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1 Introduction
In the early 1990s, a new technology called DNA microarrays was developed that allows
for a simultaneous measurement of the expression levels, i. e. activity levels, of several
thousand genes at specific conditions. During the last years many genome-scale experi-
ments for various species and conditions were conducted. Most of the resulting data is
publicly available in internet databases.

There are several questions that can be tackled by analysing data from microarray
experiments. In the research field of functional genomics one goal is to annotate genes
with their respective functions. This can be approached by gene expression analysis us-
ing the hypothesis that co-expressed genes are often co-regulated and thus might share a
common function or are at least involved in the same biological process. So identifying
groups of co-expressed genes over a number of different experiments can give hints for
the putative functions of genes whose function were previously unknown by looking at
the known functions of genes in the same group. Another example is the inference of reg-
ulatory networks and the identification of regulatory motifs in the sequences from groups
of co-expressed genes.

For all these questions it is necessary to identify genes with similar expression pat-
terns, which is usually done using different clustering techniques known from the area of
unsupervised machine learning.

After the publication of the first large scale cluster analysis by Eisen et al. [8] many dif-
ferent approaches for the clustering of gene expression data have been made and proven
to be successful in their respective situations. Nevertheless, no single clustering algo-
rithm, similarity measure or validation criterion has yet become accepted as being the
optimal choice for clustering genes based on microarray data. Former general results on
clustering in literature cannot be taken over in any case because many of the theoretical
studies assume well separable data. This is not the case for microarray data since clusters
often overlap and cannot be easily identified. Some of the problems in clustering gene ex-
pression data are discussed in [4]. Only few works systematically evaluate and compare
different clustering methods and results. In [7] six clustering algorithms are compared,
but the choice of the number of clusters or the dissimilarity measure is not addressed. [3]
discusses three validation indices and evaluates them on Kohonen’s Self Organizing Maps
algorithm. [9] presents a framework for validation of clusterings using external biological
information. In [22] an overview of several clustering algorithms and dissimilarities for
microarray data is given.

In this article we show on an example how to select good clusterings step-by-step
based on several validation criteria. This includes choice of the algorithm, the dissimilar-
ity measure and the number of clusters. In Section 2 some basic background on microar-
ray technology and the pre-processing of microarray data is given. Next, in Section 3
different dissimilarity measures for gene expression profiles are introduced followed by
the description of two popular clustering algorithms and the discussion of several valida-
tion techniques. Section 4 finally gives the results of applying these clustering algorithms



on a sample data set. The resulting clusterings are systematically compared and several
candidates are selected for further visual and external validation using biological infor-
mation about the clustered genes. Conclusions are presented in Section 5.

2 Measuring gene expression with microarrays
Gene expression is the process by which a gene’s information is converted into a func-
tional protein of a cell. It involves two main steps according to the central dogma of
molecular biology: The section of the DNA corresponding to the gene is first transcribed
into a single-stranded complementary messenger RNA (mRNA) molecule. Thereafter the
mRNA is translated into a protein.

It is widely believed that regulation of gene expression is largely controlled at the
transcriptional level [29], so studying the abundance of the mRNA can give insight into
how the corresponding genes control the function of the cell. Microarrays are a new
techniques to measure the mRNA abundance for several thousand genes in parallel.

Microarrays are based on the fact that two complementary DNA (or RNA) molecules
can hybridize, i. e. they can bind together. When the sequence of the genome (entirety
of all genes) of an organism is known, it is possible to synthesize millions of copies of
DNA fragments of each gene. These are then able to hybridize with the corresponding
complementary molecules.

Microarrays are small glass slides with thousands of spots printed on it in a grid-
like fashion. Each spot corresponds to one gene and consists of thousands of identical
and gene-specific single-stranded DNA sequences fixed to the glass surface. The mRNA
abundance in a sample is measured indirectly by reverse transcribing the mRNA into
cDNA1. Then the cDNA molecules are able to stick to the spots on the microarray that
correspond to their respective genes. Although measuring transcript abundance is not
exactly the same as measuring gene expression, it is very common to use both terms
synonymously.

Usually the abundance of mRNA transcripts is measured relatively to a control sample.
To this end the cDNA prepared from the mRNA of the experiment sample is labeled with a
fluorescent dye (usually red Cy5) and the control cDNA is labeled with green-fluorescent
dye (Cy3) or vice versa. When both samples are mixed at equal amounts and washed
over the glass slide the target cDNA will hybridize on the spot with its complementary
sequences (called probes).

Each dye can emit light at a specific wave length and thus, using a laser scanner, the
intensity of fluorescence is measured for both dyes.

The construction of a microarray, sample preparation and scanning of the slides is
illustrated schematically in Figure 1.

The resulting images can be overlayed and show whether a gene is over- or underex-
pressed relative to the control sample. Further, from these images an intensity value for
each spot and both color channels, denoted by Rg and Gg, g = 1, . . . ,n, n the number of
genes, can be extracted. Their log-ratio Mg := log2(Rg/Gg) is related directly to the fold
change, a common measure of differential expression. In case Rg ≥ Gg the fold change is
simply Rg/Gg and otherwise the fold change is defined as −Gg/Rg. In that sense a fold
change of 2 means that the corresponding gene is overexpressed by a factor 2 and a fold
change of -2 means it is underexpressed by a factor 2.

In order to identify differentially expressed genes it is necessary to get rid off the
systematic error which is present in microarray data. A well-known source of error is e. g.
the different labelling efficiency of Cy3 and Cy5.

1Complementary DNA (abbreviated cDNA) denotes single-stranded DNA molecules that are comple-
mentary to their mRNA templates. cDNA is assembled by the enzyme reverse transcriptase.



