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——— Abstract

Shortest paths on road networks can be efficiently calculated using Dijkstra’s algorithm (D). In
addition to roads, multi-modal transportation networks include public transportation, bicycle
lanes, etc. For paths on this type of network, further constraints, e.g., preferences in using
certain modes of transportation, may arise. The regular language constrained shortest path
problem deals with this kind of problem. It uses a regular language to model the constraints.
The problem can be solved efficiently by using a generalization of Dijkstra’s algorithm (Dgegtc)-
In this paper we propose an adaption of the speed-up technique uniALT, in order to accelerate
DRegLc. We call our algorithm SDALT. We provide experimental results on a realistic multi-modal
public transportation network including time-dependent cost functions on arcs. The experiments
show that our algorithm performs well, with speed-ups of a factor 2 to 20.
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1 Introduction

Shortest paths on road networks can be efficiently calculated using Dijkstra’s algorithm [8].
In addition to roads, multi-modal transportation networks include public transportation,
walking paths, bicycle lanes, etc. Paths on this type of network may require a number of
restrictions and/or preferences in using certain modes of transportation. Passengers may
be willing to take trains, but not buses. Whereas distances can be covered by walking at
almost any point during an itinerary, some transportation modes such as private cars and
bikes, once discarded, might not be available again at a later point in the itinerary. More
general constraints, such as passing by any pharmacy or post office on the way to the target
destination, may also arise.

In order to deal with this problem, appropriate labels are assigned to the arcs of the
network and the additional constraints are modeled as a regular language. A valid shortest
path minimizes some cost function (distance, time, etc.) and, in addition, the word produced

by concatenating the labels on the arcs of the shortest path must form an element of the
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regular language. The problem is called regular language constrained shortest path problem
(RegLCSP). An in-depth theoretical study of a more general problem, the formal language
constrained shortest path problem, as well as a generalization of Dijkstra’s algorithm (DgegLc)
to solve RegLCSP can be found in [3].

In recent years much effort has been spent to produce speed-up techniques for Dijkstra’s
algorithm (D) and shortest paths on continental sized road networks can now be found in a
few milliseconds [6]. Dregic has received less attention. First attempts to adapt speed-up
techniques of D to Dgegic have been described in [1].

Our Contribution In this paper, we propose an adaption of the speed-up technique uniALT
[9], in order to accelerate Dregic. UniALT uses preprocessed data to guide D faster toward
the target. The idea is to adapt uniALT to Dgegc by transferring information of the
regular language of the ReglLCSP instance into the preprocessing phase of uniALT. For each
instance of RegLCSP, we produce specific preprocessed data which guides Dreglc. We call
this algorithm SDALT (State Dependent uniALT). We provide experimental results on a
realistic multi-modal public transportation network. It is composed of the road and public
transportation network of the French region Ile-de-France which includes the city of Paris
and consists of five layers: private bike, rental bike, walking, car (including changing traffic
conditions over the day), and public transportation. To our knowledge, this is the first work
to consider a multi-modal network in this configuration and on this scale. The experiments
show that our algorithm performs well, with speed-ups of a factor 2 to 20, in respect to plain
Dreglc, in networks where some transportation modes tend to be faster than others or the
constraints cause a major detour on the non-constrained shortest path.

2 Related work

Early works on the use of regular languages as a model for constrained shortest path problems
include [21, 15, 23], with applications to database queries. A finite state automaton is used
in [14] to model path constraints (called path viability) on a multi-modal transportation
network for the bi-objective multi-modal shortest path problem. Algorithmic and complexity-
theoretical results on the use of various types of languages for the label constrained shortest
path problem can be found in [3]. The authors prove that the problem is solvable in determ-
inistic polynomial time when regular languages are used and they provide a generalization
of Dijkstra’s algorithm (Dregic). Experimental data on networks including time-dependent
edge cost can be found in [2, 22].

