
Multi-scale Anchor-free Distributed Positioning in
Sensor Networks
Bastian Katz and Dorothea Wagner

Abstract—Positioning is one of the most fundamental problems
in sensor networks: Given the network’s connectivity graph
and some additional local information on measured distances
and/or angles, the goal is to recover the nodes’ positions.
Varying the assumptions regarding the nature and the quality
of the measurements, there has been extensive research for both
hardness results and practical, distributed, positioning schemes.
This paper addresses these issues for a setting that appears to
be most likely in real-world scenarios in the future – nodes can
roughly measure distances andrelative angles. We will show that
this problem is NP-hard like most positioning problems even
for arbitrarily small errors. We will also propose an algorithm
combining robustness to erroneous measurements and scalability
in a completely distributed fashion and provide simulation results
for networks of up to 128k nodes with varying errors.

I. I NTRODUCTION

I N recent years, expectations of large-scale wireless sensor
networks becoming a practical solution for many tasks in

monitoring and data-gathering increased notably [1]. Despite
the extensive research in both theory and practice, we still
know the complexity of some of the most fundamental prob-
lems only with a high degree of idealization. Moreover, we
also lack algorithms that could realize the vision of thousands
of nodes that calibrate and process data in a distributed way,
combining robustness and scalability.

Reconstructing the nodes’ positions is one of those funda-
mental problems that arise early in sensor networks, known
as thepositioningor localizationproblem [2], [3]: On the one
hand, there certainly is a need to know the nodes’ positions
for basic network operations from topology control [4] to
geographic routing [5], [6] as well as for the obvious demand
to know where data or events are sensed in a network. On
the other hand, when talking about sensor networks, we
cannot hope for any powerful infrastructure like GPS due
to comparably high costs and size requirements for receivers
and the restriction that GPS does not work indoors. Many
localization algorithms assume the presence of a fraction of
nodes which know their position, so-calledanchor-nodes[7]–
[11], but often, it will even be impossible to provide these
beacons. Thus,anchor-freelocalization recently received more
attention [9], [12]–[15], i. e., positioning solely based on
known characteristics of the wireless channel and information
that nodes realistically can measure locally about their relative
positions. For example, nodes can estimate distances using the
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received signal strength indicator (RSSI)or directions using
multiple receivers or directional antennas [16]. Anchor-free
localization turned out to be a hard problem in almost any
setting; we give a short overview on results in Table I. Local-
ization is trivial if distances and directions between connected
nodes are known and computationally easy if only directions
are known. Given only distances, the problem becomesNP-
hard. Realizations ofunit disk graphs (UDG)are even hard
to approximate and remain hard if one knows either distances
or directions. Recently, Basu et al. [21] have shown that the
trivial case where distances and absolute directions are given
becomes hard in the presence of arbitrarily small errors. This
paper closes an annoying gap with the proof that the more
realistic realization problem with knownrelativedistances and
directions is alsoNP-hard in the presence of arbitrarily small
errors.

The complexity of positioning problems, however, is not the
only problem we face. We identified the following important
issues which are not solved satisfactorily at the same time by
any current positioning algorithm.

Distributed computation:One of the most natural require-
ments for algorithms in sensor network localization is that an
algorithm has to be performed in a distributed way. Although
the parallelism of computation in wireless networks could be
seen as a benefit, most algorithms either are centralized or try
to break down centralized approaches to a distributed envi-
ronment. Apparently, only a quite small class of approaches
really work fully distributedly [14], [15], [21].

