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Abstract
Let G = (V,E) be a plane graph. We say that a face f of G is guarded by an edge vw ∈ E if at
least one vertex from {v, w} is on the boundary of f . For a planar graph class G we ask for the
minimal number of edges needed to guard all faces of any n-vertex graph in G. In this extended
abstract we provide new bounds for two planar graph classes, namely the quadrangulations and
the stacked triangulations.

1 Introduction

In 1975, Chvátal [4] laid the foundation for the widely studied field of art gallery problems
by answering how many guards are needed to observe all interior points of any given n-sided
polygon P . Here a guard is a point p in P and it can observe any other point q in P , if the
line segment pq is fully contained in P . He shows that bn/3c guards are sometimes necessary
and always sufficient. Fisk [7] revisited Chvátal’s Theorem in 1978 and gave a very short
and elegant new proof by introducing diagonals into the polygon P to obtain a triangulated,
outerplanar graph. Such graphs are 3-colorable and in each 3-coloring all faces are incident
to vertices of all three colors, so the vertices of the smallest color class can be used as guard
positions. Bose et al. [3] studied the problem to guard the faces of a plane graph instead of a
polygon. A plane graph is a graph G = (V,E) with an embedding in R2 with not necessarily
straight edges and no crossings in the interior of any two edges. Here a face f is guarded
by a vertex v, if v is on the boundary of f . They show that bn/2c vertices (so called vertex
guards) are sometimes necessary and always sufficient for n-vertex plane graphs.

We consider a variant of this problem introduced by O’Rourke [9]. He shows that
only bn/4c guards are necessary in Chvátal’s original setting if each guard is assigned to
an edge of the polygon that he can patrol along instead of being fixed to a single point.
Considering plane graphs again, an edge guard is an edge vw ∈ E and guards all faces
having v and/or w on their boundary. For a given planar graph class G, we ask for the
minimal number of edge guards needed to guard all faces of every plane n-vertex graph in G.

General (not necessarily triangulated) n-vertex plane graphs might need at least bn/3c
edge guards, even when requiring 2-connectedness [3]. The best known upper bounds have
recently be presented by Biniaz et al. [1] and come in two different fashions: First, any n-
vertex plane graph can be guarded by b3n/8c edge guards found in an iterative process.
Second, a coloring approach yields an upper bound of bn/3 + α/9c edge guards where α
counts the number of quadrangular faces in G. Looking at n-vertex triangulations, Bose et
al. [3] provide a lower bound of b(4n− 8)/13c edge guards. A corresponding upper bound
of bn/3c edge guards was published earlier in the same year by Everett and Rivera-Campo [6].

This note is based on the master’s thesis of the first author [8] and we present our results
on quadrangulations and stacked triangulations. For both planar graph classes we give a
lower and an upper bound for the number of edge guards. All graphs considered below are
assumed to be plane, i.e. given with a fixed plane embedding.
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(a) A quadrangulation with 4k + 2 vertices
needing k edge guards (drawn thick and red).

(b) A quadrangulation G (black edges) and its
dual G∗ (purple edges) with a 2-factor (thick
edges). The vertex coloring is a guard coloring.

Figure 1 Lower and upper bound for quadrangulations.

2 Main Results

2.1 Quadrangulations
Quadrangulations are the maximal plane bipartite graphs and every face is bounded by
exactly four edges. All coloring approaches developed previously [1, 6] fail on graphs
containing quadrangular faces. The previously best known upper bounds are the ones given
by Biniaz et al. [1] for general plane graphs, b3n/8c respectively bn/3 + α/9c, where α
is the number of quadrilateral faces. For n-vertex quadrangulations we have α = n − 2,
so bn/3 + (n− 2)/9c = b(4n− 2)/9c > b3n/8c for n ≥ 4. In this section we provide a better
upper and a not yet matching lower bound. Closing the gap remains an open problem.

I Theorem 2.1. For k ∈ N there exists a quadrangulation Qk with n = 4k + 2 vertices
needing k = (n− 2)/4 edge guards.

Proof. Define Qk = (V,E) with V := {s, t}∪
⋃k

i=1{ai, bi, ci, di} and E :=
⋃k

i=1{sai, sci, tai,

tci, aibi, aidi, cibi, cidi} as the union of k vertex disjoint 4-cycles and two extra vertices
connecting them. Figure 1a shows this and a planar embedding. Now for any two distinct i, j ∈
{1, . . . , k} the two quadrilateral faces (ai, bi, ci, di) and (aj , bj , cj , dj) are only connected via
paths through s or t. Therefore, no edge can guard two or more of them and we need at
least k edge guards for Qk. On the other hand it is easy to see that {sa1, . . . , sak} is an edge
guard set of size k, so Qk needs exactly k edge guards. J

The following Lemma is from Bose et al. [2] and we cite it using the terminology of Biniaz
et al. [1]. A guard coloring of a plane graph G is a non-proper 2-coloring of its vertex set,
such that each face f of G has at least one boundary vertex of each color and at least one
monochromatic edge (i.e. an edge where both endpoints receive the same color). They prove
that a guard coloring exists for all graphs without any quadrangular faces.

