
Acta Informatica manuscript No.
(will be inserted by the editor)

An algorithmic study of switch graphs

Bastian Katz · Ignaz Rutter ·
Gerhard Woeginger

the date of receipt and acceptance should be inserted later

Abstract We derive a variety of results on the algorithmics of switch graphs. On
the negative side we prove hardness of the following problems: Given a switch
graph, does it possess a bipartite / planar / triangle-free / Eulerian configuration?
On the positive side we design fast algorithms for several connectivity problems
in undirected switch graphs, and for recognizing acyclic configurations in directed
switch graphs.

1 Introduction

What is a switch graph? A switch s on an underlying vertex set V is a pair (ps, Ts)
where ps ∈ V is the pivot vertex and where Ts ⊆ V is a non-empty set of target

vertices. The vertex set V and some set S of switches on V together form a switch

graph G = (V, S). A configuration of a switch graph is a mapping c : S → V

such that c(s) ∈ Ts for all s ∈ S. The configuration selects exactly one edge
ec(s) := {ps, c(s)} for every switch s ∈ S, and thus yields a corresponding multi-
set Ec := {ec(s) : s ∈ S} of edges. The corresponding multi-graph is denoted
Gc := (V,Ec); see Figure 1 for an illustration. Biologically speaking, a switch graph
represents the genotype of an entire population of graphs, and every configuration
specifies the phenotype of one concrete member in this population.

A preliminary version of this work has appeared as B. Katz, I. Rutter, and G. Woeginger.
An Algorithmic Study of Switch Graphs. In: Proc. 35th Int. Workshop Graph-Theoretical
Concepts in Computer Science (WG’09), p. 226–237, LNCS, Springer

B. Katz and I. Rutter
Faculty of Informatics,
Karlsruhe Institute of Technology(KIT)
E-mail: {katz, rutter}@kit.edu

G. Woeginger
Department of Mathematics and Computer
Science, TU Eindhoven
E-mail: gwoegi@win.tue.nl

2 B. Katz et al.

s1

s2

s3

s4

s5

s6

s1

s2

s3

s4

s5

s6

Fig. 1: To the left: A switch graph G with six switches, where s5 has only a single
target. To the right: A configuration yielding a multigraph Gc.

A brief history of switch graphs. Over the last 30 years a huge number of fairly un-
related combinatorial structures has been introduced under the name switch graph

or switching graph; see the introduction of [6] for some pointers to the literature.
The switching graph model of Meinel [11] comes very close to the model that is
investigated in this paper. Another somewhat restricted type of switch graph has
been introduced by Cook [1] who studied cyclic configurations as an abstraction
of certain features in Conway’s game of life. In Cook’s model the vertices are not
allowed to have degrees higher than three, and every switch has an obligatory
incident edge that must show up in every configuration. Reinhardt [13] essentially
studies Cook’s model, but drops the constant degree constraint. Reinhardt con-
structs a polynomial-time O(|V |4) algorithm that decides whether there exists a
configuration that contains a simple path between two prespecified vertices. He also
links switch graphs to certain matching problems in computational biology [14].
We note that Cook’s and Reinhardt’s switch graph models can both easily be em-
ulated by our switch graph model. Huckenbeck [8,9] studied a related but more
general problem where the configuration of valves at nodes decides which pairs of
incoming and outgoing edges of a node may be used by a path.

Groote and Ploeger [6] concentrate on switch graphs with binary switches
(where every target set contains two elements). Their work is motivated by certain
questions around the modal µ-calculus, and among other results they study the
complexity of certain graph properties on switch graphs. For instance they show
that in directed binary switch graphs, one can decide in polynomial time whether
there is a configuration that connects (respectively disconnects) two prespecified
vertices. Our current paper was heavily inspired by the conclusions section of [6];
our results in Theorems 3, 5, and 9 answer open questions that have been posed
in [6].

Results of this paper. Every graph property P naturally leads to a corresponding
algorithmic problem on switch graphs: Given a switch graph, does there exist a
configuration with property P? We will derive a collection of positive and negative
results for various graph properties.

– It is NP-hard to decide whether a given switch graph has a configuration that
is (a) bipartite, (b) planar, or (c) triangle-free. The three hardness proofs are
presented in Section 3.

– We establish a number of matroid properties for switch graphs that possess
a connected configuration. This yields a simple O(|S| + |V |2) time greedy al-

An algorithmic study of switch graphs 3

gorithm for finding a configuration that minimizes the number of connected
components (and of course also settles the question whether there is a con-
nected configuration); see Section 4.

– We provide a fast algorithm to detect a configuration that connects two given
vertices in an undirected switch graph. This substantially improves the time
complexity of Reinhardt’s result [13]; see Section 5.

– Finding a configuration in which all vertex degrees are even is easy, but finding
a configuration with a Eulerian cycle is NP-hard for forward directed switch
graphs (see Section 2 for a formal definition), as well as for undirected switch
graphs. Moreover, it is NP-hard to find a configuration that is biconnected (for
undirected switch graphs) or strongly connected (for forward directed switch
graphs); see Section 6.

– Deciding whether a forward directed switch graph allows an acyclic configu-
ration can be done in linear time. In contrast to this, finding a configuration
that minimizes the number of directed cycles is NP-hard; see Section 7.

We stress that our negative results hold in the most restricted binary switch model,
whereas our positive results apply to the general model.

2 Basic Definitions

Let G = (V, S) be a switch graph. For a subset S′ ⊆ S of switches and a configura-
tion c, we denote Ec(S

′) := {ec(s) : s ∈ S′} and Gc(S
′) := (V,Ec(S

′)). We denote
V (s) := Ts ∪ {ps} and V (S′) :=

⋃
s∈S′ V (s). For S′ ⊆ S and V ′ ⊆ V , we denote

by S′(V ′) := {s ∈ S′ | V (s) ⊆ V ′} the set of inner switches of V ′. Observe that
V (S′(V ′)) ⊆ V ′. A switch graph has fan-out k if |Ts| ≤ k for all s ∈ S. It is called
binary if |Ts| ≤ 2 holds for all s ∈ S. Throughout we will use n := |V |, m := |S|,
and m̄ :=

∑
s |Ts|. Note that m ≤ m̄ ≤ km for the fan-out k of G. Throughout

the paper we will frequently use the fact that a switch with a single target vertex
corresponds to a “fixed” edge that occurs in any configuration of a switch graph.
A contraction of a switch graph results from identifying several vertices of a switch
graph. A contraction of a switch s in a switch graph is defined as the contraction
of the switch graph identifying all vertices in Ts ∪ {ps}. For a switch s we further
denote by E(s) = {{ps, t} | t ∈ Ts} the set of edges s may potentially create in
different configurations.

Although the paper mainly deals with undirected graphs, all definitions easily
carry over to directed switches and directed multi-graphs. In a forward switch s =
(ps, Ts), arcs must be directed from pivot to target. In a reverse switch s = (Ts, ps),
arcs must be directed from target to pivot. A directed switch graph may contain
both, forward and reverse switches. A forward directed switch graph contains only
forward switches.

