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Recognizing Weighted Disk Contact Graphs

Boris Klemz*

Abstract

Disk contact representations realize graphs by map-
ping vertices to interior-disjoint disks in the plane
such that disks touch each other if and only if the cor-
responding vertices are adjacent. Deciding whether
a vertex-weighted graph can be realized so that the
disks’ radii coincide with the vertex weights has been
proven NP-hard. In this work, we analyze the prob-
lem for special graph classes and show that it remains
hard even for very basic ones, thereby strengthening
previous NP-hardness results. On the positive side, we
present linear-time algorithms for two restricted ver-
sions of the problem. Perimeter(S) vs Perimeter(S)

1 Introduction

A disk intersection representation is a set of disks in
the plane that can be interpreted as a graph contain-
ing a vertex for each of its disks and an edge for each
pair of intersecting disks. Disk intersection graphs
are graphs that have a disk intersection representa-
tion and generalize disk contact graphs, that is, graphs
that have a disk intersection (or contact) representa-
tion with interior-disjoint disks. Koebe’s Theorem [9]
is a classic result in graph theory that states that any
planar graph is a disk contact graph, and for any disk
contact representation it is easy to obtain a planar
drawing of the realized graph.

Application areas for disk intersection/contact
graphs include modeling physical problems like wire-
less communication networks [6], covering problems
like geometric facility location [10, ], visual repre-
sentation problems like the generation of area car-
tograms [4] and many more (various examples are
given by Clark et al. [3]). Often, one is interested in
recognizing disk graphs or generating representations
that do not only realize the input graph, but also
satisfy additional requirements. For example, Alam
et al. [I] recently studied graphs having disk con-
tact representations, in which the ratio of the largest
disk radius to the smallest is polynomial in the num-
ber of disks. Furthermore, it might be desirable to
generate a disk representation that realizes a vertex-
weighted graph such that the disk radii or areas re-
flect the corresponding vertex weights, for example,
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for value-by-area circle cartograms [7]. Clearly, there
exist vertex-weighted planar graphs that can not be
realized as disk contact graphs, and the correspond-
ing recognition problem is NP-hard even if all vertices
are weighted uniformly [2].

We examine the aforementioned scenario more
closely and explore disk contact representations for
special graph classes. We show that it is NP-hard to
decide whether a realization with uniform radii exists
even if the input graph is outerplanar and even if a
combinatorial embedding is provided. On the other
hand, we can decide in linear time whether a cater-
pillar is a disk contact graph with uniform disk radii.
If the vertex weights are not necessarily uniform, the
recognition problem becomes NP-hard even for stars,
but it can be solved in linear time for a given combi-
natorial embedding.

2 Unit disk contact graphs

In this section we are concerned with the problem of
deciding whether a given graph is a unit disk contact
(UDC) graph, that is, whether it can be realized as a
unit disk contact representation. It is known that this
is generally NP-hard for planar graphs [2], but it re-
mained open for which subclasses of planar graphs the
realizability problem can be efficiently decided and for
which subclasses NP-hardness still holds.

We show that for caterpillars we can decide the re-
alizability problem (and construct a representation if
it exists) in linear time, whereas the problem remains
NP-hard for outerplanar graphs.

Recognizing realizable caterpillars. Let G = (V, E)
be a caterpillar graph, that is, a tree for which a
path remains after removing all leaves. Let P =
(v1,...,v) be this so-called inner path of G. It is
well known that six unit disks can be tightly packed
around one central unit disk, but then any two consec-
utive outer disks necessarily touch and form a triangle
with the central disk. This is not permitted in a cater-
pillar and we obtain that in any realizable caterpillar
the maximum degree A < 5. For A < 4 it is easy to
see that G can always be realized as shown in Fig. [T}

However, not all caterpillars with A = 5 can be
realized. For example, two degree-5 vertices on P
separated by zero or more degree-4 vertices cannot be
realized, as they would again require tightly packed
disks inducing cycles in the contact graph.
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Fig. 1: For A < 4 any caterpillar can be realized.

It turns out that a simple iterative pass along P
suffices to decide the realizability of G and find a re-
alization if possible. We place a disk D; for v; at the
origin and attach its leaf disks leftmost, that is, sym-
metrically pushed to the left with a sufficiently small
distance between them. In each subsequent step, we
place the next disk D; for v; on the bisector of the free
space, i.e. the maximum cone with origin in D;_1’s
center containing no previously inserted neighbors of
D;_1 or D;_5 and attach the leaves of D; in a left-
most and balanced way, see Fig. For odd num-
bers of leaves this leads to a change in direction of
P, but by alternating upward and downward bends
for subsequent odd-degree vertices we can maintain a
horizontal monotonicity, which ensures that leaves of
D; can only collide with leaves of D; 1 and D;_». If
we fail to place the disks correctly, we claim that no
UDC representation of G exists; otherwise we return
the constructed realization.