Figure 1: Schematic overview of a microarray experiment. Figure taken from [1].

One method to minimize the systematic variation in the data is by applying a global
intensity-dependent normalization [27, 28] using local regression (e.g. performed by loess
[18, 6]):

Mnorm
g = Mg − c(Ag), Ag := log2

√

RgGg.

This regression method performs a robust locally linear fit and is not affected by a small
number of outliers due to differentially expressed genes. Hence, it is applicable when the
majority of the genes is assumed to be not differentially expressed.

3 Background on cluster analysis
Cluster analysis is a data mining technique concerned with grouping a set of objects hav-
ing certain attributes into subsets called clusters. The objective is to arrange the groups
such that all objects within the same cluster are, based on their attribute values, similar to
each other and objects assigned to different clusters are less similar. So clustering is about
revealing a hidden structure in a given set of data, usually without any external knowledge
about the objects.

Not always well-separated groups are present in a data set. In this case clustering is
sometimes referred to as segmentation [10]. For such problems it is considerably more
difficult to assess the results of cluster analysis and decide which is the correct number of
clusters.

The following notation is used throughout the paper: Let S := {s1, . . . ,sn} be a set of
objects si. For each si there are p attributes A1, . . . ,Ap observable. Here we can assume
all attributes to be real-valued. The object-attribute matrix M := (mi j) contains the values
mi j of attribute A j for object si, where i = 1, . . . ,n, j = 1, . . . , p. A clustering C of size k
of the set S is then a partition of S into pairwise disjoint non-empty clusters C1, . . . ,Ck.



3.1 Dissimilarity measures

There are many different dissimilarities for cluster analysis listed in the literature (see for
example [13]). The choice of a dissimilarity measure is highly dependent on the data
that is to be analysed. In the context of gene expression profiles we will only consider
Euclidean distance and a dissimilarity based on Pearson’s correlation coefficient.

3.1.1 Euclidean distance

Probably the most widely used dissimilarity measure for numeric attributes is the Eu-
clidean distance. The objects si are considered as points in the p-dimensional space and
the standard Euclidean metric is used:

di j := d(si,s j) :=

√

p

∑
l=1

(mil −m jl)2

In case of missing values all incomplete attribute pairs are discarded in the above sum and
the sum is scaled by p

pc
where pc is the number of complete attribute pairs.

3.1.2 Pearson Correlation

Another common dissimilarity measure, especially for gene expression data, based on the
Pearson correlation, is

di j := d(si,s j) := 1−
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,

where mi := mi1+···+mip
p is the arithmetic mean of si’s attributes and m j for s j respectively.

Note that this measure treats positively and negatively correlated objects equally.
Attribute pairs with at least one missing value are discarded from the calculation of

the correlation coefficient.

3.2 Characteristics of clusterings

Given a clustering C = (C1, . . . ,Ck) of S and the underlying dissimilarity measure d, two
characteristic values can be defined as in [10]:

W (C ) :=
1
2

k

∑
l=1

∑
i, j∈Cl

d(si,s j),

the so-called (total) within cluster point scatter and the (total) between cluster point scat-
ter

B(C ) :=
1
2

k

∑
l=1

∑
i∈Cl
j/∈Cl

d(si,s j).

W (C ) characterizes the internal cohesion as it measures the pairwise dissimilarities within
each cluster, whereas B(C ) characterizes external isolation of clusters.

They both are related through T =W (C )+B(C ). T , which is nothing else but the sum
of all pairwise dissimilarities, is called total point scatter and is constant for all clusterings
of S given d. Because the natural aims of clustering are to produce well-isolated and
internally similar clusters, this task can be seen as minimizing W (C ) or maximizing B(C ).

Therefore W and B will play a role in assessing the quality of different clusterings in
Section 3.4.



3.3 Clustering methods

There is a large number of clustering algorithms known in pattern recognition and data
mining. For this work we restricted ourselves to two widely used combinatorial algo-
rithms. Combinatorial is used here in the sense of [10], i. e. each observation si is uniquely
assigned to a cluster C j based solely on the data without making any assumption about an
underlying probabilistic model.

Combinatorial clustering algorithms are often divided into partitioning and hierarchi-
cal methods [14]. The former construct k clusters for a given parameter k whereas the
latter construct a hierarchy covering all possible values for k at the same time. In each
group of methods we picked one algorithm, namely partitioning around medoids (PAM)
and agglomerative clustering using Ward’s method.

3.3.1 Partitioning around medoids

Partitioning methods cluster the data into k groups, where k is a user-specified parameter.
It is important to know that a partitioning method will find k groups in the data for any
k provided as a parameter, regardless of whether there is a “natural” clustering with k
clusters or not. This leads to different criteria for choosing an optimal k. Some are
discussed in Section 3.4.

Partitioning around medoids (PAM), also called k-medoids clustering2, is an algo-
rithm described by Kaufman and Rousseeuw [14] and is implemented in the R package
cluster [18]. Its objective, seen as an optimization problem, is to minimize the within
cluster point scatter W (C ). The resulting clustering of S is usually only a local minimum
of W (C ).

The idea of PAM is to select k representative objects, or medoids, among S and as-
sign the remaining objects to the group identified by the nearest medoid. Initially, in the
medoids can be chosen arbitrarily, although the R implementation of PAM distributes
them in a way that S is well covered. Then, all objects s ∈ S are assigned to the nearest
medoid. In an iterative loop as a first step a new medoid is determined for each cluster
by finding the object with minimum total dissimilarity to all other cluster elements. Next,
all s ∈ S are reassigned to their clusters according to the new set of medoids. This loop
repeats until no more changes of the clustering appear.

