¢ < 1. In an additional round, every since at least in the case that a node is not chosen in the
node still fulfilling this condition selects itself with probability first round while one of its neighbors is, the node will not
1. This clearly ensures that a dominating $&t is chosen be selected at all. As an example,df= 1/2 andk = 1,
after k + 1 rounds, and it further ensures that we can bourghch node is chosen at least with probabilifz and at most
every node’s probability to be selected independently of théth probability 3/4, as there is at leastig4 chance that one




(a) An active node (center) collects its 3-hop
neighborhood by local communication. Other
active nodes are drawn black, too.

’

\

(b) Routes to close active nodes are stored.
They become neighbors on the next-level over-
lay network. Distances and directions are de-
rived from local solution.

Fig. 6. Filtering from a node’s point of view.

neighbor is chosen in the first round while the node itself
not.

Moreover, the construction of the netwot® guarantees
connectivity: For any node € V let dm(v) € V' denote
the selected node that is closesttin G (its dominator, i.e.,
eitherw itself or one ofv’s neighbors). For any path;, . .., v,
in G, the nodesdm(v;) and dm(v;11) have at most three
hops distance and are thus connected by an edg¢ ifsee
Figure 8).

dm(vy)

dm(vs)

This algorithm terminates with expect&d(log D) recur-
sions if G has diameteD: For a nodev; on a pathvy, ..., v,
there is a constant lower bounpd> 0 on the probability that
vi, Vi1 € V' andwv; 11 ¢ V', which means that the distance
betweendm(v;) = v; and dm(v;y2) = v;y2 shrinks from
2 to 1. We have at leasti/3] such triples for which this
independenthholds, and thus the expectation for the number
of nodes on the path which introduce a shortcut is at least
p-|1/3] and the expectation for the length of the shortest path
from dm(v;) to dm(v;) is shorter thari by a constant factor.

As the expected number of remaining nodes in each recur-
sion decreases at least by the factor ¢ - (1 — ¢), we know
that during all recursions we have a total@{|V|) invokings
of SOLVECENTRALLY:

. V]

V|- l—c-(1=-¢))' < ———

VI-3 (e (1-0)' < oy
Although it is not possible to give a constant bound on
the maximum node degree or on the maximum size of a
three-hop neighborhood during the execution, our experiments
on geometric graphs with their close interrelation between
Euclidean and graph distances have shown that both node
degrees and problem sizes did not increase in the overlay
networks (see Section V).

A. Distributed Algorithm

As claimed, Algorithm 1 can completely be implemented in
a distributed way; an outline is given in Algorithm 2. Starting
with a setup where every node knows distance and direction
measurementsl, was for its one-hop neighborsV, every
node performs thé + 1 rounds of the selection algorithm,
each including a communication with its direct neighbors.
Afterwards, the nodes have to share information with their
3-neighborhoods to let close selected nodes know each other.
If a node has chosen to be active on the next level, it applies
the centralized algorithm to the current neighborhood and then
lnows its neighbors on the next level (with estimated distances
and directions) as well as the hops to route information there in
the current neighborhood. This procedure is repeated until on
some level the node either has no more neighbors or it decided
not to join the next level. In the first case, the node localizes
itself to some arbitrary position, in the latter, the node waits
until it receives a position from some other node. In any case,
as soon as a node knows a localization, it sends localizations
to its neighbors on all levels in which the node was active,
based on its own position and the local solutions.

Note that on each level, each node has to communicate
only a constant number of times with its neighbors on that
level while the number of levels is i¥(log D). On the
other hand, distances between communicating nodes increase
with the level. However, empirically, in geometric graphs, the
decreasing number of active nodes compensates the growing
distances of neighbors easily and thus, the number of one-hop
messages sent is (V| log D). Nevertheless, routing com-

Fig. 8. A pathuy, ..., vs. dominators of successive nodes are at most thrd@unication between higher level neighbors is a crucial point:

hops apart and the graph stays connected.