Fig. 2: Incremental construction of a realization. Nar-
row disks are dark gray, wide disks are light gray.

For a sketch of correctness, consider the tangent
line ¢; between two adjacent disks D;_; and D; on
the inner path. We say that P is narrow at v; if some
leaf disk attached to D;_; intersects ¢;; otherwise P
is wide at v;. We observe that in our construction P
gets narrow precisely when a degree-5 vertex of P is
encountered. But it is generally true in any represen-
tation that P gets narrow after a degree-5 vertex. If P
is narrow at v; this means that at most three disjoint
disks touching D; can still be placed and thus it must
be deg(v;) < 4. Each vertex of degree 4 inherits the
narrow/wide status of its predecessor. Vertices with
degree 3 or less make P wide again.

This idea leads to a combinatorial characterization
(and decision algorithm) of caterpillars with a UDC
representation, based on the property that between
any two degree-5 vertices on P there must be at least
one vertex of degree at most 3.

Theorem 1 For a caterpillar G it can be decided in
linear time whether G is a UDC graph. A realization
(if one exists) can be constructed in linear time on a
Real RAM.

Hardness for outerplanar graphs. We perform a
polynomial reduction from the classic NP-complete
3SAT problem to show NP-hardness of the UDC-
realizability problem for outerplanar graphs. Here,
we sketch only the main ideas of the reduction and
refer to Klemz [8, Chapter 2] for more details.

Let ¢ be a Boolean 3SAT formula with a set U =
{z1,...,2,} of n variables and a set C = {c1,...,cm}
of m clauses, where each ¢; contains three literals over
U. We create the literal-clause-graph G, = (U UU U
C, E), where U is the set of negative literals over U.
The set E contains for each clause ¢ € C the edge (¢, )
if literal « occurs in ¢ and the edge (¢, ) if literal
occurs in c. Based on G, we create an outerplanar
graph G:ﬂ that has a UDC representation if and only
if the formula ¢ is satisfiable.

Arguing about UDC realizations of certain sub-
graphs becomes a lot easier, if there is only a sin-
gle unique geometric representation (up to rotation,
translation and mirroring). We call such a representa-
tion rigid. Using an inductive argument, we can show
the following lemma about rigid UDC structures.

Lemma 2 A unit disk contact representation whose
UDC graph is biconnected, internally triangulated
and outerplanar is rigid.

The main building block of the reduction is a wire
gadget in G,w that comes in different variations but
always consists of a rigid tunnel structure containing
a rigid bar that can be flipped into different tunnels
around its centrally located articulation vertex. Each
wire gadget occupies a square tile of fixed dimensions
so that different tiles can be flexibly put together in
a grid-like fashion. The bars stick out of the tiles in
order to transfer information to the neighboring tiles.
Some special tiles of the variable gadgets consist of
tunnels without bars or with very long bars. Finally,
we construct crossing gadgets that correctly transmit
information along both axes of a tunnel crossing. Fig-
ure |3 shows a schematic view of how the gadget tiles
are arranged to form a layout of G.,.

The main idea behind the reduction is as follows.
Each variable gadget contains one long horizontal bar
that is either flipped to the left (false) or to the right
(true), see Fig. [f[(b). Consequently, each wire gad-
get of a literal edge connecting a variable gadget to a
clause gadget must flip its chain of bars towards the
clause if the literal is false. Finally, each clause gad-
get has one central T-shaped wire gadget, whose bar
needs to be placed inside one of the three incoming
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Fig. 4: (a) Clause gadget with two false inputs (top
and bottom) and one true input, (b) variable gadget
in the state false with one positive (left) and one neg-
ative literal (right), (c) detailed view of a horizontal
wire gadget with a rigid bar (black disks) inside a
horizontal tunnel (white disks).

tunnels. This is possible if and only if at least one of
the literals evaluates to true, see Fig. a).

Clearly, all gadgets need to be realized by rigid unit
disk contacts. Figure c) shows a close-up of a hor-
izontal wire gadget. The position of the bars inside
the tunnels admits some slack, but it does not affect
the combinatorial properties.

Finally, one needs to take care that the constructed
graph is actually outerplanar and connected. This is
not obvious, but can be done by introducing small
gaps and a modification in the attachment of the bar
in some of the horizontal wire gadgets. Moreover, the
reduction can be further modified so that it remains
valid for outerplanar graphs with a fixed embedding;
details can be found in [8].

Theorem 3 The UDC graph recognition problem is
NP-hard, even for outerplanar graphs and even if a
combinatorial embedding is given.