Note that all problems we consider in this paper ask for configurations of
a given switch graph with properties that can be tested in polynomial time.
Moreover, there exist at most nm distinct configurations of a switch graph, and
thus O(m log n) bits are sufficient to guess a configuration as a certificate. This
implies that all NP-hard problems presented in this paper are also NP-complete.

4 B. Katz et al.

x?
1 x1 x1 x?

2 x2 x2 x?
3 x3 x3 x?

4 x4 x4

v11 v12 v13 v21 v22 v23

(x1 ∨ x2 ∨ x3)∧
(x2 ∨ x3 ∨ x4)

Fig. 2: Reduction of 3Sat to SwitchTriangleFree

3 Bipartite, Planar, Triangle-Free Graphs

In this section, we show hardness of finding configurations that are bipartite,
triangle-free or planar.

Theorem 1 For binary undirected switch graphs, it is NP-hard to decide if there is a

bipartite configuration (SwitchBipartite).

Proof We sketch a reduction from SetSplitting: Given a ground setX = {x1, . . . , xn}
and a set T of 3-element subsets of X, it is NP-hard to decide whether there is a
partition of X into two sets X1, X2, such that every t ∈ T has non-empty intersec-
tion with both, X1 and X2 [5]. For a given instance of SetSplitting, we construct
a switch graph G = (V, S), containing vertices x1, . . . , xn for the elements of X.
For each triplet ti ∈ T we introduce a switch si = (xj , ti − {xj}) for an arbitrary
xj ∈ ti.

Every solution X1, X2 to SetSplitting yields a bipartite configuration: Color
the vertices xi according to X1, X2. Then every triplet t contains both colors, which
allows to set the corresponding switch to connect two vertices of distinct colors.
Conversely, every bipartition of some configuration Gc induces a bipartition of the
xi. For any triplet in T , the switches prevent the corresponding three vertices from
receiving all the same color, and thus the induced partition yields a solution to
SetSplitting. ut

Theorem 2 For binary undirected switch graphs, it is NP-hard to decide if there is a

triangle-free configuration (SwitchTriangleFree).

Proof The proof is by reduction from 3Sat. Let ϕ be an instance of 3Sat. Without
loss of generality we assume that each clause contains three different variables. We
create a switch graph Gϕ as follows. For each variable xi we create the variable

vertex x?i , the two literal vertices xi and x̄i, and a variable switch si = (x?i , {xi, x̄i}).
For every clause Cj , we add three clause vertices vj1, v

j
2, v

j
3. If the kth literal in

clause Cj corresponds to variable xi, we introduce an edge (vjk, {x
?
i }). If it is xi, we

introduce a clause switch (vjk, {v
j
k+1

, x̄i}), defining vj4 := vj1. If it is x̄i, we introduce

a clause switch (vjk, {v
j
k+1

, xi}). See Figure 2 for an example. Clearly the reduction
can be performed in polynomial time. It remains to show that ϕ admits a satisfying
truth assignment if and only if Gϕ admits a triangle-free configuration.

Suppose that ϕ admits a satisfying truth assignment. We define a correspond-
ing triangle-free configuration c of Gϕ as follows. For each variable switch si

An algorithmic study of switch graphs 5

x1 x2 x3 x4 x5

Fig. 3: Planar layout of the graph of the planar monotone 3Sat formula (x1 ∨x4 ∨
x5) ∧ (x2 ∨ x3 ∨ x4) ∧ (x̄1 ∨ x̄2 ∨ x̄3) ∧ (x̄3 ∨ x̄4 ∨ x̄5). Clauses above and below the
x-axis contain only positive and negative literals, respectively.

we set c(si) = xi if and only if xi has the value true, for a clause switch s =
(vjk, {v

j
k+1

, xi}), which corresponds to the literal x̄i occurring in clause Cj , we

set c(s) = xi if and only if xi has the value false, and for s = (vjk, {v
j
k+1

, x̄i}) we
set c(s) = x̄i if and only if xi has the value true. Intuitively, the variable switch
picks the satisfied literal, and clause switches whose literal is satisfied pick the lit-
eral vertex corresponding to the complementary literal. Correspondingly, a clause
switch whose literal is not satisfied picks a clause vertex. We claim that this yields
a triangle-free asignment. To see this, observe that each clause contains a satisfied
literal, and hence at least one of its clause switches picks a literal vertex. Hence, no
three clause vertices form a triangle. A triangle vjkxix

?
i (vjkx̄ix

?
i) implies that xi has

the value true (false) and that Cj contains the literal x̄i (xi). But then c picks for

the corresponding clause switch the target vjk+1
and not xi (x̄i), and the triangle

does not exist. Since any triangle must fall into one of the categories, it follows
that c is triangle-free.

Conversely, assume that c is a triangle-free configuration of Gϕ. We define a
corresponding truth assignment by setting xi to true if and only if c(si) = xi.
Consider a clause Cj . Since c is triangle-free, at least one of the clause switches

corresponding to Cj must have picked a literal vertex. Let s = (vjk, {v
j
k+1

, xi})
be such a switch (the case s = (vjk, {v

j
k+1

, x̄i}) can be handled analogously). The
existence of switch s implies that Cj contains the literal x̄i. By the choice of s we
have c(s) = xi, and since c is triangle-free, it follows that c(si) = x̄i. But then by
definition of the truth assignment xi has the value false and Cj is satisfied by the
literal x̄i. Hence the truth assignment indeed satisfies ϕ. ut

Theorem 3 For binary undirected switch graphs, it is NP-hard to decide if there is a

planar configuration (SwitchPlanar).

Proof The proof is by reduction from Planar Monotone 3Sat. Planar 3Sat is
a well-known NP-hard restriction of 3Sat, where additionally the variable–clause
graph is assumed to be planar. The problem Planar Monotone 3Sat is even more
restricted: the literals of each clause must be either all positive or all negative.
Moreover, the variable clause graph can be drawn in the plane without crossings
such that all the variables are on the x-axis, the clauses with positive literals are
above the x-axis and the clauses with negative literals are below the x-axis; see
Figure 3 for an example. Planar Monotone 3Sat is NP-hard [3].