In recent years, much focus has been given on accelerating the mono-modal shortest
path problem on large road graphs. There are three basic ingredients to most modern
speed-up techniques: bi-directional search, goal-directed search, and contraction. See [6] for
a comprehensive overview.

ALT is a bi-directional, goal directed search technique based on the A* algorithm [11]
and has been first discussed in [9]. It uses lower bounds on the distance to the target to guide
Dijkstra’s algorithm. UniALT is the uni-directional version of ALT. Efficient implementations
of uniALT and ALT as well as experimental data on continental size road networks with
time-dependent edge cost are given in [16]. A* and ALT can be easily adapted to dynamic
networks. Efficient algorithms including contractions can be found in [17, 4].

In [1], bi-directional and goal-directed speed-up techniques have been applied to Dregic
on a multi-modal network. Results vary in function of the regular language used. The authors
of [19, 5] observe that ALT in combination with contraction yields only mild speed-ups in
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a multi-modal context. They propose a method called Access Node Routing to isolate the
public transportation network from road networks so that they can be treated individually.

Overview This paper is organized as follows. Section 3 will give more details about the
graph model, uniALT, and the generalisation of Dijkstra’s algorithm which is used to solve
the RegL.CSP. Section 4 presents SDALT and its implementation. Its application to a
multi-modal transportation network and computational results are presented in section 5.
Section 6 concludes our work along with directions for future research.

3 Preliminaries

Consider a directed graph G = (V, A) consisting of a set of nodes v € V and a set of arcs
(i,j) € A with 4,5 € V. Arc costs are positive and represent travel times. They may be
time-independent or time-dependent. Time-independent costs for arc (i, j) are given by c¢;;.
To model time-dependent arc costs, we use a positive function ¢;; : Ry — Ry. We only use
functions which satisfy the FIFO property as the time-dependent shortest path problem in
FIFO networks are polynomially solvable [13], whereas it is NP-hard in non-FIFO networks
[18]. FIFO means that ¢;j(z) + « < ¢;;(y) +y for all z,y € Ry, 2 <y, (¢,j) € A or, in other
words, that for any arc (i, j), leaving node ¢ earlier guarantees that one will not arrive later
at node j (also called the non-overtaking property).

A path p in G is a sequence of nodes (vy,...,v;) such that (v;,v;41) € A for all
1 < i < k. The cost of the path in a time-independent scenario is given by ¢(p) =
Zf;ll Covis,- We denote as d(r,t) the cost of the shortest path between nodes r and
t. In time-dependent scenarios, the cost or travel time ~(p,7) of a path p departing
from v; at time 7 is recursively given by v((vi,v2),T) = €y 0, (T) and v((v1,...,v;),7) =

’Y(Ula s >Uj—1a7_)) + Cvj_1,v; (V(Ula s 7Uj—177—))‘

3.1 A" and uniALT algorithm

The A* algorithm [11] is a goal directed search used to find the shortest path from a source
node r to a target node ¢ on a directed graph G = (V, A) with time-independent, non-negative
arc costs. A* is similar to Dijkstra’s algorithm [8], which we shall denote as D throughout our
paper. The difference lies in the order of selection of the next node v to be settled. A* employs
a key k(v) = d.(v) + w(v) where the potential function m : V' — R gives an under-estimation
of the distance from v to t. d,.(v) gives the tentative distance from r to v. At every iteration,
the algorithm selects the node v with the smallest key k(v). Intuitively, this means that it
first explores nodes, which lie on the shortest estimated path from = to ¢. In [12], it is shown
that A* is equivalent to D on a graph with reduced arc costs ¢, = ¢y — 7(v) + 7w(w). D
works well only for non-negative arc costs, so not all potential functions can be used. We
call a potential function 7 feasible, if ¢T,, is positive for all v,w € V. 7(v) can be considered
a lower bound on the distance from v to ¢, if 7 is feasible and the potential m(¢) of the target
is zero. Furthermore, if 7' and 7" are feasible potential functions, then max(#’, 7") is a
feasible potential function [9].