TABLE I
SUMMARY OF HARDNESS RESULTS OF FINDING A VALID EMBEDDING FOR

A NETWORK

Realization Problem Complexity

1-hop distances & directions trivial

(relative or absolute)

1-hop directions in P (folklore, [13])

(relative or absolute)

1-hop distances NP-hard [17]

Unit Disk Graph (UDG) only NP-hard [18]

UDG approximation NP-hard [19]

UDG with 1-hop distances NP-hard [20]

UDG with 1-hop directions NP-hard [13]

Absolute directions, distances, NP-hard [21]

arbitrarily small errors

Relative directions, distances, NP-hard (here)

arbitrarily small errors



Energy awareness/congestion:Many algorithms that work
in a distributed manner, and thus seem to be well-suited for
sensor networks, in fact demand all nodes to exchange data
with all their neighbors as long as the algorithm is running.
Among them are all approaches that use any local optimiza-
tion, e. g. [14], [15]. Although these algorithms certainly are
distributed, they ignore the fact that in sensor networks, this
communication scheme is quite costly, as it causes interference
and other side-effects of congestion.

Scalability and independence of deployment region:Com-
paring approaches for sensor network localization with the
vision of large-scale networks [22], the most striking short-
coming of many proposed algorithms is that first, the issue
of scalability almost never seems to be addressed at all, and
second, algorithms highly rely on implicit assumptions made
regarding the deployment of nodes, like the convexity of
the deployment region. Typically, algorithms are evaluated on
scenarios with 200 to 1000 nodes in a rectangular area, leaving
the question open whether the algorithm works in different
setups, especially how much the size of the network influences
quality and runtime.

Our contribution to this facet of the localization problem is
a novel algorithm scheme that overcomes these problems by
combining the best centralized localization techniques with
the powerful idea of multi-scale optimization: The proposed
algorithm distributedly reduces the positioning problem to
small subproblems which can be solved locally. Solutions are
aggregated hierarchically, allowing for multi-scale optimiza-
tion in overlay networks without any of the disadvantages
mentioned above.

This paper is organized as follows: In Section II, we give a
short description of the problem setup and some preliminaries.
Section III proves the hardness of the localization problem
with distances and relative directions in the presence of arbi-
trarily small errors. Our algorithm is presented in Section IV
along with simulation results in Section V. Conclusions are
presented in Section VI.

II. PRELIMINARIES

Throughout this paper, we model a network as an undirected
graphG = (V,E) with an embeddingp : V → R2 and an
orientationo : V → [0, 2π) of the nodes. With respect to this
embedding and orientation, distancesdp and relative directions
ωp,o between pairs of nodesu 6= v ∈ V are canonically
denoted as

dp(u, v) := |p(u)− p(v)| and

ωp,o(u, v) := ](p(v)− p(u))− o(u) (mod 2π) .

Note that, unlike distances between nodes, directions are not
symmetric. Thus, the input of a localization problem, i. e., local
measurements on distances and directions, contains per edge
one distance, but two direction measurements, one for each
node incidence. We therefore model the input distances as
function d : E → R+ and the input directions as function
ω : E → [0, 2π)2. To facilitate readability, we will rather use

ω(u, v) andω(v, u) as above for an edge{u, v} ∈ E instead
of definingω({u, v})1 andω({u, v})2.

We denote a nodev’s 1-hop neighborhood in a graphG
with N (G, v), its k-hop neighborhood withN k(G, v) (both
including v). A set of nodesV ′ ⊂ V is called adominating
set, if for each nodev, eitherv itself or one ofv’s neighbors
is in V ′.

III. H ARDNESSRESULT

Recently, Basu et al. [21] have shown that the localization
problem isNP-hard if nodes know distances andabsolute
angles, i. e., nodes measure angles against a common north
pole, both with an arbitrarily small error. We extend this
problem to the less artificial case where nodes measure angles
against their respective axis, i. e., without assuming any global
knowledge:

Problem 1 (ERROR-REALIZATION ): Given a graphG =
(V,E), edge lengthsd : E → R+, relative edge directions
ω : E → [0, 2π)2 and smallε, δ > 0, is there an embedding
p : V → R2 and an orientationo : V → [0, 2π), such that for
all u, v with {u, v} ∈ E

dp(u, v)
d(u, v)

∈ [1− ε; 1 + ε] and

ωp,o(u, v)− ω(u, v) ∈ [−δ; δ] mod 2π ?

