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Abstract—Scheduling of transmissions is one of the most
fundamental problems in the context of wireless networks. In
this article, we consider the problem of computing power efficient
schedules with high throughput. We answer the open question
concerning the complexity of scheduling with power control in
the SINRG model of interference. Based on a novel scheme for
dynamic computation of optimum transmission powers in feasible
schedules, we introduce a new and efficient heuristic for finding
good schedules along the tradeoff between throughput and energy
efficiency in the physical SINR model. Since our algorithms do
not rely on simplistic assumptions about path loss, they are suited
for realistic scenarios with attenuation and shadowing effects. We
compare our approach to a broad selection of state-of-the-art
approaches in indoor and outdoor scenarios. In all situations,
our approach outperforms the existing approaches with respect
to schedule length and power consumption, i. e., yields pareto-
superior schedules including schedules that significantly improve
the throughput.

I. INTRODUCTION

The scheduling problem in wireless networks has received
a lot of attention in recent years. Given a set of transmission
requests, one has to find a schedule that satisfies all inter-
ference constraints. If wireless nodes can individually adjust
transmission powers on a per-transmission base, a schedule
must also include power levels for each transmission, adding
a powerful degree of freedom. The quality of a schedule
then substantially determines throughput and power efficiency
of the wireless communication. Obviously, distribution of
transmissions to a small number of time slots is desirable to
decrease the time to complete the request, i. e., to improve
the throughput. On the other hand, less interference between
concurrent transmissions allows for lower transmission powers
and can hence reduce energy consumption. Especially in wire-
less sensor networks, where energy is a limited and valuable
resource, the computation of good time-division multiple-
access (TDMA) schedules can help to extend the lifetime of
the whole network. Since schedules admissible without power
control are also solutions if power control is possible, power
control can be exploited to reduce the energy consumption
of such schedules in a subsequent and largely orthogonal
step. However, solving both problems simultaneously helps to
compute schedules with higher throughput (i. e. shorter span)
and less energy consumption: power control admits schedules
that would otherwise violate interference constraints, since

reducing transmission powers can also reduce interference
between concurrent transmissions.

Considering the importance of the scheduling problem, it
is not surprising that it has been studied intensely. Origi-
nally, most algorithmic approaches to scheduling problems
were graph-based. This made it possible to reduce the prob-
lem to variants of independent set, matching, or coloring
problems. Some examples are [1]–[9]. Graph-based methods
were especially popular in theoretical computer science, as
they allow a thorough theoretical analysis. Unfortunately,
graph-based models are too simplistic as they do not model
distance-dependance of link quality and accumulation of in-
terference [10]–[12]. In contrast, researchers in information,
communication, or network theory usually apply the physical
signal-to-interference-plus-noise-ratio (SINR), which reflects
the physical reality more precisely. In this model, a trans-
mission is successful if and only if the ratio of the useful
signal to interference plus background noise exceeds some
threshold. Signal strength and interference depend on path
loss between sender and receiver. This path loss is determined
by the distance between sender and receiver, as well as by
environmental conditions such as obstacles. One simplification
of this model is the geometric SINR model (SINRG model),
where one assumes that path loss is fully determined by the
sender-receiver distance. Here, path loss is modeled by a
power law and different environments by different path loss
exponents. Scheduling in the general SINR model is NP-
hard [13]. The NP-hardness of scheduling with fixed powers
in the more restricted geometric SINRG model has been
shown in [13]. Power control has originally been studied in
the context of channelized cellular systems [14], [15] and
code-division multiple-access (CDMA) systems [16]. The joint
problem of scheduling and power control was first addressed
by ElBatt and Ephremides [17], [18], followed by others
including [19]–[22].

The complexity of scheduling with power control in the
SINRG model is considered an important open problem [13],
[23]. In this work, we answer this question by proving NP-
hardness.

More recently, several approximation algorithms have been
proposed for scheduling with and without power control [13],
[24]–[26] in this simplified model of interference.
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Today, there exists a wide range of algorithms for schedul-
ing in the SINR model, mostly aiming solely at maximizing
the throughput, i. e., at minimizing the span of computed
schedules. An algorithm also taking energy efficiency into
account is, e. g., given by Lu and Krishnamachari [27]. The
authors also consider the problem to minimize the energy that
is needed to schedule a given set of transmissions within a
predefined number of time slots. We discuss some relevant
algorithms more detailed in Section VI. The algorithms we
contribute also allow both, maximizing the throughput and
minimizing the energy consumption for a given throughput.
They are based on a novel dynamic scheme for maintaining op-
timum powers for a changing feasible set of transmissions. The
proposed data structure supports more sophisticated schedul-
ing decisions without a penalty on the worst-case running
time. To evaluate our algorithms, we compare them exper-
imentally to several other state-of-the-art algorithms. In our
simulations, we consider three scenarios: randomly distributed
sender-receiver pairs, a given network topology, and a scenario
that models effects that occur within buildings. In all three
scenarios, our algorithms outperform the other approaches in
two ways: First, they yield higher throughput. Second, our
algorithms can realize any other algorithm’s throughput with
significantly less energy. Moreover, the algorithms can be used
to find a good compromise between throughput and energy
consumption.