Good bounds can be produced by using landmarks and the triangle inequality [9]. The
main idea is to select a small set of nodes ¢ € L C V, spread appropriately over the
network, and precompute all distances of shortest paths d(¢,v) and d(v,f) between these
nodes (landmarks) and any other node v € V, by using D. By using these landmark
distances and the triangle inequality, d(¢,v) + d(v,t) > d(¢,t) and d(v,t) + d(t,£) > d(v,{),
lower bounds on the distances between any two nodes v and ¢ can be derived. 7(v) =
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maxer(d(v,£) — d(t,£),d(L,t) — d(¢,v)) gives a lower bound for the distance d(v,t) and is
a feasible potential function. The A* algorithm based on this potential function is called
uniALT [9]. As observed in [7], potentials stay feasible as long as arc weights only increase
and do not drop below a minimal value. Based on this, uniALT can be adapted to the
time-dependent scenario by selecting landmarks and calculating landmark distances by using
the minimum weight cost function ¢} = min,(c;;(7)). A crucial point is the quality of
landmarks. Finding good landmarks is difficult and several heuristics exist [9, 10]. UniALT
provides a speed-up of about factor 10 on road graphs with time-dependent arc costs [7].

3.2 Solving the RegLCSP

Consider a labeled graph G* = (V, A). It is produced by associating a label [ of a set of
labels ¥ to each arc (e.g., f to mark foot-paths or b to mark bicycle lanes). A is a set of
triplets in V' x V' x X. (4, 4,1) represents an arc from node i to node j having label I. The
RegL.CSP consists in finding a shortest path from a source node r to a target node ¢ with
starting time Tgae on G by minimizing some cost function (in our case travel time) and, in
addition, the concatenated labels along the shortest path must form a word of a given regular
language Lg. This language can be described by a non-deterministic finite state automaton
Ao = (5,30, 9, so, F), consisting of a set of states S, a set of labels ¥y C 3, a transition
function 0 : ¥o x S — 2° an initial state sq, and a set of final states F. E.g., consider
a labeled graph which consists of arcs with labels ¥ = {b, ¢, f, p,v,t} representing each a
different transportation mode. The automaton in Figure 3 describes a regular language with
five states S = {so, s1, S2, S3, S4}, an initial state sq, a set of final states F' = {ss, 54}, and an
alphabet Xy = {b, f,p,v,t}.

To efficiently solve RegLCSP, a generalization of Dijkstra’s algorithm (which we denote
Drgegic throughout this paper) has first been proposed in [3]. The Dgegic algorithm can
be seen as the application of D to the product graph P = G* x S with nodes (v, s) for
each v € V and s € S such that there is an arc ((v, s)(w, s)) between (v, s) and (w,s") if
there is an arc (i,7,1) € A and a transition such that s’ € 6(I,s). To reduce storage space
DregLc works on the implicit product graph P by generating all the neighbors which have
to be explored only when necessary. Similarly to D, Dreglc can easily be adapted to the
time-dependent scenario as shown in [2].

4 State Dependent uniALT: SDALT

To speed up Dreglc, the authors of [1] employ A* and bidirectional search. In this work,
we extend uniALT to speed-up Dregic on a graph G” with time-dependent arc costs and
call the resulting algorithm SDALT. It consists of a preprocessing phase and a query phase
(see Figure 1). The key of the performance of the algorithm lies in the proposed constrained
landmark distances, which are used to calculate the potential function.

Preprocessing phase A set of landmarks ¢ € £ C V is selected by using the avoid heuristic
[9]. Then the costs of the shortest paths between all v € V and each landmark ¢ on G*
where arcs are weighted by the minimum weight cost function are determined. Here lies one
of the major differences between SDALT and uniALT. Differently from uniALT, SDALT does
not use D to determine landmark distances but uses instead the DgegLc algorithm. In this
way, it is possible to constrain the cost calculation by some regular languages which we will
derive from L. We refer to these costs as constrained landmark distances d' (i, j, s), which is
the travel time of the shortest path from (¢, s) to (7, s;) for some s; € F' constrained by the
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Figure 2 Landmark distances for SDALT

regular language Li~7. In the next section, we will provide four different methods on how
to choose L:7t) L=V Lv=¢ L'=* used to constrain the calculation of d’(¢,t,s), d' (£, v, s),
d'(v,£,s), d'(t,£,s) (see Figure 2).