Because the R implementation of PAM assigns the initial clustering deterministically
the results of PAM will always be identical and repeated runs to cope with random effects
are not necessary.

3.3.2 Agglomerative clustering

Agglomerative methods are very popular in microarray data analysis. For example the
first genome-wide microarray clustering study [8] used agglomerative hierarchical clus-
tering.

Hierarchical clustering methods do not partition the set S into a fixed number k of
clusters but construct a tree-like hierarchy that encodes implicitly all possible values of
k. At each level j ∈ {1, . . . ,n} there are j clusters encoded. The lowest level consists of
the n singleton clusters and at level one there is just one cluster containing all objects.
However, hierarchical clustering imposes a nested tree-like cluster structure on the data
regardless of whether the data really have this property. Therefore one has to be careful
when drawing conclusions from hierarchical clustering.

2There is a close relationship to the popular k-means clustering algorithm. The advantage of k-medoids
is that it can be used with any dissimilarity and not only with Euclidean distance.



In agglomerative clustering, at each level j the two “closest” clusters are merged to
form level j− 1 with one less cluster. Agglomerative methods vary only in terms of the
dissimilarity measure between clusters. In any case the dissimilarity d : S×S →R≥0 must
be extended to D : P (S)×P (S) → R≥0, such that D({s},{t}) = d(s, t) for s, t ∈ S. Note
that the dissimilarity matrix for D would be of exponential size, but only few values are
actually needed. Therefore, in practice the values of D will be computed on-demand. The
general agglomerative hierarchical clustering algorithm proceeds as follows.

Initially, the set A is the trivial partition of S into singleton sets. Then in an iteration
from j = n down to 1 the current partition A is assigned to the clustering C ( j). Further,
the two clusters with the smallest dissimilarity are determined, merged and replaced in A
by their union.

There are several dissimilarity measure between clusters, e. g.

• single linkage, leading mainly to large, elongated clusters,

• complete linkage, yielding rather compact clusters,

• average linkage, being a compromise between these two extremes, or

• the dissimilarity measure used by Ward’s method [25].

The latter method uses the increment in the within cluster point scatter, which would
result from merging two clusters, as the dissimilarity between them. When defining the
within cluster point scatter

W (G) :=
1
2 ∑

i, j∈G
d(si,s j)

for a single cluster G analogously to the total within cluster point scatter (see Section 3.2),
the dissimilarity is given as

D(G,H) =
2

nG +nH
W (G∪H)−

2
nG

W (G)−
2

nH
W (H).

Since the within cluster point scatter is a measure for the internal cohesion of clusters,
Ward’s method tends to create compact clusters with very similar objects. In the case
of squared Euclidean distance this method is also known as incremental sum of squares.
Merging clusters that minimize D is equivalent to minimizing the within cluster variance.

A problem with Ward’s method is that it minimizes the objective function locally so
that decisions taken at lower levels of the hierarchy do not necessarily mean optimality at
higher levels. The other agglomerative methods suffer from this fact as well. After two
clusters have been merged on a certain level there is no way of reversing this decision
at a later step of the algorithm although it might be favorable. Especially when rather
few clusters are sought this might be disadvantageous because many previous merging
decisions are influencing the shape of higher level clusters.

When comparing the results of different agglomerative methods using the function
hclust from the R package mva for our gene expression data, Ward’s method is per-
forming best. Several comparative studies, mentioned in [12], also suggest that Ward out-
performs other hierarchical clustering methods. Thus for our experiments in Section 4 we
chose to compare the PAM algorithm and agglomerative clustering using Ward’s method.

3.4 Cluster validation

In most applications of clustering techniques it is impossible to speak of the correct clus-
tering and therefore it is necessary to use some validation criteria to assess the quality of



the results of cluster analysis. These criteria may then be used to compare the adequacy of
certain algorithms and dissimilarity measures or to choose the best number k of clusters.
This is especially important when the correct number of clusters is unknown a-priori as
it is the case in this study. When using PAM, the algorithm is run with different values
for the parameter k and when using agglomerative clustering, this refers to finding the
optimal level in the hierarchy.

Following [12], validation measures are grouped into internal, relative and external
criteria. Internal criteria assess the quality of a given clustering based solely on the data
themselves or on the dissimilarity used. Four internal criteria are introduced in Section
3.4.1.

Relative criteria are used to directly compare the agreement between two clusterings,
for example to examine how similar two k-clusterings resulting from different algorithms
or dissimilarities are. Section 3.4.2 describes two relative criteria.

External criteria are measuring the quality of a clustering by bringing in some kind of
external information such as a-priori class labels when available. Here we denote criteria
based on visualization of the cluster data as external criteria too. Visualization of clusters
can help the user to assess the adequacy of a given clustering. Despite this is less objective
than an internal criterion, visualization is often preferred in the final evaluation of the
clustering results. Further, gene clusters based on expression profiles can be evaluated by
looking at the functional annotations for their constituent genes. If certain properties are
shared by many genes this might be a sign for a “good” cluster. Because external criteria
are more domain specific they are described in Section 4 when the data and experiments
are covered.

3.4.1 Internal validation

Silhouettes Rousseeuw [20] proposed the silhouette statistic which assigns to each ob-
ject a value describing how well it fits into its cluster. Let a(si) denote the average dissim-
ilarity of si to all points in its own cluster and let b(si) denote the minimum of all average
dissimilarities to the other clusters, i. e. the average dissimilarity to the second best cluster
for si. Then

sil(si) =
b(si)−a(si)

max(a(si),b(si))

is the silhouette value for si. Object si matches its cluster well if sil(si) is close to one and
poorly matches it if sil(si) is close to zero or even negative. Negative values only occur
when an object is not assigned to the best fitting cluster.