The rest of the paper is organized as follows. The used
models and notations are described in Section II. Subsequently,
in Section III, we prove the NP-hardness of scheduling with
power control in the SINRG model. Our approach to the
problem of power control is described in Section IV. Based on
the new power control algorithm, we describe our scheduling
heuristics in Section V. The simulation results are shown in
Section VI. Section VII concludes this paper.

II. MODELS AND NOTATIONS

We assume a network of wireless nodes. In this network,
we are given a set {l1, l2, . . . , ln} of n links. Every link
li = (si, ri) is defined by its sender si and its receiver ri.
We say that a link li is active if si transmits data to ri. The
transmission power that si uses is denoted by Pi. The path
loss between sender si and receiver rj is denoted by γij . It
defines how much the signal strength decreases on the way
from sender si to receiver rj and can depend on the distance
between sender and receiver, as well as on environmental
conditions and obstacles. When a sender sj sends with power
Pj then receiver ri receives the signal with power Pjγji. In
the case of i = j the signal a useful signal, otherwise we call it
interference. Additionally to the interference due to concurrent
transmissions, every receiver ri experiences some background
noise ηi. A transmission ti = (si, ri, Pi) is defined by sender-
receiver-pair (si, ri) and transmission power Pi that si uses.

In this paper, we use the physically motivated SINR model
(signal-to-interference-plus-noise-ratio model). In the SINR
model, a transmission ti is assumed to be feasible if the ratio of
the useful signal to accumulated interferences plus background

noise at receiver ri exceeds some minimum SINR βi. This
SINR condition is expressed by the following equation:

Piγii∑
j 6=i Pjγji + ηi

≥ βi (1)

A set of transmissions {t1, t2, . . . , tk} is said to be feasible
if SINR condition (1) of every receiver ri, 1 ≤ i ≤ k, is
fulfilled when all senders si, 1 ≤ i ≤ k, transmit concurrently
with their associated transmission power Pi.

Only in Section III we deal with the more restricted geo-
metric SINR model (SINRG model). In the SINRG model, a
close relationship between distance and path loss is assumed.
Let d(si, rj) denote the distance between nodes si and rj . The
path loss between si and rj is then given by γij = d(si, rj)−α,
with path loss exponent α. The path loss exponent α depends
on the environment and defines how fast the signal decays
with distance. Usually, α is assumed to be about 2 in free
space and between 3 and 5 in buildings.

In the scheduling problem, one is given a set L of links and
transmission powers Pi to be used by the senders. Usually,
only the case of uniform transmission powers Pi ≡ P is
considered. The problem is to find a partition of L into
transmission sets such that all sets are feasible. The single
transmission sets are called slots, and we refer to the number
of slots in a schedule as the schedule’s span. The goal is to
find a schedule with minimum span in order to maximize the
communication throughput.

A somehow dual problem to the scheduling problem is the
power control problem: given a set of links L and a partition
into transmission sets, find transmission powers Pi ∈ (0, Pmax]
such that each transmission set is feasible. In order to extend
the lifetime of the network, the optimization goal is to find
minimum such transmission powers. As we will see in Sec-
tion IV, the notion of minimum transmission powers is well-
defined and independent of the metric applied.

A generalization of both problems, the scheduling and the
power control problem, is the problem of scheduling with
power control, in which one has to compute a partition of
a set of links and proper transmission powers. Again, the
computation of a feasible schedule with minimum span is
an important problem, but one can also be interested in
minimizing the energy consumption for a given span. Note
that pure energy minimization trivially leads to solutions where
time slot contains exactly one single link. This paper addresses
both relevant problems, pure throughput maximization and the
bicriterial problem. Particularly, the algorithms proposed in
Section V can be used to find a good compromise between
power consumption and throughput.

III. COMPLEXITY OF SCHEDULING WITH POWER
CONTROL

In the following, we sketch an NP-hardness proof for
minimizing a schedule’s span with power control in the
SINRG model. The proof is an extension of the NP-hardness
proof for scheduling without power control given in [13].
Due to space limitations, we restrict ourselves to the main
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Fig. 1. Polynomial-time reduction of PARTITION to SCHEDPC

ideas. The technical details of the proof can be found in [28].
Our proof requires that we know minimum and maximum
transmission powers Pmin > 0 and Pmax <∞. This is no real
restriction, as the hardware usually dictates an upper bound
on the transmission power and due to the background noise
there exists a power beneath which no transmission can be
successful. As Pmin and Pmax are arbitrary, all practically
relevant cases are covered. In particular, this proof contains
the situation where every sender has a finite set of available
transmission powers from which it can choose. For the sake of
simplicity, we ignore the influence of background noise in this
section. This makes the equations clearer but has no significant
effect on the results.

In order to show the NP-hardness of scheduling with power
control (SCHEDPC), we will give a polynomial time reduction
of the well-known PARTITION problem to SCHEDPC. The
PARTITION problem has been shown to be NP-complete
in [29]. It is defined as follows: Given a set I = {i1, . . . , in}
of integers, find I1, I2 ⊂ I such that I1 ∩ I2 = ∅ and∑

ij∈I1

ij =
∑
ij∈I2

ij =
1
2

∑
ij∈I

ij .

