
Minimum Tree Supports for Hypergraphs and
Low-Concurrency Euler Diagrams

Boris Klemz, Tamara Mchedlidze, and Martin Nöllenburg

Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT), Germany

Abstract. In this paper we present an O(n2(m + logn))-time algorithm for
computing a minimum-weight tree support (if one exists) of a hypergraph H =
(V, S) with n vertices and m hyperedges. This improves the previously best known
algorithm with running time O(n4m2). A support of H is a graph G on V such
that each hyperedge in S induces a connected subgraph in G. If G is a tree, it
is called a tree support and it is a minimum tree support if its edge weight is
minimum for a given edge weight function. Tree supports of hypergraphs have
several applications, from social network analysis and network design problems
to the visualization of hypergraphs and Euler diagrams. We show in particular
how a minimum-weight tree support can be used to generate an area-proportional
Euler diagram that satisfies typical well-formedness conditions and additionally
minimizes the number of concurrent curves of the set boundaries in the Euler
diagram.

1 Introduction

A hypergraphH = (V, S) is a generalization of a graph that consists of a set of vertices V
and a set of hyperedges S, which are arbitrary non-empty subsets of V (in contrast to
graph edges, which are defined as pairs of vertices). Thus S is a subset of the power
set P(V) = 2V . A graph G = (V,E) is called a support of a hypergraph H = (V, S)
on the same vertex set if every hyperedge s ∈ S induces a connected subgraph in G.

Sparse support graphs are interesting from the perspective of network design as they
represent realizations of hypergraphs as graphs, in which the vertices of each hyperedge
induce a connected component. Korach and Stern [16] introduced the problem of finding
a minimum(-weight) tree support (MTS) for a given hypergraph H = (V, S) and a
given edge-weight function w :

(
V
2

)
→ R for the support graph. Here, an MTS is a

support T = (V,E) that is a tree with minimum total edge weight
∑
e∈E w(e). Not

every hypergraph has a tree support, but the decision problem can be solved in linear time
by testing whether its dual hypergraph is acyclic [14]. If a hypergraph has a tree support,
it is called a tree-hypergraph. Korach and Stern [16] gave an algorithm to compute an
MTS in O(|V |4|S|2) time (if it exists). They later presented another polynomial-time
algorithm for a restricted variation, in which they ask for a tree support of minimum
weight such that each subtree induced by a hyperedge is a star [17].

Hypergraphs and hypergraph supports are not as frequently used and studied as
graphs themselves, but they still have many real-world applications. For example, in so-
cial network analysis, minimum tree supports are used to compute maximum-likelihood
social networks that serve as models to explain a collection of observed disease outbreaks

2 Boris Klemz, Tamara Mchedlidze, and Martin Nöllenburg

that are modeled as hyperedges of the infected persons [1,2]. In topic-based peer-to-peer
publish/subscribe systems [7, 13] the input is a set of users V and a set of topics S,
where each topic t ∈ S is a subset of users (i.e., a hyperedge) interested in the topic. The
task is to design an overlay network G on V (called minimum topic-connected overlay)
with the minimum number of edges so that each topic forms a connected subgraph in G
thus enabling private communication within each topic. If the underlying hypergraph
H = (V, S) admits a tree support then this minimum overlay network will be a tree;
if establishing edges in G is linked with a cost, the task is again to find an MTS. The
unweighted problem is also known as subset interconnection design, which generally
asks for a support graph with the minimum number of edges, i.e., not necessarily a
tree. It has applications in the design of reconfigurable networks, e.g., vacuum sys-
tems, in which valves correspond to edges in the support and their number needs to be
minimized [6, 10, 11].

Of particular interest for hypergraph visualizations are planar supports. Johnson and
Pollak [14] showed that a hypergraph is vertex-planar if and only if it has a planar support.
A vertex-planar hypergraph has a representation of the vertices as faces in a planar
subdivision such that for each hyperedge the union of the faces corresponding to the
vertices incident to that hyperedge is a connected region. Simple and compact subdivision
drawings [15] are an interesting restriction of vertex-planar hypergraph representations
that puts additional constraint on the geometry of hyperedge representations. Johnson
and Pollak [14] proved, however, that deciding the existence of a planar support is
NP-complete; Buchin et al. [4, 5] extended the NP-completeness to testing the existence
of a 2-outerplanar support. On the other hand, it can be decided in polynomial time,
whether a hypergraph has a path-, cycle-, tree-, or cactus-support [3, 14, 16].