A natural measure for the quality of the whole clustering is

sil(C ) =
1
n ∑

si∈S
sil(si), (1)

the average silhouette for all objects in S. According to this criterion choose the number
of clusters k̂ as the value maximizing the average silhouette.

Measure of Calinski and Harabasz In [17] the authors compare 28 validation criteria
and found that in their experiments the measure by Calinski and Harabasz [5] performed
best. It assesses the quality of a clustering with k clusters via the index

CH(k) =
BSS(k)/(k−1)

WSS(k)/(n− k)
(2)



where WSS(k) and BSS(k) are the within and between cluster sums of squares defined
analogously to W and B in Section 3.2 but using squared dissimilarities. The optimal
value k̂ for the number of clusters is again the value k maximizing the criterion.

The idea is to choose clusterings with well isolated and coherent clusters but at the
same time keeping the number of clusters as small as possible.

Originally this index was meant for squared Euclidean distance. Because our opti-
mization criterion is not based on squared dissimilarities we used W and B instead of
WSS and BSS in the definition of CH. This still follows the same motivation as using
squared dissimilarities and is more robust against outliers.

Measure of Krzanowski and Lai Krzanowski and Lai [15] defined an index based on
the decrease of the within cluster sums of squares. First, they defined

DIFF(k) = (k−1)2/p WSS(k−1)− k2/p WSS(k)

and then the index

KL(k) =

∣

∣

∣

∣

DIFF(k)
DIFF(k +1)

∣

∣

∣

∣

(3)

which should be maximized again.
Let g be the correct number of groups in the data. Then the idea of KL is based on

the assumption that WSS(k) decreases rapidly for k ≤ g and it decreases only slightly for
k > g. This is justified by the hypothesis that for k ≤ g at every successive step large
clusters that do not belong together are separated resulting in a strong decrease of WSS.
Conversely for k > g good clusters are split resulting in a very small decrease of the within
cluster sum of squares. Thus one can expect that DIFF(k) is small for all k but k = g and
consequently KL(k) is largest for the optimal k.

The same intuition holds when replacing WSS by W as in the case of Calinski and
Harabasz’ measure. Thus we used W in the definition of DIFF for our experiments be-
cause again the measure was originally designed for use with squared Euclidean distance.

Prediction strength A more recent approach to assessing the number of clusters is the
measure of prediction strength proposed by Tibshirani et al. [24]. It uses cross-validation
of the clustering process and determines how well the clusters formed in the training set
agree with the clusters in the test set. More precisely, the set S is divided into a test set
Ste and a training set Str. Then both sets are clustered individually into k clusters yielding
two clusterings Cte and Ctr. For each cluster a suitable representative element is chosen,
e.g. the cluster medoid. Finally the elements in Ste are assigned to the training set clusters
by minimizing the dissimilarity to the representative elements of the clusters in Ctr.

Then for each pair of elements belonging to the same cluster in Cte it is checked
whether they fall into the same cluster again when using the training clusters. If this is the
case for most pairs the prediction strength should be high otherwise it should be lower.
So formally the prediction strength is defined as

ps(k) =
1
k

k

∑
j=1

1
nC j(nC j −1) ∑

i,i′∈C j
i6=i′

D[Ctr,Ste]ii′ , (4)

where D[Ctr,Ste] is a matrix with the (i, i′)th entry equal to one if the elements si and si′

fall into the same cluster when assigned to the training clusters as described above and
zero otherwise. Thus, ps(k) is the average proportion of test pairs correctly classified by
the training clusters.



[24] shows that 2-fold cross-validation has no disadvantages compared to higher order
cross-validation. Therefore we used 2-fold cross-validation to measure the quality of a
clustering given the parameter k.

3.4.2 Relative validation

Rand index The Rand index [19] for comparing two clusterings C and C ′ of the same
data S is based on four counts of the pairs (si,s j) of objects in S.

N11 number of pairs that are in the same cluster both in C and in C ′

N00 number of pairs that are in different clusters both in C and in C ′

N10 number of pairs that are in the same cluster in in C but not in C ′

N01 number of pairs that are in the same cluster in in C ′ but not in C
The Rand index is defined as the relative proportion of identically classified pairs

R(C ,C ′) =
N11 +N00

N11 +N00 +N10 +N01

and lies between zero and one.
It has the disadvantage that its expected value is not equal to zero for two random

partitions. Therefore [11] introduced the adjusted Rand index

R′(C ,C ′) =
R(C ,C ′)−E(R(C ,C ′))

1−E(R(C ,C ′))
(5)

as a normalized form of Rand’s criterion. It is explicitly given in [12]. The maximum
value is still one and reached only if the two clusterings are identical.

Variation of information A recent work by [16] introduces an information theoretical
criterion called variation of information. It is defined as

V I(C ,C ′) = H(C )+H(C ′)−2I(C ,C ′), (6)

where H is the entropy of a clustering and I is the mutual information of two clusterings.
The probabilities needed for these terms are estimated by the relative cluster sizes. [16]
shows that V I is a metric on the space of all clusterings and gives upper bounds for its
value. V I(C ,C ′) can be seen as a measure for the uncertainty about the cluster in C of an
element s knowing its cluster in C ′.