Let I = {i1, . . . , in} be an instance of PARTITION. Without
loss of generality, we assume that all elements are distinct
and positive and we define σ :=

∑n
j=1 ij . In order to solve

the PARTITION problem for I, we construct an instance
LI = {l1, . . . , ln+2} of SCHEDPC with n + 2 links such
that there exists a schedule of length 2 if and only if the
PARTITION instance I has a solution. The construction is
depicted in Figure 1: For every integer ij ∈ I we introduce
a link lj = (sj , rj). Every sender sj is placed at position
pos(sj) = ((Pmin/ij)1/α, 0). The position is chosen such that
the interference caused at the origin (0, 0) of the coordinate
system equals ij when sj sends with power Pmin. Next, we
place the corresponding receivers such that every transmission
lj can be executed successfully, even if sj sends with power
Pmin and every other sender sends with power Pmax. For this,
every sender-receiver-pair has to be placed sufficiently close
together. One can show that distance

dmin =
P

1/α
min ·

(
1

(imax−1)1/α
− 1

i
1/α
max

)
(

1 + (Pmax
Pmin

nβ)
1
α

) ,

where imax is the maximum value in I, is sufficient. Thus,
we place every receiver ri, 1 ≤ i ≤ n, at position pos(ri) =
pos(si) + (dmin, 0).

Finally, we have to place ln+1 and ln+2. We positioned the
senders s1, . . . , sn such that the interference which they cause
at the origin is proportional to i1, . . . , in. In order to take
advantage of this property, we place rn+1 and rn+2 at the
origin, pos(rn+1) = pos(rn+2) = (0, 0). Last, we place their
senders sn+1 and sn+2 perpendicular to the x-axis at distance

(2Pmax/βσ)1/α, i.e., pos(sn+1) =
(

0,
(

2Pmax
β·σ

)1/α
)

and

pos(sn+2) =
(

0,−
(

2Pmax
β·σ

)1/α
)

.

As the receivers rn+1 and rn+2 share the same position,
transmissions tn+1 and tn+2 cannot be active concurrently.
Thus, one needs at least two slots in order to schedule all
transmissions. The senders sj , 1 ≤ j ≤ n, have to send at
least with power Pmin while they are active. Thus, together
they produce at least the interference σ =

∑n
j=1 ij at the

position of rn+1 and rn+2. The senders sn+1 and sn+2, at the
same time, cannot transmit with more power than Pmax. Thus,
they cannot tolerate more interference than σ

2 . It follows that
a schedule with only two slots is possible if and only if sn+1

and sn+2 send with Pmax, all other senders send with Pmin,
and the senders sj , 1 ≤ j ≤ n, can be partitioned into two
sets I1 and I2 such that

∑
ij∈I1 ij =

∑
ij∈I2 ij = σ

2 . This, in
turn, implies a solution to the original PARTITION problem.

IV. COMPUTATION OF OPTIMUM TRANSMISSION POWERS

Solving the power control problem, i. e., finding minimum
transmission powers for a given schedule, is a common
subproblem of many algorithms for scheduling problems with
power control. Since minimizing transmission powers for a
given schedule trivially reduces to minimizing transmission
powers for each slot separately, we restate the power control
problem in a simplified form: Given a set L = {l1, . . . , ln}
of links, find the minimum transmission powers P1, . . . , Pn,
Pi ∈ (0, Pmax] (possibly with Pmax = ∞), such that the
resulting transmission set is feasible, or decide that no such
powers exist.

As this problem is very fundamental, several approaches
have been proposed in the literature. For example, one can
express the problem as a linear program and use an LP solver
to compute optimum powers, e. g., as

min!
∑

1≤i≤n

Pi

s. t. Pi ≥
∑
j 6=i

Pj
βiγji
γii

+ ηi
βi
γii

for 1 ≤ i ≤ n (2)

Pi ≥ 0 and Pi ≤ Pmax for 1 ≤ i ≤ n .

In this form, we also observe that minimizing the sum of
powers yields the same result as minimizing any function
f(P1, . . . , Pn) that is (not necessarily strongly) monotonically
increasing in the Pi (such functions include the maximum,
the minimum, or any norm). Explicitly, if the problem is
feasible, for any such function f , the optimum solution p? :=
(P ?1 , . . . , P

?
n)T is given by setting P ?i to the minimum value
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Fig. 2. Matrix [A|b] of the system of linear equations. (a) Partial solution for S = {l1, l2, l3, l4}. (b) Computation of optimum power for link l6 in S∪{l6}.
(c) Computation of updated powers for already active links.

of Pi in any feasible solution p = (P1, . . . , Pn)T . This is well-
defined since the value of any Pi in any feasible solution is
bounded from below and the set of feasible solutions is closed.
Assume P ? is not feasible (if it is, it is obviously optimal),
i. e., assume that Equation (2) is violated for some i. By con-
struction, there is a feasible solution pi := (P i1, . . . , P

i
n)T with

P ?i := P ii . For all j 6= i, we have P ?j ≤ P ij by construction
and hence Equation (2) holds for i, in contradiction with the
assumption.