In the following, we prove that it isNP-hard to find an
embedding such that the measured distances and angles do
not differ from the embedding by more than given, arbitrarily
small factors and angles, respectively:

Theorem 1:ERROR-REALIZATION is NP-hard even for
fixed, arbitrarily small error boundsε, δ.

Proof: We prove this theorem by a reduction from 3SAT:
Given an instance of 3-SAT, we draw the corresponding
instance canonically as shown in Figure 1 with the build-
ing blocks, i. e., variables, wires, crossings, connectors and
clauses. From this drawing, we derive an input to our ERROR-
REALIZATION problem as follows.

First, we observe how to design an input to the ERROR-
REALIZATION problem in order to force a graph to be em-
bedded with fixed angles in any valid embedding: Let a graph
G have a cycle of nodes we want to be realized as a polygon
with prescribed angles. If we choose the input directionsω
to all point outward (or all inward) by an angle ofδ with
respect to an arbitrary orientation of the nodes (see Figure 2),
every valid embedding ofG that differs fromω by no more
than δ for any edge-node incidence, embedsG as a polygon
according to the given angles. We will exploit this fact in the
following.

Based on the arguments above, we construct variables by
building a rectangle of four nodes. We then introduce an
additional inner edge that can deviate from being parallel to
the rectangle’s sides byδ in both directions (see Figure 3).
We also assign lengths to all edges, namelya, b, c ∈ R+

such that the triangle shown in Figure 3 is valid. One can see
that in every valid embedding of the six nodes, first, angles
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Fig. 1. Schematic drawing of a 3SAT instance (a) and in a grid-like fashion
with building blocks, i. e., variables, wires (horizontal/vertical), crossings,
connections and clauses (b).

Fig. 2. A polygon with fixed angles. Input directions are dotted and differ
all by δ from a polygon with the given angles.
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Fig. 3. The gadget for variables has fixed angles at verticesA, B, C and
D. The edgeY X can deviate from being parallel toAB (right). Input edge
lengths are constructed for givenε, δ (left).
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Fig. 4. Variables have only two valid embeddings, corresponding to truth
values false (left) and true (right).

must comply with one of the drawings in Figure 4, second,
the edgesAB and CD are maximally stretched, i. e., have
lengths(1 + ε)b, while the edgeXY has its minimum length
of (1− ε)c, and third, either edgesXA andY C have length
(1 + ε)a and BY and DX have lengths(1 − ε)a or vice
versa. We will call the former atrue assignment, the latter a
false . Now, the edgesXA andBY correspond to the literals
x andx respectively, i. e., a length(1 + ε)a corresponds to a
true literal, length(1 − ε)a to false . Wiring, connecting
and crossing is comparably easy. The gadgets are shown in
Figure 5(a) to 5(d). Essentially, they all are rectangles with
fixed angles, which therefore must have the same lengths
for opposite edges. Variables and wires have all directions
pointing outward, while in crossings and connectors, directions
point inward byδ. These two kinds of gadgets are put together
alternately (see Figure 1(b)). Note that all rows have heights
of ≈ a, but the width of columns is≈ a only for columns
corresponding to literals, whilst its necessary for the other
columns containing horizontal links to have width≈ b like
variables.

The last gadget is a clause, shown in Figure 5(e). If we
choosex, such that

(1− ε)x = (3(1 + ε) + 2(1− ε)) · a⇔ (5 + ε)a = (1− ε)x ,

i. e., even with the edges with length≈ x having the shortest
possible length(1 − ε)x, there must be no more than two
’short’ edges on the right side, that is, at least one connected
literal must betrue , and more are always possible. On the
other hand, it is easy to see how a valid assignment can be



a

a

aa

(a) crossing

a

a

aa

(b) connection

a

a

aa

(c) vertical wire

b

b

aa

(d) horizontal wire

a

a

a

a

a

x

(e) clause

Fig. 5. Gadgets. Symbols correspond to blocks in Figure 1(b).

transformed into a valid embedding: Rows that correspond
to an occurrence of a literal have the respective height, the
other rows have height(1 + ε)a. Columns that correspond to
a literal again have the width induced by the literal’s value,
other columns have width(1 + ε)b.