I Lemma 2.2 ([2, Lemma 3.1]). If there is a guard coloring for an n-vertex plane graph G,
then G can be guarded by bn/3c edge guards.

I Theorem 2.3. Every quadrangulation can be guarded by bn/3c edge guards.

Proof. Let G be a quadrangulation. We show that there is a guard coloring for G, which
is sufficient by Lemma 2.2. Consider the dual graph G∗ = (V ∗, E∗) of G with its inherited
plane embedding, so each vertex f∗ ∈ V ∗ is placed inside the face f of G corresponding to
it. Since every face of G is of degree four, its dual graph G∗ is 4-regular. Using Petersen’s
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2-Factor Theorem [10]1 we get that G∗ contains a 2-factor H (a spanning 2-regular subgraph).
Any vertex of H is of degree 2, so H is a set of vertex-disjoint cycles that can be nested inside
each other. Now define a 2-coloring col : V → {0, 1} for the vertices of G: For each v ∈ V
let cv be the number of cycles C of H such that v belongs to the region of the embedding
surrounded by C. The color of v is determined by the parity of cv as col(v) := cv mod 2.

We claim that this yields a guard coloring of G: Any edge e = ab ∈ E has a corresponding
dual edge e∗. If e∗ ∈ E(H), then e crosses exactly one cycle edge, so |ca − cb| = 1 and
therefore col(a) 6= col(b). Otherwise e 6∈ E(H), so its two endpoints are in the same cycles,
thus col(a) = col(b) and e is monochromatic. Because H is a 2-factor, each face has exactly
two monochromatic edges. J

Figure 1b shows an example quadrangulation with a 2-factor in its dual graph. From
here it is easy to color the vertices in green and orange to obtain a guard coloring.

In order to bridge the gap between the lower (b(n− 2)/4c) and the upper bound (bn/3c),
we also consider the subclass of 2-degenerate quadrangulations in the master’s thesis [8,
Theorem 5.9]:

I Theorem 2.4. Every n-vertex 2-degenerate quadrangulation can be guarded by bn/4c edge
guards.

Note that this bound is best possible, as the quadrangulations constructed in Theorem 2.1
are 2-degenerate.

2.2 Stacked Triangulations
The stacked triangulations (also known as Apollonian networks or planar 3-trees) are
a subclass of the triangulations that can recursively be formed by the following rules:
(i) A triangle is a stacked triangulation and (ii) if G is a stacked triangulation and f an
inner face, then the graph obtained by placing a new vertex into f and connecting it with all
three boundary vertices is again a stacked triangulation. We shall prove that the stacked
triangulations are a non-trivial subclass of the triangulations that need strictly less than bn/3c
edge guards (which is the best known upper bound for general triangulations).

I Theorem 2.5. For even k ∈ N there is a stacked triangulation G with n = (7k + 4)/2
vertices needing at least k = (2n− 4)/7 edge guards.

Proof. Let S be a stacked triangulation with k faces and therefore (k + 4)/2 vertices (by
Euler’s formula). Subdivide each face f of S with three new vertices af , bf , cf such that the
resulting graph is a stacked triangulation and these three vertices form a new triangular
face tf , i.e. f and tf do not share any boundary vertices. This subdivision is shown in
Figure 2a for a single face f . Then G has n = (k + 4)/2 + 3k = (7k + 4)/2 vertices. For any
two distinct faces f, g of S the shortest path between any two boundary vertices of the new
faces tf and tg has length at least 2, so no edge can guard both of them. Therefore G needs
at least k edge guards. J

I Theorem 2.6. Every n-vertex stacked triangulation can be guarded by b2n/7c edge guards.

1 Diestel [5, Corollary 2.1.5] gives a very short and elegant proof of this theorem in his book. He
only considers simple graphs there, but all steps in the proof (including the given proof of Hall’s
Theorem [5, 11, Theorem 2.1.2]) also work for multigraphs like G∗ that have at most two edges between
any pair of vertices.
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gets subdivided by three
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(c) Subdividing with two
vertices allows to assume
that x, y ∈ V (Γ), where Γ is
an edge guard set of minimum
cardinality.

Figure 2 Lower and upper bound for stacked triangulations.