Now let ϕ be an instance of Planar Monotone 3Sat together with a corre-
sponding layout. Note that this defines a total ordering (from left to right) of the
variables along the x-axis, for each clause a left, middle and right variable, and a

6 B. Katz et al.

x

x?
sx tx

x−

x+

x̄

(a)

`C

mC

rCzC

tC

(b)

Fig. 4: Gadgets for the reduction of Planar Monotone 3Sat to SwitchPlanar.
(a) A variable gadget with literal vertices x+ and x−, where literal switches will
be attached. The variable gadget contains a switch sx that either picks x or x̄,
corresponding to satisfying the corresponding literal. (b) A clause gadget with
literal vertices `C ,mC and rC that forms a K5 if all three literal switches choose
a target inside the clause gadget.

nesting of some of the clauses above and below the x-axis. For every variable x,
we introduce a variable gadget as depicted in Figure 4a with one variable switch sx
whose targets are the two literal vertices x and x̄. For each pair x and y of consecu-
tive variables (y is the successor of x), we connect tx to y?. For every clause C, we
introduce a clause gadget as depicted in Figure 4b, which basically is a K5 missing
three edges, which may later be enabled or disabled by appropriately setting the
literal switches, which we will define below. Further, let z denote the right-most
variable in the drawing. We connect tz to the left literal vertex `C of each outer-
most clause C, and for each clause C we connect the middle literal vertex mC to
the left literal vertex `C′ of all clauses C′ that are directly enclosed by C. Denote
the set of edges added in this way by T . Finally, we add the literal switches. For
each variable x occurring positively in a clause C, we define a switch as follows.
If x is the left variable of C, we add the switch sCx = (`C , {x+, zC}). If x is the right
variable of C, we add the switch sCx = (rC , {x+, zC}). If x is the middle variable,
we add the switch sCx = (mc, {x+, tC}). For negative literals, we replace x+ by x−.
Let Gϕ denote the resulting switch graph; see Fig. 5 for a complete example. We
now claim that Gϕ has a planar configuration if and only if ϕ is satisfiable.

Note that each literal switch has one target belonging to a clause gadget and
one target belonging to a variable gadget. Given a configuration, we say that a
literal switch sCx is switched into the clause, if c(sCx) is a vertex of a clause gadget,
otherwise it is switched into the variable. We first consider the variable gadget for
a variable x. In a planar configuration, if c(sx) = x̄, then no literal switch sCx
of a positive clause C may be switched into the variable. Otherwise, we contract
all clause gadgets and all variable gadgets except the one of x to a single vertex,
each. Now there exists a path from tx to the now contracted clause C whose edges
are in T . Now the upper half of the variable gadget of x together with this path
along with the edge {`C , x+} created by switch sCx and the edge {x?, x̄} created
by switch sx form a subdivision of K5, contradicting planarity. Analogously, in a
planar configuration literal switches sCx of negative clauses, may not be switched
into the variable if c(sx) = x. Thus sx intuitively picks either x or x̄ as satisfied,
and all literal switches of the opposite literal must be switched into the clause. A

An algorithmic study of switch graphs 7

(x1 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x4 ∨ x5)

C1 C2 C3 C4

tx1
tx2

tx3
tx4

tx5

`C1

`C2

`C3
`C4

mC1

mC2

mC3 mC4

Fig. 5: Example reduction of Planar Monotone 3Sat to SwitchPlanar for the
formula whose variable-clause graph is shown in Fig. 3. The edges of T are drawn
as thick black edges.

clause gadget with all three literal switches switched into the clause forms a K5.
Thus, in a planar configuration this does not occur and each clause must contain
at least one satisfied variable.

On the other hand, it is not hard to see that a satisfying truth assignment of ϕ
yields a planar configuration of Gϕ; the variable switch picks the satisfied literal,
and we switch each unsatisfied literal switch into the clause and each satisfied
literal switch into the variable. To see that this is planar, observe that there are at
most two switches switched into each clause, and the corresponding edges can be
drawn inside the clause gadget without crossings and thus do not interfere with
the outside drawing. The edges stemming from switches that are switched into the
variable can then be drawn as in the original layout of the formula. Finally the
edges of T can be added in a planar way since they adhere to the nesting structure
of the clauses by construction. ut

4 Global Connectivity

In this section we discuss the question whether a given switch graph G = (V, S) has
a connected configuration. It turns out that this question has many ties to matroid
theory, which allows us to invoke some powerful machinery from mathematical
programming.

8 B. Katz et al.

First, we consider two matroids (E, I1) and (E, I2) that both have the same
ground set E, which is the set of all the multi-edges over V that can possibly
result from switches in S. Note that we consider the elements of E to be associated
with their corresponding switch, and hence we consider two elements e1 ∈ E(s1)
and e2 ∈ E(s2) with s1 6= s2 as distinct, even if they have the same endpoints.
Formally, the set E is the disjoint union

⋃
s∈S E(s) of edges that may be created by

switches. The set system I1 consists of all cycle-free subsets of E. The set system
I2 consists of all subsets of E that contain at most one edge from each switch, that
is E′ ⊆ E is in I2 if and only if |E′ ∩ E(s)| ≤ 1 for all s ∈ S. Then (E, I1) forms
a graphic matroid and (E, I2) forms a partition matroid. The fact that the acyclic
edge sets of a multi-graph form a matroid is well known [10]. For the partition
matroid, we clearly have that ∅ ∈ I2 and the hereditary property holds trivially.
For the exchange property assume that A,B ∈ I2 and |A| < |B|. Then there exists
a switch s such that A∩E(s) = ∅ but B ∩E(s) = {e}. It follows that A∪ {e} ∈ I2,
and thus the exchange property holds.

Note that the sets in I1 are exactly the acyclic edge sets of E, while I2 contains
edge sets that can be realized by configurations, as they contain at most one
edge from each switch. Obviously, the switch graph G = (V, S) has a connected
configuration, if and only if there exists a spanning tree that can be realized by
a configuration of the switches or, equivalently, if there exists a set E′ ⊆ E of
cardinality n − 1 that belongs to both I1 and I2. This is a standard matroid
intersection problem, which can be solved in polynomial time [4].

It is not hard to see that the intersection (E, I1 ∩ I2) itself does not form a
matroid. In the following, we will model the problem in terms of a single matroid,
which yields simpler and faster algorithms. Our approach is based on a third
structure (S, I3) that is defined over the ground set S of switches. A subset S′ ⊆ S
lies in I3, if there exists a configuration c such that Ec(S

′) is cycle-free (or in other
words, such that Ec(S

′) belongs to I1). The sets in I3 are called independent sets.

Theorem 4 The structure (S, I3) forms a matroid.

Proof Clearly the set system I3 contains the empty set and is closed under taking
subsets. It remains to show that for two independent sets A,B ⊆ S with |A| < |B|,
there is an s ∈ B −A such that also A ∪ {s} is independent.

Since A and B are independent, there exist configurations a and b for which
the corresponding edge sets Ea(A) and Eb(B) are cycle-free. Among all such con-
figurations a and b, we consider a pair that maximizes the number of switches that
are in A ∩ B and that configure into the same edge both in configuration Ea(A)
and in configuration Eb(B); such switches are called good switches. Since Ea(A)
and Eb(B) are cycle-free, they belong to I1 in the underlying graphic matroid.
Since |Ea(A)| = |A| < |B| = |Eb(B)|, by the matroid property of I1, there exists
an edge e ∈ Eb(B)− Ea(A) such that Ea(A) ∪ {e} is cycle-free.