IV. H IERARCHICAL LOCALIZATION

Although almost every anchor-free localization problem
is hard – especially in the presence of errors, recent work
has shown strengths and weaknesses of existing heuristic ap-
proaches: Obviously, any kind of purely incremental algorithm
cannot prevent an increase in errors, but there are many other
techniques that work quite well in some sense. The first
observation is, that we have many techniques at hand that
could be used to localize small networks, although the best of
them typically work in a centralized manner and sometimes are
highly complex, e. g., use linear or semidefinite programming
as in [23]. They seem to be unsuitable for larger networks, but
on the other hand, they can still be used to let nodes localize
some reasonably small neighborhood.

For those algorithms that really work in a distributed way,
a typical approach is to first find afolding free embedding,
i. e., an embedding without overlappings of different parts of
the network, and then perform any kind of local stress mini-
mization. Examples are AFL [14] and EIGEN [15]. In order
to embed the network folding free, the former spreads nodes
between five heuristically chosen reference nodes, the latter
uses a distributed version of a spectral graph layout algorithm.
Both these approaches implicitly rely on the assumption that
the deployment area has some regular shape, e. g., is convex
( [14]). Moreover, these approaches (and more) extensively
use local stress minimization to gain a good localization.
This can certainly be done distributedly, but it incorporates
mass pairwise communication – continuously, every node has
to send its current position and receive positions from its
neighbors. We do believe that this kind of mass concurrent
communication has to be restricted as far as possible for any
localization scheme to be applied in real networks, since this
really is the worst case in terms of network congestion and
energy consumption.

Our approach, in contrast, tries to overcome the mentioned
problems following two basic ideas: First, rather than be-
ing overly distributed, it seems reasonable for us to let a
sample of nodes localize some (constant-size) neighborhood
in a centralized fashion. This minimizes the communication
overhead without violating the restriction that nodes only
have small memory and computational power. Second, because
iteratively putting those local solutions together would still
lead to increasing errors in large networks, we adapt the
idea of graph filtration and multi-scale graph layout, which is
known from graph drawing [24]. Graph filtration here denotes
the process to successively restrict a graph to a fraction of
nodes, i. e., starting with all nodes, a filtration is a sequence
V = V0 ⊃ V1 ⊃ · · · ⊃ Vk = {v̂}. In graph drawing, the usual
way is then to find a layouttop-down: Given a layout for the
nodes fromVi, the nodes fromVi−1 \Vi are placed according
to some good guess based on the layout ofVi; the resulting
layout is refined by local optimization and so on. In [25], a
variant has been proposed for sensor network localization, but
again only in a centralized fashion. Moreover, this algorithm
works only top-down, guessing initial distances and directions
by dead reckoning. It thus cannot work for arbitrarily large
networks, as these initial errors will become arbitrarily high.

Our approach consists of both a bottom-up and a top-down
stage: In the bottom-up pass, we first choose a fraction of the
nodes to collect and localize their neighborhood. For those
pairs of chosen nodes that are close to each other, we introduce
virtual edges (i. e., multi-hop connections), deriving distances
and directions from the local solutions (see Figure 6). This
filtration step is done recursively on the resulting overlay
network until we end up with a single node, to which we
assign arbitrary coordinates.

In the top-down stage, knowing local solutions and coor-
dinates for the chosen subset of nodes is enough to assign
coordinates to all nodes of one abstraction level. Optionally,
local problems can be solved again to refine local solutions



(a) Bottom-up stage: The input network (left) is filtered repeatedly until we reach an instance, which can be solved by a single node: On every
level, a dominating set of nodes is chosen, virtual edges span between chosen nodes that lie in some neighborhood. Edge distances and directions
are derived from local solutions on the current level.