Contributions. In this paper we study minimum tree supports from a perspective that
was initially motivated by generating (area-proportional) Euler diagrams with low con-
currency of set contours. Euler diagrams are set visualizations and thus closely related
to hypergraph visualizations. Section 2 describes the background of Euler diagrams,
defines our algorithmic problem in that context, and sketches a solution approach based
on minimum tree supports. In Section 3 we introduce some necessary definitions and
notations, before we present our main technical contribution in Section 4. Our result is
initially tailored for the problem to generate low-concurrency Euler diagrams. Hence
we first transform an abstract Euler diagram description D into a so-called labeled
hypergraph H(D) and then present an algorithm that computes an MTS for H(D) in
O(n2m) time, where n is the number of vertices and m is the number of hyperedges.
The algorithm itself is a simple modification of Kruskal’s algorithm for incrementally
constructing minimum spanning trees, but its correctness proof relies on several crucial
properties of tree supports and the special order in which the algorithm adds edges to
the growing tree support. Finally, in Section 5 we generalize our result and show that
every hypergraph can easily be translated into an equivalent labeled hypergraph. Then
we can apply our algorithm for labeled hypergraphs to compute minimum tree supports
for arbitrary hypergraphs that admit a tree support. This improves the result of Korach
and Stern [16], who gave an algorithm with running time O(n4m2), to an algorithm
with time complexity O(n2(m+ log n)).

Minimum Tree Supports for Hypergraphs 3

a
b

d

abc bc

abcd
ad bd

a
b

d

c

a
b

d

abc

bc
abcd

ad bd

a b

d

abc

bcabcd

ad
bd

(a) (b) (c)

Fig. 1: (a) Euler diagram realizing AEDD D = ({a, b, c, d}, {a, b, d, ad, bd, bc, abc, abcd}), (b)
tree support T for H(D), (c) area-proportional Euler diagram based on T

2 Euler Diagrams

An Euler diagram D is a visualization of a set system as a collection of simple closed
curves, whose interiors represent the sets, see Fig. 1(a) for an example. The arrangement
of curves forms a subdivision of the plane and each face is called a (concrete) zone of
the Euler diagram. We define an abstract Euler diagram description (AEDD) as a pair
D = (L,Z), where L is a set of labels (each representing one set in a set system) and
Z ⊆ P(L) is a set of label subsets that we call zones (each representing a non-empty
intersection of a particular set of labels). We say that an Euler diagram D realizes an
AEDD D if there is a bijection ϕ between L and the set of curves in D, as well as
between Z and the set of concrete zones of D such that for each zone z ∈ Z the concrete
zone ϕ(z) is in the interior of curve ϕ(l) for each l ∈ z and exterior to ϕ(l′) for each
l′ ∈ L \ z. AEDDs are closely related to hypergraphs since we can interpret each zone
as a vertex and each label l as a hyperedge containing all zones that carry the label l.
Similarly, an Euler diagram that realizes a given AEDD is a subdivision drawing of its
corresponding hypergraph.

Euler diagrams must adhere to certain well-formedness conditions [8,12] that control
the visual appearance of the diagrams, e.g., a zone with a certain set of labelsL′ may exist
if and only if there exists an element that is contained in all sets corresponding to L′ and
that is not contained in any other set. Moreover, every zone must be uniquely labeled, i.e.,
there cannot be two distinct zones that lie in the interior of exactly the same set of curves.
Other common well-formedness criteria require convex zones, disallow triple points, i.e.,
points that lie in the intersection of three or more curves, or disallow concurrent curves
that run partially in parallel, i.e., connected intersections of two distinct curves c and c′

that contain more than just one point. There is a number of algorithms and complexity
results for generating Euler diagrams with certain well-formedness properties [8, 12, 18].
Since one can easily come up with AEDDs that require concurrencies (see the example
in Fig. 1), it is an interesting problem to generally allow concurrencies, but minimize
their total number in the diagram.

Another interesting variation of Euler diagrams are area-proportional Euler diagrams.
Given an AEDD D = (L,Z) together with a weight function A : Z → R+ on the zones,
the task is to find an area-proportional Euler diagram that realizes D such that the area
of each concrete zone with label set z ∈ Z is A(z). Some algorithms are known for

4 Boris Klemz, Tamara Mchedlidze, and Martin Nöllenburg

generating area-proportional Euler diagrams [9, 19], but they work heuristically or apply
to very restricted inputs only.

Algorithm for tree-based area-proportional Euler diagrams. We now sketch an algorithm
that generates for a given AEDD and a tree support of its induced hypergraph an area-
proportional Euler diagram with convex zones. If the tree support is an MTS with respect
to a specific weight function measuring internal concurrencies between neighboring
zones, then the Euler diagram realizes this minimum number of internal concurrencies.

LetD = (L,Z) be an AEDD. We define the labeled hypergraphH(D) = (Z, S(L))
as the hypergraph that contains a vertex for each zone of D and a hyperedge for each
label of D. Each vertex z ∈ Z is associated with the set of labels of its underlying
zone. In the following we use the abbreviated notation z = abc for z = {a, b, c} that
simply concatenates all labels in the zone. For each label l ∈ L we create the hyperedge
s(l) = {z ∈ Z | l ∈ z}, which defines the hyperedge set S(L) = {s(l) | l ∈ L}. In
Section 4 we describe an algorithm that computes a minimum tree support T for a labeled
hypergraph H(D) and an arbitrary edge weight function w :

(
V
2

)
→ R (assuming that

H(D) admits a tree support). For our purposes we define w as the concurrency function
of the AEDD D, i.e., we set w(z, z′) = |(z ∪ z′) \ (z ∩ z′)|. This function counts the
number of concurrent curves that run between zones z and z′ if they will be selected as
neighboring faces in the Euler diagram.