An approach used by most heuristics for the combined
problem of scheduling and power control is to start with small
transmission powers and then iteratively increase the powers
until the transmission set becomes feasible or until one of the
senders exceeds its maximum transmission power. This can
be done in such a way that the resulting transmission powers
converge to the optimum [17]. It has also been shown that
under certain conditions only a constant number c of iterations
is necessary to either get near-optimal transmission powers
or to determine that no proper transmission powers exist.
Every iteration takes O(n2) time, so a near-optimal power
assignment can be computed in O(cn2) time.

If one has to compute such a power assignment only once
for a given set of links, one can hardly do better. However,
in the combined problem of scheduling and power control,
such power assignments have to be computed over and over
until the final set of links and powers is found. The usual
approach is to start with an empty set and to add links one
by one in some order that aims to find a good schedule. This
gives an O(cn3) computation time for filling a time slot with
n transmissions.

In this work, we go a different way by stating the problem
as a system of linear equations and then solving the system
stepwise in an advantageous way. This will allow us to use
more powerful scheduling heuristics without a penalty on the
worst-case running time. As we will see in the experimental
section, this intertwining of scheduling and power control
allows the computation of substantially better schedules.

We start with the observation that for the optimal solution
p?, Equation (2) is tight, since otherwise, some P ?i could
be reduced without losing feasibility. That is, finding powers
minimizing any monotonically increasing function f subject

to 0 ≤ Pi ≤ Pmax and

Pi =
∑
j 6=i

Pj
βiγji
γii

+ ηi
βi
γii

, 1 ≤ i ≤ n (3)

is equivalent to the problem stated above.
Writing Equation (3) as

A · p = b (4)

with

A =


1 −β1γ21

γ11
. . . −β1γn1

γ11

−β2γ12
γ22

1 . . . −β2γn2
γ22

...
...

. . .
...

−βnγ1nγnn
−βnγ2nγnn

. . . 1

 ,

p = (P1, . . . , Pn)T , b = (β1η1/γ11, . . . , βnηn/γnn)T ,

we obtain the following result, which justifies to drop the
optimization criterion:

Proposition 1: If there is any feasible solution to the power
control problem, Equation (4) has a unique solution, which is
the optimum p?.

Proof: Assume that the power control problem has a
feasible solution. Then p? is an optimum solution to the power
control problem and also a solution to Equation (4). Assume
another solution p′ to Equation (4). Then A is not regular and
A · p̄ = 0 for p̄ = p? − p′. Then A · (p? − λp̄) = b for all
λ ∈ R, and taking any non-zero entry P̄i and a sufficiently
small ε ∈ R+, we get a feasible solution ps := p? − (ε/P̄i)p̄
with P si = P ?i − ε and P sj ≥ 0 for all 1 ≤ i ≤ n, which
contradicts with the optimality of p?.

Hence, from now on, for a given set of links, we are
only interested in finding any solution p = (P1, . . . , Pn)T

to Equation (4). If all Pi are nonnegative and smaller than
Pmax, this solution is the optimum (and unique). If there is no
solution or any solution with some Pi < 0 or Pi > Pmax—
which is always the case if there is more than one solution—,
we can conclude that the problem is infeasible.

In the remainder of this section, we will show how this
system of equations can be used to efficiently determine
transmission powers.
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Dynamic Computation of Optimum Transmission Powers

We now assume that we are given a set T of links that
we want to schedule by adding transmissions from T to
initially empty, always disjoint sets of active and feasible
transmissions. For such a set S, we transform the matrix
[A|b] along these additions to maintain a matrix [AS |bS ] with
a special structure, but without altering the solution of the
underlying equation system.

We start with S = ∅ and A∅ := A and b∅ := b. During
the execution of our algorithm, we maintain the invariant that
after each step it holds that

aii = 1 ∀li ∈ S (5)
aij = 0 ∀(li, lj) ∈ S × S, i 6= j . (6)

This obviously holds for S = ∅. Figure 2a shows this for
a small example where S = {l1, l2, l3, l4}. Let us assume
that we want to add some link li ∈ T to the set S, yielding
S′ = S ∪ {li}. To preserve the special structure of our data
structure, row i of matrix [AS |bS ] (the SINR constraint of link
li) becomes important. For all lj ∈ S, we have to subtract row
j multiplied by aij from row i to get aij = 0 (Step A). Next,
we divide row i by aii to get aii = 1 (Step B). Finally, for
every lj in S, we subtract row i multiplied by aji from row
j, resulting in aji = 0 (Step C). This update can be done in
O(kn) time, where k = |S| and n = |T ∪S|. As stated above,
all described matrix operations do not alter the solution of the
underlying equation system.

Let us now see why we chose this special structure for
matrix [AS |bS ]. First of all, if S is feasible, Pi = bSi for all
li ∈ S and Pj = 0 for all lj 6∈ S immediately gives an
optimum power assignment for link set S. More importantly,
one can efficiently predict the effect that the addition of some
arbitrary link li ∈ T to S would have (cf. Figures 2b and 2c):
Looking at [AS

′ |bS′
] for active transmissions S′ = S ∪ {li},

the optimum power P ′i of link li in S′ is

P ′i = bS
′

i =
bSi −

∑
j∈S a

S
ijb

S
j

1−∑j∈S a
S
ija

S
ji

. (7)

Thus, given [AS |bS ], we can compute P ′i in O(k) time. In
similar fashion, with b′i known, for every link lj ∈ S we can
compute the new optimum power P ′j in constant time as

P ′j = bS
′

j = bSj − aSjibS
′

i ∀j ∈ S . (8)

This means, given matrix [AS |bS ] for some feasible link set
S, we can compute optimum powers for link set S ∪ {li} in
O(k) time. This is a significant improvement over the naive
approach that starts all over with the initial equation system.