4 Experiments and results
4.1 Yeast cell-cycle data

A very popular data source for comparative gene expression studies is the cell cycle data
set for the yeast Saccharomyces cerevisiae published by Spellman et al. [21]. S. cerevisiae
is the most studied eukaryotic model organism and has about 6300 potential genes. It has
the advantage that many details about its individual genes are available helping to verify
the results of a cluster analysis using this external information.

Spellman et al. conducted three different time series microarray experiments. We se-
lected the cdc15 series consisting of 24 measurements of the expression levels for 6283
open reading frames3 (ORFs). The yeast strain was grown and then arrested at a certain

3An open reading frame is a DNA sequence that has the potential to encode a protein or polypeptide. It
does not necessarily correspond to a gene.



state of the cell cycle by incubating it at 37◦C. The synchronized sample was then re-
leased from the arrest and measurements were taken every 10 or 20 minutes over a total
period of 300 minutes corresponding to about three cell cycles. Part of the same original
culture was grown unsynchronized and served as the control sample in the microarray
experiments.

The raw data for our analyses were retrieved from the Stanford Microarray Database4

and consist of absolute intensity values for both color channels as well as a quality flag
for each gene on the array. Then the data were transformed into log-ratios and normalized
as described in Section 2.

A subset of 238 genes was preselected for further processing based on several criteria.
First, all genes having three or more missing values were excluded. Next, genes showing
not enough differential expression over time were discarded. We chose to set a threshold
of at least two time points showing an absolute fold change5 of two or higher. Finally, we
only considered genes that exhibit a periodic behavior and thus are likely to be cell cycle
dependent. This was done using a statistical method introduced in [26] and implemented
in the R package GeneTS.

4.2 Clustering and internal validation

The general procedure is to compute the pairwise Euclidean distances (see Section 3.1.1)
and the correlation based dissimilarities (see Section 3.1.2). Note that the Euclidean dis-
tances are computed from standardized profiles6. Then we apply PAM clustering and
agglomerative clustering using Ward’s method.

When clustering gene expression data, in most cases the number of clusters k is un-
known in advance. Thus determining the number of clusters is a very important task.
Evaluating the internal validation measures discussed in Section 3.4.1 for a range of pos-
sible k-values we can choose a couple of good candidate clusterings. By visualizing the
clusterings, the homogeneity and separation of the clusters can be assessed. Differences
between the candidate clusterings are quantified using the relative validation measures
of Section 3.4.2. Only the best clusterings from these candidates are kept and evaluated
further with external methods, which is discussed in Section 4.3.

The subset to be clustered contained 238 genes as given in Section 4.1. Therefore
we chose to compare clusterings with 2 to 40 clusters. Further increasing the number
of clusters would only result in a growing number of singletons clusters which is not
desirable.

We used both Euclidean distance and the correlation based dissimilarity measure. The
main difference between the two is that two expression profiles that are strongly negatively
correlated have a high Euclidean distance but a very low correlation based dissimilarity.
Hence, the genes will almost never be in the same cluster using Euclidean distance and
they are very likely to end up in the same cluster using the correlation dissimilarity. The
biological justification for using the correlation based measure is that genes that regulate
biological processes can either be activating or repressing. So for the initiation of such
a process the activator genes must be highly expressed whereas the expression of the
repressor genes must be scaled back. Nevertheless it makes sense to put both groups of
genes into the same cluster because they launch the same process.

Figure 2 shows the internal validation measures applied to the four different types of
clusterings. The general tendency is that prediction strength and silhouette propose rather

4http://genome-www5.stanford.edu
5See definition in Section 2.
6Standardization means that for each profile the profile’s mean value is subtracted and then it is divided

by its standard deviation. Thus the standardized profiles have zero mean and unity standard deviation.
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Figure 2: Plots of the internal validation measures for clusterings with k = 2, . . . ,40 clus-
ters. Each plot shows the respective values for one of four validation measures applied
to PAM and hierarchical clustering (hclust) using both Euclidean and Pearson correlation
based dissimilarities. (a) prediction strength, (b) measure of Calinski and Harabasz, (c)
measure of Krzanowski and Lai and (d) silhouette.

small cluster numbers whereas the CH criterion prefers clusterings with more clusters.
The plot (c) shows strong peaks at certain positions and has a much smaller range for the
rest of the values. When looking closer at how these peaks originate from eq. (3) one can
see that they don’t always reflect a good clustering. For example the peak at k = 20 with
a KL value of about 140 arises from dividing DIFF(20) = 1.636 by DIFF(21) = 0.012.
This is of course a relatively high decrease in the DIFF-values. But in comparison to
DIFF-values in the order of 104 for the first k = 2,3,4,5 considered here, these small
DIFF-values for larger k do not mean any true improvement in the clustering at all. This
suggests that the KL index is not very useful for poorly separated data such as gene
expression profiles.

For agglomerative clustering the dendrograms also give hints for good clusterings. In
Figure 3 the dendrograms for both dissimilarities are shown. In plot (a) up to five clusters
can be easily distinguished and about 13 clusters still have a reasonable dissimilarity when
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Figure 3: Dendrograms from agglomerative clustering using Ward’s method and (a) cor-
relation based dissimilarities or (b) Euclidean distances.

they are merged, suggesting that they really represent different groups of genes. Plot (b),
showing the dendrogram for Euclidean dissimilarity, indicates slightly more clusters than
plot (a) when using similar arguments. This follows the motivation for the correlation
based dissimilarity given at the beginning of this section: One can expect that a cluster
combining positively and negatively correlated expression profiles in (a) corresponds to
at least two clusters in (b).