Now let’s assume that we are given an AEDD D = (L,Z) and an MTS T for its
labeled hypergraph H(D) provided with the concurrency function. We construct an
area-proportional Euler diagram as follows (see Fig. 1). Let r be an arbitrary root of T
and create a convex polygon of area A(r), e.g., a triangle. Let z1, . . . , zt be the children
of r and choose one edge σ of the root polygon. We create disjoint subsegments of σ
and disjoint wedges based on these subsegments, each of which is reserved for the zones
in the t subtrees of r. For each zi we create a trapezoid of area A(zi) at the base of the
i-th wedge. Then we recurse using the respective sides opposite to σ as the new base
edges in the construction. It is clear that this produces convex, area-proportional faces.
Since T is a support, the union of the zones of each label is connected. Moreover, since
we used the concurrency function to minimize the weight of T , we have minimized the
total number of concurrencies of curves running between adjacent zones.

3 Preliminaries

Let D = (L,Z) be an abstract Euler diagram description, where |L| = λ. Recall that
the labeled hypergraph for D is denoted by H(D) = (Z, S(L)). If L′ ⊆ L is a subset
of labels, we denote the corresponding hyperedge in H(D) as S(L′) = {s(`) | ` ∈ L′}.

In order to construct a tree support for a hypergraph we define the so-called skeleton
G = (Z,E) of H(D) = (Z, S(L)), which is defined as a complete weighted graph
on vertex set Z, where each edge e = {u, v} ∈ E is associated with the cardinality
c(e) = |u ∩ v|. Each tree support for H(D) is a spanning subtree of the skeleton G.
Since λ is the number of distinct labels in L, the maximum cardinality of an edge of
G is λ − 1. We denote by Ei the set of all edges of G with cardinality i and we set
E≥i =

⋃λ−1
j=i Ej . For a path P in G we define the cardinality of P as the smallest

Minimum Tree Supports for Hypergraphs 5

abcd bcd cde

ef
fa

{s(c), s(d)} {s(e)} {s(f)}

{s(a)}

Fig. 2: A path P in G with positive cardinality and a sequence of hyperedge sets
{s(c), s(d)}, {s(e)}, {s(f)}, {s(a)} defined by P . This sequence forms a cycle on vertices
abcd, cde, ef , and fa.

cardinality of its edges. For a tree T we denote by p(u, v, T) the unique path connecting
vertices u and v in T .

Recall that we want to compute an MTS with respect to some edge weight function
w :
(
Z
2

)
→ R, e.g., the concurrency function defined in Section 2. We use w as an edge

weight function of the skeleton G.
For a hypergraph H = (V, S) we say that an edge {u, v} of its skeleton G supports a

hyperedge s ∈ S, if both u, v ∈ s. An edge {u, v} supports a set of hyperedges S′ ⊆ S
if it supports all the hyperedges of S′. Let T be a spanning tree of G and P be a path in
T . Path P is called supporting if for each hyperedge s ∈ S, the set s∩ P is either empty
or contains a set of consecutive vertices of P . Otherwise, P is called non-supporting. A
non-supporting path of T is minimal if each sub-path of P is supporting. By recalling
the definition of a tree support, we observe that a spanning tree T of G is a tree support
for H(D) if and only if each path of T is supporting. From this fact and the definition of
the cardinality of a path in G we derive the following.

Property 1. Let e = {u, v} be an edge in G and let T be a tree support for H(D).
Any edge of the path p(u, v, T) supports the set S(u ∩ v), i.e., the path p(u, v, T) has
cardinality at least c(e).

Let S1, . . . , Sk ⊆ S(L) be a sequence of hyperedge sets and let z1, . . . , zk ∈ Z be
a sequence of vertices of H(D) such that zi ∈ s, ∀s ∈ Si ∪ Si+1, i = 1, . . . , k − 1
and zk ∈ s, ∀s ∈ Sk ∪ S1. Then we say that the sequence S1, . . . , Sk forms a cycle
on vertices z1, . . . , zk. In Fig. 2 the hyperedge sets {s(c), s(d)}, {s(e)}, {s(f)}, {s(a)}
form a cycle on vertices abcd, cde, ef, fa.

A path P in G with non-zero cardinality defines a sequence of hyperedge sets as
follows (see Fig. 2). Two consecutive vertices of P belong to at least one common
hyperedge, since the cardinality of the edge is greater than zero. Include into S1 those
hyperedges that contain the longest initial part of P . Remove all edges of P that are in
S1 and continue recursively. Notice that if the end-vertices of P belong to a common
hyperedge, which does not contain at least one internal vertex of P , then there exists a
non-trivial sequence of hyperedge sets that forms a cycle on a certain subset of vertices
of P .

The following lemma states a property of a path in a tree support that contains a
cycle of hyperedge sets.