Fig. 5: Reducing from 3-Partition to prove Theo-
rem [4l Input disks (dark) have to be distributed be-
tween gaps. Striped disks are separators.

3 Weighted disk contact graphs

In this section, we assume that each graph vertex has
a positive weight, which corresponds to the disk radius
of the representing disk. Deciding whether a weighted
disk contact (WDC) representation respecting this ra-
dius assignment exists is obviously at least as hard as
the UDC problem from Section

Hardness for stars. Compared to Section 2} for an
arbitrary radius assignment the corresponding recog-
nition problem is hard for even simpler graph classes.

We perform a polynomial reduction from the well-
known 3-Partition problem. Given a bound B € N

and a set of positive integers A = {a1,...,as,} such
that % < a; < % for all ¢ = 1,...,3n, deciding

whether A can be partitioned into n triples of sum B
each is known to be strongly NP-complete [5].

Let (A, B) be a 3-Partition instance. We construct
a star S as well as a radius assignment r such that S
has a disk contact representation respecting r if and
only if (A, B) is a yes-instance.

We create a central disk D, of radius r. correspond-
ing to the central vertex v. of S as well as a fixed
number of outer disks with uniform radius r, chosen
appropriately such that these disks have to be placed
close together around D. without touching, creating
funnel-shaped gaps of equal size; see Fig. Then,
a contact representation exists only if all remaining
disks can be distributed among the gaps, and the
choice of the gap will induce a partition of the in-
tegers a; € A. We shall represent each a; by a single
disk called an input disk and encode a; in its radius.
Each of the gaps is supposed to be large enough for
the input disks that represent a feasible triple to fit
inside it, however, the gaps should be too small to
contain an infeasible triple’s disk representation.

The main challenge is finding a radius assignment
satisfying the above property, although numerous ad-
ditional nontrivial geometric considerations are re-
quired to make the construction work. For example,
we require that the lower boundary of each gap is suf-
ficiently flat. We achieve this by creating additional
dummy gaps, which in any realization must be com-
pletely filled by special dummy disks, such that there
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Fig. 6: Deciding existence for Theorem [5| Gray disks
are in L before inserting D, ;. After that, the two
small gray disks will be removed from L.

are still only n gaps to distribute the input disks.
Next, we make sure that additional separator disks
must be placed in each gap’s corners to prevent left
and right gap boundaries from interfering with the in-
put disks. Finally, all our constructions are required
to tolerate a certain amount of “wiggle room”, since,
firstly, the outer disks do not touch and, secondly,
some radii cannot be computed precisely in polyno-
mial time. Again, we refer to [8] Chapter 3] for a
detailed proof.

Theorem 4 The WDC graph recognition problem is
NP-hard even for stars.

Stars with fixed embedding. If the order of the
leaves around the central vertex of the star is fixed, the
existence of a WDC representation can be decided by
tightly placing the outer disks Dy, ..., D,_1 around
the central disk D, iteratively. By keeping track of
possible positions of the next disk, we can achieve
O(n) runtime.

Let r; be the radius of D;, and assume that D, is
the largest outer disk. Then, Dy can be placed next
to Dy clockwise. Suppose we have already added Ds,
..., Dj. As depicted in Fig. [6] tightly placing D;q
next to D; might cause D, to intersect with a disk
inserted earlier, even with D;. Simply testing for col-
lisions with all previously added disks would yield a
total runtime of O(n?), which we improve to O(n) by
keeping a list L of inserted disks which might be rel-
evant for future insertions. Initially, only D; is in L.
We shall see that L remains sorted by non-increasing
radius.

When inserting D; 1, we traverse L backwards and
test for collisions with traversed disks, until we find
the largest index j < 4 such that r; € L and r;11 < rj.
Next, we place D; 41 tightly next to all inserted disks,
avoiding collisions with all traversed disks.

First, note that D;;; cannot intersect disks pre-
ceding D; in L (unless D;y; and D; would inter-
sect clockwise, in which case we report non-existence).
Next, disks that currently succeed D; in L will not be
able to intersect Do, ..., D,_1 and are therefore re-
moved from L. Finally, we add D, to the end of L.
Since all but one traversed disks are removed during

each insertion, the total runtime is O(n). We report
existence if we can insert all disks tightly and there is
still space left.

Theorem 5 On a Real RAM, for a vertex-weighted
star S with a given embedding it can be decided in
linear time whether S is a WDC graph. A represen-
tation respecting the embedding (if one exists) can be
constructed in linear time.

4 Conclusion

We presented hardness results as well as linear-time
algorithms for variants of the weighted disk contact
graph recognition problem. An interesting open prob-
lem is the recognition of trees with a UDC represen-
tation. For more results, for example, regarding disk
contact representations in which disks have to cover
specified points, we refer to Klemz [g].
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