(b) Top-down stage: Starting with the positions of the topmost level, the nodes of the next levels can be positioned successively using local solutions
on the respective level.

Fig. 7. Two stages of the hierarchical localization.

when the chosen subset of nodes knows their final positions.
This process is depicted in Figure 7. Note that a main
difference to other approaches is that in the top-down stage
every node is assigned a position only once, without any
refinement when other nodes have been placed, saving a lot
of communication.

A more detailed view on this technique is given in Al-
gorithm 1: Given a connected graphG = (V,E) together
with erroneous edge lengthsd : E → R+ and relative edge
directionsω : E → [0, 2π), we first choose a dominating
subset of nodesV ′ ⊂ V . For the nodes inV ′, we use any
central algorithm to localize their 3-neighborhood. For pairs
of nodes that mutually lie in this neighborhood,

E′ :=
{
{u, v} ∈

(
V ′

2

)
| u ∈ N 3(G, v)

}
,

we derive distancesd′ : E′ → R+ and directionsω′ : E′ →
[0, 2π) from the local solutions. We recursively apply the
algorithm toG′ = (V ′, E′) and, given a localization forV ′

from this recursion, localize the nodes inV \ V ′ using the
(refined) local solution of the closest node inV ′.

Note that this scheme still has two degrees of freedom:
The choice of the algorithm applied to local problems and
the choice ofV ′. We leave the choice of the algorithm open,
but assume that we selectV ′ in the following way: For a
fixed numberk of rounds, every node which neither has a
neighbor inV ′ nor is itself a member ofV ′ selects itself with
a fixed probability0 < c < 1. In an additional round, every
node still fulfilling this condition selects itself with probability
1. This clearly ensures that a dominating setV ′ is chosen
after k + 1 rounds, and it further ensures that we can bound
every node’s probability to be selected independently of the

Algorithm 1 LOCALIZE(G = (V,E), d, ω)
1: if |V | = 1 then
2: return any localization
3: end if
4: choose dominating subsetV ′ ⊂ V
5: E′ ← ∅
6: for all v ∈ V ′ do
7: Gv ← G[N 3(G, v)]
8: (pv,ov)← SOLVECENTRALLY(Gv, d, ω)
9: for all u ∈ V ′ ∩N 3(G, v) do

10: E′ ← E′ ∪ {{v, u}}
11: d′(v, u)← dpv

(v, u)
12: ω′(v, u)← ωpu,ou(v, u)
13: end for
14: end for
15: (p′,o′)← LOCALIZE(G′ = (V ′, E′), d′, ω′)
16: for all v ∈ V ′ do
17: for all u ∈ N 3(v) \ V ′ do
18: (p(u),o(u))← (p(v),o(v))⊕ (pv(u),ov(u))
19: end for
20: end for
21: return (p,o)

network’s structure by

c ≤ P [v ∈ V ′] ≤ 1− c · (1− c) ,

since at least in the case that a node is not chosen in the
first round while one of its neighbors is, the node will not
be selected at all. As an example, ifc = 1/2 and k = 1,
each node is chosen at least with probability1/2 and at most
with probability3/4, as there is at least a1/4 chance that one



(a) An active node (center) collects its 3-hop
neighborhood by local communication. Other
active nodes are drawn black, too.

(b) Routes to close active nodes are stored.
They become neighbors on the next-level over-
lay network. Distances and directions are de-
rived from local solution.

Fig. 6. Filtering from a node’s point of view.

neighbor is chosen in the first round while the node itself is
not.

Moreover, the construction of the networkG′ guarantees
connectivity: For any nodev ∈ V let dm(v) ∈ V ′ denote
the selected node that is closest tov in G (its dominator, i. e.,
eitherv itself or one ofv’s neighbors). For any pathv1, . . . , vl

in G, the nodesdm(vi) and dm(vi+1) have at most three
hops distance and are thus connected by an edge inG′ (see
Figure 8).

v2 v3

v4

v5 v6v1

dm(v4)

dm(v3)

dm(v1)
dm(v2)

dm(v5)
dm(v6)

Fig. 8. A pathv1, . . . , v6. dominators of successive nodes are at most three
hops apart and the graph stays connected.