Taking into account all four validation measures and their local behavior we iden-
tified for each combination of algorithm and dissimilarity a set of candidate values for
further investigation. The selected values are given in Table 1. As an example k = 8
for agglomerative clustering with Euclidean dissimilarity was chosen because in Figure
2(a) the prediction strength at k = 8 forms a local maximum with a good value of 0.73.
Further CH in part (b) of the figure has a local maximum with a high value at k = 8 and
the silhouette in Figure 2(d) is still in a stable range before falling for k ≥ 10. For these
candidate values we displayed the clusterings as Eisenplots and cluster profile plots. Here
only two examples are given in figures 4 and 5.

algorithm dissimilarity candidate values for k
PAM correlation based 6, 8, 10, 12, 15, 17, 20
PAM Euclidean 6, 8, 10, 13, 18
agglomerative correlation based 5, 6, 10, 13
agglomerative Euclidean 6, 8, 15

Table 1: Candidate values for the number of clusters. The bold values are selected as
“good” by visual examination.

Eisenplots (see Figure 4(a)) are named after M. B. Eisen who introduced this type of
display in [8]. The expression data contained in the matrix M (see Section 2) are plotted
as a table where row i and column j encodes the expression value for gene gi at time point
t j by a color similar to the original color of its spot on the microarray. This means that
high expression is coded as red and low expression as green. If the value is zero, meaning
no differential expression, it is displayed in black. Note that in case of correlation based
dissimilarity, profiles negatively correlated in respect to the medoid profile are multiplied
by −1 because otherwise the plots would become messy. The rows are ordered such that



the elements of each cluster appear next to each other. To help identifying the cluster
boundaries we included an additional column on the right hand side of the plot where
alternating black and white bars mark the individual clusters.

The cluster profile plots show for each cluster the profile of the cluster medoid to-
gether with a vertical bar giving the standard deviation within the cluster at each time
point. Further, in light grey all profiles of genes in the cluster are plotted and the size
of the cluster is given. Note that again in case of correlation based dissimilarity, profiles
negatively correlated with respect to the medoid are inverted before calculating the stan-
dard deviations. However, these profiles are plotted without change in a very light grey in
the background. This enables the viewer to distinguish between positively and negatively
correlated profiles.

Cluster visualization allows the viewer to assess the adequacy of the selected clus-
terings. One can make statements about the compactness and the isolation of the given
clusters by verifying how similar the plotted profiles within each cluster and how dissim-
ilar the medoid profiles are. If multiple clusters have very similar medoids the clustering
parameter k might be chosen too large. In contrast, if clusters show a large within cluster
variance it might be better to increase k in order to split those clusters.

cdc15: pam, euclidean, 8 clusters
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Figure 4: Visualization of PAM clustering with Euclidean dissimilarity and eight clusters.
In the Eisenplot in (a) the individual clusters are marked on the right side of the plot.
Cluster 1 is on the bottom and Cluster 8 on the top of the plot. In (b) the corresponding
cluster profile plots are shown.

It is impossible to discuss the visualization for all candidate clusterings, so we just
give two illustrative examples. In Figure 4 the result of PAM clustering with Euclidean
dissimilarity and eight clusters is displayed. Three different types of clusters can be iden-
tified in the Eisenplot in (a) and the cluster profiles in (b):

Clusters 1 and 6 group together profiles that oscillate with a period of 20 minutes.
Note that the first four time points and the last three time points are 20 minutes apart



cdc15: hclust, pearson, 6 clusters
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Figure 5: Visualization of agglomerative clustering with correlation based dissimilarity
and 6 clusters. In the Eisenplot in (a) the individual clusters are marked on the right side
of the plot. Cluster 1 is on the bottom and Cluster 6 on the top of the plot. In (b) the
corresponding cluster profile plots are shown.

instead of 10 minutes for the rest of the time points. Thus the profiles look different in the
beginning and in the end. The clusters are not merged because the profiles are strongly
negatively correlated between both clusters resulting in large Euclidean distances.

Cluster 3 is distinct from the others by grouping profiles that have a slowly increasing
behavior over the full range of measurements. Possibly these profiles have been identified
as periodic with a period longer than 300 minutes.

Finally clusters 2, 4, 5, 7 and 8 show a cyclic behavior matching the approximately 2.5
cell cycles studied in the experiment. They can be subdivided into clusters 4 and 8, which
consist of profiles that start off with low expression. The peaks in Cluster 4 appear about
30 minutes before those in Cluster 8 and therefore it seems reasonable not to merge them.
The second group consists of clusters 2, 5 and 7, which have profiles increasing first. Here
the profiles in Cluster 2 take their maxima about 20 minutes earlier than those in Cluster
7. Cluster 7 in turn is left-shifted in comparison to Cluster 5 by about 20 minutes.

The second example is given in Figure 5. To cover both algorithms and dissimilarities
this figure shows agglomerative clustering with correlation based dissimilarity and 6 clus-
ters. In contrast to the previous example, profiles that can be transferred into each other
by mirroring them on the x-axis are likely to end up in the same cluster because they are
strongly negatively correlated and thus have a small dissimilarity now.

As expected, Cluster 1 represents all the “zigzag” profiles that were in different clus-
ters beforehand. Cluster 3 contains the slowly increasing profiles as before whereas Clus-
ter 4, the smallest one with only eight elements, cannot be found in the previous example.

Clusters 2, 5 and 6 group the cell cycle dependant profiles. They can again be distin-
guished by the positions of the peaks over time. But here the clusters group together both



positively and negatively correlated genes, which is shown by the grey-shaded curves in
the background of the plots in Figure 5(b).

The eight clusterings that we finally selected after visual examination are given in
bold face in Table 1. The next step is to apply the adjusted Rand index and the variation
of information criterion given in Section 3.4.2.