If we denote the overlay networks & = Go,Gq,...G



Algorithm 2 LOCALIZEDISTRIBUTED(N, dar, war) Gy o U1l »
Ivl 0 : :
Ny — N, do « dpry wo «— wpr
active < true : . . :
while active do O L WL W ELED WL WELEEN

perform dominating set selection algorithm § W wo v vy W wr vy wy
exchange 3-hop information with},; neighbors Fig. 9. Routing a message between two noslesin G with waypoints.
if node is selectethen

solve localization problem oW/,

) 1o |
G ¢ VoWov1wit vywowt vywyt '

Myi41 < selected nodes fronV?, and additional waypoints are added as above. The number of
store hops NV}, for neighborshiyi 1 waypoints then never exceegist-1. An example is depicted in
derive diy1+1 andwiyi11 from local solution Figure 9: The node initially knows the target nodeand adds
vl vl +1 the hops known inG, and Gy to vowoviwit. The message
else passesyy and wy and the next node fronds;, v; adds the
active « false waypointsuv}, andw), which are necessary to reaeh and so
end if on.
end while In any case, every node needs to store local solutions for
wait for first localization every level in which it was active, and as long as local
send localizations to (inactive) nodes A to N}, solutions do not grow larger than a constant bound, memory

consumption for every node is i@(log D).

k € O(log D), neighbors inG; can be up to3i hops apart V. IMPLEMENTATION AND SIMULATION RESULTS

in G (at mostD hops). Thus, it is not only impossible for a we implemented the proposed algorithm in its centralized
nodev to store complete routes to neighbors on higher levelgariant to run a variety of simulations on networks of different
but we would also need to pass this information along widhapes, densities, sizes and error characteristics. In our current
the messages, which is prohibitive, too. implementation, we use a very simple force-directed layout
A quite straightforward way to solve this problem would bg|gorithm to solve local subproblems and uded= 10 and
to let the nodes on routes know how to route future messaggs- 5% for the selection of a dominating set. For all tests,
Given that messages can be routed betwegighborsin G;, we evaluated a variation of thglobal stress RMS (GSR)e.,
which is trivially true inGo, every edge irG;; is composed the quadratic mean of the pairwise relative distance violation
of at most3 hops inG;. Thus, sending an additional messaggetween the original distances between nodes in the gtgph

containing these hops for every edge id/;;, is enough to and the distances in the reconstructifp,
inform all nodes about this edge. By the selection of active

nodes the construction of the overlay connections, each node 9 do— g 2
usually is part of at most a constant number of edges on a GSR := : Z ( ”d ”) ,
certain level. Hence, additional memory@flog D) per node n(n —1) ij

's sufficent for this task, which is very similar to theglobal energy ratio(GER) as

Another w. r m i xploit the f hat .. . . .
other way o route messages S to exploit the fact t gtefmed by Priyantha et al. [14], but better suited for comparing
every node has to store local solutions for every level M : S
S . . . o . different network sizes. However, both indices equally measure
which it was active. Without storing any additional routlngiq.I
t

information, these local neighborhoods are sufficient to rou é);? :i?;?e;haerrlg issmzlcl);sf;ﬂiher;ﬁfs’s" ?n Izr:;lmnveei“uhebso:rk]\glggée
messages irz; with at most2i + 1 IDs enclosed: Given a ! 9 '
message to be sent from a nogde G; to one of its neighbors

1<j

and second, the global picture of the network is recovered

t € Gy, s knows a path correctly.
B Deployment Regions and Radio Randfge evaluated the
S— i1 —wj_1 —t implementation on six different deployment regions. Region

types were squared, u-shaped, star-shaped, grid-like, donut-
shaped and one of an irregular pattern (see Figure 10). In any
to¢in G;_1. The nodes also knows such a path tq in G;—>  ¢ase, the nodes were randomly distributed over the area; their
and can add this information to the route: radio range was then uniformly chosen to generate a specified
average node degree, typically between 8 and 12.