This algorithm terminates with expectedO(log D) recur-
sions ifG has diameterD: For a nodevi on a pathv1, . . . , vl,
there is a constant lower boundp > 0 on the probability that
vi, vi+2 ∈ V ′ and vi+1 6∈ V ′, which means that the distance
betweendm(vi) = vi and dm(vi+2) = vi+2 shrinks from
2 to 1. We have at leastbl/3c such triples for which this
independentlyholds, and thus the expectation for the number
of nodes on the path which introduce a shortcut is at least
p · bl/3c and the expectation for the length of the shortest path
from dm(v1) to dm(vl) is shorter thanl by a constant factor.

As the expected number of remaining nodes in each recur-
sion decreases at least by the factor1− c · (1− c), we know
that during all recursions we have a total ofO(|V |) invokings
of SOLVECENTRALLY :

|V | ·
k∑

i=0

(1− c · (1− c))i ≤ |V |
c · (1− c)

Although it is not possible to give a constant bound on
the maximum node degree or on the maximum size of a
three-hop neighborhood during the execution, our experiments
on geometric graphs with their close interrelation between
Euclidean and graph distances have shown that both node
degrees and problem sizes did not increase in the overlay
networks (see Section V).

A. Distributed Algorithm

As claimed, Algorithm 1 can completely be implemented in
a distributed way; an outline is given in Algorithm 2. Starting
with a setup where every node knows distance and direction
measurementsdN , ωN for its one-hop neighborsN , every
node performs thek + 1 rounds of the selection algorithm,
each including a communication with its direct neighbors.
Afterwards, the nodes have to share information with their
3-neighborhoods to let close selected nodes know each other.
If a node has chosen to be active on the next level, it applies
the centralized algorithm to the current neighborhood and then
knows its neighbors on the next level (with estimated distances
and directions) as well as the hops to route information there in
the current neighborhood. This procedure is repeated until on
some level the node either has no more neighbors or it decided
not to join the next level. In the first case, the node localizes
itself to some arbitrary position, in the latter, the node waits
until it receives a position from some other node. In any case,
as soon as a node knows a localization, it sends localizations
to its neighbors on all levels in which the node was active,
based on its own position and the local solutions.

Note that on each level, each node has to communicate
only a constant number of times with its neighbors on that
level while the number of levels is inO(log D). On the
other hand, distances between communicating nodes increase
with the level. However, empirically, in geometric graphs, the
decreasing number of active nodes compensates the growing
distances of neighbors easily and thus, the number of one-hop
messages sent is inO(|V | log D). Nevertheless, routing com-
munication between higher level neighbors is a crucial point:
If we denote the overlay networks asG = G0, G1, . . . Gk



Algorithm 2 LOCALIZEDISTRIBUTED(N , dN , ωN )
lvl← 0
N0 ← N , d0 ← dN , ω0 ← ωN
active← true
while active do

perform dominating set selection algorithm
exchange 3-hop information withNlvl neighbors
if node is selectedthen

solve localization problem onN 3
lvl

Nlvl+1 ← selected nodes fromN 3
lvl

store hops inN 3
lvl for neighborsNlvl+1

derivedlvl+1 andωlvl+1 from local solution
lvl← lvl + 1

else
active← false

end if
end while
wait for first localization
send localizations to (inactive) nodes inN 3

0 to N 3
lvl−1

k ∈ O(log D), neighbors inGi can be up to3i hops apart
in G (at mostD hops). Thus, it is not only impossible for a
nodev to store complete routes to neighbors on higher levels,
but we would also need to pass this information along with
the messages, which is prohibitive, too.