The goal of applying these relative validation measures is to identify the clustering
that is most similar to all other clusterings. This clustering is a good candidate for further
external validation discussed in the next section. Moreover the clustering being least
similar to the others can be used for external validation as well. This second clustering
should have discovered a structure in the data that is very different from the one discovered
with the first clustering. Therefore it will be interesting to see how these two extremes
perform in external validation.

PAM agglomerative
clusterings correlation Euclidean correlation Euclidean

6 10 8 10 6 10 8 15
6 0.000 0.226 0.246 0.278 0.195 0.261 0.259 0.331correlation
10 0.226 0.000 0.308 0.292 0.228 0.249 0.303 0.307PAM
8 0.246 0.308 0.000 0.075 0.197 0.265 0.097 0.190Euclidean
10 0.278 0.292 0.075 0.000 0.216 0.257 0.115 0.174
6 0.195 0.228 0.197 0.216 0.000 0.102 0.191 0.263correlation
10 0.261 0.249 0.265 0.257 0.102 0.000 0.263 0.280aggl.
8 0.259 0.303 0.097 0.115 0.191 0.263 0.000 0.108Euclidean
15 0.331 0.307 0.190 0.174 0.263 0.280 0.108 0.000

cumulative 1.796 1.913 1.378 1.407 1.392 1.677 1.336 1.653

Table 2: Values of the variation of information criterion for all pairs of the eight selected
clusterings. The smaller the value the more similar are the two clusterings with the min-
imum 0 reached only if two clusterings are equal. The bottom row gives the cumulative
values over all columns. The smallest and largest value are given in bold face.

Both criteria, adjusted Rand index and variation of information, suggest to use the
same two clusterings for the final external validation. Therefore only the variation of
information is shown in Table 2. The last row contains the column sums. The smallest
value, indicating the most central clustering, is found in the column of agglomerative
Euclidean clustering with eight clusters. Further the largest value is the one for correlation
based PAM with 10 clusters.

4.3 External validation

External validation is the final step in evaluating clusterings of gene expression data. It
involves information about the genes that have not been used in the cluster analysis itself
and aims at evaluating the biological relevance of the clusters. As mentioned briefly in
Section 3.4 one possibility of assessing the biological meaning of a cluster is by look-
ing at the functional annotations of its constituent genes. Based on the assumption that
genes with similar functions or genes involved in the same biological processes are also
expressed similarly, we expect meaningful clusters to group exactly these genes. In other
words an optimal cluster would reflect all those and only those genes in a data set having
the same function or participating in the same biological process.

One way to check this property is by scanning the Gene Ontology terms associated
with the genes in a cluster. Gene Ontology (GO) [23] is a widely accepted approach for
a unified vocabulary to describe molecular functions, biological processes and cellular



components of genes or gene products. The terms used for the description of genes and
gene products are organized as a directed acyclic graph (DAG) and become more precise
at the lower levels of the graph. It is possible that a single gene has multiple functions,
takes part in different processes and appears in several components of the cell. Further,
each term in the ontology can have several (less specialized) parent terms and the terms
themselves follow the “true path rule”. This means that a gene product described by a
child term is also described by all parent terms.

Many tools exist for accessing the Gene Ontology. For our purpose of evaluating the
genes in a cluster relative to a reference set FatiGO [2] is suitable. It is a web-based
application (http://fatigo.bioinfo.cnio.es) that extracts the GO terms for a
query and a reference group of genes and further computes several statistics for the query
group. We used FatiGO to access the biological process annotations for each cluster Ci
in the clusterings selected in the last section. As reference set we used the union of the
corresponding complementary clusters, i. e. all of the clustered genes that do not fall into
this cluster Ci. The GO level to be used in the analysis has to be fixed in advance between
2 and 5. We used level 5 because most of the genes under study actually have annotations
at this level7. As a consequence only the subset of a cluster consisting of genes that have
level 5 annotations can be evaluated this way.

We used two criteria for validating clusters externally. First the cluster selectivity is
assessed. This means that the proportion of genes with a certain annotation in the cluster
relative to all genes in the data having this annotation is determined. A high selectivity
thus indicates that the clustering algorithm is able to distinguish these genes well, based
on their expression profiles, among all genes.

The second criterion is the cluster sensitivity, the proportion of genes with a certain
annotation relative to all genes within the same cluster. If the sensitivity of a cluster is
high then most genes in the cluster have the same annotation, in this case they participate
in the same process. This is important for annotating previously unknown genes. The
putative biological process for an unknown gene found in a very sensitive cluster can
be given with a higher confidence compared to unknown genes in a cluster representing
genes from many different processes.

For the cell cycle data we have selected the two clusterings “agglomerative with Eu-
clidean distance and eight clusters” and “PAM with correlation dissimilarity and 10 clus-
ters”. It is not possible to give the validation results for each cluster. Rather we give only
selected results which have some interesting properties.

It must be stated that most clusters are neither very selective nor very sensitive. This
may be caused on the one hand by using GO annotations from a too high level. When
the level is too high, the categories are too coarse so that genes participating in subpro-
cesses with rather different expression properties still have the same annotation from the
common ancestor node in the GO tree. Of course this results in a rather low selectivity
because the clustering algorithm will not group genes from these subprocesses together
due to their different expression profiles. On the other hand when the level is too low,
meaning that the annotations are very specific, only few genes actually have a annotation
at this level and therefore only a few can have a common annotation. In this case the
sensitivity of a cluster is generally low unless the cluster sizes are very small and conse-
quently the number of clusters is undesirably large. This shows that there is a trade-off
between cluster selectivity, sensitivity and the number of clusters.