Potential function 7(v,s) The constrained landmark distances determined during the
preprocessing phase are used to calculate the potential function (v, s) given in Equation (1)
and to provide a lower bound on the distance d’'(v,t, s) of the shortest path from (v, s) to
(t,s¢) for some s, € F. Note that d'(v,t,s) is constrained by LV = L§. L§ is equal to Lo
except that the initial state sy of L is replaced by s. Intuitively, it represents the remaining
constraints of Ly to be considered for the shortest path from an arbitrary pair (v, s) to the
target.

m(v,8) = r(rzleaﬁx(d’(f,t, s)—d(,v,s),d (v, l,s)—d(tL,s)) (1)

Query phase The query phase deploys a Dregic algorithm enhanced by the characteristics
of the A* algorithm. For each pair (v, s), the query maintains a tentative distance label
d.(v,s) and a parent pair p(v,s). At every iteration, it selects the pair (v,s) with the
smallest key k(v,s) = d,(v,s) + 7(v,s) and relazes all outgoing arcs of (v,s). DRgegLc, in
contrast, uses key k(v,s) = d,.(v,s). Relaxing an arc (v,w,l) means calculating tmp =
dr (v, 8) + Cowi(Tstart + dr(v, 8)), checking cost labels d,.(w, s’) > tmp, and if that is the case,
to set d,.(w,s") = tmp and p(w,s’) = (v,s) for all states s’ € §(I,s). Note that the cost of
arc (v, w,!) might be time-dependent and thus has to be evaluated for time 7gtqrt + d-(v, 8).
The query terminates when a pair (¢,s) with s € F is settled. See Listing 1.

Note that if (v, s) is feasible, all characteristics that we discussed before for uniALT
also hold for SDALT. SDALT can be seen as an A* search on the product graph P using
potential function 7 (v, s). Hence, SDALT is correct and terminates always with the correct
constrained shortest path.
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Listing 1 Pseudo-code SDALT

function SDALT(GE,T,t,TStaTt,Lo)
dr(v,8):= o0, p(v,s):= —1, path_found:= false
dr(r,80):= 0, k(r,s0):= dr(r,s0) + m(r,50)
insert (r,s0) in priority queue @
while @ is not empty:
extract (v,s) with smallest key k from Q@
if v =1t and s€ Fop:
path_found:= true, break
for each (w,s!) of (v,s) where (v,w,l) €A, st €d(l,s):
tmp:= dr(v,8) + Cowi(Tstart + dr(v,s)) //time—dependency
if tmp < dr(w,s/):
dr(w, s):= tmp
k(w,s):= dr(w,s) + 7w(w,s!)
p(w, s1):= (v,s)
if (w,s/) not in @: insert (w,s/) in @
else: reorder @
end for
end while

4.1 Constrained landmark distances

The only open question now is how to produce good bounds which are capable to guide
SDALT efficiently toward the target while considering the constraints given by Lg. More
formally, how to choose the regular languages L™t LY LU= L!=* used to constrain
the calculation of d'(¢,t,s), d'(£,v,s), d'(v,£,s), d'(t,£,s) in order that d'(¢,t,s) — d'(¢, v, s),
d'(v,0,s) —d'(t,£,s) are valid lower bounds for d'(v,t,s) (see Figure 2) and that (v, s) is
feasible. Proposition 1 partially answers this question. Note that the concatenation of two

regular languages L; and Lo is the regular language Ly = L1 0 Ly = {vow|(v,w) € Ly X La}.

E.g., if L1 = {a,b} and L; = {¢,d} then L; o Ly = L3 = {ac, ad, be, bd}.