So far we did not deal with the case that a set of links
cannot be scheduled concurrently when trying to add a link
li. Obviously, this can happen. With the considerations above,
closer inspection of the equation system reveals that we can
identify an event that indicates and proves infeasibility:

Proposition 2: Let S be a feasible subset of T with cor-
responding matrix [AS |bS ]. The power control problem has a
feasible solution for S ∪ li for some li ∈ T \ S if and only

if the matrix operations in Step A yield an entry aSii > 0 and
the operations in Step B and C yield only entries bSj ≤ Pmax

for lj ∈ S ∪ {li}.
Proof: Making an induction over the cardinality of S, we

can assume that during the computation of [AS |bS ] the case
of a aSii ≤ 0 never occurred in step A (this trivially holds for
S = ∅). Hence, during all preceding matrix operations it is an
invariant that (a) entries aii > 0, (b) entries bi > 0, (c) entries
aij ≤ 0 for i 6= j. This can be seen by induction over the
matrix operations: the invariants hold for the initial matrix
[A∅|b∅], and if they hold, Step A effectively adds positive
multiples of other rows to the changed row. When adding a
multiple of row j to row i, the only possible violation of the
invariants is exactly the case that aii becomes non-positive,
which, by the outer induction, did not happen so far.

Then, in Step B, we multiply row i by a positive factor
(not violating any invariant), and in Step C, we effectively
add a positive multiple of row i to the other rows, which by
construction cannot violate any invariant either.

If we perform Step A for a new link li ∈ T \S, and we get
aii > 0, then again all invariants hold during all update oper-
ations and the relevant blocks of the matrix [AS∪{li}|bS∪{li}]
encode a feasible (and hence optimal) solution for the links in
S ∪ {li}, given by the Pi = b

S∪{li}
i , which is feasible if and

only if all these powers additionally are below Pmax. If, on
the other hand, in Step A a matrix entry aii ≤ 0 occurs, then
there cannot be a solution to the corresponding subproblem
with all Pi ≥ 0, since we still have bi > 0, but all aij ≤ 0.

In summary, given matrix [AS |bS ] of equation system (4)
for a set S of active links (|S| = k), this approach allows to
compute optimum powers for an arbitrary link set S ∪ {l} in
O(k) time and to compute the updated matrix [AS∪{l}|bS∪{l}]
in O(kn) time. In the next section, we propose two heuristics
that use this data structure to compute very good schedules
efficiently.

V. SCHEDULING WITH POWER CONTROL

Two obvious optimization criteria for good schedules are
the length of the schedule and the power that is needed
to process all transmissions. At the first glance, those two
objectives seem to contradict each other. In shorter schedules,
the number of transmissions per slot is higher. This results
in higher interference which in turn means that more power
is needed. And surely, the most power efficient schedule
would be the one where every transmission has its own slot.
However, there is also some synergy. In order to compute short
schedules, the interference between concurrent transmissions
has to be kept small. And smaller interference also means less
power consumption. Therefore, power minimization seems
to be a good greedy strategy for both objectives. Based on
this observation, we propose two greedy heuristics for the
scheduling problem. The first one fills the slots one by one,
iteratively adding the most power efficient transmission. The
second one fills the slots in parallel and makes it possible to
find a good compromise between schedule length and power
consumption.
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A. Filling Slots Sequentially

Many scheduling heuristics fill slots greedily one-by-one,
i. e., a new slot is populated with links by adding links
greedily. Usually, the order in which the links are processed
is precomputed and depends on node degree, sender-receiver
distance, or similar criteria. In contrast, we propose to select
links depending on the effect that the decision has on the
resulting transmission powers. For example, we pick the link
that minimizes the maximum power that some transmission in
the time slot requires. This way, links are picked which either
can tolerate a lot of interference or fit well to the links that are
already in the slot. Another good choice is to pick the link that
minimizes the combined power used by all links in the slot,
thus extending the overall lifetime of the whole network. We
refer to these selection strategies as Greedy-Least-Maximum-
Power (GLMP) and Greedy-Least-Additional-Power (GLAP),
respectively.

Both approaches require to compute the new optimum
transmission powers of the resulting link set S ∪{l} for every
link l ∈ T . Using the iterative power control algorithm that
is used by most existing heuristics, this takes O(ck2) time
for each of the O(n) possible links, where k = |S| is the
number of links that are already assigned to the repective slot.
At this point, our power control algorithm from Section IV
comes into play. It allows us to compute updated transmission
powers for S∪{l} in O(k) time. This makes it possible to find
the best link in O(kn) time. As soon as we have determined
the optimum link, we can add it in another O(kn) time to the
set of active links.