Let se ∈ B denote the switch that in configuration b generates edge e. We claim
that this switch se cannot be in A: Otherwise configuration a would configure
this switch se into an edge f . Then we can modify configuration a into a new
configuration c by switching se into e instead of f . The resulting edge set Ec(A)
is still cycle-free since even Ea(c) ∪ {e} is cycle-free, whereas the number of good
switches has increased. That is a contradiction. Hence se /∈ A, and A ∪ {se} is an
independent set of switches. ut

An algorithmic study of switch graphs 9

Our next goal is to get a better understanding of independence in (S, I3).

Lemma 1 A set S′ of switches is independent if and only if |T | < |V (T)| holds for all

non-empty subsets T ⊆ S′.

Proof One direction of the proof is easy: If there is a non-empty T ⊆ S′ with |T | ≥
|V (T)|, then every configuration c induces a cycle on T since |Ec(T)| = |T | ≥ |V (T)|
holds.

For the other direction of the proof, we show that if |T | < |V (T)| holds for all
nonempty sets T ⊆ S′, then S′ is independent. The proof is by induction on |S′|.
Clearly, the claim holds for |S′| = 0. Now let |S′| ≥ 1, let s ∈ S′ be an arbitrary
switch, and let S′′ := S′ \ {s}. Since S′′ ⊆ S′, we have |T | < |V (T)| for all T ⊆ S′′,
and since |S′′| < |S′|, the induction hypothesis yields that S′′ is independent. Thus,
there exists a configuration c of S′′ such that Ec(S

′′) is acyclic. Adding an arbitrary
edge e from the switch s to Ec(S

′′) produces a configuration c for S′ whose edge
set Ec(S

′) = Ec(S
′′)∪{e} contains at most one cycle. If Ec(S

′) is acyclic, then S′ is
independent and we are done. Hence, assume that Ec(S

′) contains a single cycle C.

We now describe a procedure that, given a configuration c of a switch set S′

such that Ec(S
′) contains exactly one cycle, either detects a non-empty subset T of

switches of S′ with |T | ≥ |V (T)| or produces from c an acyclic configuration c′ of S′.
Observe that the existence of such a procedure directly implies the claim of the
lemma since the former outcome would contradict our assumption, and thus the
procedure gives an acyclic configuration c′ of S′, showing that S′ is independent.

Recall that Ec(S
′) contains a single cycle C. Let E := Ec(S

′), let C0 denote
the vertices of the connected component of (V,Ec(S

′)) that contains C, and let
V0 denote the set of all vertices in V (S′) that are not in C0. We work through
a number of removal phases. In each phase, we remove a switch from S′ and
also remove the corresponding edge from E. Moreover, we construct two sets Vi
and Ci, maintaining the invariant that after phase i the sets V0, . . . , Vi and Ci form
a partition of V (S′), such that the connected component of (V,E) induced by Ci

contains the cycle C and no edge of E connects vertices from distinct sets of the
partition. Observe that initially, before phase 1, we have i = 0 and V0 and C0 form
such a partition.

In phase i ≥ 1, we have as input a partition V0, . . . , Vi−1, Ci−1 of V (S′). A
switch s = (p, T) is removable, if it contributes an edge e to the connected com-
ponent induced by Ci−1 and its target set T contains a target t? outside of Ci−1.
If no such switch exists, the removal process stops. Otherwise let si = (pi, Ti) be
a removable switch with t?i ∈ Ti ∩ V` for some 0 ≤ ` ≤ i − 1. We set ref(i) := `,
remove from E the edge ei in Ci−1 corresponding to si and consider the connected
components of the subgraph of (V,E) induced by Ci−1 after this removal. We de-
fine Ci to be the vertex set of the connected component containing the cycle C. If
no such component exists, i.e., ei is an edge of C, then we set Ci := ∅. We further
set Vi := Ci−1 \Ci. It is not hard to see that this maintains the claimed invariant.
Then the (i+ 1)th removal phase starts.

Clearly, the number of removal phases is bounded by the number of switches.
Suppose that the process terminates after k successful removals. This means that
no removable switch exists in phase k+ 1. Then either (i) the set Ck is empty, i.e.,
the edge ek removed in phase k was part of the cycle C, or (ii) we have Ck 6= ∅,
but no switch contributing an edge to Ck has a target outside Ck. In case (ii)

10 B. Katz et al.

s3

s1

s2

s5

V0

V3

V1

V2

V5

V4

s4

Fig. 6: A proper switch sequence s1, . . . , s5 that eventually breaks the cycle, the
dashed edge of switch si connects pi with the target t?i , witnessing that si can be
removed in step i. Switches are reinserted changing s5, s4, s1.

let T denote the set of switches contributing an edge to Ck. Since no switch in T

is removable, we have V (T) = Ck. Moreover, since Ec(T) forms on Ck a connected
component containing a cycle, we have |T | ≥ |Ck|. It then follows that |T | ≥
|V (T)|, and we output the set T . In case (i) we will show how to reinsert and
how to reconfigure the removed edges and switches step by step in reverse order
sk, sk−1, . . . , s1 so that the resulting edge set is cycle-free. See Figure 6 for an
illustration.

Throughout we will maintain the following invariant: Just after the insertion
and reconfiguration of switch si (1 ≤ i ≤ k), there exists an index `(i) with 0 ≤
`(i) < i, such that the vertex set V`(i) ∪

⋃
h≥i Vh forms a cycle-free connected

component with respect to the current edge set. This component is called the
crucial component; intuitively speaking we will make it grow until it covers all of
V (S′). We start the growing process with switch sk, which by definition has a target
t∗k in the set Vref(k) with ref(k) < k. By reinserting the edge {pk, t∗k} for switch sk
and by setting `(k) := ref(k), we satisfy the invariant. In handling a switch si with
i < k we distinguish two cases: First, if i 6= `(i+ 1), then we simply reinsert its old
edge ei and keep `(i) := `(i + 1). This merges the vertices in Vi into the crucial
component while maintaining the invariant. In the second case i = `(i + 1). We
reconfigure switch si to pick target t∗i , insert the corresponding edge {pi, t∗i }, and
set `(i) := ref(i). This merges the vertices in Vref(i) into the crucial component, and
again maintains the invariant. This reconfiguration process eventually produces a
cycle-free configuration for S′, and thus completes the proof. ut

The statement of Lemma 1 is combinatorial, but its proof is algorithmic and
the procedure described in the proofs is a fast independence test for the matroid
(S, I3): Given an acyclic configuration of an independent set S′′ we can check
in O(kn) time whether a given switch s can be added to S′′ without destroying
independence. To see the running time note that the independence of S′′ implies
that |S′′ ∪ {s}| ≤ n, which also bounds the number of removal phases. As in
the proof of Lemma 1, we denote the set S′′ ∪ {s} by S′. To achieve selection of

An algorithmic study of switch graphs 11

removable switches within a total of O(kn) time, we direct all edges in Ec(S
′) that

are not part of the cycle to point away from it. Whenever a switch si is removed,
we use this information to mark all vertices in Vi. Obviously, this only adds O(n)
time. A switch s is a candidate if it has a marked target and both ps and c(s) are
unmarked. A set of candidates can be maintained in O(kn) total time.