» Proposition 1. For all s € S, if the concatenation of L% and LY~ is included in L‘~*

(LY o LVt C LA7Y), then d/(¢,t,s) — d'(£, v, s) is a lower bound for the distance d’(v,t, s).

Similarly, if LV o Lt7¢ C LY then d'(v, ¢, s) — d'(t, £, s) is a lower bound for d'(v,t, ).

This is derived from the observation that the distance of the shortest path from ¢ to ¢ (v

to £) must not be greater than the distance of the shortest path from ¢ to v to t (v to ¢ to £).

Now we proceed to present four methods on how to set L=t L{=v Lv=¢ L!=. We name
these four methods standard (std), basic (bas), advanced (adv), and specific (spe).

(std) In the standard method, the landmark distance calculation is not constrained by any
regular language. (std) represents the application of plain uniALT to Dreglc-

(bas) The motivation for the basic method comes from the observation that if Ly totally
excludes the use of some fast transportation modes, these modes should not be considered
when calculating the landmark distances. This means that (bas) uses L{7Y = L7t =
LY7t = [170 = Ly, = {3§}, which is the language consisting of all words over Xy. E.g.,
for the ReglL.CSP with Lj represented by automaton in Figure 3a the landmark distances
calculation would be constrained by using automaton in Figure 3b. In an ideal scenario
where one transportation mode, which is excluded by Lo, dominates any other (e.g., bike
over foot), it can be proven that (bas) produces better bounds than (std).
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» Proposition 2. Given a labeled graph Gp,. = (V, A1 U A3) with ¥ = {/1, {5}, where for
any two shortest paths p; C Aj, ps C Ay between two arbitrary nodes, there exists an o > 1
such that ¢(p1) > ac(p2). Arcs in A; are labeled ¢; and arcs in As are labeled ¢5. For a
RegLCSP on GE_ exclusively allowing arcs with label ¢;, Lo = {¢{}, bounds calculated by

bas
using (bas) are at least a factor « greater than bounds calculated using (std).

(adv) The advanced method consists in calculating separate constrained landmark distances
for each pair (v,s) by using the regular language L7V = L7t = LV = LI = Log, s =
{X(s,A9)*}. X(s,Ap) returns all labels of Xy except those of fast transportation modes
which use is no longer allowed from state s onward. This means that for sy it includes all
transportation modes present in ¥, equally to (bas). For the calculation of the constrained
landmark distances for the other states s € S it excludes fast transportation modes of g, if
from s onward on Ay these transportation modes may not be used anymore for the remaining
path to reach the target. E.g., consider the RegLCSP with L represented by automaton
in Figure 3a. By applying (adv) the landmark distances calculation would be constrained
be using automata in Figures 3b, 3c, and 3d. From state sy onward, private bike cannot
be used any more (dominates walking, and sometimes even public transport), from state
84 also private transport is excluded. Note that by using (adv), 7(v, s) may be infeasible,
so we change it to: maqy(v, s) = max{m(v, s5)|sz € Q(s, Ao)}, where Q(s, Ag) returns the set
containing all states s, € S from which s is reachable by some sequence of transitions on
Ap, including s. E.g., in reference to the automaton in Figure 3a, Q(so,.Ag) = {so} whereas
Q(s2,A0) = {s0,51,52}. In an ideal scenario where transportation modes hierarchically
dominate each other (car over taxi over trains over biking over walking) and in which they are
excluded in decreasing order of speed by advancing on A it can be proven, by generalizing
Proposition 2, that (adv) produces better bounds than (bas).