A quite straightforward way to solve this problem would be
to let the nodes on routes know how to route future messages:
Given that messages can be routed betweenneighborsin Gi,
which is trivially true inG0, every edge inGi+1 is composed
of at most3 hops inGi. Thus, sending an additional message
containing these3 hops for every edge inGi+1 is enough to
inform all nodes about this edge. By the selection of active
nodes the construction of the overlay connections, each node
usually is part of at most a constant number of edges on a
certain level. Hence, additional memory ofO(log D) per node
is sufficent for this task.

Another way to route messages is to exploit the fact that
every node has to store local solutions for every level in
which it was active. Without storing any additional routing
information, these local neighborhoods are sufficient to route
messages inGi with at most2i + 1 IDs enclosed: Given a
message to be sent from a nodes ∈ Gi to one of its neighbors
t ∈ Gi, s knows a path

s− vi−1 − wi−1 − t︸ ︷︷ ︸
path inGi−1

to t in Gi−1. The nodes also knows such a path tov′1 in Gi−2

and can add this information to the route:

s− vi−2 − wi−2 − vi−1︸ ︷︷ ︸
path inGi−2

−wi−1 − t

Repeatedly applying this scheme,s can send the messages
with waypointsv0 − w0 − v1 − w1 − · · · − vi−1 − wi−1 − t.
While the message is routed, passed waypoints can be removed

v1w1t

v0w0v1w1t v′
0w

′
0w1t v′′

0w′′
0 t

s tv1 w1v0 w0 v′
0 w′

0 v′′
0 w′′

0

G2

G1

G0

Fig. 9. Routing a message between two nodess, t in G2 with waypoints.

and additional waypoints are added as above. The number of
waypoints then never exceeds2i+1. An example is depicted in
Figure 9: The nodes initially knows the target nodet and adds
the hops known inG1 and G0 to v0w0v1w1t. The message
passesv0 and w0 and the next node fromG1, v1 adds the
waypointsv′0 andw′

0, which are necessary to reachw1 and so
on.

In any case, every node needs to store local solutions for
every level in which it was active, and as long as local
solutions do not grow larger than a constant bound, memory
consumption for every node is inO(log D).

V. I MPLEMENTATION AND SIMULATION RESULTS

We implemented the proposed algorithm in its centralized
variant to run a variety of simulations on networks of different
shapes, densities, sizes and error characteristics. In our current
implementation, we use a very simple force-directed layout
algorithm to solve local subproblems and usedk = 10 and
c = 5% for the selection of a dominating set. For all tests,
we evaluated a variation of theglobal stress RMS (GSR), i. e.,
the quadratic mean of the pairwise relative distance violation
between the original distances between nodes in the graphdij

and the distances in the reconstructiond̂ij ,

GSR :=

√√√√ 2
n(n− 1)

∑
i<j

(
dij − d̂ij

dij

)2

,

which is very similar to theglobal energy ratio(GER) as
defined by Priyantha et al. [14], but better suited for comparing
different network sizes. However, both indices equally measure
both large- and small-scale errors, i. e., small values indicate
that first, there is not much stress in local neighborhoods,
and second, the global picture of the network is recovered
correctly.

Deployment Regions and Radio Range:We evaluated the
implementation on six different deployment regions. Region
types were squared, u-shaped, star-shaped, grid-like, donut-
shaped and one of an irregular pattern (see Figure 10). In any
case, the nodes were randomly distributed over the area; their
radio range was then uniformly chosen to generate a specified
average node degree, typically between 8 and 12.

Errors: To evaluate the robustness of our algorithm, we
introduced noise for both distances and directions, i. e., the
input distances were normally distributed around the original
values with a standard deviation of up to 30%, input directions
with a standard deviation of up to 30◦. Note that this error



(a) square (b) u-shape

(c) star-shape (d) grid-like

(e) donut (f) irregular

Fig. 10. Deployment areas; in each region, the same number of nodes – here:
2500 – are placed uniformly at random. Communication radii are uniformly
chosen to achieve a specified average node degree (here: 12).

model does not give a bound for possible errors. As in real-
life scenarios, a big challenge for the algorithm is to deal with
some measurements being almost completely wrong.