If the independence test is positive, we obtain a corresponding cycle-free con-
figuration for S′. This already implies that the standard greedy algorithm for
matroids, which requires m independence tests, computes a largest independent
set of switches in O(mnk) time. However, we can do somewhat better by exploiting
that also negative outcomes of the independence tests convey some information.

If the test is negative, we get the final component Ck−1 that contains the
cycle. Let U denote the set of all switches in S′′ that contribute an edge to Ck−1.
Then |U | = |V (Ck−1)| − 1, and none of the switches in U has a target outside of
V (Ck−1). Hence in any cycle-free configuration of S′′ the switches in U induce a
connected graph on V (Ck−1); such a set U of switches is called a tight set. We
exploit this by contracting all switches in the tight set U . The benefit is that now
each independence test either increases the size of the independent set of switches
or reduces the number of vertices, and thus the total number of independence
tests is O(n). These ideas lead to the following theorem, which is the main result
of this section. Note that it as a special case yields a polynomial-time algorithm
for recognizing switch graphs with connected configurations.

Theorem 5 For a given switch-graph with fan-out k, we can determine in O(km +
kn2) time a configuration that minimizes the number of connected components.

Proof Any basis B of the matroid (S, I3) yields a cycle-free configuration with the
maximum number of edges, and hence a configuration with the minimum number
of connected components; the switches not in B then can be set arbitrarily. Hence
it is enough to determine a basis, and this is done by the standard greedy algorithm
for matroids, as follows.

We start with S′ = ∅ and a trivial acyclic configuration c of S′, and test the
switches one by one to see whether adding them to S′ yields an independent set.
If the test is positive, we add the switch to S′ and update the cycle-free configu-
ration c. If the test is negative, we forget the switch and contract all switches in
the corresponding tight set U . These contractions can be done in overall O(nα(n))
time by using a union-find data structure, where α(n) denotes the slowly growing
inverse of the Ackermann function. Every test on a non-trivial graph costs O(kn)
time. Every positive test adds an edge to a cycle-free edge set; hence there are
at most n − 1 of these tests. Every negative test on a non-trivial graph contracts
some vertices; hence there are at most n− 1 of these tests. Every negative test on
a trivial graph (that has been contracted to a single vertex) costs O(k) time. All
in all, this yields the claimed time complexity. ut

Global connectivity and bipartite matching. Although not obvious at first sight, there
is a strong similarity between global connectivity in switch graphs and bipartite
matching. Both problems can be expressed as an intersection of two matroids
and the characterization of independent sets of switches is very similar to Hall’s
theorem [7]. In this section we show that this similarity is no coincidence and that
in fact, bipartite matching can be expressed in terms of global connectivity and

12 B. Katz et al.

that in this case the characterization of independent switch sets is exactly Hall’s
theorem.

Let G = (A ∪ B,E) be a bipartite graph with |A| = |B|. We construct a
switch graph G′ = (V, S) as follows. Let V consist of B and a vertex s. Now for
each vertex a ∈ A we create a switch sa = (s,N(a)) where N(a) denotes the
neighbors of a in G. The graph G has a perfect matching if and only if G′ has
a connected configuration. This is the case if and only if all |A| switches of G′

are independent, i.e., |S′| < |V (S′)| holds for every S′ ⊆ S. By the construction
of G′ this is equivalent to the statement that every set A′ ⊆ A has at least |A′|
neighbors, which is Hall’s theorem [7].

SwitchConnect-T . We further briefly analyze a generalization of the global con-
nectivity problem. The problem SwitchConnect-T is defined as follows. Given a
switch graph G = (V, S) and a set T ⊆ V of terminals, does there exist a configu-
ration c such that in Gc all vertices of T are in the same connected component?

Theorem 6 SwitchConnect-T is NP-hard for binary switch graphs.

Proof We first show hardness for switch graphs that are not binary. We reduce
from 3Sat. Let ϕ be an instance of 3Sat. We construct a switch graph Gϕ as
follows. For each variable x we create two literal vertices vx and vx̄. For each
clause C we create a vertex vC and a switch sC = (vC , TC) where TC is the set
of vertices corresponding to the literals that occur in C. Finally, we add one new
node s and for each variable x a switch sx = (s, {vx, vx̄}). Let T be the set that
contains all clause-vertices and the node s.

We claim that Gϕ has a configuration that connects T if and only if ϕ has a
satisfying truth assignment. Given a truth assignment of ϕ we construct a config-
uration of Gϕ as follows. For each variable x we set c(sx) = vx if x has the value
true and c(sx) = vx̄ otherwise and for each clause C we set c(sC) = v where v is a
vertex that corresponds to a satisfied literal of C. Conversely, from a configuration
c that connects T we can find a truth assignment by setting x to true if c(sx) = vx
and false otherwise. The correctness of the claim follows from the fact that a clause
vertex vC is connected to s if and only if the corresponding clause C is satisfied by
the truth assignment. Since the reduction can be performed in polynomial time,
it follows that SwitchConnect-T is NP-hard.

To reduce to binary switches, we replace for each clause C the clause switch sC =
(vC , {x, y, z}) by two switches s′C = (vC , {x, v′C}) and s′′C = (v′C , {y, z}), where v′C
is a new vertex. Note that we do not change T , i.e, vC is contained in T , but v′C is
not. This guarantees that again vC can be connected to exactly one of the literal
vertices occurring in the clause C. The rest of the proof is analogous. ut

Although SwitchConnect-T is NP-hard in general, it can be solved in poly-
nomial time for some special cases. We have already shown that it can be solved
efficiently in the case T = V . In the next section we will show that the problem
can be solved in polynomial time if |T | = 2.

Moreover, from the polynomial-time algorithm for T = V it follows that
the problem is fixed-parameter tractable (FPT) with respect to the parameter
k′ := n − |T | since we can enumerate all possible subsets V ′ of V \ T and solve
the corresponding connectivity instance G − V ′. It is an open question whether
SwitchConnect-T is FPT with respect to |T | or even if it can be solved in poly-
nomial time if |T | = 3.

An algorithmic study of switch graphs 13

a b

ps
ta tb

P

(a) Non-trivial case: P (grey) connects
both endpoints a and b with targets of s

a b

ps
ta tb

x

a b

ps
ta tb

x

(b) The forward path (dashed) from ps to b hits a first vertex x on P ,
allowing to bypass either ps− tb or ps− ta without altering a switch on P .

Fig. 7: A path in G′c′ witnesses a path in Gc for some configuration c.

5 Local Connectivity

In this section, we investigate configurations that connect two given vertices a

and b by a path. In the following, we call a sequence of switches a forward path if
every switch’s pivot is a target of its predecessor. Recall that a contraction of a
switch s in a switch graph is defined as the switch graph identifying all vertices in
Ts ∪ {ps}.