In summary, the sequential approach works as follows: Start
with an empty set S of active links. While the set T of links
is non-empty, find the link l ∈ T that fits best to the set of
active links. Depending on the objective, this can either be the
link that minimizes the maximum transmission power (GLMP)
or the one that minimizes the combined transmission power
(GLAP). If such a link exists, add it to S and continue with
the set T ′ = T \ {l}. If no more link fits to the set of active
links, continue with a new time slot. This process is repeated
until T is empty. The overall running time is in O(kmaxn

2),
where kmax is the maximum number of concurrently active
transmissions. Note that the worst case occurs when kmax ∈
O(n). In this case, the running time is O(n3). This is quite
good as the size of the input, given by the gain matrix, is
already in Θ(n2). And even if one had an optimum assignment
of links to slots given as input, the computation of optimum
powers using equation system (4) and common approaches
such as Gaussian elimination would already require O(n3)
time. Thus, the selection of good links does not affect the
worst-case run time.

B. Filling Slots Simultaneously

As stated in the introduction, the schedule length is not
the only optimization criterion. In this section, we deal with
the problem of finding a good compromise between schedule
length and power consumption. Given a set of links and a

number of slots, we want to distribute the links to the available
slots in a power-efficient manner.

For this purpose, we process the links in order of increasing
sender-receiver-gain so that we deal with the most sensitive
links first. For every link, we greedily determine the best
slot, again measuring goodness by power consumption, and
either choose the slot that minimizes the maximum occurring
transmission power, or the slot that minimizes the additional
power consumption. We refer to the former approach as
Balanced-Least-Maximum-Power (BLMP) and to the latter
as Balanced-Least-Additional-Power (BLAP). As before, this
means that we have to precompute for every open link the
powers that its addition would cause. Again, we use the
method from Section IV to compute the new powers for a
slot with k transmissions in O(k) time. Fortunately, it is not
necessary to maintain the complete matrix [A|b] for every
single slot. Instead, it is sufficient to maintain only the rows
that correspond to SINR constraints of links that are assigned
to the slot. Thus, for a slot with k active links we only
need O(kn) matrix cells, giving the algorithm O(n2) space
complexity. This is optimal as the gain matrix in the input
already needs Θ(n2) space.

In comparison to the sequential approach, the parallel ap-
proach aims at significantly more balanced schedules, since
all slots are expected to have a similar number of active links.

With a fixed number of slots, it may happen that a link does
not fit in any of the available slots. In this case, we assume
that a new slot is added to the set of available slots.

When the desired number of slots is not clear from the
application, one can for example start with a single slot, which
still yields more balanced schedules, since to links with high
gain, which are scheduled latest, all opened slots are available.

However, if there is a need to create more than the initial
number of slots, balancing is imperfect, since links scheduled
early do not have all slots of the final schedule at choice.
Hence, when interested in a balanced schedule with low span,
it is best to find the minimum number of slots that is sufficient
for this approach, e. g., by binary search. A reasonable result
with only a single restart can also be produced taking the
schedule returned for a single initial slot and take its span
to make a good guess for a restart. For example, 80% of
the returned schedules span as initial number of slots should
already be a good choice.

VI. SIMULATIONS

A. Scenarios and Model Parameters

For our experiments, we used three different scenarios. The
first one assumes that the sender-receiver pairs are randomly
distributed in the Euclidean plane. There is no connected
network structure. The signal strength is computed according
to the SINRG model with path-loss exponent α = 3. This
scenario resembles a sensor network with high number of
nodes where only some of the nodes want to send concurrently.
This kind of scenario was for example used in [25]. An
example is shown in Figure 3a.
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Fig. 3. Simulation scenarios. (a) Random links in free space. (b) Network in free space. (c) Network in building with wall attenuation and random effects.

The second scenario is based on a network topology. The
nodes are placed randomly in the Euclidean plane. Every pair
of nodes that can communicate according to the SINRG model
(α = 3) is connected by two links, one in each direction.
This scenario represents a network in which all nodes try to
communicate frequently. Similar models were used in [17],
[18]. We assume that all links have the same traffic demands.
This prevents that single links dominate the length of the
computed schedules. Of course, all algorithms can just as well
be used in situations with arbitrary link demands.

Our last scenario aims at recreating effects that occur in
buildings with walls and obstacles. We assume that the signal
strength falls of with path-loss exponent α = 2.5 as long
as there is no wall. Additionally, every wall that crosses the
line of sight between a sender-receiver-pair results in normally
distributed attenuation. Finally, the random effects that are
caused by reflections and self-interference are represented by
adjusting the signal strength of every link with a zero-mean,
normally distributed random attenuation with σ = 2dB. An
example is shown in Figure 3c. One can see that this leads to
some kind of cluster formation within rooms, a feature that
does not show up in the other scenarios.

In all scenarios, we assume an omnipresent background
noise η and minimum SINR β = 10dB. The other model
parameters are normalized such that the maximum transmis-
sion radius dmax with power Pmax = 1 equals distance 100 if
there are no walls, and if we assume α = 2 for the path loss
exponent. For α = 3, this gives dmax = 21.54.