Figure 11 shows exemplary localizations of (comparably
small) networks of 2500 nodes with errors of standard devi-
ations approximately 15% and 15◦ respectively. The results
show how close to reality localizations with typical GSR
values (0.05 to 0.1, depending on the deployment area) are. In
Figure 12, results for different error characteristics are depicted
for networks with 5000 nodes. For these tests, we chose an
average degree of 12, matching with the simulations from [21].

For each combination, experiments were repeated until
statistical significance has been attained with anα-level of
0.95 and a confidence interval of length 0.02 for GSR1. We
get very similar results for all scenarios: The algorithm is able

1at most 250 runs per setup

(a) GSR=0.053 (0.058) (b) GSR=0.097 (0.078)

(c) GSR=0.075 (0.068) (d) GSR=0.104 (0.132)

(e) GSR=0.089 (0.071) (f) GSR=0.083 (0.079)

Fig. 11. Exemplary localizations with standard deviation of distance error
15% and angular error 15◦ (average GSR values in parentheses). Both local
and global structure are recovered correctly.

to recover node positions very accurately for errors even with
a standard deviation of 15% and 15◦ and above. For much
larger errors, overall quality decreases due to failures of the
local algorithm. Not surprisingly, best results are achieved for
the typical benchmark scenarios of squared and star-shaped
deployment regions, but our algorithm also performed very
well on the deployment regions that seemed to be much harder
to localize before.

Additionally, we ran our algorithm on different network
sizes of up to 128000 nodes. As expected, the runtime
increased only linearly with the number of nodes (see Fig-
ure 13(a)), while the quality is independent of the network’s
size (see Figure 13(b)). Larger errors resulted in slightly higher
runtimes only as an artefact of the slower convergence of
the optimization algorithm. This completely complies with the
demand for scalable localization algorithms.

An evaluation of the algorithm with varying average node
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Fig. 12. GSR norm on localizations for errors ranging from a standard deviation of 0% to 30% for distances and 0◦ to 30◦ for directions, respectively.
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Fig. 13. Runtime and localization quality for varying network sizes of up to
128000 nodes (centralized algorithm applied on u-shaped deployment area).
Runtime is depicted for our Java-implementation running on one single core
of a dual-core AMD Opteron(tm) processor 2218.
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Fig. 14. Quality of reconstruction under varying average node degrees for
5000 nodes with different errors.

degree is depicted in Figure 14. It shows how a higher average
node degree allows to compensate for more severe errors while
for lower errors, a less connected graph would be sufficient.

During all our experiments2, there was no subproblem, i. e.,
3-hop neighborhood, on any level that contained more than
140 nodes – except for tests with high average degree, where
3-neighborhoods in the input graph became larger. On the
average, subproblems contained around 60–70 nodes. For our
implementation, we experienced that even for 128000 nodes,
10–12 levels were sufficient.

VI. CONCLUSION AND FUTURE WORK

In this work, we addressed the problem of sensor network
localization with both distance andrelative direction mea-
surements in the presence of errors. We have shown that
the presence of arbitrarily small errors is enough to make
this problem hard, generalizing the work of Basu et al. [21],
waiving the assumption that nodes have global knowledge
about their orientation.

We presented a novel, distributed algorithm scheme which
combines robustness to fairly large errors with scalability and
independence of the deployment region. The experimental
evaluation yielded that this algorithm scheme recovered node
positions very accurately for severe errors even with a quite
näıve algorithm applied to the local subproblems. Here, next
steps will be to combine the proposed scheme with more
sophisticated algorithms to solve local problems, as it seems
that positioning with large errors mostly fails due to the
inability to reduce errors on early levels. Furthermore, different
algorithms could make directional information dispensable,
which is currently only needed for an initial layout of the
force-directed layout algorithm.
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