6 Boris Klemz, Tamara Mchedlidze, and Martin Nöllenburg

Lemma 1. Let H = (V, S) be a tree-hypergraph such that the sequence of hyperedge
sets S1, . . . , Sk ⊆ S forms a cycle on vertices v1, . . . , vk ∈ V . Let T = (V,E) be a tree
support for H . Then, for any two distinct vertices vi, vj , 1 ≤ i, j ≤ k, every edge of the
path p(vi, vj , T) supports at least two of the hyperedge sets S1, . . . , Sk.

Proof. Let t be an index i ≤ t < j of a vertex in the cycle. By the definition of a
cycle formed by the sequence of hyperedge sets, vt ∈ s, ∀s ∈ St ∪ St+1 and vt+1 ∈ s,
∀s ∈ St+1 ∪ St+2. Therefore, both end-vertices of the subpath p(vt, vt+1, T) belong to
each s ∈ St+1, and therefore each edge of p(vt, vt+1, T) supports St+1. (Note that all
index computations are performed modulo k.)

Since T is a tree, the removal of any edge of p(vt, vt+1, T) from T produces two
subtrees T1 = (V1, E1) and T2 = (V2, E2), such that V1 ∩V2 = ∅ and the cycle vertices
vi, . . . , vt ∈ V1 and vt+1, . . . , vj ∈ V2. Let a ≥ j or a < i be the index such that
va ∈ V2 and va+1 ∈ V1. The cycle among hyperedge sets S1, . . . , Sk implies that
va, va+1 ∈ s for every hyperedge s ∈ Sa+1. Since T is a tree support, every edge of the
path p(va, va+1, T) supports Sa+1. Thus, every edge of p(vt, vt+1, T) supports Sa+1.
We conclude the proof by observing that indices a + 1 and t + 1 are distinct, since
vt+1 ∈ V2 and va+1 ∈ V1. �

The following lemmata are used as tools in the following section.

Lemma 2. Let G = (V,E) be a connected graph, let T = (V,E0 ∪ E1 ∪ · · · ∪ Et) be
a spanning-tree of G with Ei ∩ Ej = ∅ for every 0 ≤ i 6= j ≤ t and let the subgraph
Tk = (Vk, Ek), 1 ≤ k ≤ t, of T induced by Ek be connected. For any forest consisting
of trees T ′1 = (V1, E

′
1), . . . , T

′
t = (Vt, E

′
t) the graph T ′ = (V,E0 ∪E′1 ∪ · · · ∪E′t) is a

spanning-tree of G.

Proof. We show that after substitution of the edges of T1 by the edges of T ′1, the resulting
graph T̃ = (V,E0 ∪ E′1 ∪ E2 · · · ∪ Et) is a spanning tree of G. The result then follows
by applying this procedure to the remaining T2, . . . , Tt. It is trivial to see that T̃ is a
spanning connected subgraph of G. Assume for the sake of contradiction that T̃ is not
a tree, i.e., it contains a cycle. If we substitute the maximal paths of this cycle that
belong to T ′1 by paths in T1, we obtain a (not necessarily simple) cycle in T , which is a
contradiction. �

Lemma 3. Any tree support of H(D) contains the edge set Eλ−1 as a subset.

Proof. Notice that the statement is trivially true if Eλ−1 is empty. So we assume that
Eλ−1 6= ∅. An edge belongs to Eλ−1 if it connects a vertex z ∈ Z, containing all labels
of L, and a vertex z′ ∈ Z, containing |L| − 1 labels. Notice that no path between z
and z′ in G can be supporting, except for the edge {z, z′} itself. Therefore, edge {z, z′}
must be in any tree support. �

4 Minimum Tree Supports for Labeled Hypergraphs

In this section we present the Algorithm MINIMUM TREE SUPPORT (MTS) that takes
as an input a labeled hypergraph H(D) = (Z, S(L)) for the AEDD D = (L,Z), as

Minimum Tree Supports for Hypergraphs 7

Algorithm 1: MINIMUM TREE SUPPORT (MTS)
Input: labeled hypergraph H(D) = (Z, S(L)) for AEDD D = (L,Z),
edge weight function w : E → R for E =

(
Z
2

)
Output: minimum tree support T for H(D) or infeasibility notification

1 if H(D) has no tree support then return infeasible
2 partition E into sets Ei, i = 0, . . . , |L| − 1, of edges with equal cardinality i
3 F ← ∅
4 for i← |L| − 1 to 0 do
5 foreach edge e = {u, v} ∈ Ei in non-decreasing order of weights do
6 if u and v belong to different connected components of F then
7 F ← F ∪ {e}

8 return F

well as the weight function w : E → R for the skeleton G = (V,E) of H(D), and
produces a minimum tree support T for H(D). The algorithm grows an initially empty
forest F = ∅ and implements |L| hierarchy steps. Recall that Ei ⊆ E are all edges of G
with cardinality i. During step i = |L| − 1, . . . , 0, the algorithm adds to F a subset of
the edges of Ei, which we denote by Fi. Recall that E≥i =

⋃λ−1
j=i Ej . Analogously to

this notation, we set F≥i =
⋃λ−1
j=i Fj . Thus F≥i are the edges added to F in the steps

|L| − 1 down to i. Observe that the check at line 6 ensures that F≥i, i = |L| − 1, . . . , 0
is a forest. Recalling the definition of the cardinality of a path, we derive the following:

Property 2. Any two vertices u, v ∈ Z that are connected by a path of cardinality at
least k in G, are connected by a path in F≥k.