Lemma 2 Let G = (V, S) be a switch graph and s be any switch such that in (V, S −
s), there is a (possibly trivial) forward path from ps to b. Let G′ be the result from

contracting s. Then G can be switched to connect a and b if and only if this is possible

for G′.

Proof First, by contracting a switch, it is not possible to lose connectivity. We will
thus assume that it is possible to find a configuration c′ that connects a and b in
G′ and show that this witnesses such a configuration c for G. We denote the path
in G′c′ as a sequence of switches P . Clearly, the switches of P forms either one or
two paths in Gc′ . If P forms a single path in Gc′ , or if P connects either a or b
to ps, finding a connecting configuration is trivial. Otherwise, P forms two paths,
connecting a to some ta ∈ Ts and b to some tb ∈ Ts. In this situation, depicted in
Figure 7, we can make use of the fact that in S − s, there is a forward path from
ps to b. Its first switch is not part of P , and we simply follow the forward path
until we hit some vertex x on P . Now, switching the forward path from ps to x

gives us a bypass either from ps to ta or from ps to tb and switching s accordingly
connects a and b. ut

This lemma provides a simple test for a-b-connectivity: If there is a configuration
c that connects a and b in Gc, there either is a forward path from b to a or there

14 B. Katz et al.

v

w

x

y

s s′

(a)

v1

v2

w1 w2

x1

x2

y1 y2

s1 s2 s′2 s
′
1

(b)

v1

w1 w2

x2

y1 y2

s1 s2 s′2 s
′
1

(c)

Fig. 8: Example for the reduction of local connectivity to finding an augmenting
path. A switch graph (a) and corresponding graph H with matching M drawn as
bold edges (b). The augmenting path v1s1s2w1w2s

′
2s
′
1x2 in H\{v2, x1} corresponds

to the path vwx in G (c). The fact that H \ {y2w1} does not admit a perfect
matching shows that there is no path from y to w in G.

is a contractable switch, since there must be a first switch that is used “forward”
on the path from a to b in Gc. The proof of Lemma 2 is constructive, naively
implemented, it yields an O(n2 + nm̄) time algorithm to test the existence of and
compute a connecting configuration by storing a forward path for each contraction.
It is not difficult to improve the running time for the problem of deciding whether
an ab-path exists to almost linear time by using a Union-Find data structure.
However, it is not as easy to also provide a corresponding path if it exists. Instead
we show that the local connectivity problem is in fact equivalent to the problem
of finding an augmenting path with respect to a matching. This yields a fast
algorithm for solving the local connectivity problem.

Theorem 7 For a given switch-graph G = (V, S) and two vertices a, b ∈ V , we can de-

termine in O(m̄+n) time a configuration that connects a and b, if such a configuration

exists.

Proof Let G = (V, S) be a switch graph and let a and b two vertices of G. We
construct a new graph H = (VH , EH) and a matching of H as follows. For each
vertex v ∈ V we create two node vertices v1 and v2 in VH and add to EH the
edge ev = {v1, v2}. We call these edges node edges. For each switch s = (p, T) ∈ S
we create two switch vertices s1 and s2 in VH and we add the edges {s1, p1} and
{s1, p2}, which we call pivot connector edges, the switch edge {s1, s2}, and for each
of its targets t ∈ T the edges {s2, t1} and {s2, t2}, called target connector edges. We
choose the matching M = {{v1, v2} | v ∈ V }∪{{s1, s2} | s ∈ S}. We now claim that
there is a configuration that connects a and b in G if and only if there exists an
augmenting path from a1 to b2 in H\{a2, b1} with respect to M ′ := M\{a1a2, b1b2}.
See Figure 8 for an example.

Let c be a configuration such that a and b are connected. Then a simple path
between a and b in Gc can be described by an alternating sequence of vertices and
switches v1s1v2s2 . . . vk−1sk−1vk with a = v1, b = vk and such that all switches and
all vertices are distinct and for i = 1, . . . , k− 1 it holds that ec(s

i) = {vi, vi+1}. To
compute an alternating path between a1 and b2 in H \{a2, b1} we drop all vertices
of this sequence and replace each switch si for i = 1, . . . , k − 1 as follows. If vi is

An algorithmic study of switch graphs 15

the pivot of si we replace si by vi1s
i
1s

i
2v

i+1
2 , otherwise we replace it by vi1s

i
2s

i
1v

i+1
2 .

This substitution results in an alternating a1b2-path in H with respect to M ′.
Conversely assume that we have an alternating a1b2-path in H \ {a2, b1} with

respect to M ′. A first observation is that any alternating path in H that contains
a node vertex v1 or v2 stemming from a vertex v ∈ V \ {a, b} must also contain the
corresponding node edge {v1, v2} and thus both node vertices since {v1, v2} is in
M ′. The same holds for switch vertices s1 and s2 for all switches s ∈ S. Second, the
matching edges that are contained in an alternating path must alternate between
switch edges and node edges since by construction of H no two node vertices and
no two switch vertices are connected by an edge that is not in M ′. Further, a node
vertex and a switch vertex that are adjacent in H are incident in G. Hence, the
alternating a1b2-path in H \{a2, b1} yields an ab-path in the underlying multigraph
of G, i.e., the graph that contains all edges that can possibly result from any
configuration of G. As the path in H can contain at most one target connector
edge of each switch this path contains at most one edge of each switch and hence
can be realized by a configuration. This proves the claim.

It is not hard to see that the reduction can be performed in linear time and that
also the resulting path can be translated back in linear time. The claim follows
since the existence of an augmenting path can be checked in linear time [15]. ut

6 Even Degrees and Eulerian Graphs

In this section we study the problems of finding a Eulerian or a biconnected con-
figuration and several related problems. A graph is Eulerian (that is it admits a
cycle that uses each edge exactly once) if and only if it is connected and all vertices
have even degrees. As we have seen in Section 4, a connected configuration of a
switch graph can be found efficiently, if it exists. It turns out that a configuration
for which all vertex degrees are even can be found efficiently, too. We call such a
configuration even and denote the corresponding problem SwitchEven.

We use the results of Cornuéjols [2] on the general factor problem: Let (W,E)
be an undirected graph, and for every v ∈W let D(v) be a subset of {1, . . . , |W |}.
Does there exist a subset F ⊆ E, such that in the graph (W,F) every vertex has
its degree in D(v)? Cornuéjols [2] shows that this problem can be decided in O(n4)
time on any n-vertex graph, as long as the sets D(v) do not contain any gap of
length 2. (A set D of integers contains a gap of length 2, if it contains two elements
d1 and d2, such that d2 ≥ d1+3 and such that none of the numbers d1+1, . . . , d2−1
is in D.)

To solve SwitchEven with this result, construct a bipartite auxiliary graph
between the set of switches and the set of vertices in the switch graph. Put an edge
between any switch s and all targets in Ts. For any switch s ∈ S set D(s) = {1}.
For any vertex v ∈ V that is pivot of an even number of switches set D(v) =
{0, 2, 4, . . .}, and for any vertex v ∈ V which is pivot of an odd number of switches
set D(v) = {1, 3, 5, . . .}. Note that none of these sets contains a gap of length 2. It
can be seen that the auxiliary graph has a factor obeying the degree constraints if
and only if the graph G has a configuration in which all vertex degrees are even.