Figure 6 shows the results of FatiGO8 for Cluster 3 of the hierarchical Euclidean

7Actually almost all genes not being annotated at level 5 have the annotation “molecular function un-
known” at level 2.

8Note that the three p-values given in the figure are computed by FatiGO to assess the significance of
the differences between query and reference set. The first value is the unadjusted p-value, the second and



Figure 6: Part of the output of FatiGO for Cluster 3 of hierarchical Euclidean clustering
with eight clusters. The six most significant differences between Cluster 3 and the refer-
ence set are given. For each GO term the upper bar gives the percentage of genes in the
query cluster and the lower bar in the reference set.

clustering with eight clusters. Cluster 3 contains 25 annotated genes and the reference
set has 134 annotated genes. The figure shows that this cluster is very selective for genes
involved in protein folding. When looking at the absolute numbers it groups 10 out of 11
genes having this annotation. However, it is not very sensitive for protein folding, since
60 percent of the cluster is constituted by genes not using this term.

Figure 7: The six most significant differences between Cluster 5 and the reference set for
the same clustering as used in Figure 6.

In Figure 7 Cluster 5, a very sensitive cluster, is shown. Seven of the eight annotated
genes are labeled with cell organization and biosynthesis. However, it does not have a
high selectivity for this feature because only 7 out of 45 genes involved in this process
have been selected.

When considering the second clustering, PAM with correlation dissimilarity and 10
clusters, the clusters are generally less selective and sensitive, probably caused by the
different dissimilarity measure and its properties. Nevertheless for example Cluster 10
shown in Figure 8 is both selective and sensitive for protein folding. As in the example
of Figure 6, it contains 10 out of 11 protein folding genes. But since it is made up by

third value are computed using the false discovery rate adjustment procedure by Benjamini and Hochberg
assuming independence and arbitrary dependence between GO terms respectively.



Figure 8: The six most significant differences between Cluster 10 and the reference set,
now for PAM clustering with correlation based dissimilarity and 10 clusters.

only 15 annotated genes it also has a good sensitivity of 66 percent for protein folding.
Another property of this cluster is that it is negatively selective for GO terms like “cell
proliferation” and others. Although there are a total of 45 genes with this term none of
them falls in Cluster 10.

5 Conclusions
The results presented in the previous section show once again that it is impossible to rec-
ommend a single algorithm or dissimilarity. All the clusterings evaluated – whether they
came from hierarchical or PAM clustering and whether they used Euclidean or correlation
based dissimilarities – have some clusters of good quality.

But still many clusters are neither very selective nor very sensitive for certain bio-
logical processes. This may have many different reasons. First, the clustering quality is
highly dependent on the experimental design underlying the data. Not all experiments
have the same power to extract certain groups of genes by analysing their expression
profiles. Genes whose expression does not depend on the conditions tested in the experi-
ment will most likely not show specific behaviors since they will behave asynchronously
and thus not much differential expression can be expected. This means that genes with
the same biological annotation do not necessarily have similar expression profiles and
hence the selectivity for these genes will be low. Further, often the assumption that genes
with similar functions or biological processes actually have similar expression patterns
does not hold, in particular for higher and more unspecific levels in the GO tree. But
this assumption is crucial for example to reveal the function of unknown genes by gene
expression analysis.

In contrast, this is not a problem when the goal is to find regulatory motifs in the
sequences of co-expressed genes or to discover regulatory networks. Here the relation-
ship between co-regulation and co-expression is much closer and external validation must
follow different approaches from what is described in Section 4. However, in this case
it is more important that the dissimilarity measures take into account for instance that
time-shifted profiles might still belong to the same group if the temporal distance is not
too large. This is just one example for the importance of the choice of a dissimilarity
measure. How similar should genes be when their profiles are scaled by a positive factor
or shifted horizontally or vertically? What about scaling with negative factors resulting in
negatively correlated genes? These questions have to be answered before clustering.

A second reason for clusters of low quality is that it is especially difficult to cluster



microarray data because the expression profiles tend to fill the feature space in a way that
the data points are not well separated. This leads to the absence of “natural” clusters and
clustering becomes segmentation. The known difficulties with the measuring precision
of microarrays are partly overcome by sophisticated normalization methods. Still, the
precision could be greatly improved by repeated measurements at the same conditions
and a better temporal resolution of time series experiments.

The bottom line is that clustering gene expression data from microarrays is a powerful
tool in bioinformatics and can reveal biologically relevant information. But it is important
to compare multiple clusterings and not run one algorithm with one parameter setting and
then take the results as the true structure of the data. Only the comparison of carefully
chosen clusterings can result in reliable conclusions drawn from cluster analysis.

In this article we have shown how to choose and compare clusterings from different
algorithms and parameter settings. After selecting meaningful dissimilarity measures a set
of candidate clusterings can be chosen by evaluating several internal validation criteria.
This includes specifying the number of clusters. Next, relative validation indices can help
to determine the differences between clusterings and identify relatively stable clusters that
appear in several clusterings. These clusters are likely to be more reliable as their structure
is extracted from the data by several algorithms or dissimilarity measures. Finally, if
possible suitable external biological information should be used to assess the quality of
the clusterings. The Gene Ontology annotations used in this work are of course just one
example of a source of external information.

However, even conclusions drawn from “good” clusters can only be seen as indica-
tions of biological meaning. The power of cluster analysis of gene expression data is
that it can greatly reduce the search space and thus can lead biologists towards promising
presumptions which are worth further biological examination. The verification of these
presumptions by biological experiments is not replaceable.
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