B. Input Generation

In the first scenario, we distributed between 100 and 2500
links randomly in an area with dimensions 400 × 400. First,
the senders were placed randomly. Subsequently, the receivers
were placed within a radius of 0.9dmax around their senders.
In the second scenario, we placed between 25 and 250 nodes
randomly in an 200×200 area. All pairs of nodes with distance
less than 0.9dmax were connected. In this scenario, every node
can act both as sender and receiver and be part of many links.
However, in every time slot every node can only take part in
one transmission.

In the indoor scenario, between 20 and 200 nodes were
randomly distributed in an 200× 200 area. Additionally, wall
segments were placed on a regular 8 × 8 grid. On each of

the 112 inner grid segments, a wall was put with probability
60%. The attenuation of each wall segment was determined
by a normally distributed random value with µ = 5dB and
σ = 2dB. Finally, links were added for all nodes that were
able to communicate with each other according to the general
SINR model.

C. Examined Algorithms

In order to evaluate our algorithms, we implemented several
existing algorithms for the scheduling problem. For the sake of
fairness, we chose algorithms that are especially designed and
optimized for the physical SINR model. This section gives a
short overview on the selected algorithms. In case an algorithm
was not named by the authors, we gave a name based on
author names and year of publication. Some of the examined
algorithms do not include power control. In this cases, we
computed optimum powers for the generated schedules.

ElBatt04 [18] was the first algorithm for scheduling with
power control in the SINR model. The algorithm alternates
between scheduling and power control and defers transmis-
sions with minimum SINR until an admissible set of powers
can be found. In contrast, LiEph05 [30] starts with empty slots
and adds links according to some scheduling metric that takes
into account queue sizes and number of blocked links. Every
time a slot is filled, a new slot is opened. A similar approach
is used by GreedyPhysical [31]. Instead of the scheduling
metric, an interference number is used to sort the links in the
beginning. The links are processed according to their order
and added to the first possible time slot. DiGreedy [27] is
another approach to find a good compromise between schedule
length and power consumption. The underlying principle is
similar to the one in ElBatt04. Links with high interference
are deferred until a feasible link set is found. Additionally,
every feasible set is rated based on schedule length and power
consumption. In order to optimize the relation of throughput
and power consumption, the remaining links are removed one
by one from the set of active links. In the end, from all
feasible link sets the one with the best rating is chosen. Using
a parameter, one can decide whether throughput or power
efficiency is more important. ApproxLogN [25] was the first
algorithm which guaranteed a O(log n) approximation for the
problem of minimizing the number of time slots needed to
schedule a given set of requests. The authors showed that their
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Fig. 4. Average schedule length. (a) Random links in free space. (b) Network in free space. (c) Network in building.

algorithm is superior to the algorithm ApproxDiversity which
was proposed in [13]. However, the algorithm needs to know
the sender-receiver distances and it relies on the special prop-
erties of the SINRG model, thus it cannot be used in realistic
scenarios with obstacles and random effects. Hall09 [32] is
a simplified version of ApproxLogN. The authors showed that
the algorithm computes a constant factor approximation for the
scheduling problem in the SINRG model. Just as ApproxLogN,
this algorithm relies on the properties of the SINRG model.

D. Throughput

We start with an examination of the schedule lengths. The
schedule length determines the communication throughput and
all considered algorithms are intended for computing short
schedules. Figure 4 shows how the schedule length increases
with increasing link density. It is not surprising that the relation
between schedule length and link density is almost linear.
Apparently, not all algorithms perform equally well in all
scenarios. Moreover, in the indoor scenario, the differences
between the algorithms seem to diminish. However, in all sce-
narios the heuristics BLMP and BLAP compute the best sched-
ules, with BLMP being marginally better. Table I compares
average schedule lengths for certain inputs. For the random
links scenario, the input consisted of 1500 random links. For
the network and building scenarios, the input consisted of 200
and 120 random nodes, resulting in 1081 links and 797 links
on average, respectively.

For the heuristics BLMP and BLAP two values are given.
For the first value, the algorithm was initially started with
only one open slot. Then, 80% of the length of the computed
schedule was used as a better start value for a second iteration

TABLE I
AVERAGE SCHEDULE LENGTH

Random Network Building
Algorithm (∅ 1500 links) (∅ 1081 links) (∅ 797 links)
ElBatt04 84.0 207.6 229.4
LiEph05 80.2 193.9 179.1

GreedyPhy 89.6 184.6 160.2
ApproxLogN 531.4 826.0 -

Hal09 1288.9 1051.9 -
GLMP 58.4 155.8 164.6
BLMP 57.1 / 53.0 141.6 / 140.1 149.4 / 149.4
BLAP 56.4 / 54.8 143.7 / 141.4 150.2 / 150.9

of the algorithm. One can see that this resulted in slightly
better schedules. However, the difference is rather small. Ob-
viously, the approximation algorithms ApproxLogN and Hal09
give significantly worse throughput than the other algorithms.
The reason is that they are mainly of theoretical interest. The
focus was not on computing the best schedule possible, but
on showing that one can give approximation guarantees. It
would be easy to use those algorithms to compute an initial
schedule and then to use the ideas proposed in this paper to
improve the schedule, thus getting a competitive algorithm
with approximation guarantees. However, it is unlikely that
this would result in significantly better schedules.