A proof of Theorem 2.6 is given in the master’s thesis [8, Theorem 4.14] but it is too long
for this extended abstract. We restrict ourselves to briefly describing the main idea: We do
induction on n, the number of vertices. Given any n-vertex stacked triangulation, we find a
triangle 4 := {x, y, z} ⊆ V (G) containing at least k− ≥ 4 vertices inside of it but among all
possible candidates one where k− is minimal. Let V − ⊆ V be the vertices in the interior
of 4. We remove V − from G, so 4 becomes a face and we subdivide it with k+ < k− new
vertices V +. Call the resulting graph G′. Applying the induction hypothesis on G′ provides
us with an edge guard set Γ′ of size at most b2|V (G′)|/7c. We show that Γ′ can be augmented
to and edge guard set Γ for G with size |Γ| = |Γ′|+ `, such that `/(k−− k+) ≤ 2/7, so that Γ
has size at most b2n/7c.

For example consider a stacked triangulation G with a separating triangle 4 = {x, y, z}
as shown in Figure 2b with k− = 6 vertices V − inside (the figure only shows the separating
triangle and its interior vertices). Assume for now that V + = ∅, so 4 is a face in G′. An edge
guard set Γ′ of G′ guards 4, for example we could have x ∈ V (Γ′) and y, z 6∈ V (Γ′). But
then – after reinserting the vertices of V − – no single edge can guard all the remaining faces.
So in this situation it is impossible to extend Γ′ by a single edge to and edge guard set Γ
for G. The following lemma tells us how to choose V + instead, such that such a situation
cannot arise.

I Lemma 2.7. Let {x, y, z} be a face of a stacked triangulation G. By stacking two new
vertices into {x, y, z} we can obtain a stacked triangulation H such that for each edge guard
set Γ of H there is an edge guard set Γ′ with x, y ∈ V (Γ′) and |Γ′| ≤ |Γ|.

Proof. Add vertex a with edges xa, ya, za and then vertex b with edges ab, xb, yb to obtain H
(see Figure 2c). Now let Γ be any edge guard set for H not yet fulfilling the requirements,
so |{x, y} ∩ V (Γ)| ≤ 1. If b ∈ V (Γ) as part of an edge vb, we can set Γ′ := (Γ \ {vb}) ∪ {xy}.
This is possible, because for any possible neighbor v of b, edge xy guards a superset of the faces
that vb guards. If otherwise b 6∈ V (Γ), we assume without loss of generality that x ∈ V (Γ)
and y 6∈ V (Γ). Note that |{x, y} ∩ V (Γ)| ≥ 1, because face {x, y, b} must be guarded.
Face {a, b, y} can then only be guarded by edge va where v ∈ {x, z}. Since N(a) ⊆ N(y) we
can set Γ′ := (Γ \ {va}) ∪ {vy}. In both cases x, y ∈ V (Γ′) and |Γ′| ≤ |Γ|. J

Let us go back to the example in Figure 2b: Using Lemma 2.7, we can now remove the
six vertices in V −, add two new ones V + := {a, b} as in Figure 2c and assume that the



P. Jungeblut and T. Ueckerdt 25:5

induction hypothesis gives us an edge guard set Γ′ with x, y ∈ V (Γ′). Then one additional
edge is enough to guard the remaining inner faces and `/(|V −| − |V +|) = 1/(6− 2) ≤ 2/7 as
desired. This guard set is shown in Figure 2b in red.

In addition to Lemma 2.7, we prove two more of this kind in the master’s thesis [8]
and which we list here without a proof. Like the lemma above, they describe how to
add new vertices V + into a stacked triangulation, such that the resulting graph is still a
stacked triangulation and that we can assume certain properties of minimal edge guard sets.
Combining them, allows to handle all possible ways how the vertices V − inside 4 can be
connected.

I Lemma 2.8. Let G be a stacked triangulation, v be a vertex of degree 3 and x, y, z its
neighbors in G. Then for any edge guard set Γ guarding G we have |{v, x, y, z} ∩ V (Γ)| ≥ 2.

I Lemma 2.9. Let (x, y, z) be a face of a stacked triangulation G. By stacking three new
vertices into (x, y, z) we can obtain a stacked triangulation H such that for each edge guard
set Γ of H there is an edge guard set Γ′ with x ∈ V (Γ′) and an edge vw ∈ Γ′ with v ∈ {x, y, z}
and w inside (x, y, z). Further |Γ′| ≤ |Γ|.

We conclude this note with the following open problems:

I Open Problems. How many edge guards are sometimes necessary and always sufficient
for quadrangulations, (4-connected) triangulations and general plane graphs?
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