(spe) Besides using Ly for gradually excluding transportation modes, it can also be used
to impose further restrictions, for example to not allow transfers from one vehicle of public
transportation to another. Ly can also be used to force the shortest path to pass by any
arc marked with a certain label. Suppose we are looking for the shortest foot path to a
target which also passes by the nearest pharmacy. To handle this problem, we can label
all arcs of the foot layer which represent streets on which a pharmacy is located not with
f but with z. E.g., Lo, represented by automaton in Figure 4a, imposes the use of the
foot layer and that an arc with label z has to be obligatorily visited. (spe) is capable of
anticipating such constraints in the preprocessing phase by inserting these constraints in the
languages used during the landmark distance calculations. We define four different regular
languages L5~?, Lt LE~¢ LV=% to calculate the constrained landmark distances for each
pair (v,s). Consider the following rules to determine L%, L7t Lv=¢ [ which are
here represented as automata, and Proposition 3.

Rule 1 Aﬁj” is the sub-automaton of Ag consisting of s,, all the states from which s, is
reachable, and the transitions between these states. Any s which is an initial state in Ay,
is also an initial state in A%?, s, is a final state.

Rule 2 Aﬁ:’t is the sub-automaton of A consisting of all states reachable from s, and all
states from which these states are reachable, including all transitions between these states.
Any s which is an initial state in Ay is also an initial state in A{". Any s which is
reachable from s, and is final in A is also final in Aﬁ:’t.

Rule 3 Af;’z_*e is the sub-automaton of Ay consisting of s, all the states which are reachable
from s;, and the transitions between these states. Any s which is a final state in Ay, is
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also a final state in A{~". Mark s, as initial state.

Rule 4 AL~ consists of one final/initial state whose set of self-loops is equal to the intersec-
tions of self-loops of all final states of AV~

Rule 5 If ALY (AL~*) consists of one state with no self-loops, then add an auto-loop to s,
in Ag to be used in rules 1 and 2 (rules 3 and 4) with arbitrary transitions so that node
(v, 85) is reachable from landmark ¢ (so that landmark ¢ is reachable from node (¢, s,)).

» Proposition 3. By using the regular languages, described by the automata constructed
by applying rules 1 to 5, for the constrained landmark distance calculation for all pairs (v, s),
the potential function (v, s) in Equation (1) is feasible.

An example of the application of (spe) can be found in Table 4b where rules 1 to 5 have
been applied to the automaton in Figure 4a. Under weak conditions it can be proven that
(spe) succeeds in providing better bounds in comparison to (bas) and (adv), for RegLCSP
similar to the one discussed in the example.

Performance and memory consumption Finally note that the number of bounds to be
calculated grows linearly to the number of relaxed arcs in (std), (bas), and (spe). For (adv),
the number of calculated bounds in worst case scenario is an additional factor |S| higher.
Memory requirement for (bas) is equal to (std). It grows linearly in respect to |S| and may
be up to |S| times higher in (adv). Memory requirement for (spe) may grow by a constant
factor of 4 in the worst case with respect to (adv).

5 Experimental evaluation

We consider a multi-modal graph composed of the road and public transportation network
of the French region Ile-de-France, which includes the city of Paris. It consists of five
layers: private bike (b), rental bike (v), walking (f), car (¢), and public transportation (p).
Layers are connected by transfer arcs (¢) which model the time needed to transfer from one
transportation mode to another. The cost of transfer arcs is set uniformly to 20sec. Each arc
has exactly one associated label | € ¥ = {b,v, f,¢,p,t}. The graph consists of circa 3.7mil
arcs and 1.2mil nodes. Dimensions of the single layers are summarized in Table 1. See [20, 19]
for more information about graph models of a multi-modal network and time-dependency.
The private bike, walking, and rental bike layers are based on OpenStreetMap! data. Arc
cost equals travel-time. Bikes have been considered to move at 12km/h, pedestrians at a
speed of 4km/h. The private bike layer is connected to the walking layer at common street
intersections. The bike rental layer is connected to the walking layer at the locations of bike
rental stations?. In addition, we introduced ten arcs with label z between nodes of the foot
layer. They represent foot paths close to locations of interest and are used to simulate the
problem of reaching a target and in addition passing by any pharmacy, supermarket, etc.
Data for the public transportation layer has been provided by STIF3. It includes geo-
graphical and timetable data on buses, tramways, subways and regional trains. Our model is
similar to the one presented in [20]: A trip of a public transportation vehicle is defined as a
sequence of route nodes. Route nodes can be pictured as station platforms and are connected
to station nodes, which model public transportation stations, such as those pictured on