E. Power Consumption

In some situations, for example in wireless sensor networks,
the available energy is limited and one might be interested
in energy efficient schedules. Figure 5 shows the dependence
between average power consumption and link density. For
every algorithm, the average transmission power in throughput
optimal schedules is given as a fraction of Pmax. Moreover,
a lower bound Preq on the average transmission power is
shown. Preq is defined as the average power that is used
when all transmission are scheduled one by one, thus avoiding
interference. One can see that the curves become flat for large
numbers of links. A direct comparison of the algorithms is
given for certain input sizes in Table II. This time, the powers
are given relative to Preq, thus highlighting the overhead that

Fig. 5. Power consumption (random links in free space).
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Fig. 6. Throughput vs. power consumption. (a) 1500 random links. (b) Network with 200 random nodes. (c) Network in building with 120 random nodes.

one has to accept for the higher throughput. However, when
interpreting this numbers, one has to keep in mind that at
this point we compare schedules of different lengths. It is no
miracle that schedules with lower throughput need less power.
Extreme examples are ApproxLogN and Hal09, as they only
schedule transmissions together that hardly interfere with each
other.

F. Throughput vs. Power Consumption

In this section, we try to make a fairer comparison regarding
power consumption by also taking into account the throughput
of the considered schedules. For this purpose, we randomly
selected schedules and plotted them in Figure 6. The further
left a point is, the higher is the throughput of the corresponding
schedule, and the lower a point is, the less energy needs the
schedule. In the random scenario, the algorithms are separated
very nicely. Again, it becomes apparent that the algorithms
BLMP and BLAP achieve the highest throughput. At the same
time, BLAP also is highly competitive with respect to required
energy. GLMP also computes short schedules. However, the
slot-by-slot approach makes it much harder to distribute the
transmissions beneficially, thus the energy demand is much
higher. We already mentioned that BLMP and BLAP allow
the computation of energy efficient schedules by using more
slots than necessary. This compromise is visualized by the
curves in Figure 6. For example, one can deduce that with an
average power of about 1.2Preq one can schedule all 1000 links
of the random link scenario within 70 slots. In all scenarios,
the curve of BLAP is way below all other algorithms. Thus,
given the same number of slots, the schedules computed by
BLAP are significantly more economical. Compared to the first
scenario, in the network scenarios the differences between the
single algorithms are not so distinct. Especially in the indoor
scenario, the random effects lead to much scatter. However, in
all scenarios BLAP is evidently superior.

G. Network Lifetime

Energy aware schedules increase the lifetime of the network.
We will examine this exemplary for the network scenario with
200 randomly distributed nodes. For this purpose, we consider
the time that passes until 10%, 20%, 30%, 50%, and 75% of

the nodes run out of battery, assuming that all links are active
for about the same time and that all nodes have the same
initial battery charge. The lifetime improvement that can be
achieved by using the BLAP heuristic is shown in Table III.
For example, when using BLAP instead of ElBatt04, using
the same number of time slots, it takes 29.3% longer until
10% of the nodes run out of battery. The last row of Table III
shows the advantage of a throughput optimized schedule using
BLAP in comparison to scheduling without power control. It
is obvious that even in short schedules with high throughput
a lot of energy can be saved by using good power control.

VII. CONCLUSION

In this article, we considered several aspects of scheduling
with power control in wireless networks. First, we showed that
the problem is NP-hard in the SINRG model. Subsequently, we
described a power control algorithm that is optimized for situ-
ations where transmissions are added one by one. Thus, it can
be used to improve several existing heuristics. However, the
algorithm’s main advantage is that it allows to look efficiently
one step ahead. Given the solution for a set of active links, it is

TABLE II
AVERAGE POWER CONSUMPTION RELATIVE TO PREQ [%]

Random Network Building
Algorithm (∅ 1500 links) (∅ 1081 links) (∅ 797 links)
ElBatt04 163.4 151.8 129.4
LiEph05 182.6 182.8 155.5
GreedyPhy 145.7 160.0 146.7
ApproxLogN 100.0 100.0 -
Hal09 100.0 100.0 -
GLMP 201.4 176.3 141.3
BLMP 190.1 / 178.4 178.9 / 175.3 139.6 / 145.4
BLAP 164.9 / 153.6 156.5 / 149.0 126.4 / 121.7

TABLE III
LIFETIME IMPROVEMENT BY HEURISTIC BLAP [%]

compared to 10% 20% 30% 50% 75%
ElBatt04 29.3 32.5 35.1 40.2 48.9
LiEph05 45.0 51.4 57.8 67.7 85.7

GreedyPhy 42.2 38.7 36.6 33.5 29.9
GLMP 26.4 31.2 35.4 43.1 56.0

Fixed Power 157.6 214.6 270.9 406.4 738.2

152



very cheap to see what would happen if another link is added.
Based on this property, we proposed scheduling heuristics that
gradually assign links to slots, taking into account all entailed
effects. In order to evaluate our heuristics, we compared them
to several existing approaches. For this purpose, we considered
three different scenarios. In all scenarios, our algorithms
outperformed the existing approaches in terms of throughput
and power efficiency. Moreover, the algorithms can be used
to find a good compromise between throughput and energy
efficiency and they are also useful in situations where the
number of available slots is predefined.
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