Errors: To evaluate the robustness of our algorithm, we
introduced noise for both distances and directions, i.e., the
Repeatedly applying this scheme,can send the messagesnput distances were normally distributed around the original
with waypointsvg — wg — vy —wy — -+ —v;_1 —w;_1 — t. values with a standard deviation of up to 30%, input directions
While the message is routed, passed waypoints can be remowitti a standard deviation of up to 30Note that this error

path inG;_1

8§ —Vj_g — Wj—g — Vi_1 —W;j—1 — 1

path inG,_2



(d) GSR=0.104 (0.132)

7\

(e) GSR=0.089 (0.071) (f) GSR=0.083 (0.079)

(e) donut (f) irregular
Fig. 10. Deployment areas; in each region, the same number of nodes — h ig. 11. Exemplary localizations with standard deviation of distance error
2500 - are placed uniformly at random. Communication radii are uniformfy? 0 nd angular error $5average GSR values in parentheses). Both local
chosen to achieve a specified average node degree (here: 12). nd global structure are recovered correctly.

model does not give a bound for possible errors. As in redf recover node positions very accurately for errors even with
life scenarios, a big challenge for the algorithm is to deal with Standard deviation of 15% and “1&nd above. For much
some measurements being almost completely wrong. larger errors, overall quality decreases due to failures of the
Figure 11 shows exemplary localizations of (comparab| cal algorithm. Not surprisingly, best results are achieved for
small) networks of 2500 nodes with errors of standard deJi€ typical benchmark scenarios of squared and star-shaped
ations approximately 15% and 15espectively. The results déployment regions, but our algorithm also performed very
show how close to reality localizations with typical Gspvellon _the deployment regions that seemed to be much harder
values (0.05 to 0.1, depending on the deployment area) aretdrocalize before.
Figure 12, results for different error characteristics are depictedAdditionally, we ran our algorithm on different network
for networks with 5000 nodes. For these tests, we chose @Aes of up to 128000 nodes. As expected, the runtime
average degree of 12, matching with the simulations from [24f\creased only linearly with the number of nodes (see Fig-
For each combination, experiments were repeated untfe 13(a)), while the quality is independent of the network’s
statistical significance has been attained withcafevel of —Size (see Figure 13(b)). Larger errors resulted in slightly higher
0.95 and a confidence interval of length 0.02 for GSRle runtimes only as an artefact of the slower convergence of

get very similar results for all scenarios: The algorithm is ablg€ optimization algorithm. This completely complies with the
demand for scalable localization algorithms.

Lat most 250 runs per setup An evaluation of the algorithm with varying average node



(a) square

(c) star-shape (d) grid-like

(e) donut (f) irregular

Fig. 12. GSR norm on localizations for errors ranging from a standard deviation of 0% to 30% for distancéstarRDOfor directions, respectively.
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degree is depicted in Figure 14. It shows how a higher average
node degree allows to compensate for more severe errors while
for lower errors, a less connected graph would be sufficient.

During all our experiments there was no subproblem, i.e.,
3-hop neighborhood, on any level that contained more than
140 nodes — except for tests with high average degree, where
3-neighborhoods in the input graph became larger. On the
average, subproblems contained around 60-70 nodes. For our
implementation, we experienced that even for 128000 nodes,
10-12 levels were sufficient.

VI. CONCLUSION AND FUTURE WORK

In this work, we addressed the problem of sensor network
localization with both distance ancklative direction mea-
surements in the presence of errors. We have shown that
the presence of arbitrarily small errors is enough to make
this problem hard, generalizing the work of Basu et al. [21],
waiving the assumption that nodes have global knowledge
about their orientation.

We presented a novel, distributed algorithm scheme which
combines robustness to fairly large errors with scalability and
independence of the deployment region. The experimental
evaluation yielded that this algorithm scheme recovered node
positions very accurately for severe errors even with a quite
nave algorithm applied to the local subproblems. Here, next
steps will be to combine the proposed scheme with more
sophisticated algorithms to solve local problems, as it seems
that positioning with large errors mostly fails due to the
inability to reduce errors on early levels. Furthermore, different
algorithms could make directional information dispensable,
which is currently only needed for an initial layout of the

Fig. 13. Runtime and localization quality for varying network sizes of up torce-directed layout algorithm.
128000 nodes (centralized algorithm applied on u-shaped deployment area).

Runtime is depicted for our Java-implementation running on one single core

of a dual-core AMD Opteron(tm) processor 2218.
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5000 nodes with different errors.
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