In the following we first prove that if H(D) is a tree-hypergraph then the output
of the Algorithm MTS is a tree support for H(D) (Lemma 4) and then prove that it is
actually a minimum tree support (Lemma 5). We conclude the correctness and analyze
the running time of Algorithm MTS in Theorem 1.

Lemma 4. If H(D) is a tree-hypergraph, then Algorithm MTS computes a tree support
of H(D).

Proof. By induction on i = λ− 1, . . . , 1, we show that there exists a tree support T≥i
for H(D) that extends the forest F≥i. Observe that the base case follows from Lemma 3.
As an induction hypothesis we assume that there exists a tree support T≥i+1 for H(D)
that extends the forest F≥i+1. Let T≥i ≡ (T≥i+1 \ E≥i) ∪ F≥i. In order to show that
T≥i is a tree support for H(D) we prove that: (a) T≥i is a spanning tree of G, (b) T≥i
is a support for H(D).

(a) Consider a connected component C of T≥i+1∩E≥i. By Property 2, any two vertices
of C are also connected in the forest F≥i. Let C ′ be a connected component of F≥i,
and e = {u, v} ∈ C ′. By Property 1, u and v are connected in T≥i+1 (which is a tree
support) by a path of cardinality at least c(e) and therefore by a path in T≥i+1∩E≥i.

8 Boris Klemz, Tamara Mchedlidze, and Martin Nöllenburg

Thus, connected components of T≥i+1 ∩ E≥i and F≥i have the same vertex sets.
Therefore, by Lemma 2, we have that (T≥i+1 \E≥i) ∪ F≥i, and therefore T≥i, is a
spanning tree of G.

(b) Recall that T≥i ≡ (T≥i+1 \ E≥i) ∪ F≥i. Let FC≥i denote a connected component
of F≥i and let GC denote the subgraph of G induced by the vertices of FC≥i. We
observe that, in order to show that T≥i is a tree support for H(D), it is enough
to show that FC≥i is a tree support for the hypergraph induced by GC . Assume for
the sake of contradiction that FC≥i is not a tree support for the hypergraph induced
by GC . Then, there exists a minimal non-supporting path p(u, v, FC≥i). Therefore,
there exists a hyperedge s that contains u and v, but does not contain any internal
vertex of p(u, v, FC≥i). Let S1, . . . , Sk be a sequence of hyperedge sets defined by
path p(u, v, FC≥i) such that S1, . . . , Sk together with a hyperedge set S′ containing
s define a cycle. Notice that |Sj | ≥ i, ∀j, 1 ≤ j ≤ k, since these sets are formed
by the path p(u, v, FC≥i). Also observe that there is no index j, 1 ≤ j ≤ k such that
S′ ⊆ Sj , since s ∈ S′, and s 6∈ Sj .
Recall from the proof of statement (a), that the connected components of T≥i+1∩E≥i
and F≥i have the same vertex sets. Thus, there exists a path p(u, v, T≥i+1 ∩ E≥i).
Since T≥i+1 is a tree support, and the sequence S′, S1, . . . , Sk of hyperedge sets in
G forms a cycle, we infer by Lemma 1, that each edge e of p(u, v, T≥i+1 ∩ E≥i)
supports at least two of these hyperedge sets, one of which is S′. Let Sj , 1 ≤
j ≤ k be the second hyperedge set supported by e. Recall that S′ 6⊆ Sj , therefore
|S′ ∪ Sj | > |Sj |. Thus, c(e) ≥ |S′ ∪ Sj | > |Sj | ≥ i, i.e. c(e) ≥ i + 1, for
each e ∈ p(u, v, T≥i+1 ∩ E≥i), implying that e ∈ F≥i+1. By recalling that T≥i+1

extends F≥i+1 and that p(u, v, FC≥i) is a path in F≥i, which contains F≥i+1, we
conclude that p(u, v, FC≥i) = p(u, v, T≥i+1 ∩ E≥i). Thus T≥i+1 also contains a
non-supporting path p(u, v, T≥i+1 ∩E≥i), which is a contradiction to the induction
hypothesis that T≥i+1 is a tree support. �

Lemma 5. IfH(D) is a tree-hypergraph andw an edge-weight function for the skeleton,
then the tree support computed by Algorithm MTS is a minimum tree support.

Proof. The proof is again by induction over the hierarchy steps of Algorithm MTS. We
show that after each hierarchy step i there is a minimum tree support that extends the
forest F≥i. It is easy to see that this is true after the first hierarchy step λ− 1 as we know
that Fλ−1 = Eλ−1 and that any tree support of H(D) contains Eλ−1 by Lemma 3.