While this settles the membership of SwitchEven in P, the algorithm is not
very efficient, as it takes time O((n + m)4). We therefore also provide a more
elementary algorithm that is faster than the one described above.

16 B. Katz et al.

Theorem 8 For an undirected switch graph G = (V, S), SwitchEven can be decided

in O(n · (m̄+ n)) time.

Proof Let G = (V, S) be a switch graph and let c be a configuration. We define
a helper switch graph H(c) = (V, Sc) that contains one switch for each switch
of G in the following manner. For every s ∈ S we define a corresponding switch
(c(s), Ts \ {c(s)}) that has the current target c(s) of s as pivot and as targets all
alternative targets of s. For ease of use we identify corresponding switches in the
graphs G and H(c).

Assume that two vertices a and b that are odd in Gc can be connected by
a path in H(c) with a configuration h. Let s1, . . . , sk be the set of switches in
this path. We define a new configuration c′ of G as follows: We set c′(s) := h(s)
if s ∈ {s1, . . . , sk} and c′(s) := c(s) otherwise. Now the even vertices of Gc′ are
exactly the even vertices of Gc plus a and b. By the definition of c′ the degree of
a vertex changes from Gc to Gc′ by 1 for each edge on the path between a and b

in H(c)h. Since all interior vertices of the path have an even number of incident
edges only the parity of a and b changes. This suggests a very simple strategy for
finding even configurations: Start with any configuration c of G and as long as
there exists an odd vertex a find a path in H(c) that connects a to an odd vertex
b and change the configuration accordingly.

It remains to show that if the strategy does not succeed in finding an even
configuration then there is none. We prove that if there exists an even configuration
c∗ of G, then for any non-even configuration c and any odd vertex a of Gc it is
possible to switch a path in H(c) that connects a to another odd vertex b. Consider
the graph H ′ = (V,EH′) with EH′ = {{c(s), c∗(s)} | s ∈ S with c(s) 6= c∗(s)}. Note
that this graph can by definition be obtained as a subgraph of H(c) with a suitable
configuration h. Each edge in H ′ represents a change of the degree of its incident
vertices by 1 when changing c to c∗. Therefore, even (odd) vertices of Gc have
even (odd) degree in H ′. Hence a must have odd degree in H ′. Since the connected
component of H ′ that contains a must have an even number of odd vertices, there
is an odd vertex b in this component and hence we can switch a path between a

and b in H(c) as claimed. The running time follows from at most n applications
of the algorithm from Theorem 7. ut

As we have seen, we can efficiently check whether a given switch graph admits a
connected configuration and whether it admits an even configuration. A Eulerian
configuration is one that satisfies both properties simultaneously. Interestingly,
this combined problem is much more difficult than the two individual problems,
and in fact NP-hard as we show in the next theorem. Moreover, higher degrees of
connectivity, such as finding a biconnected configuration or a strongly connected
configuration in the case of directed switch graphs is NP-hard as well.

Theorem 9 For binary undirected switch graphs it is NP-hard to decide if there is a

Eulerian or a biconnected configuration. For binary forward directed switch graphs it is

NP-hard to decide if there is a Eulerian or a strongly connected configuration.

Proof We reduce from DirectedHamiltonianCycle, which is known to be NP-
hard for directed graphs with out-degree bounded by 2 [12]. Obviously out-degree 1
is a necessary lower bound for the existence of a directed Hamiltonian cycle.

Let G = (V,E) be a directed graph with out-degrees 1 and 2. We define a switch
graph H = (V, S) as follows. For each vertex v ∈ V we add a switch sv = (v,N(v))

An algorithmic study of switch graphs 17

where N(v) = {u ∈ V | (v, u) ∈ E}. Let further
−→
H denote the directed switch graph

obtained from H by replacing each switch by a corresponding forward switch
with the same pivot and the same target set. Obviously a configuration of H
can be interpreted as a configuration of

−→
H and vice versa. Now, since for every

configuration c the multi-graphs Hc and
−→
H c have n vertices and n edges, the

following properties are equivalent:

(i) G has a directed Hamiltonian cycle.
(ii)
−→
H has a directed Eulerian configuration.

(iii)
−→
H has a strongly connected configuration.

(iv) H has a biconnected configuration.
(v) H has a Eulerian configuration.

The claim follows since the reduction can be performed in linear time. ut

7 Acyclic and Almost Acyclic Graphs

This section deals with forward directed switch graphs (as defined in Section 2):
We check in polynomial time whether a forward directed switch graph has a DAG
configuration. We also show that finding a configuration with the minimum number
of directed cycles is NP-hard for binary forward directed switch graphs. By con-
trast, we show that for general binary directed switch graphs, which may contain
forward and reverse switches, even testing the existence of a DAG configuration
is NP-hard.

Theorem 10 For a forward directed switch graph, it can be decided in O(n+ m̄) time

if it has an acyclic configuration. If an acyclic configuration exists, it can be found

within the same time complexity.

Proof Let G = (V, S) be a forward directed switch graph, and observe the fol-
lowing. First: The out-degree of every vertex in Gc is independent of the chosen
configuration c. Second: If all vertices in a digraph have out-degree at least 1,
then the graph contains a directed cycle. Third: If G contains a sink v (that is, a
vertex v with out-degree 0), then it is safe to configure all switches s with v ∈ Ts
towards this sink when looking for a configuration minimizing the number of di-
rected cycles. These three observations suggest a simple procedure: As long as the
graph contains a sink v, we first set c(s) := v for all switches s with v ∈ Ts, and
then remove v together with all these switches. The procedure either stops with
an empty graph (and an acyclic configuration), or with a non-empty subgraph of
G in which all vertices have out-degree at least 1 (in which case there is no acyclic
configuration). The algorithm can easily be implemented to run in linear time. ut

In contrast, finding an acyclic configuration in general directed switch graphs and
minimizing the number of cycles in forward directed switch graphs is hard:

Theorem 11 For binary directed switch graphs, it is NP-hard to decide whether an

acyclic configuration exists (SwitchDirectedAcyclic).

Proof The proof is by reduction from 3Sat. Let ϕ be an instance of 3Sat with
variables x1, . . . , xn and clauses C1, . . . , Cm. We construct a switch graph Gϕ as

18 B. Katz et al.

follows: We start with two vertices z and w and the arc (w, z). For each variable xi
we create two corresponding vertices xi, x̄i and a reverse switch si = ({xi, x̄i}, w).
For each clause Ci we add a vertex vi and the arc (z, vi). Let xu, xv, xw be the
variables occurring in clause Ci. We set `u := xu if xu occurs negated in Ci and
`u := x̄u otherwise. We define `v, `w analogously. We then add a clause switch

sCi = (vi, {`u, `v, `w}). See Figure 9 for an example.