1 See www.openstreetmap.org
2 Vélib’, www.velib.paris.fr
3 Syndicat des Transports d’Tle de France, www.stif.info, data for scientific use from 01/12/2010
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subway network maps. Trips consisting of the same sequence of route nodes are grouped
into routes. Travel times are modeled according to timetable information by time-dependent
cost functions. They include waiting times at stations.

The car layer is based on geographical road data and traffic information provided by
Mediamobile*. It is connected to the walking layer by transfer arcs at station nodes. Arc
cost equals travel time which depends on the type of road. Circa 10% of the arcs have a
time-dependent cost function to represent changing traffic conditions throughout the day.

SDALT is implemented in C++ and compiled with GCC 4.1. We merged and adapted
the implementations of uniALT described in [16, 9] and Dgegic described in [19]. As priority
queue, we use a binary heap. As in the case of uniALT, periodical additions of landmarks
(max. 6 landmark) and refresh cycles of the priority queue take place. We use an Intel Xeon,
2.6 Ghz, with 16 GB of RAM. Source node r, target node ¢, and start time 74 are picked at
random. 7 and t always belong to the walking layer. We use 32 landmarks which are placed
exclusively on the walking layer. Preprocessing takes less than a minute. We compare SDALT
employing the different methods (bas), (adv), and (spe), with Dgregic and (sta). SDALT has
been evaluated by running 500 test instances for five RegLLCSP scenarios, see Figures 3a,
4a and 5. They have been chosen with the intention to represent real-world queries, which
may often arise when looking for constrained shortest paths on a multi-modal transportation
network. See Table 2 for experimental results. Runtime is the average running time of the
algorithm over 500 test instances. SettNo, touchNo and relnsNo give the average of the
number of settled, touched and reinserted nodes. MaxSett gives the maximum number of
settled nodes. TouchFEd and calcPot give the average number of touched edges and calculated
potentials.

layer arcs nodes time-dependent PT-transfer stations  transfer

Walking (f) 601280 220091 - - - -
Private Bike (b) 600952 220091 - - - 440182
Rental Bike (v) 600952 220091 - 1198 2396

Car (c) 1112511 514331 111641 - - 37906

Public Transportation (p) 259623 109922 82833 176 790 21527 37944
Special Arcs (2) 10 - - - - -

Tot 3731700 1284526 194474 (9803812 Time Points) 556 372

Table 1 Dimensions of the graph

5.1 Discussion of experimental results

SDALT, in comparison to Dgeglc, succeeds in directing the constrained shortest path search
faster toward the target in situations where Lg is likely to introduce a detour from the
unconstrained shortest path. This is the case when the use of fast transportation modes is
excluded or limited, or if arcs with infrequent labels have to be obligatorily visited.

(bas) works well in situations where L excludes a priori fast transportation modes. This
can be observed in scenario C and in scenario D, where shortest paths are limited to the
walking and rental bike layer, both being much slower than the car or public transportation
layer, which are excluded. (adv) gives a supplementary speed-up in cases where initially
allowed fast transportation modes are excluded from a later state on Ag onward. This can be
observed in scenario B, where by transition from the initial state sg toward s; or so, either

4 www.v-trafic.fr, www.mediamobile.fr
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fotpv ' ftpv . ftu .

(a) Ao scenario A (b) A, (€) Aadu,s, (d)
-Aadv,so» Aadv,53 Aadv,34
adv,sq

Figure 3 Automata for scenario A. Shortest path must start either by walking (f) or by private
bike (b). Once the private bike is discarded, the path can be continued by walking or by taking
public transportation (p). The trip may then be continued by using bike rental (v) or by walking.
Transfer arcs (t) are used to change between transportation modes. The automata in Figure 3b and
Figures 3b, 3c, and 3d are used during the pre-processing phase for (bas) and (adv), respectively.