So let i < λ− 1 and assume by induction that there is a minimum tree support Ti+1

that extends F≥i+1. Hierarchy step i considers the edge setEi of edges with cardinality i.
If Ei = ∅ or no edges are added in step i, we have F≥i = F≥i+1 and the statement
holds immediately. So let Ei 6= ∅ and Fi 6= ∅. We show that after each edge addition
in the current hierarchy step there is a minimum tree support that extends the current
forest F assuming that this was true before the edge was added. Let e = {u, v} be the
next edge to be added by the algorithm and let T̂ be a minimum tree support extending
the forest F , where e 6∈ F . If e ∈ T̂ there is nothing to show, so assume e 6∈ T̂ .

Then T̂∪{e} contains a cycle K̂. We further know from Lemma 4 that the final tree T ,
computed by Algorithm MTS, extends F ∪ {e} and is a tree support. We show that there
is an edge ê ∈ K̂ \ T , for which there is a cycle K in T ∪ {ê} that contains both e and ê.

Minimum Tree Supports for Hypergraphs 9

Firstly, the set K̂ \ T is not empty since otherwise T would contain a cycle. Assume that
no edge in K̂\T has the desired property. Let ({u, v}, {v1, v2}, {v2, v3}, . . . , {vk−1, vk})
be the edge sequence of K̂, where v = v1 and u = vk, and let 1 ≤ f1 < · · · < fl ≤ k
be the indices of all edges efj = {vfj , vfj+1} ∈ K̂ \ T (1 ≤ j ≤ l). If we replace each
such edge efj by the path p(vfj , vfj+1, T) we obtain a (not necessarily simple) cycle
in T , which is a contradiction to T being a tree.

So let K be a cycle in T ∪ {ê} that contains the edges e = {u, v} and ê = {û, v̂}.
Since T is a tree support, all edges of the path p(û, v̂, T) = K \ {ê} must support the
hyperedge set S(û ∩ v̂). In particular, edge e supports S(û ∩ v̂). Analogously, T̂ is a
tree support and thus all edges of the path p(u, v, T̂) = K̂ \ {e}, including the edge ê,
support the hyperedge set S(u ∩ v). It follows that u ∩ v = û ∩ v̂ and thus all edges
of K̂ support S(û ∩ v̂).

We define the tree T̂e = (T̂ \{ê})∪{e} that replaces ê by e and claim that it is also a
tree support of H(D). For any two vertices x, y ∈ Z with ê ∈ p(x, y, T̂) the hyperedge
set that has to be supported by every edge of p(x, y, T̂) is S(x ∩ y) ⊆ S(û ∩ v̂). Since
the edges of path p(x, y, T̂e) are contained in p(x, y, T̂)∪ K̂, they also support S(x∩ y).
Thus we have showed that there is a tree support, namely T̂e, that extends F ∪ {e}.

It remains to show that T̂e is a minimum tree support. We first observe that both
edges e and ê have the same cardinality c(e) = c(ê) = i and thus e, ê ∈ Ei are both
considered in hierarchy step i of the algorithm. Our algorithm, however, considers e
before ê, which means that w(e) ≤ w(ê). Since T̂ is a minimum tree support by
the induction hypothesis and w(T̂e) ≤ w(T̂), we obtain that T̂e is also a minimum
tree support. This is true for every edge addition in hierarchy step i, so in particular
for F = F≥i after the last edge addition in this hierarchy step. But this already concludes
the inductive argument for the whole hierarchy step and shows together with Lemma 4
that the result T = F≥0 of algorithm MTS is indeed a minimum tree support of H(D).
... �

Theorem 1. Given a labeled hypergraph H(D) with n vertices and m hyperedges for
an AEDD D Algorithm MTS computes in O(n2m) time a minimum tree support T or
reports that no tree support exists.

Proof. Algorithm MTS starts by checking whether H(D) has a tree support using the
feasibility check proposed by Johnson and Pollak [14]. If the test fails the algorithm
reports this result; otherwise H(D) is a tree-hypergraph and thus we know by Lemma 5
that the resulting tree T is a minimum tree support. This proves the correctness.

The feasibility test of Johnson and Pollak [14] in line 1 of the algorithm is based on
testing whether the dual hypergraph H(D)∗ of H(D) is acyclic. The dual hypergraph of
H(D) can be constructed in O(nm) time and has a vertex for each hyperedge of H(D)
and a hyperedge for each vertex of H(D), which contains all hyperedges incident to that
vertex. The acyclicity of H(D)∗ can be tested in O(nm) time [20].

The next step in line 2 of the algorithm is to partition the edge set E into subsets
based on the edge cardinalities. For each edge {u, v} ∈ E computing the cardinality of
the intersection u ∩ v takes O(m) time, since each vertex consists of at most m labels.
Since we have O(n2) edges this takes O(n2m) time in total.