A satisfying truth assignment for ϕ yields an acyclic configuration c of Gϕ: For
each variable xi we set c(si) := xi if xi is assigned the value true and c(si) := x̄i
otherwise. Since each clause of ϕ is satisfied in this configuration at least one target
of every clause switch has out-degree 0. Hence every clause switch can easily be
configured to avoid all cycles.

Moreover, an acyclic configuration c of Gϕ yields a satisfying truth assignment
for ϕ: We set variable xi to true if c(si) = xi and to false otherwise. As the
configuration is acyclic every clause switch must have a sink as target, and this
sink represents a satisfied literal in the corresponding clause.

Note that although the clause switches have fan-out 3, the result also holds for
binary switch graphs. To see this, we simply replace each switch s = (p, {x, y, z})
by two switches s1 = (p, {x, p′}) and s2 = (p′, {y, z}), where p′ is a new vertex. This
replacement does not affect the number of cycles with respect to any configuration
since p′ has either degree 1 (and thus is not contained in any cycle) if s1 picks x,
or degree 2 if s1 picks p′. In the latter case p′ belongs to exactly the same cycles
as p. ut

Theorem 12 For a binary forward directed switch graphs G and an integer k > 0, it

is NP-hard to decide if there is a configuration with at most k cycles (SwitchMini-

mumDirectedCycles).

Proof We show how to simulate binary reverse switches with usual binary forward
switches at the cost of one cycle per reverse switch. Let G′ be an instance of
SwitchDirectedAcyclic with k binary reverse switches. We construct a directed
switch graph G by replacing each reverse switch s = ({x, x̄}, w) by the following
construction. We add four vertices xout, x̄out, xin, x̄in along with the arcs (xin, x̄),
(x̄in, x), (xout, x), (x̄out, x̄), (xin, w), (x̄in, w) and the two forward switches sx =
(x, {xin, xout}), sx̄ = (x̄, {x̄out, x̄in}); see Figure 9.

(x1 ∨ x2 ∨ x3)∧
(x2 ∨ x3 ∨ x4) x1 x1 x2 x2 x3 x3 x4

v1 v2

x4

w

z

x x

w

xin xin

xoutxout

sx sx

Fig. 9: Reduction of 3Sat to SwitchDirectedAcyclic with reverse switches (left).
Replacement of reverse switches for reduction of 3Sat to SwitchMinimumDirect-

edCycles (right)

An algorithmic study of switch graphs 19

As each replacement creates at least one cycle every configuration of G has
at least k cycles. Each replacement has four distinct configurations. Two of them
directly correspond to a configuration of the original reverse switch, namely the
ones where one of the vertices x, x̄ is connected to its in- and the other one to
its out-vertex. We say that a configuration of G is good for the replacement in
this case. There is a bijection between the acyclic configurations of G′ and the
configurations of G with k cycles that are good for each replacement.

Let c be a configuration of G with k cycles. We can modify c such that it
is good for each replacement without increasing the number of cycles: The case
c(sx) = xout, c(sx̄) = x̄out can be excluded, as it would induce two cycles. In case
c(sx) = xin, c(sx̄) = x̄in we can change c(sx) := xout without increasing the number
of cycles thus making c good for the replacement. This operation does not increase
the number of cycles, as we introduce at most one new cycle, namely xxout but at
the same time remove at least the cycle xxinx̄x̄in. Hence G admits a configuration
with at most k cycles if and only if G′ has an acyclic configuration. Since G can
be constructed in linear time from G′, the problem to decide whether such a
configuration exists is NP-hard. ut

8 Conclusion

In this paper we have studied the complexity of fundamental problems on switch
graphs. While finding a configuration of a switch graph such that the resulting
graph satisfies a certain property P is NP-hard for many properties, we gave
efficient algorithms for certain connectivity problems. In particular, we have shown
how to test efficiently, whether all vertices of a switch graph can be connected
and how to check whether two given vertices can be connected. We leave open
the question whether it is possible to check in polynomial time if three given
vertices can be connected simultaneously and, more generally, whether the problem
SwitchConnect-T is FPT with respect to |T |.

Acknowledgments We thank Alexander Wolff for pointing us to switch graph prob-
lems. We thank the anonymous referees for helpful comments.

References

1. M. Cook. Still Life Theory. In C. Moore and D. Griffeath, editors, New Constructions in
Cellular Automata, volume 226, pages 93–118. Oxford University Press, 2003.

2. G. Cornuéjols. General factors of graphs. Journal of Combinatorial Theory, Series B,
45:185–198, 1988.

3. M. de Berg and A. Khosravi. Optimal binary space partitions in the plane. In Proc. 16th
International Computing and Combinatorics Conference (COCOON’2010), volume 6196
of LNCS, pages 216–225. Springer, 2010.

4. J. Edmonds. Submodular functions, matroids, and certain polyhedra. In Proceedings of the
Calgary International Conference on Combinatorial Structures and Their Applications,
pages 69–87, Calgary, 1969.

5. M. R. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

6. J. Groote and B. Ploeger. Switching graphs. International Journal of Foundations of
Computer Science, 20(5):869–886, 2009.

7. P. Hall. On representatives of subsets. Jour. London Math. Soc., 10:26–30, 1935.

20 B. Katz et al.

8. U. Huckenbeck. On paths in networks with valves. In Proceedings of the 10th Annual Sym-
posium on Theoretical Aspects of Computer Science (STACS’93), volume 665 of LNCS,
pages 90–99, 1993.

9. U. Huckenbeck. On valve adjustments that interrupt all s-t-paths in a digraph. Journal
of Automata, Languages and Combinatorics, 2(1):19–45, 1997.

10. B. Korte and J. Vygen. Combinatorial Optimization, Theory and Algorithms. Springer
New York, Berlin, fourth edition edition, 2008.

11. C. Meinel. Switching graphs and their complexity. In Proceedings of the 14th Conference
on Mathematical Foundations of Computer Science (MFCS’1989), volume 379 of LNCS,
pages 350–359. Springer, 1989.

12. J. Plesńik. The NP-completeness of the Hamiltonian Cycle Problem in planar digraphs
with degree bound two. Information Processing Letters, 8(4):199–201, 1979.

13. K. Reinhardt. The simple reachability problem in switch graphs. In Proceedings of the
35th Conference on Current Trends in Theory and Practice of Computer Science (SOF-
SEM’2009), volume 5404 of LNCS, pages 461–472. Springer, 2009.

14. R. Sharan, J. Gramm, Z. Yakhini, and A. Ben-Dor. Multiplexing schemes for generic SNP
genotyping assays. Journal of Comp. Biology, 15:514–533, 2005.

15. R. E. Tarjan. Data structures and network algorithms. SIAM, Philadelphia, 1983.

	Introduction
	Basic Definitions
	Bipartite, Planar, Triangle-Free Graphs
	Global Connectivity
	Local Connectivity
	Even Degrees and Eulerian Graphs
	Acyclic and Almost Acyclic Graphs
	Conclusion