Lﬁ—)v L’:—>Z
@ @x

Sz Lot Lt

f f [z
2 .
50 7' 8
(a) Ao scenario D ) _» ]
S

(b)

Figure 4 Automata for scenario D. Automata used for (spe) on the right. Landmark distance

calculation of d'(¢, v, s9) is constrained by language Lf,:” described by the top-left automaton in

row so, d'(¢,t,s1) is constrained by Lﬁ?t described by the bottom-left automaton in row s1, etc.

f . f . v ' f '
(a) Ao scenario B (b) Ao scenario C (c) Ao scenario E

Figure 5 Automata of scenarios
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scenario algo space  runtime settNo  maxSett  touchNo  touchEd calcPot
[MB] [ms]
scenario A DReglLc 0 529 542914 1397414 547643 1998610 -
sta 310 486 376527 1376485 381081 1405720 1750580
bas 310 427 333121 1350973 337528 1244450 1591770
adv 930 361 139635 688616 183104 516746 2133710
spe 1660 262 162982 861574 224389 617503 598 707
scenario B DReglLc 0 509 446279 1576407 453835 1303320 -
std 310 243 176971 1387476 182469 511462 861436
bas 310 138 117549 894 842 121489 337650 510982
adv 1240 114 66 100 409027 71174 149 285 619147
spe 1550 198 165105 612247 177596 387361 368139
scenario C DReglc 0 355 456 674 865 722 457957 1649190 -
std 310 431 406 837 865 395 408279 1491630 1608090
bas 310 17 20252 220571 22217 76 099 68880
adv 620 18 14536 159 146 18020 51665 93915
spe 1240 16 13195 210208 17510 48228 69609
scenario D Dgeglc 0 160 235943 417117 236 854 944596 -
std 310 209 224408 415861 225384 899874 940876
bas 310 38 45151 223726 46 192 185620 147207
spe 930 8 8389 59073 9181 35210 32180
scenario B Dreglc 0 1995 1430230 4231958 1447310 4570860 -
sta 310 1174 723364 3169152 737249 2342480 3578470
adv 1240 902 487880 1600241 497815 1564900 4593790
spe 2480 511 395947 1565563 406472 1256090 960 304

Table 2 Experimental results

the public transportation network or the car network is excluded. However, speed-ups are
mild as the number of potentials which have to be calculated for (adv) is much higher as it is
for (bas). Finally, (spe) has a positive impact on running times for scenarios where the visit
of some infrequent labels, which would generally not be part of the unconstrained shortest
path, is imposed by Lg, see scenario D and scenario E.

Speed-ups for scenarios including labels of arcs with time-dependent arcs costs (public
transportation, car) are lower then speed-ups for scenarios considering only arcs with time-
independent arcs costs. This is due to the fact that bounds are calculated by using the
minimum weight cost function. Bounds are especially bad for public transportation at night
time, as connections are not served as frequently as during the day.

6 Conclusions

We presented a method on how to apply the speed-up technique uniALT to the generalized
Dijkstra’s algorithm (DgegLc) which is used to solve the RegLCSP. SDALT uses preprocessed
data to anticipate the impact of the given regular language on the shortest path. We
proposed four different methods on how to produce this preprocessed data and explained in
which situations they are likely to work best. We implemented our algorithm and produced
different versions which differ only slightly in terms of coding but differ in terms of memory
requirements and performance. We ran experiments on a real-world public transportation
network. The results showed that SDALT succeeds in providing speed-ups of a factor 2
to 20 in respect to Dgeglc. Among the possible improvements, we believe that there is
space to reduce memory consumption. A logical direction for future research would be the
investigation of the impact of a bi-directional search on SDALT and the applicability and
effects of contraction. Another question is how to adapt SDALT efficiently to multi-objective
versions of Dgegic. It would also be interesting to test its performance on dynamic networks.
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