Finally, in lines 3–8 we run a modified version of Kruskal’s algorithm to compute a
minimum spanning tree. Unlike the original algorithm, we do not sort the whole edge

10 Boris Klemz, Tamara Mchedlidze, and Martin Nöllenburg

set E by non-decreasing weights, but rather perform |L| hierarchy steps, in which we
consider the edges of each subset Ei in the edge partition separately in non-decreasing
weight order. This modification, however, does not affect the running time and thus the
last part of Algorithm MTS takes O(|E| log |Z|) time, just as computing a minimum
spanning tree by Kruskal’s algorithm. The set E is of size O(n2) and vertices in Z are
subsets of the label set L, i.e., log |Z| is of size O(m). Thus the total running time of
Algorithm MTS is O(n2m). �

5 Minimum Tree Supports for Hypergraphs

Labeled hypergraphs, in particular for abstract Euler diagram descriptions as considered
in the previous section, seem to be of limited interest at first sight. So it is a natural
question to ask for a minimum tree support of a general tree-hypergraph H = (V, S).
As discussed in Section 1, Korach and Stern [16] showed that this problem can be solved
efficiently in O(n4m2) time, where n = |V | and m = |S|.

In this section we generalize Theorem 1 to arbitrary hypergraphs, and thus improve
the best known running time from O(n4m2) to O(n2(m+ log n)). The tool to achieve
this is to define a mapping that transforms an arbitrary hypergraph to an equivalent
labeled hypergraph so that we can apply Algorithm MTS.

Theorem 2. Given a hypergraph H with n vertices and m hyperedges and an edge
weight function w :

(
V
2

)
→ R we can compute in O(n2(m + log n)) time a minimum

tree support T of H or report that no tree support exists.

Proof. An important difference between an arbitrary hypergraph H and the labeled
hypergraph H(D) for an AEDD D is that H(D) contains at most one zone for each
possible subset of labels, whereas H may contain any number of vertices that have
exactly the same hyperedge incidences. This forces us to slightly modify Algorithm
MTS and its analysis.

Let H = (V, S) be a hypergraph. We start by describing the mapping µ, which
maps H to an equivalent labeled hypergraph. We define the label set LS = {l1, . . . , lm},
which contains one unique label li = l(si) for each hyperedge si ∈ S. Each vertex v ∈ V
is mapped to an indexed label set (v, µ(v)) = (v, {l(si) | v ∈ si}), where µ(v) contains
the labels of all hyperedges containing v. We explicitly allow that two distinct vertices
v 6= v′ are mapped to the same label set µ(v) = µ(v′), but their indexed label sets
(v, µ(v)) and (v′, µ(v′)) are distinguishable. Similarly, we map each hyperedge s ∈ S
to a set of indexed label sets µ(s) = {(v, µ(v)) | v ∈ s}. We use the notation µ(V)
to denote the set {(v, µ(v)) | v ∈ V } and µ(S) to denote the set {µ(s) | s ∈ S}.
This defines a labeled hypergraph µ(H) = (µ(V), µ(S)), which is isomorphic to the
labeled hypergraph of the AEDD D = (LS , µ(V)) if no two vertices in V are incident
to exactly the same hyperedges. We further define a new edge weight function µ(w)
as µ(w)((u, µ(u)), (v, µ(v))) = w(u, v).

Since our construction simply replaces each vertex of H by an indexed label set
indicating its incident hyperedges it is obvious that each tree support of H is in one-to-
one correspondence to a tree support of µ(H), in particular an MTS of µ(H) is also an

Minimum Tree Supports for Hypergraphs 11

MTS of H . Thus we can apply Algorithm MTS to the labeled hypergraph µ(H) and
obtain a minimum tree support T for H .

We need to pay attention to one minor issue in the correctness proof of the algorithm.
In Section 4 the base case of the inductive proofs started with edges of cardinality
m − 1. Now we might have edges of cardinality m, namely if multiple vertices are
contained in every hyperedge in S. If we run Algorithm MTS with an extra hierarchy
step for the cardinality-m edges it computes a minimum spanning tree of the vertex
set µ(Vm) = {(v, µ(v)) ∈ µ(V) | µ(v) = S}. Using the fact shown by Korach
and Stern [16] that every element of the hyperedge intersection closure of H (which
contains S and all intersections of subsets of S) induces a connected subtree in every
tree support of H , we know that every minimum tree support of µ(H) must contain a
minimum spanning tree of µ(Vm). This serves as the new base case of the induction; the
remainder of the correctness proofs in Section 4 continues to hold.

For the running time analysis we again need to pay attention to a small detail related
to vertices with the same label set. Lines 3–8 of Algorithm MTS are a modification
of Kruskal’s algorithm and thus need O(n2 log n) time on a complete graph with n
vertices. But since we may have more than one vertex with the same label set it is no
longer true in general that log n ∈ O(m). Thus the modification of Algorithm MTS
takes O(n2(m+ log n)) time to compute the MTS T for µ(H).

Finally, it remains to argue that µ(H) can be computed in the same time bound.
For creating µ(V) and µ(S) we simply scan all hyperedges in S and append their
labels to the contained vertices. This can be done in O(nm) time since each hyperedge
contains O(n) vertices. Hyperedges in µ(S) are not explicitly represented as sets of
label sets, but rather as sets of pointers to the vertices in µ(V). �

6 Conclusion

We have studied the problem of computing minimum tree supports for hypergraphs and
we have seen that our algorithm for the special case of labeled hypergraphs induced
by abstract Euler diagram descriptions easily generalizes to arbitrary hypergraphs. We
improved the previously best known running time for computing minimum tree sup-
ports [16] from O(n4m2) to O(n2(m+ log n)). Moreover, we described an application
of minimum tree supports for generating area-proportional Euler diagrams with convex
zones and minimum internal concurrencies for abstract Euler diagram descriptions with
a labeled tree-hypergraph.

Other types of sparse supports like outerplanar supports give rise to interesting open
questions. For example, the complexity of deciding whether a given hypergraph has an
outerplanar support is open [5]. On the practical side, it is interesting to study algorithms
for generating well-formed Euler diagrams based on outerplanar supports or other larger
classes of supports.

References

1. D. Angluin, J. Aspnes, and L. Reyzin. Inferring social networks from outbreaks. In Algorith-
mic Learning Theory, vol. 6331 of LNCS, pp. 104–118. Springer, Heidelberg 2010.

12 Boris Klemz, Tamara Mchedlidze, and Martin Nöllenburg

2. D. Angluin, J. Aspnes, and L. Reyzin. Network construction with subgraph connectivity
constraints. J. Comb. Optim., 2013.

3. U. Brandes, S. Cornelsen, B. Pampel, and A. Sallaberry. Blocks of hypergraphs applied to
hypergraphs and outerplanarity. In C. S. Iliopoulos and W. F. Smyth, editors, Combinatorial
Algorithms (IWOCA’10), vol. 6460 of LNCS, pp. 201–211. Springer, Heidelberg, 2011.

4. K. Buchin, M. van Kreveld, H. Meijer, B. Speckmann, and K. Verbeek. On planar supports
for hypergraphs. Technical Report UU-CS-2009-035, Utrecht University, 2009.

5. K. Buchin, M. van Kreveld, H. Meijer, B. Speckmann, and K. Verbeek. On planar supports for
hypergraphs. In D. Eppstein and E. R. Gansner, editors, Graph Drawing (GD’09), vol. 5849
of LNCS, pp. 345–356. Springer, Heidelberg, 2010.

6. J. Chen, C. Komusiewicz, R. Niedermeier, M. Sorge, and O. Suchý. Effective and efficient
data reduction for the subset interconnection design problem. In Algorithms and Computation
(ISAAC’13), vol. 8283 of LNCS, pp. 361–371. Springer, Heidelberg, 2013.

7. G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg. Constructing scalable overlays for
pub-sub with many topics. In Principles of distributed computing (PODC’07), pp. 109–118,
2007.

8. S. Chow. Generating and Drawing Area-Proportional Euler and Venn Diagrams. PhD thesis,
University of Victoria, 2007.

9. S. Chow and F. Ruskey. Drawing area-proportional Venn and Euler diagrams. In G. Liotta,
editor, Graph Drawing (GD’03), vol. 2912 of LNCS, pp. 466–477. Springer, Heidelberg,
2004.

10. D.-Z. Du and D. F. Kelley. On complexity of subset interconnection designs. J. Global Optim.,
6:193–205, 1995.

11. H. Fan, C. Hundt, Y.-L. Wu, and J. Ernst. Algorithms and implementation for interconnection
graph problem. In Combinatorial Optimization and Applications (COCOA’08), vol. 5165 of
LNCS, pp. 201–210. Springer, Heidelberg, 2008.

12. J. Flower, A. Fish, and J. Howse. Euler diagram generation. J. Visual Languages and
Computing, 19(6):675–694, 2008.

13. J. Hosoda, J. Hromkovič, T. Izumi, H. Ono, M. Steinová, and K. Wada. On the approximability
and hardness of minimum topic connected overlay and its special instances. Theoretical
Computer Science, 429:144–154, 2012.

14. D. S. Johnson and H. O. Pollak. Hypergraph planarity and the complexity of drawing Venn
diagrams. J. Graph Theory, 11(3):309–325, 1987.

15. M. Kaufmann, M. van Kreveld, and B. Speckmann. Subdivision drawings of hypergraphs.
In I. G. Tollis and M. Patrignani, editors, Graph Drawing (GD’08), vol. 5417 of LNCS,
pp. 396–407. Springer, Heidelberg, 2009.

16. E. Korach and M. Stern. The clustering matroid and the optimal clustering tree. Mathematical
Programming, 98(1-3):385–414, 2003.

17. E. Korach and M. Stern. The complete optimal stars-clustering-tree problem. Discrete Applied
Mathematics, 156:444–450, 2008.

18. P. Rodgers, L. Zhang, and A. Fish. General Euler diagram generation. In G. Stapleton,
J. Howse, and J. Lee, editors, Theory and Application of Diagrams (DIAGRAMS’08), vol. 5223
of LNCS, pp. 13–27. Springer, Heidelberg, 2008.

19. G. Stapleton, P. Rodgers, and J. Howse. A general method for drawing area-proportional
Euler diagrams. J. Visual Languages and Computing, 22(6):426–442, 2011.

20. R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of graphs,
test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput.,
13(3):566–579, 1984.

	Minimum Tree Supports for Hypergraphs and Low-Concurrency Euler Diagrams

